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Abstract 

 

Antibiotic resistance is threatening the medical industry in treating microbial infections. Many 

organisms are acquiring antibiotic resistance because of the continuous use of the same drug. Gram-

negative organisms are developing multi-drug resistance properties (MDR) due to chromosomal 

level changes that occurred as a part of evolution or some intrinsic factors already present in the 

organism. Stenotrophomonas maltophilia falls under the category of Multidrug-Resistant organism. 

WHO has also urged to evaluate the scenario and develop new strategies for making this organism 

susceptible to otherwise resistant antibiotics. Using novel compounds as drugs can ameliorate the 

issue to some extent. The β-lactamase enzyme in the bacteria is responsible for inhibiting several 

drugs currently being used for treatment. This enzyme can be targeted to find an inhibitor that can 

inhibit the enzyme activity and make the organism susceptible to β-lactam antibiotics. Plants 

produce several secondary metabolites for their survival in adverse environments. Several 

phytoconstituents have antimicrobial properties and have been used in traditional medicine for a 

long time. The computational technologies can be exploited to find the best compound from many 

compounds. Virtual screening, molecular docking, and dynamic simulation methods are followed 

to get the best inhibitor for L1 β-lactamase. IMPPAT database is screened, and the top hit 

compounds are studied for ADMET properties. Finally, four compounds are selected to set for 

molecular dynamics simulation. After all the computational calculations, Withanolide R is found to 

have a better binding and forms a stable complex with the protein. This compound can act as a 

potent natural inhibitor for L1 β-lactamase. 
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Introduction 

Antibiotics have played an imperative role in treating microbial infections and achieving 

amelioration in medicine and surgery [1]. Life expectancy has increased since the discovery and use 

of antibiotics because they act by altering the course of bacterial diseases [2][3]. However, the 

overuse of antibiotics aided in developing resistance in some microbes [4]. It was found that there 

is a link between antibiotic use and the establishment and spread of antibiotic-resistant bacterial 

strains (The antibiotic alarm 2013). Gene encoding antibiotic resistance can be inherited from 

relatives or nonrelatives on mobile genetic components like plasmids in bacteria. The HGT 

(Horizontal Gene Transfer) mechanism can transfer antibiotic resistance between bacteria species. 

Mutation can also be the reason behind the rise in antibiotic resistance. Antibiotics can phase out 

drug-sensitive organisms, but the resistant ones that are naturally selected are left behind to multiply. 

Over prescription of antibiotics is one of the most important reasons behind the emergence of 

antibiotic resistance. Antibiotic resistance is one of the major problems concerning the health field 

worldwide. In India, over 56,000 newborns die yearly from sepsis caused by antibiotic-resistant 

organisms resistant to first-line antibiotics [5]. The antimicrobial resistance property of Gram-

negative bacteria (GNB) makes it cumbersome for physicians to treat ICU patients. 45%-70% of 

ventilator-associated pneumonia cases (VAP)[6] and about 20% - 30% of catheter-related blood-

infection cases are caused by GNB. ICU-acquired sepsis-like surgical site infections and UTIs are 

some common GNB infections among nosocomial patients in hospitals. To overcome the current 

antibacterial resistance menace, there is an escalated demand to discover novel antibiotics against 

those neglected targets (Worthington and Melander, 2013). Most antibiotics are attenuated by 

enzymatic hydrolysis or degradation; in some cases, non-enzymatic mechanisms contribute to 

antibiotic resistance [7]. Both enzymatic and non-enzymatic mechanisms of resistance can either be 

intrinsic (effect of some intrinsically present chromosome) or may be acquired over time as a result 

of mutation[8] [9]. Bacteria utilize mechanisms like efflux pump, reduced outer membrane 

permeability, drug target modification, and drug inactivation by β-lactamase enzymes to attenuate 

the drug effects.[10] 

β-lactamases are a group of enzymes capable of hydrolyzing the amide bond in the β-lactam ring of 

β-lactam antibiotics such as carbapenems, penicillin, and cephalosporin and monobactam [11]. The 

two families of β-lactamases include "Metallo-β-lactamase" and "Serine-β-lactamases"[12]. Serine-

based β-lactamases belong to classes A, C, and D. Conversely, Class B enzymes bind one or two 

metal ions, usually Zn2+, and play a crucial part in their catalytic activity earning them the name 

metallo-lactamases (MBL). The effect of metal ion binding to the active site is found to enhance the 

catalytic significance of the enzyme. In the case of São Paolo metallo-β-lactamase-1, the presence 
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of two zinc ions at the active site provides a closed conformation and enhances the catalytic 

property. Meanwhile, g of one or no zinc gives an open conformation to the active site [13]. 

Similarly, the double zinc coordination at the active site of New-Delhi Metallo-β -lactamase 1 is 

necessary for binding antibiotics (ampicillin). Also, it restricts the motion in the loop region [14]. 

