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A new, multigrid-based, algorithm is proposed for the solution of the discretized lubrication 
equations which are widely used to model a broad class of thin film flow phenomena. The 
approach is based upon the use of a Newton-Krylov solver for the nonlinear algebraic 
systems of equations that arise following mesh-based spatial discretizations and implicit 
time discretizations. The novel contribution is to propose a block-based preconditioner that 
includes two applications of algebraic multigrid (AMG) as a key component: thus allowing 
AMG techniques to be applied in the solution of thin film flow problems for the first time. 
An implementation of this preconditioned solver is demonstrated for a typical thin film 
scenario of free-surface flow down a non-smooth inclined plane, considering both steady-
state and time-dependent configurations. Systematic computational testing is undertaken 
in comparison with two other state-of-the-art multigrid methods in order to demonstrate 
the substantial computational advantages of the proposed algorithm.

© 2022 The Author(s). Published by Elsevier B.V. on behalf of IMACS. This is an open 
access article under the CC BY-NC-ND license 

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Thin film flow problems are widely studied due to their great importance across a broad range of applications. In recent 
years numerical methods for the simulation of such flows, based upon the lubrication (or long-wave) approximation, have 
advanced significantly, and a number of “optimal” solvers have been developed [21,30]. In this context, “optimal” means 
that the computational work (and therefore the execution time) grows linearly with the number of degrees of freedom 
being used in the spatial discretization. This is a significant achievement since the underlying system of partial differen-
tial equations (PDEs) is parabolic and fourth order, which means it cannot be solved explicitly in time without a prohibitive 
time-step size restriction due to instability. Furthermore, the problem is nonlinear, which leads to large systems of nonlinear 
algebraic equations arising at each implicit time step. The key to solving these systems optimally has been the development 
of multigrid methods: either designed specifically for the nonlinear system [21,30] or applied in conjunction with lineariza-
tion schemes such as Newton’s method [27,50].

This paper describes an improved optimal solution method for the discretized systems of PDEs modeling thin film flows. 
The technique that we propose is based upon a new preconditioner for the Jacobian matrix that arises from a Newton 
linearization of the discrete nonlinear system at each implicit time step. At the heart of this preconditioner, which we 
contrast favorably to the application of more traditional multigrid techniques to this problem, is a black-box algebraic 
multigrid solver: thus making the solution strategy straightforward to implement and apply in practice.
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In the remainder of this introduction we provide some further, brief, background to thin film flows and multilevel solvers. 
The following two sections then describe the thin film PDEs (and their discretization) and the relevant multigrid solution 
algorithms (both traditional and our proposed preconditioned Newton-Krylov approach) in more detail. These are followed 
by a discussion of numerical simulations that have been undertaken and some conclusions.

Understanding the flow of thin liquid films is of enormous importance for the description, explanation and control of a 
vast array of natural and engineering phenomena and processes. Occurrences in nature include thin layers of fluid on the 
eye [10,16] or lungs [24,28], which have enormous impact upon the function of these organs, as well as the effectiveness 
of therapeutic interventions [25]. Elsewhere in biology such films are essential for the locomotion of some animals [29] or 
the survival of bio-films [17]. Furthermore, these flows also control natural phenomena at much larger length scales, such 
as glaciation [41] or the formation of lava fields [37,49].

Similarly, in engineering applications thin films occur at a wide range of length scales, where they are drivers across 
multiple problem domains. Perhaps the most frequently occurring is in the coating of surfaces, where a multitude of pro-
cesses have been developed, each of which requires the understanding and control of thin film flows. Examples include: roll 
coating, which uses rollers to apply liquid films onto continuous substrates [52]; spin coating, which employs centrifugal 
force [42]; gravure coating, which uses engraved rollers to transfer liquid onto a moving substrate [43]; spray coating, typ-
ically used to distribute particle-laden drops onto the substrate [13]; and drop casting, which uses a needle-like applicator 
[47]. Thin liquid films also occur in many other engineering applications however, such as in the lubricating film between 
mechanical elements [3,12] or even controlling rain-wind-induced vibrations of cable-stayed bridges [33]

As a consequence of the importance and diversity of the applications of thin film flows there has been significant 
research undertaken in recent years into the development of efficient numerical methods for such problems. These include, 
for example, the use of mesh adaptivity [3,30], and of parallel computing [20,31]. The focus of this paper however is the 
development of a computational algorithm with optimal complexity: that is, a solution time that grows linearly with the 
number of degrees of freedom in the spatial discretization. Such techniques are typically based upon multigrid or multilevel 
methods, which are briefly introduced in the next subsection.