Based upon the substrate profile, protein sequence, and slight changes in the active site configuration 

for two Zn2+ ions, MBL proteins are divided into three subclasses: B1, B2, and B3. MBLs belonging 

to the B1 and B3 classes can hydrolyze practically every antibiotic with β-lactam rings, including 

the most recently produced carbapenems. Class B2 enzymes, on the other hand, have a narrow 

carbapenem substrate profile and weak action against penicillin and cephalosporins[15]. L1-β-

lactamases belong to the MBL family, while L2-β-lactamase belongs to the Serine β-lactamase 

family [16]. Multiple biochemical studies support several crystal structures of L1 and other B3 

MBLs complexed with antibiotics [17][18]. Even though the B3 MBLs are structurally well-

conserved, especially at the active site flanked with two zinc ions, the sequence identity is 23–35% 

[17][19]. Inhibitors for β-lactamase are prioritized to aggrandize treatment potency with β-lactam 

antimicrobials and avoid antimicrobial resistance. β-lactamase inhibitors may act as "competitive 

inhibitors" or "suicide inhibitors" that can permanently render the enzyme inoperable utilizing 

secondary chemical reactions in the active site. Clavulanic acid, a natural product discovered in 

1976 and used with ticarcillin and amoxicillin, is the first clinically successful β-lactamase inhibitor. 

It was quickly followed by introducing sulbactam and tazobactam, synthetic penicillin-based 

sulfone-lactamase inhibitors combined with ampicillin and piperacillin. The β-lactamase inhibitors 

that are clinically used for treatment like clavulanic acid have now become ineffective [20]  

Pathogens encompassing β-lactamase enzymes have sprung up in clinical fields and the 

environment. Stenotrophomonas maltophilia is an emerging prokaryotic, gram-negative, 

nosocomial, multi-drug resistant non-fermentative bacteria. The organism has emerged as an 

important hospital-acquired pathogen over the past decade. Treatment of infections due to this 

bacterium is challenging due to its multi-drug resistance (MDR). MDR is the property or ability of 

an organism to resist the effect of at least three antibiotics. The MDR in S.maltophilia is due to the 

intrinsic multidrug resistance phenotype, which involves the impact of several chromosomal 

determinants. S.maltophilia expresses specialized efflux pumps that can pump out a broad spectrum 

of drugs, especially β-lactams. One among them, SmeDEF, is the most effective one and is efficient 

in the expulsion of quinolones and aminoglycosides[21]. The L1 β-lactamases or Zn β-lactamases 

and L2 β-lactamases with serine in the active site are the two chromosomal β-lactamases produced 

by S.maltophilia [22]. The L1 in S.maltophilia belongs to the B3 subclass of MBL[23]. The protein 

is a tetramer with αβ/βα folds. The active site is found between the two β sheets containing two zinc 
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atoms, and the side chains that coordinate the metal ions are at the bottom of the active site. The 

amino acids bound to Zn1 are His196, His118, and His116 in 2.1-2.2 Å distance range. Asp120, 

His263, and His121, are bound to Zn2 with distances of 3.0, 2.5, and 2.1 Å, respectively [24]. An 

increase in the inhibitory capacity of  L1 β-lactamase can be attributed to the two zinc ions present 

at the active site of the enzyme. Zinc plays a catalytic role in the enzyme. It stabilizes the tetrahedral 

transition state, protonates the nitrogen atom in the β -lactam ring, and causes a nucleophilic attack 

on the hydroxide group in the carbonyl carbon, thereby forming a tetrahedral intermediate [25][26]. 

The ligands mainly bind to the metal ion. The binding pocket of the protein provides a broader 

region for many β-lactam antibiotics to bind [24]. It has thus become an increasing concern to find 

inhibitors against β -lactamases that can render the enzyme ineffective and make the organism more 

susceptible to antibiotics. 

Plants provide a vast range of medications used to treat several ailments. Many laboratories continue 

to screen medicinal plants for new antimicrobial medication candidates that can slow pathogen 

development or kill without causing toxicity to the host [27][28]. Plant-based antimicrobials hold 

significant therapeutic potential, making them a massive untapped supply of pharmaceuticals. They 

are found to help treat infectious disorders by avoiding most of the adverse side effects that are 

usually common when synthetic antibiotics are used for treatment. Plant-derived antimicrobials are 

biodegradable and are relatively safer drugs. Even though many antibiotics are available, the search 

for plant-based compounds to combat fungal and bacterial infections will continue[29]. 

In the current study, we screened the phytochemicals from IMPPAT database [30] to find an 

inhibitor against L1 β-lactamase of Stenotrophomonas maltophilia. After molecular docking, the 

compounds having good binding energy were selected for ADME and PAINS-remove studies 

(toxicity analysis). The compounds that passed the toxicity studies were set to Molecular Dynamic 

(MD) simulation to test the stability of the complex. Thus, the results will give a novel inhibitor 

identified for L1 β-lactamase of S.maltophilia.  

 

 

 

 

Materials and methods 

 

Virtual screening 

Protein structure preparation 
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The X-ray crystallography structure of Metallo β-lactamase L1 from Stenotrophomonas maltophilia  

with hydrolyzed imipenem complex structure (PDB id: 6UAF [24]) was downloaded from the 

Protein data bank (RCSB-PDB) [25][31] and utilized for ensuing studies (Figure 1). This protein 

structure resolution is 1.90 Å. The sequence length of Metallo- β-lactamase L1 is 293, and the 

downloaded crystal protein structure has 266 amino acids (residue number 23 to 289) with two Zn 

ions. However, missing residues present at the N-terminal and C-terminal were unresolved and these 

unsolved residues are not affecting the binding interaction as they are away from the active site. The 

protein structure was prepared by adding hydrogen and subjected to energy minimization through 

UCSF-Chimera software. For refining the structure and minimizing the energy of the selected 

protein, UCSF-Chimera software was employed. 

 

 Ligand library preparation 

The ligand library for virtual screening of suitable inhibitor molecules against L1 β-lactamase was 

downloaded from the IMPPAT database[32]. The three-dimensional structures of the 

phytochemicals were downloaded in PDB format and then converted to PDBQT using OpenBabel 

and maintained in a folder. The phytochemicals for which there was no availability of 3D structure 

were excluded from the study. A total of 7937 compounds were collected from the IMPPAT 

database.  

 

Molecular Docking 

Molecular docking techniques are of great importance in the discovery of novel drugs. The 

methodology involves the prediction of the pose, virtual screening, and estimation of binding 

affinity of the ligands to the protein. The structure-based screening was performed using AutoDock 

Vina[33]. The protein in PDB format was converted to PDBQT format using OpenBabel 

software[34]. Kollman charges method was utilized to add polar hydrogen and charges. The grid 

point in XYZ, 46Å×62Å×82Å (x, y, and z), and the grid box center 20.245×24.393×0.68, with 

0.375Ǻ spacing, were assigned to the protein. This information was saved in the conf.txt file. The 

grid map was calculated using Autogrid4. The remaining docking computation parameters were 

maintained unchanged. The target protein, the ligands,  conf.txt, and script files were maintained in 

the same directory to perform docking. After docking, every ligand produced two output files, 

log.txt and out. pdbqt. A total of 10 conformations were taken into consideration for every ligand. 

The log.txt file contained the docking score of all the ten conformations. pdbqt had the structural 

information of the complex. A python script (https://vina.scripps.edu/manual/) was run to obtain the 

compounds with a high dock score  (minimum binding energy). The interaction between protein-

https://vina.scripps.edu/manual/
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ligand complexes was calculated using PLIP [35]. A standard β-lactam drug, imipenem, was docked 

with the protein as a control.  

 

ADME AND PAINS  analysis 

After molecular docking we performed ADME (Absorption, Distribution, Metabolism, Elimination) 

and PAINS-remover calculation to verify the pharmacokinetic ability of the selected compounds 

obtained after screening based on molecular docking. Lipinski’s rule, Ghose filter, Verber’s rule, 

Muegge’s rule, Egan rule, water solubility, lipophilicity, hepatotoxicity, etc, are some of the main 

drug-likeness rules. Along with ADME calculation we performed the PAINS (pan-assay 

interference compounds) calculation. Through this calculation we removed the compounds that may 

give false-positive compounds results when predicting binding sites. Compounds with ADME and 

PAINS alerts must be eliminated from the study. For calculation of ADME, we use the Swiss-

ADME and for calculation of PAINS we used PAINS-remover web online tools.  

  

Molecular Dynamics (MD) Simulation 

For performing MD, GROMACS (Version-4.6.5) software was used. GROMACS 53a6 force field 

was selected for generating the protein topology file. The binding orientation of the selected hit 

compounds were obtained from the docking site and the ligand topology was created using the 

PRODRUG online tool. For solvation, the complex was placed in a triclinic box and solvated with 

spc216 (simple point charge) water. Na+ or Cl- ions were then added to the system for 

neutralization. The overall system (ions, water and protein-ligand complex), was relaxed by running 

energy minimization with the steepest descent. PME algorithms were used for estimating 

electrostatic interaction. For this  study, we set the pme_order to 4, fourier spacing to 0.16, and scale 

at 310 K. Next, the entire system was specified for thermal equilibration (NVT step) for 1 ns using 

Modified Berendsen Thermostat (V-rev100ns for selected virtual hit compounds). NPT was 

performed at 300 K using V-rescale, the pressure coupling (P-coupling), and temperature coupling 

(T-coupling). 100 ns MD simulation was performed without position restraints. The output was 

saved every 2 ps. At every 10 ps, the velocities and coordinates, nstvout and nstxout, respectively, 

were also held. We set the 1.0 mm cut-offs for coulombic (rcoulomb) and Van der Waals force 

(rvdw). PME (Particle Mesh Ewald) and PBC (Periodic Boundary Conditions) were used in 100 ns 

MD simulation to calculate the long-range electrostatic interactions. MD simulation results were 

analyzed by plotting the graph of RMSD (Root Mean Square Deviation), RMSF (Root Mean Square 

Fluctuation), and Rg (Radius of gyration). They were calculated using g_rms, g_rmsf, and g_gyrate. 
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Along with this we checked the changes in the secondary structure of protein using the do_dssp 

program. 