Multigrid (MG) methods have been successfully applied to the solution of elliptic PDEs and systems for many years 
[9,11]. Initially developed for linear problems, the approach was soon generalized to nonlinear equations via the FAS (full 
approximation scheme) and Newton-multigrid methods [48].

The high-level idea behind the technique is to solve the discrete equations on a fine grid (using, for example, a finite 
difference or a finite element discretization) by first eliminating the high frequency components of the error cheaply and 
quickly. Following this pre-smoothing stage a coarse grid correction is undertaken to remove the lower frequency components 
of the error on a coarser discretization: this second step is implemented recursively, by applying a smoother and further 
correction, until a coarsest level is reached. Finally, a post-smoother is applied at each level following each coarse grid 
correction. Importantly, it is possible to generalize this idea to a purely algebraic formulation in which the coarser grids do 
not need to be generated explicitly. This algebraic multigrid (AMG) approach is most commonly applied as a preconditioner 
rather than a solver [34,38] however, up until now, AMG has not been applied to the solution of the equations of thin film 
flow.

More recent extensions have seen MG applied directly to systems of PDEs (elliptic and parabolic with implicit time-
stepping) [21,39], or applied as components of more complex preconditioners in mixed formulations. Examples of the latter 
include fast solvers for the incompressible Navier-Stokes equations [7,18] or generalizations of these to multiphase flow 
problems [5]. A similar approach is taken in this paper, where we propose, implement and test a new block-preconditioner 
for the systems of equations arising from finite difference discretizations of the thin film equations that are introduced in 
the following section.

2. Thin film flows

As highlighted in the Introduction, there are many important problems which are controlled by the flow of a thin liquid 
film. In this section we briefly describe the standard simplification to the incompressible Navier-Stokes equations that allows 
the system to be reduced to the Reynolds’ equation, which is a fourth order nonlinear parabolic PDE with the film thickness 
as its dependent variable. In practice this is expressed as a pair of coupled second order equations which may be discretized 
in space and time: we illustrate this via a five-point finite difference scheme and the simplest implicit time stepping scheme. 
This section concludes with a discussion of the resulting system of nonlinear algebraic equations that must be solved at each 
time step.

2.1. The long-wave approximation

Generally, thin film flows involve a liquid that is bounded between a solid substrate and a free surface with another fluid, 
such as air (though, in the case of lubricating flows, the film may separate two solid surfaces [3]). The distinguishing features 
of the applications being discussed here are that the motion and pressure gradient perpendicular to the substrate may be 
neglected relative to the flow parallel to it. More precisely, we assume that the flow is dominated by the viscous forces 
and that the ratio, ε, of the length scale of the thickness of the film to its span is small. This allows the Stokes’ equations 
358



M.A. Aljohani, P.K. Jimack and M.A. Walkley Applied Numerical Mathematics 184 (2023) 357–370
Fig. 1. Thin film flow over a bed topography with shape s(x, y) on a substrate inclined at an angle θ .

to be approximated by terms that are leading order in ε, with higher order terms neglected: known as the long-wave (or 
lubrication) approximation.

For the sake of clarity, in this paper we consider the application of this long-wave approach to the specific case of a 
fully-developed flow down an inclined plane, as described in detail in [19] and illustrated in Fig. 1. We do not repeat the 
derivation of [19] here, however they describe a non-dimensionalization that yields the following system of PDEs for the 
film thickness, h(x, y, t) and the pressure field, p(x, y, t).

∂h

∂t
= ∂

∂x

[
h3

3
(
∂ p

∂x
− 2)

]
+ ∂

∂ y

[
h3

3
(
∂ p

∂ y
)

]
, (1)

where

p = −6�(h + s) + 2 3
√

6 N(h + s). (2)

Here h(x, y) is the height of the film above the substrate, � is the two-dimensional Laplacian and s(x, y) captures the 
substrate topology (i.e. variations in the height of the inclined plane). The constant N = Ca

1
3 cot θ , where Ca is the Capillary 

number (which indicates the ratio of viscosity to surface tension) and θ is the angle of inclination of the substrate.
To further simplify the considerations in this paper, though without any loss of generality, we restrict our consideration 

to the case of flow down a vertical wall: hence θ = 900, which means N = 0. We also assume that domain boundaries are 
sufficiently far from any topographic features that the flow is uniform at this “far field”.

Together, these assumptions mean that Equation (2) simplifies to

p = −6�(h + s), (3)

and we may prescribe straightforward Dirichlet boundary conditions on the perimeter of the domain (x, y) ∈ [X1, X2] ×
[Y1, Y2]. For our given non-dimensionalization (from [19]) these may take the following form:

h(X1, y) = h(X2, y) = h(x, Y1) = h(x, Y2) = 1,

p(X1, y) = p(X2, y) = p(x, Y1) = p(x, Y2) = 0.
(4)

Finally, we define initial conditions for each variable as h(x, y, t = 0) = h0(x, y) and p(x, y, t = 0) = p0(x, y).
Note that it is equally common in the literature to present the system (1) and (2) as a single fourth order parabolic PDE 

for the dependent variable h. An advantage of expressing as a coupled system of second order equations is to allow greater 
flexibility in the spatial discretization: when using the finite element method, for example, only C0 elements are required 
(as opposed to C1 elements for a single fourth order PDE); and when approximating with finite differences, as in this paper, 
a more compact stencil is possible without sacrificing computational accuracy (see below).

2.2. Discretization

The system (1) and (3) may be solved through the application of a finite difference method in space and an implicit 
time-stepping scheme. In this example we choose the standard five-point stencil for the second order terms in (1) and (3)
and the implicit Euler method for Equation (1). Of course it would also be possible to select a second order implicit scheme 
in time (to match the second order spatial discretization) and this would not substantively alter any of the principles in 
what follows.
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Assuming that the spatial domain is divided into N intervals in the x-direction (with spacing �x) and M intervals in the 
y direction (with spacing �y), this discretization scheme leads to the following nonlinear system of algebraic equations at 
each grid point (i, j) (2 ≤ i ≤ N and 2 ≤ j ≤ M ,) and each new time level n + 1:

hn+1
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i, j
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1

�x
)
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and

pn+1
i, j + 6

(�x)2
[(hn+1

i+1, j + si+1, j) − 2(hn+1
i, j + si, j) + (hn+1

i−1, j + si−1, j)]

+ 6

(�y)2
[(hn+1

i, j+1 + si, j+1) − 2(hn+1
i, j + si, j) + (hn+1

i, j−1 + si, j−1)] = 0.

(6)

Here �t is the time step size, si, j denotes s(x, y) evaluated at grid point (i, j), all values with superscript n +1 are unknowns 
and all values with superscript n are known from the previous time level (or the initial condition when n = 0).

Note that this discretization is justified in detail in prior work, such as [21] and [19]. In the former there is an explanation 
of the treatment of the cubic term in (1), whilst in the latter it is demonstrated that the discretization given by (5) and 
(6) compares very favorably with the finite element solution of the Navier-Stokes equations at low Reynolds number. In 
particular, it is demonstrated that the solution of this discrete system provides an accurate and robust approximation to the 
thin film flow across a range of topographical features. Subsequent research has shown this discretization approach to be 
applicable, and highly effective, across a number of similar thin film flow applications [1,2,32,44].

2.3. Nonlinear system

The nonlinear algebraic system of equations arising from the above discretization can be written as follows:

Fi(U ) = 0, i = 1, . . . ,neq, (7)

where neq = 2 × (N − 1) × (M − 1) is the total number of unknowns in Equations (5) and (6). Furthermore,

F =
(
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)
, (8)

where
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for each interior grid point (i, j), and similarly

[F p(U )]i, j = pi, j + 6

(�x)2
[(hi+1, j + si+1, j) − 2(hi, j + si, j) + (hi−1, j + si−1, j)]

+ 6

(�y)2
[(hi, j+1 + si, j+1) − 2(hi, j + si, j) + (hi, j−1 + si, j−1)].

(10)

In Equation (7) U is a vector of size neq, ordered with the film thickness unknowns followed by the pressure unknowns:

U =
(

hn+1

pn+1

)
. (11)
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Hence, U is a vector of all of the unknowns hn+1
i, j and pn+1

i, j , representing the computed film thickness and pressure at grid 
point (i, j) at the end of time step n. For notational convenience we will drop the superscript n + 1 for these computed h
and p values in the remainder of this paper.