 

Binding Free Energy Calculation using MM-PBSA  

Once we finish the 100 ns Simulation, we use the stable region to calculate the binding free energy 

(BFE). Binding free energy calculation is a critical approach to study the reciprocal recognition and 

binding of protein and their ligands. The negative and positive values of free energy show the 

possibility of a reaction, and the importance of binding free energy is an accurate standard for 

evaluating the bending degree of protein receptors to ligands[36]. The binding free energy for 

selected hit compounds and the energy change under vacuum were calculated using Molecular 

Mechanics energies combined with Poisson-Boltzmann (MM-PBSA) method by g_mmpbsa Tool 

[37]. PB shows the polar part of solvent-free energy of systems calculated by the Poisson-Boltzmann 

(PB) equation. The non-polar part of solvent-free energy systems is fitted by the solvent-accessible 

surface area (SASA). The MMMPBSA calculation is as follows;𝐼𝑛𝑐𝑟𝑒𝑚𝑒𝑛𝑡∆𝐺𝑏𝑖𝑛𝑑 = ∆𝐸𝑣𝑑𝑤 + ∆𝐸𝑒𝑙𝑒 + ∆𝐺𝑝𝑜𝑙 + ∆𝐺𝑛𝑜𝑛𝑝𝑜𝑙 − 𝑇∆𝑆 

 

The ΔEvdW and ΔEele are van der Waals and electrostatic components, respectively, and the polar 

and nonpolar components are indicated as ΔGpol and ΔGnonpol, respectively. TΔS is the 

temperature and entropic contribution towards BFE. BFE plays a significant role in drug discovery, 

giving a quantitative estimation of the ligand binding to the protein. The q_mmpbsa tool calculated 

MM-PBSA after extracting the stable segment in the trajectory file. 

 

 

 

 

Results and Discussion 

Virtual screening  

Structure-based virtual screening was used to screen down the compounds downloaded from 

IMPPAT (Indian Medicinal Plants, Phytochemistry and Therapeutics) database using molecular 

docking techniques. Molecular docking was performed using standard default 

parameter to calculate the binding energy. 7937 IMPPAT phytochemical compounds were docked 

with the target protein (6uaf) and the compounds with best dock score (more negative value) was 

considered to be the best bonding. Out of 7937 phytochemical, we selected top eight compounds 
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based on their minimum binding energy from 10 conformation generated by all the compounds. The 

selected eight compounds are Withanolide R (-10.26 kcal/mol), Withanolide A  (-9.59 kcal/mol),  

27-Deoxywithaferin (-9.98 kcal/mol), Demissidine (-9.3 kcal/mol), Pibenzimol (-9.3 kcal/mol), 

Crinasiatine  (-9.2 kcal/mol), 3-Methylcholanthrene (-8.7 kcal/mol) and Withanolide Q (-6.14 

kcal/mol). These selected eight compounds were further screened down by applying the ADME and 

PAINS parameter to get the good drug compound. 

 

ADME and PAINS analysis: 

All the top  eight compounds, after docking, were studied for ADMET and PAINS properties. All 

the compounds had a molecular weight of less than 500 Daltons and logP <5. One violation of the 

ghose Ghose rule occurs for all the compounds except for 3-Methylcholanthrene (-8.7). One of the 

selected compounds, Demissidine, with a dock score of -9.3, violated one Lipinski’s rule and one 

Muegge’s rule. 3-Methylcholanthrene violated one Lipinski’s rule and two Muegge’s rules. All the 

compounds were AMES non-toxic. The ADME study results are given in Table 3. After ADME 

calculation, we run the PAINS-remover to check if the compounds represent poor choices for drug 

development. None of the compounds showed PAINS alert. After the ADME and PAINS analysis, 

we selected four compounds which showed no PAINS alert, satisfied most of the drug-likeness 

parameters, are AMESnon-toxic and have very low CYP p450 inhibition. The selected compounds 

are Withanolide Q, Withanolide A, Withanolide R, and 27-Deoxywithaferin. These compounds are 

present in, and can be extracted from, the roots of Withania somnifera (ashwagandha). These 

selected four compounds were finalized to proceed for the MD simulation.  

 

Molecular Docking Analysis: 

Based on binding energy, ADME and PAINS analysis we select the four compounds. 25-

Deoxywithaferin, Withanolide A, Withanolide Q, and Withanolide R compounds interaction were 

calculated using the PLIP online tool. It shows the hydrogen bond and hydrophobic bond formed 

with protein and ligand, as well as it shows the interaction between protein-ligand complex with 

two zinc atoms present in the binding pocket. Further, we included Imipenem, the known standard 

reference compound (control) for comparison. It is an intravenous β-lactam antibiotic used for the 

treatment of infections. All these chosen compounds bind in the same declaration region near Zn 

ions, as shown in Figure 2. These four compounds and the control binding energies are shown in 

Table 1. When compared to other selected hit compounds, Withanolide R shows the most potent 

binding energy which is -10.26 Kcal/mo. There are two Zn ions present in L1 β-lactamase that 

interact with protein as well as the ligand. Compound Withanolide A and Withanolide R take part 
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in interaction with Zn (Figure 4 and Figure 6) and other two compounds Withanolide Q and 27-

Deoxywithaferin do not interact with Zn ions (Figure 3 and Figure 5). The amino acids involved 

in formation of hydrogen bonds, hydrophobic interaction, salt bridge formation as well as 

interactions with Zn ions are mentioned in Table 2. For protein and 27-Deoxywithaferin complex, 

302 Zn ion interactions are established with Asp109 (2.8 Å) and His110 (2.0 Å)and 303 Zn ion 

interact with His105 and His181 at 2.0 Å (Figure 3.A and Figure 3.B) (Table 2). Compound 27-