In order to solve Equations (7) it will be necessary to evaluate the Jacobian of the system. This may be computed 
numerically, using finite differences for example, however, due to its sparsity, it is generally more computationally efficient 
to evaluate the non-zero entries analytically. In order to do this it is convenient to write the Jacobian matrix, J in terms of 
the following blocks:

J =
[ ∂ F p

∂h
∂ F p
∂ p

∂ Fh
∂h

∂ Fh
∂ p

]
. (12)

Note that in the steady-state case the first term in Equation (5), which is the first term on the right-hand side of Equation 
(7), is not present. In this steady-state case let J S represent the Jacobian matrix:

J S =
[

J11 J12

J21 J22

]
. (13)

For the time dependent case we may express the Jacobian, J T say, as a modification to J S . This modification is required 
only for the J21 block, which represents the derivative of equation Fh with respect to h. We may therefore express J T as 
follows:

J T =
[

J11 J12

(−1
�t )I + J21 J22

]
. (14)

We generate the entries of the blocks in matrices (13) and (14), J11, J12, J21 and J22, from Equations (5) and (6) by 
exact differentiation. By considering only the non-zero entries of each block it is possible to build and store the analytical 
Jacobian efficiently in a sparse matrix format. Furthermore, an important feature of the diagonal blocks J11 and J22 is that 
they are each the result of discretization (and, in the case of J22, linearization) of second order operators. This has two 
important consequences: pertaining to stability/convergence; and to the development of the efficient preconditioner that is 
proposed in this paper. The latter point is expanded upon in detail in the following section, whilst the former is briefly 
discussed here in a less formal manner.

It is well known that, for fourth-order elliptic problems, mixed formulations, such as that considered in this work, have 
a number of advantages. As previously noted, this includes the ability to use simpler finite elements or finite difference 
stencils, however these advantages also extend to the resulting discrete systems. As discussed in [46], for example, the 
condition number in the mixed formulation is O ((�x)−2) compared to O ((�x)−4) when fourth order differences are used 
directly. On the other hand, the stability and convergence theory for the mixed formulation becomes more complex since 
we replace a convex energy functional by a non-convex saddle-point problem. Whilst we are not able to present a formal 
proof of stability for this nonlinear problem, we suggest that the presence of discrete second order operators in the diagonal 
blocks of (13) and (14) provides a strong analogy with the Ciarlet-Raviart formulation of the biharmonic equation for which 
stability and convergence results are long established ([14,22]). Combined with the empirical evidence of significant prior 
work, [1,2,19,21,32,44], we argue that this is an important, reliable and efficient discretization approach for this class of 
problem.

3. Solution algorithms

In this section we first describe a standard Newton multigrid approach to solving Equations (7). This is based upon 
the use of a geometric multigrid V-cycle to solve the linear system of equations at each Newton iteration. In the follow-
ing subsection we then present our proposed solution technique for (7). This is also based upon Newton’s method but, 
instead of applying multigrid directly to each linear system, we use a Krylov subspace iterative method (GMRES) with a 
carefully designed preconditioner. This preconditioner is itself based upon the application of AMG solves. Finally, in Sub-
section 3.3, we illustrate how a nonlinear multigrid solver, the full approximation scheme (FAS), may be applied directly to 
solve Equations (7). This is based upon previously published work [21], and will be used as a baseline to demonstrate the 
improvements in solution efficiency using our proposed solver.

3.1. Newton-multigrid

Application of Newton’s method to the nonlinear equations (7) requires a linear system of the form

J δ = −F (15)

to be solved at each iteration. Using the orderings given by (8) and (11) leads the Jacobian to have the block structure noted 
in (12). Hence, (15) becomes:
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Table 1
The maximum and minimum eigenvalues (or real part in the complex case) of the coefficient matrix J and the right-preconditioned matrix J P−1

0 (in this 
case, for the maximum, we quote the eigenvalue with the largest imaginary part since the real parts are indistinguishable).

Grid level Min λ( J ) Max λ( J ) Min λ( J P−1
0 ) Max λ( J P−1

0 )

3 -0.1961 - 0.2156i -29.9876 1.0000 1.0000 + 6.7314i
4 -0.2094 - 0.2153i -122.1418 1.0000 - 0.0000i 1.0000 + 6.7168i
5 -0.2128 - 0.2151i -490.7803 1.0000 - 0.0000i 1.0000 + 6.7129i

(
∂ F p
∂h

∂ F p
∂ p

∂ Fh
∂h

∂ Fh
∂ p

)
︸ ︷︷ ︸

J

(
δh
δp

)
= −

(
F p

Fh

)
. (16)

Here, J and F are evaluated at 
(

hk

pk

)
, the latest Newton iterate, which is then updated by

(
hk+1

pk+1

)
=

(
hk

pk

)
+

(
δh
δp

)
. (17)

For the Newton-MG algorithm, standard MG V-cycles are used to approximate the solution of Equation (15) [11,48]. To 
implement this a sequence of nested grids is first generated. Each Newton step begins by restricting the latest solution 

estimate on the finest grid, 
(

hk

pk

)
, to every other level and then using these restrictions to evaluate the Jacobian matrix on 

each grid. At each V-cycle a weighted red-black Gauss-Seidel iteration is used as the smoother (this is a pointwise iteration 
that updates δh and δp simultaneously at each node by solving a 2 × 2 linear system) and then the resulting residual is 
restricted to the next mesh for the coarse grid correction. Further implementation details may be found in [4].