Deoxywithaferin shows the hydrophobic interaction with Leu59, Phe145, Ile149, His246, and 

Lys277 (Figure 3.C). In the case of Withanolide A-protein complex, Zn ion shows the interaction 

with amino acids and ligand shown in Figure 4.A and Figure 4.B (Table 2). This complex shows 

the hydrogen and hydrophobic interaction with Leu207, Ser208, Lys277 and Tyr32, and 

hydrophobic interaction with Trp38, Phe145, His246, Ala249, Tyr270, Ala274 (Figure 4.C). Along 

with these interactions we observe the salt bridge formation at His105, His107, His110, His181 and 

His246 (Table 2 and Figure 4.C). From the selected compounds, Withanolide Q-protein complex, 

Zn ions do not show any interactions with the ligand, but form bonds with amino acids in the 

vicinity. The Zn302 interacts with His109, His110, and His246 at distance 2.1 Å, 2.2 Å and 2.1 Å 

respectively and Zn303 interact with His105 (2.0 Å), His107 (2.2 Å) and His181 (2.2 Å) as shown 

in Figure 5.A, Figure 5.B and Table 2. This compound take part in hydrogen and hydrophobic 

interaction with protein as shown in Table 2 and Figure 5.C. Withanolide R shows the interaction 

with Zn ions. Both Zn ions forms interaction with the compound as well as with amino acids as 

shown in Figure 6.A, Figure 6.B and Table 2. Hydrogen bonds interaction were formed with 

Leu207, Ser208, His246, and Lys277 and hydrophobic interaction were established with His107, 

Phe145, Ile149, His246, Ala249, Tyr270, Ala274, and Lys277 residues (Figure 6.C and Table 2). 

Salt bridge interaction with His105, His107, His110, His181, and His246 is also established (Figure 

6.C and Table 2). Among all four compounds, 27-Deoxywithaferin is not involved in forming 

hydrogen bonds with the protein, or any kind of bond is formed with Zn ions. The control 

(Imipenem) formed hydrogen bonds with amino acids Tyr32, Ser206, Lue207 and Ser208. 

Hydrophobic bond is formed with Ala249. It takes part in interaction with both Zn ions. This 

comparison analysis shows that the known β lactam drug (imipenem) and hit compound have the 

same pattern of interaction as well as hit compounds binds in the same region where the β lactam 

drug binds.  

 

Molecular Dynamics (MD) Simulation analysis: 

Selected hit compounds were further subjected to 100 ns MD simulation to analyze the stability of 

the protein-ligand complex. Through this we investigated the binding mechanism and dynamic 
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behavior of the complexes. The receptor-ligand conformational stability was studied through 

RMSD, RMSF, and Radius of gyration. We calculated the hydrogen bond between protein-ligand 

and protein solvent throughout the 100 ns MD simulation. We checked the changes in the secondary 

structure when selected compounds were bound to the protein. After that, MMPBSA was computed 

to calculate binding free energy. 

We calculated the RMSD value to check the change in the α carbon of the ligand-receptor complex. 

An elevation of RMSD value at the starting stage of MD simulation up to 0.35nm was observed for 

27-Deoxywithaferin and Withanolide R.  Withanolide A and Withanolide Q showed the most 

RMSD value (0.45 nm), and it gradually increased up to 15 ns simulation. 27-Deoxywithaferin 

showed slight increase in the RMSD value at initial stage upto 1 ns and then there was a sudden 

decrease in it. After that the RMSD value slowly increased upto 10 ns. Then the RMSD became 

constant with slight fluctuation throughout the 100 ns simulation between 0.4-0.5 nm (Figure 7). In 

the case of Withanolide R, there was more oscillation in value up to 5 ns, after that it showed  an 

increase in the RMSD value (0.55 nm) up to 15 ns. Up to 43 ns, the RMSD remained almost 

constant. There was a sudden decrease in RMSD between 0.40-0.55 nm up to 57 ns and then it 

gradually increased up to 100 ns MD simulation. In the case of Withanolide A and Withanolide Q, 

the same pattern of fluctuation was observed up to 35 ns simulation. After that Withanolide A 

showed a decreased RMSD value between 0.45-0.55 nm and Withanolide-Q showed a slight 

increase between 0.55-0.60 nm throughout the 100 ns simulation (Figure 7). 

Further we checked the momentum of each residue throughout the simulation when the ligand binds 

to the protein in the presence of Zn ions. For that, the RMSF was plotted against residues (Figure 

8). The plot shows that all compounds show the same protein fluctuation pattern. However, when 

Withanolide R binds to protein, the initial amino acid shows a more RMSF value, and other amino 

acids indicate the same fluctuation pattern. Residues between 210-230 showed a slight difference 

in RMSF value. In the case of Withanolide Q, the binding to protein shows the same pattern of 

fluctuation by all amino acids, but residues between 87-100 show a more RMSF value when 

compared with others. When Withanolide A binds to the protein, all amino acids show a smaller 

RMSF value than others. 27-Deoxywithaferin complexed with the protein shows the same 

fluctuation pattern throughout the simulation, but some amino acids show a lower RMSF value 

(140-150 residues and 210-223 residues). RMSF is more at residues from 245 to 260 (Figure 8). 