3.2. Preconditioned Newton-Krylov

This section focuses on a Newton-Krylov algorithm with our new AMG-based preconditioner. The system (7) is again 
solved by Newton’s method however, at each Newton iteration (16) is solved using precoditioned GMRES, reflecting the fact 
that J is a sparse, non-symmetric matrix [40,51].

To develop our preconditioner, let us rewrite the linear system (16) in the following block matrix form:(
K I
B Kα

)(
δh
δp

)
=

(
F p

Fh

)
(18)

where, using the notation of Equations (12)-(14), K = J11, J12 is the identity matrix (see Equation (10)), B = J21(+−1
�t I) and 

Kα = J22.
From [35], it is known that an ideal preconditioner (in the sense that it will converge in just two iterations) for the 

system (18) would take the form:

P =
(

S 0
B Kα

)
, (19)

where the Schur complement matrix S = K − I K −1
α B . However the cost of applying (19) would be prohibitive, and so 

simplifications of it must be considered. One such preconditioner could be

P0 =
(

K 0
B Kα

)
, (20)

in which the approximation K � S has been made. An assessment of the eigenvalues of the right-preconditioned matrix 
J P−1

0 shows that they do not grow significantly as the finite difference grid is refined (unlike the eigenvalues of J ), as 
illustrated in Table 1 for example. This behavior is consistent with an effective preconditioner provided it continues to hold 
as the finite difference grid is further refined [51].

Unfortunately, even the application of (20) is too expensive for it to be a candidate as a practical preconditioning matrix 
for the system (16) since the blocks K and Kα must be inverted. We may note however (from Equations (5) and (6)) 
that these diagonal blocks represent discretizations of second order differential operators. As such, they can be inverted 
approximately using a multigrid algorithm: and in this work we choose to do this using an algebraic multigrid (AMG) 
approach. Consequently, our proposed preconditioner, P1, is as follows:

P1 =
(

AMG(K) 0
B AMG(K )

)
. (21)
α
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Here AMG(X) represents the action of one AMG iteration applied to matrix X. We realize this using the software implemen-
tation that is available in the Harwell Subroutine Library (HSL), including the routines HSL-MI20 for the AMG method and 
HSL-MI24 for the GMRES solver [6,26].

3.3. FAS

In order to assess the performance of the approach described in the previous subsection we have also implemented 
the nonlinear multigrid FAS algorithm [11] as a solver for Equations (7). Our implementation closely follows [21], which 
makes use of a linear interpolation operator and a full-weighting restriction operator to transfer between grids. For the 
smoother we have implemented both a point-wise nonlinear Jacobi iteration and a point-wise nonlinear red-black Gauss-
Seidel iteration (the red-black ordering is selected for the Gauss-Seidel smoother because we only need to update the 
Jacobian evaluation after each red and black sweep, making it much more efficient than other orderings when using the 
five-point stencil [36]). On the coarsest grid we use Newton’s method with a sparse direct solver [23].

To illustrate the smoother more clearly, we describe the Jacobi case in more detail here. In this case we define each 
nonlinear Jacobi iteration as an approximate solve for the ith equation of the nonlinear system (7),

Fi(uk
1, ..., uk

i−1, uk+1
i , uk

i+1, ..., uk
nu) = 0, (22)

for i = 1, . . . , nu, where k and k + 1 denote the current and new approximations, ui denotes the value of the (h, p) pair at 
the corresponding vertex of the grid, and nu is the number of non-Dirichlet grid points (so 2 × nu = neq). To approximately 
solve this pair of equations we take a single Newton step, which requires us to evaluate Jbi which is one of the (2 × 2)

diagonal blocks of the analytical Jacobian matrix. Then, at each grid point i = 1, ...nu, we solve the linear system,(
∂ F pi
∂hi

∂ F pi
∂ pi

∂ Fhi
∂hi

∂ Fhi
∂ pi

)
︸ ︷︷ ︸

Jbi

(
δhi
δpi

)
= −

(
F pi
Fhi

)
. (23)

Having solved Equation (23) we may update h and p at the corresponding node i = 1, . . . , nu. We actually do this update in 
a weighted manner:(

hk+1
i

pk+1
i

)
=

(
hk

i
pk

i

)
+ ω

(
δhi
δpi

)
, (24)

where ω is a weighting parameter whose optimal value is determined as a part of this study.