This increase and decrease in the fluctuation are possibly due to interaction between the hit 

compound and the protein helix, small β-sheets, and the loop region of the protein. The RMSF plots 

backbone shows more fluctuation in the loop and helix regions.  
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The compactness level of the protein-ligand complex in the presence of Zn ions was checked by 

calculating the radius of the gyration (Rg) plot (Figure 9). We used the 100 ns MD simulation 

trajectory file for this calculation and plotted the gyration plot using Rg vs. time shown in Figure 

9. All selected hit compounds initially showed the Rg value between 1.82-1.85 nm. Then it 

decreased till 5 ns. Withanolide Q and Withanolide R showed a slight increase in the Rg value up 

to 6 ns, and after that, the same pattern of fluctuation till 25 ns was observed. In the case of 27-

Deoxywithaferin, the Rg value had a steady fluctuation. For Withanolide A, the Rg value increased 

to 7 ns and then decreased to 20 ns. After some time, there was a sudden increase in Rg value (1.9 

nm Rg). After this, the Rg decreased till 50 ns and then there was a steady increase and decrease till 

the end of 100 ns simulation. At 45 ns, compounds 27- Deoxywithaferin and Withanolide A showed 

the same pattern of Rg, which was between 1.78-1.83 nm. At the same point (45 ns), Withanolide 

Q and Withanolide R showed a slow increase in Rg value, and both compounds showed the same 

pattern of fluctuation up to 100 ns simulation. 

The H-bond interaction between protein-ligand and protein-solvent was also calculated (Figures 10 

and 11). Withanolide R showed a better hydrogen bond interaction than the other compounds. This 

compound formed 0-6 hydrogen bonds in 100 ns MD simulation. At initial simulation time up to 45 

ns, 0-2 hydrogen bonds were established in the protein-ligand complex. At 73-92 ns, the number of 

hydrogen bonds increased to 2. 27-Deoxywithaferin (Magenta color), Withanolide A (Purple color), 

and Withanolide Q (Green color) showed the same pattern of hydrogen bond formation Figure 10. 

The H-bond interactions formed between the protein and the solvent were also calculated. 420-540 

H-bonds were established between the protein and solvent (Figure 11). Withanolide R had the 

highest number of hydrogen bond interactions among all the other compounds, and Withanolide Q 

had the least. In the case of 27-Deoxywithaferin and Withanolide A,  the same pattern of hydrogen 

bond interactions between protein-solvent was observed. 

Throughout the simulation, secondary structure changes were analyzed using the do_dssp program 

(Figure 12). For this program, the trajectory file for 100ns was used to compute the secondary 

structure for every frame. When the complexes are formed with the protein by selected hit 

compounds, some changes in the conformational behavior and degree of protein folding were 

observed. This depended on its secondary structure. When we compared selected hit compounds 

bound to the protein, no more secondary structural changes were observed. We observed some 

minor changes in the secondary structure, which is observed in β-sheets (Red color) to turn (Yellow 

color), coil (White color) to turn (Yellow color), and turn (Yellow color) to bend (Green color).   

Further, we calculated the binding free energy for the selected hit compounds (Table 4). Among the 

selected hit compounds, Withanolide R showed the most binding free energy, -80.003 kJ/mol, and 
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compound 27-Deoxywithaferin showed the least binding free energy, -28.096 kJ/mol. The other two 

compounds binding energy are shown in Table 4. The MMPBSA energy is known as approximate 

free energies of binding. Stronger critical interaction gives more negative values. 

 

Discussion: 

Stenotrophomonas maltophilia, a multidrug-resistant organism, makes treating the infections 

caused by the bacteria very difficult. This organism can resist several antibiotics that are currently 

prescribed for microbial infections. Some antibiotics like fluoroquinolones (FQs), trimethoprim-

sulfamethoxazole (SXT), ticarcillin clavulanate, tetracyclines, and ceftazidime are found to have in 

vitro activity against this bacteria; however, the clinical evidence for their use is limited [38][39] 

WHO has also urged on to come up with novel strategies to make the organism vulnerable to the 

antibiotics available. The presence of β-lactamase enzymes in the extracellular space makes the 

organism resistant to a broad spectrum of β-lactam antibiotics. There are no specific inhibitors 

discovered that inhibit the L1 β -lactamase. The active site of this enzyme contains two zinc ions at 

302 (Zn1) and 303 (Zn2). Targeting the active site zinc ions will help inhibit the catalytic property 

of the protein and thus can lead to the discovery of a novel inhibitor specifically for L1 β-lactamase 

that can compete with β-lactam antibiotics to bind at the active site.    

An in-silico approach toward discovering novel inhibitor compounds is less expensive and 

recommendable in today's scenario. Many research data suggest that molecular docking and 

dynamics approaches in studying protein-ligand stability are effective [40][41]. With the 

development of molecular dynamics simulation techniques in the 1970s, the usage of the 

computational approach got elevated in drug discovery [42][43][44].  In the present study, a virtual 

screening, molecular docking, and MD simulation approach is carried out on plant-based 

compounds to screen the inhibitor for L1 β-lactamase from the 7937 phytochemicals  from the 

IMPPAT database. The docking results were compared with that of the reference compound 

(imipenem). It is a standard β-lactam antibiotic compound discovered by merck scientist Burton 

Christensen, William Leanza and Kenneth Wildonger in the mid-1970. L1 β-lactamase mainly 

inhibits imipenem. The selected hit metabolites had better dock score and binding interactions than 

imipenem, suggesting that they can compete with the β-lactam antibiotics (substrates for β-

lactamase) and bind to the active site and block it, thereby reducing the ability of the enzyme in 

hydrolysis of the antibiotics. Withanolide A, Withanolide Q, Withanolide R, and 27-

Deoxywithaferin were selected by Molecular docking, ADME and PAINS-remover studies. All the 

four compounds are derivatives of Withanolides in Withania somnifera (ashwagandha). Most of the 

pharmacological properties of W.somnifera are rendered by Withanolides. They have many 
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biological activities, including immunoregulatory, anticancer, antimicrobial, anti-inflammatory, 

leishmanicidal, and trypanocidal [45]. Withanolide A has suitable neuropharmacological activities 

that aid in the outgrowth of the neurite. Thus it can reverse neuritic atrophy and help to reconstruct 

the synapse [46]. Withanolide Q is reported to have a modulating effect on several SARS-CoV-2 

proteins [47]. 27-Deoxywithaferin is found to have antibacterial properties [48] and has the potential 

to inhibit spike protein of SARS-CoV-2, while Withanolide R can inhibit the main protease  of 

SARS-CoV-2 [49]. These data suggest the strong antimicrobial property of these phytochemicals 

27-Deoxywithaferin (BE -9.98 kcal/mol) showed a stable and lower RMSD value than all the other 

compounds, and thereby it is understood that this complex shows a minimal deviation in the path 

from the actual when compared to other complexes. On the other hand, RMSF result  also shows 

the same pattern of fluctuation throughout the simulation. Comparison of the RMSF of the hit 

compounds suggest that all these compounds binding to the zinc containing L1 β-lactamase does 

not show much difference and even the amino acids present in the active site does not show much 

fluctuation. There were fluctuations at some residues, but none of these residues are present in the 

loop region, and hence it did not affect the stability of the complexes during the 100 ns simulation. 

Even though 27-Deoxywithaferin had a good RMSD and RMSF, the compound did not form any 

hydrogen bonds with the protein, which resulted in the least binding energy, and it did not interact 

with zinc atoms at the active site. To study the compactness of the complex formed between protein 

and selected hit compounds in the presence of Zn ions, the Rg plot was analyzed. From the Rg plot, 

it can be elucidated that the compactness level of the 27-Deoxywithaferin protein complex was 

stable and constant throughout the simulation, but at initial time period it showed a decrease in the 

compactness up to 5 ns but after 5 ns its shows the steady and stable compactness compared to the 

other three complexes. Withanolide A showed the least compactness. Withanolide Q and R showed 

the same pattern of compactness as their Rg was stable throughout the 100 ns simulation. We can 

get an idea about the binding strength by analyzing the number of H-bonds established between the 

compounds, and the number of hydrogen bonds based between the compounds gives an idea about 

the strength of binding. 

Withanolide R established the most significant number of hydrogen bonds (between 0 to 6) with the 

residues at the active site of the target protein. This compound also had a better hydrogen bond 

interaction with the solvent molecules. Among the four compounds, Withanolide R showed the 

slightest fluctuation which signifies the stability of the complex, and the MMPBSA score was 

maximum (-80.003). This can be because of its strong binding to the residues and zinc ions at the 

active site. All the data thus obtained based on computational calculations can give ideas for 

designing a potent drug that can specifically target the L1 β-lactamase and inhibit its action. 
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Conclusion 

We successfully screened the phytochemicals from the IMPPAT database using Molecular docking 

, ADME and PAINS remover techniques. Good dock scores were obtained for ligands interacting 

with the amino acid residues and zinc ions at the active site. The ADME and PAINS-remove study 

on the top hit compounds resulted in four phytochemicals that satisfied the drug-likeness and lead 

likeness properties. We also carried out an MD simulation to find the most stable complex. From 

the entire study, the compound Withanolide R present in Withania somnifera (ashwagandha) formed 

a stable binding conformation at the active site. It had the best dock score, binding energy, and the 

highest number of interactions with the active site residues. The conformational fluctuations were 

also less. The highest number of interactions at the active site and stability in binding can make the 

compound a potent inhibitor of the enzyme. However, in vitro studies have to be conducted to 

thoroughly understand and thereby confirm the inhibitory property of Withanolide R on L1 β-

lactamase of S. maltophilia. 
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Table 1. Selected virtual hit compounds based on binding energy, their binding energy and 2D 
structure 

 
Compounds Binding Energy (Kcal/mol) 2D strucutre 

27-Deoxywithaferin -9.98 Kcal/mol 

 
Withanolide_A -9.59 Kcal/mol 

 
Withanolide_Q -6.14 Kcal/mol 

 
Withanolide_R -10.26 Kcal/mol 

 
Imipenem 
(Refence 

compound) 

-6.0 Kcal/mol 
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Table 2. Different interaction bonds formation between ligand and Zn ions.  
Compounds Hydrophobic 