4. Steady-state numerical results

We have performed extensive numerical experiments in order to optimize the parameters selected for the FAS, Newton-
MG and Newton-Krylov nonlinear multilevel schemes [4]. We then compare our best choice of parameters for each nonlinear 
multilevel scheme to determine the best approach for both steady-state and time-dependent test problems.

For these test problems the domain is X1 = −10, X2 = 10, Y1 = −5, Y2 = 5, dx = (X2 − X1)/(mx − 1), and dy = (Y2 −
Y1)/(my − 1). The grid size is my = 2LM A X + 1 and mx = 2 ∗ (my − 1) + 1 in directions X and Y , where LM A X denotes the 
maximum grid level. In all the tests in this paper we used Dirichlet boundary conditions. The number of unknown grid 
points is defined as nu = nx × ny, where nx = mx − 2 and ny = my − 2. The number of nonlinear equations and variables is 
neq = 2 × nu. For the topography of the bed we define:

S(x, y) = min(max(d,−1),0), (25)

where

d = max(dx,dy)

dx = max(x,−x − 4),

dy = max(y − 2,−y − 2).

As shown in the bottom half of Fig. 2, this corresponds to a square trough of depth 1, centered at (−2, 0), with vertical 
walls (which are approximated by the resolution on the finest grid). In each test, we compute the solution with a single 
nonlinear system solve based on the initial guess h = 1; p = 0.

Table 2 shows the different sizes for the grid levels that we have used to solve the thin film flow system in the following 
subsections. In order to choose the best parameters for FAS and Newton-MG algorithms we employ two different types 
of smoother: weighted Jacobi and the weighted red-black Gauss-Seidel; these smoothers are applied with varying values 
of the parameter ω. To compare the convergence of FAS or Newton iterations (outer iterations), we use the nonlinear 
residual tolerance Tol = 1e − 08. For the Newton-Krylov solver, inner tolerance values are varied in order to control the 
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Table 2
The grid level, grid size, and the number of equations neq = 2 · nu used in 
the thin film flow system of equations.

Grid level Grid size No. of equations

4 17 × 33 930
5 33 × 65 3906
6 65 × 129 16002
7 129 × 257 64770
8 257 × 513 260610
9 513 × 1025 1045506

Fig. 2. Square hole bed shape s in blue (bottom) and the free surface (numerical solution) h + s in red (top): note that the aspect ratio is distorted in this 
image in order to maximize its size. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

Table 3
FAS performance for varying grid size for the thin film flow in the 
steady-state case with red-black G-S with ω = 1.2, (pre, post)smooth = (1, 1), 
Coarse Grid = 5 and Tol = 1e − 8.

Input Output

Grid Size FAS Solver Time (sec)

Fine Coarse V-Cycle -

6 5 7 2.2061
7 5 7 4.3632
8 5 7 14.3745
9 5 7 56.7912

convergence of GMRES iterations (inner iterations) and we consider different choices for the restart parameter (Restart) of 
GMRES iterations and the maximum number of GMRES iterations (Maxit) in each case. The results shown in the following 
subsections represent the best performance for each method across the parameters that we varied. All timings were taken 
based upon Matlab implementations running on a standard specification desktop computer with a single Intel Xeon CPU.

4.1. FAS results

For the FAS algorithm we have found that the best values of the parameters are: ω = 1.2 with red-black G-S; the number 
of pre- and post-smooths (pre, post) = (1, 1); and the coarse grid level is G = 5 (33 × 65). In Table 3, we demonstrate that 
run times perform optimally and the number of V-cycle iterations is fixed. This is consistent with previously published 
results, [21], since it implies that performance is independent of the problem size and that the FAS nonlinear multigrid 
algorithm executes with linear time complexity O (N), where N is the total number of unknowns (which grows by a factor 
of 4 with each additional fine grid level).
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Table 4
Newton-MG performance for a varying grid size for the thin film flow in the steady-state case 
with red-black G-S with ω = 1.2, (pre, post)smooth = (1, 1) fixed V-cycle, the number of V-
cycles = 3, Coarse Grid = 4 and the relative tolerance for Newton is Tol = 1e − 8.

Input Output

Grid Size MG Solver Newton Solver Time (sec)

Fine Coarse V-Cycle Iteration -

6 4 3 6 1.3197
7 4 3 6 5.6554
8 4 3 7 27.3475
9 4 3 6 100.5532

Table 5
Newton-Krylov-AMG solver performance in steady-state case, using preconditioner P1 with 
GMRES maximum iteration Maxit = 300, (the relative tolerance for GMRES is T ol = 1e − 3), 
Restart = 20, (pre, post)smooth = (1, 1) and the relative tolerance for Newton is Tol = 1e − 8.