Interactions 
Hydrogen 
Bonds 

Salt Bridges ZN:A:30
2 (ZN) 

ZN:A:30
3 (ZN) 

27-
Deoxywithaferi
n 

Leu59, Phe145, Ile149, 
His246, Lys277 

- - Asp109, 
His110 

His105, 
His181 

Withanolide_A Tyr32, Trp38, Phe145, 
His246, Ala249, Tyr270, 
Ala274 

Lle207, 
Ser208, 
Lys277 

His105, 
His107, 
His110, 
His181, 
His246 

UNL1, 
Asp109, 
His110, 
His246 

UNL1, 
His105, 
His107, 
His181 

Withanolide_Q Trp38, Phe145, Pro210, 
Als249 

Ser206, 
His246 

- Asp109, 
His110, 
His246 

His105, 
His107, 
His181 

Withanolide_R His107, Phe145, Ile149, 
His246, Ala249, Tyr270, 
Ala274, Lys277 

Leu207, 
Ser208, 
His246, 
Lys277 

His105, 
His107, 
His110, 
His181, 
His246 

UNL1, 
Asp109, 
His110, 
His246 

UNL1, 
His105, 
His107, 
His181 

Imipenem 
(Refence 
compound) 

Phe145, Pro10 Tyr32, 
Ser206, 
Lue207, 
Ser208 

His105, 
His107, 
His110, 
His181, 
His246 

Asp109, 
His110, 
His246 

His105, 
His107, 
His181 
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Table 3: ADMET results for the top 8 compounds after docking studies. 

Compound Dock 

Score 

Lipinski Ghose Verber Egan Muegge Pains Mol. Wt 

         

Demissidine -9.3 Yes; 1 
Violation: 
MLogP>4.1
5 

No; 1 
violation: 
atoms>70 

Yes Yes No; 1 
violation: 
XLOGP3>5 

0 alert 399.65 
g/mol 

Pibenzimol -9.3 Yes No; 1 
violation: 
MR>130 

Yes Yes Yes 0 alert 424.50 
g/mol 

Crinasiatine -9.2 Yes Yes Yes Yes Yes 0 alert 359.37 
g/mol 

Withanolide Q -9.2 Yes No; 1 
violation: 
#atoms>70 

Yes Yes Yes 0 alert 470.60 
g/mol 

Withanolide A -9.2 Yes No; 1 
violation: 
#atoms>70 

Yes Yes Yes 0 alert 470.60 
g/mol 

Withanolide R -9.1 Yes No; 1 
violation: 
#atoms>70 

Yes Yes Yes 0 alert 470.60 
g/mol 

27-
Deoxywithafer
in 

-8.9 Yes No; 1 
violation: 
#atoms>70 

Yes Yes Yes 0 alert 454.60 
g/mol 

3-
Methylecholan
thren 

-8.7 Yes; 1 
violation: 
MLogP>4.1
5 

Yes Yes Yes No; 2 
violations: 
XLOGP3>5, 
Heteroatoms<
2 

0 alert 268.35 
g/mol 
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Table 4. MMPBSA binding free energy calculation. 

 
Compounds Binding energy (kJ/mol) 
27-Deoxywithaferin -28.096   +/-   25.708 kJ/mol 
Withanolide_A -79.777   +/-    7.470 kJ/mol 

Withanolide_Q -29.170   +/-   12.401 kJ/mol 

Withanolide_R -80.003   +/-   10.359 kJ/mol 
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Fig. 1 Metallo-beta-lactamase L1 from Stenotrophomonas maltophilia protein (PDB ID: 6UAF) 
downloaded from Protein Data 
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Fig. 2 Protein–ligand complex formed by selected hit compounds. All selected hit compounds bond 
in the same place bear to two Zn atoms (red color) 
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Fig. 3 Interaction between protein–ligand (yellow color) and Zn ions (green color). Zn ion 302 
showing interaction with protein amino acids. B Zn ion 303 showing interactions with His105 and 
His181. C. Interaction between 27-deoxywithaferin and side chain of the protein. 
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Fig. 4 Interaction between protein–ligand and Zn ions. A Withanolidine-A and Zn ion 302 showing 
interaction with protein amino acids. B Withanolidine-A and Zn ion 303 
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Fig. 5 Interaction between protein–ligand and Zn ions. A Zn ion 302 showing interaction with 
protein amino acids. B Zn ion 303 showing interaction with protein 
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Fig. 6 Interaction between protein–ligand and Zn ions. A Withanolidine-R and Zn ion 302 showing 
interaction with protein amino acids. B Withanolidine-R and Zn ion 303 
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Fig. 7 The RMSD for the virtual hit four compounds interact with protein and forms a complex 
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Fig. 8 The RMSF for the virtual hit compound interacts with protein and forms a complex 
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Fig. 9 The radius of gyration for the virtual hit four compounds interact with protein and form a 
complex 
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Fig. 10 Hydrogen bond interaction between protein–ligand complex formed throughout 100 ns MD 
simulation 
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Fig. 11 Hydrogen bond interaction between protein-solvent formed throughout 100 ns MD 
simulation 
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Fig. 12 Secondary structural conformation changes of hit compounds were shown during 100 ns 
simulation 