Input Output

Grid size Newton Solver GMRES Solver Time (sec)

Fine NNI Min Max Average -

6 6 10 13 11.16 0.7592
7 6 10 13 11.33 2.7394
8 6 10 13 11.16 11.0972
9 6 10 13 11.50 47.7340

4.2. Newton-multigrid results

For the Newton-MG algorithm we have found that the best value of the parameter ω is 1.2, the best smoother is red-
black G-S, the best number for the pre- and post-smooths is (pre, post) = (1, 1) and the best coarse grid size is G = 4. 
We use a fixed number of 3 V-cycles per linear solve, having tested a range of other values. As we can see from Table 4
the number of Newton iterations remains almost constant. Furthermore, since the work per Newton iteration grows linearly 
with the number of unknowns, we may observe that the overall execution time also grows linearly: thus implying that our 
Newton-MG implementation is also optimal since it executes with time complexity of approximately O (N).

4.3. Preconditioned Newton-Krylov results

For our newly proposed preconditioner for the Newton-Krylov algorithm, and applying the AMG block solves using 
(pre, post) = (1, 1), we obtained results that are presented in Table 5. As seen in this table, the computational time is 
once again very close to optimal and the needed number of Newton and GMRES iterations required is bounded as the 
grid is refined, which implies that our preconditioned Newton-Krylov algorithm also executes with approximate linear time 
complexity.

4.4. Discussion of steady-state results

As expected, we are able to demonstrate that all three solvers that we have considered are close to optimal in that their 
execution time grows approximately linearly with the total number of unknowns on the finest grid that is used. However, 
as illustrated in Fig. 3, there is a significant difference in the time required to complete each of these solves. For example, 
the application of our proposed preconditioned Newton-Krylov solver yields results of the same accuracy in approximately 
half the time needed when using a conventional Newton-multigrid solver.

It is also interesting to compare the performance of both Newton-based solvers against that of the FAS scheme for 
this problem. The preconditioned Newton-Krylov solver is approximately 20% faster than the FAS method, which is itself 
significantly faster than the Newton-MG solver. This last comparison is in contrast with the results of [8], which shows 
that the Newton-MG solver consistently outperformed FAS on the nonlinear second order problems that they considered. 
This suggests that it is not possible to draw absolute conclusions as to whether one scheme will be faster than the other 
across all nonlinear elliptic PDE problems - nevertheless, the clear outcome of the computations presented in this section is 
that the newly-proposed preconditioned Newton-Krylov approach is always the best choice for this family of thin film flow 
problems on the mesh sizes considered. Furthermore, even choosing non-optimal values for the solver parameters using this 
approach yields solutions in a shorter execution time than with the optimal choice of parameters for FAS or Newton-MG 
[4]. Detailed inspection of the lower two curves in Fig. 3 suggests that it is possible that the gap between the FAS and the 
preconditioned Newton-Krylov timings is slowly decreasing as the refinement level grows. However there is no reason to 
suspect any fundamental changes in their relative behavior beyond that already observed up to the finest grid considered 
here.
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Fig. 3. Execution times for the steady-state test problem.

Table 6
FAS performance for varying grid size for thin film flow in time-dependent case with �t = 0.1
and number of time steps = 10, with nonlinear red-black G-S with ω = 1, (pre, post)smooth =
(1, 1), Coarse Grid = 5 and the relative tolerance for FAS is Tol = 1e − 8.

Input Output

Grid Size FAS Solver Time (sec)

Fine Coarse Min Max Average -

6 5 7 8 7.6 11.4158
7 5 8 9 8.8 43.3668
8 5 9 10 9.4 180.2312
9 5 9 10 9.6 746.0546

5. Time-dependent numerical results

As for the previous section, we have performed comprehensive numerical experiments to optimize the parameter selec-
tion for all three nonlinear multilevel schemes to solve this system in the time-dependent case. The computational results 
that are presented in this section have used the same bed shape and grid sizes that we used in the steady-state problem. 
Fig. 4a shows the initial conditions that we have used for the thin film flow system (specifically, that the film height above 
the substrate is constant). We display the numerical solutions for the thin film flow system at T = 1 (the end of the solu-
tion) in Fig. 4b. Throughout this subsection, the numerical results have been completed using the time step size �t = 0.1
implying that the number of time steps taken to contrast the performance of the three nonlinear multilevel algorithms is 
always 10.

5.1. FAS results

For the FAS algorithm, we found that the best value of the parameter ω is ω = 1, the best smoother is red-black G-S, 
with the best value of the pre- and post-smooth (pre, post) = (1, 1) and the best coarse grid size is G = 5. As shown in 
Table 6, we observed that the execution time grows by a factor of just over 4 as the problem size is grown by a factor of 
4. This indicates that performance is almost independent of the problem size and our FAS nonlinear multigrid algorithm 
executes with linear time complexity that is approximately O (N).

5.2. Newton-multigrid results

For the Newton-MG algorithm we determined that the best value of the parameter ω is ω = 1, the best smoother is 
red-black G-S, the best value of the parameter pre- and post-smooth is (pre, post) = (1, 1), and the best coarse grid size is 
G = 6. As shown in Table 7, the execution time increases by just a little more than a factor of 4 from one run to the next, 
which again demonstrates that our Newton-MG algorithm executes with close to linear time complexity.

5.3. Preconditioned Newton-Krylov results

For our newly proposed preconditioner applied with Newton-Krylov, the best results that we observed are presented in 
Table 8 using with GMRES T ol = 1e − 4. As we can see from this table, the required number of GMRES iterations is constant 
as the grid is refined, although the execution time grows very slightly worse than linearly. This implies that our Newton-MG 
algorithm also executes with close to linear time complexity.
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Fig. 4. The free surface (numerical solution) h + s at Time T=0 and T=1.

5.4. Discussion of time-dependent results

As with the steady-state case considered in the previous section, we again observe that the proposed preconditioned 
Newton-Krylov solver is clearly the best choice of the methods considered (see Fig. 5). Interestingly, all three methods have 
a time complexity that is close to linear but very slightly sub-optimal.

Unlike the steady-state case, there is much less to choose between the FAS and the Newton-MG schemes for this time-
dependent family of problems. The key difference being that, in this case, the initial guesses at each time step (which 
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Table 7
Newton-MG performance for varying grid size for thin film flow in time-dependent case with �t = 0.1
and number of time steps = 10, with (pre, post)smooth = (1, 1, red-black G-S with ω = 1, coarse Grid =
6, fixed V-cycles (the number of V − cycle = 3) and the relative tolerance for Newton is Tol = 1e − 8.

Input Output

Grid Size MG Solver Newton Solver Time (sec)

Fine Coarse V-Cycle Min Max Average -

7 6 3 3 5 3.8 39.8166
8 6 3 4 5 4.2 182.4501
9 6 3 4 6 4.4 793.0276

Table 8
Newton-Krylov-AMG with AMG preconditioned solver in the time-dependent case, using P1 precondi-
tioner with �t = 0.1 and the number of time step = 10, GMRES with maximum iteration Maxit = 300, 
T ol = 1e − 4 and Restart = 20 with (pre, post)smooth = (1, 1) and the relative tolerance for Newton is 
Tol = 1e − 8.

Input Output

Grid size Newton Solver GMRES Solver Time (sec)

Fine Min Max Average Min Max Average -

6 3 5 3.9 15 20 18.79 7.0630
7 4 5 4.1 16 20 18.82 25.9074
8 4 5 4.2 16 20 18.82 109.0045
9 4 5 4.2 16 20 18.73 476.1476

Fig. 5. Execution times for the transient test problem.

are based upon the solution at the previous time level) are far closer to the converged solution than in the steady-state 
examples.

Once again, we are able to conclude that, even with a non-optimal set of algorithm parameters, the preconditioned 
Newton-Krylov solver is faster than either of the other solvers with their optimally-tuned choice of parameters. This suggests 
that, for this family of thin film flows at least, it should be the preferred approach.

6. Discussion

In this paper, we have undertaken a careful investigation of the numerical solution of the standard model of thin film 
flow using the three different nonlinear multilevel algorithms for the discrete systems of equations representing the steady-
state and implicitly-solved time-dependent problems. We have demonstrated that all three nonlinear multilevel algorithms 
are optimal, or very close to optimal, when used to solve the discretized equations on a sequence of finer and finer grids. 
Specifically, this means that FAS, Newton-MG and our new preconditioned Newton-Krylov solver all show almost linear time 
complexity for both steady-state and time-dependent cases.

Although we have achieved close to an optimal numerical solution in each case, the absolute execution times differ 
significantly. Furthermore, for each scheme there are a multitude of algorithmic parameters, the choice of which can have 
a notable impact on the overall solution times. Consequently, we have undertaken extensive numerical testing in order to 
identify the optimal combination of parameters in each case. We then made systematic quantitative comparisons between 
the solvers, using the “best” parameter choices for each, in both steady-state and time-dependent cases. The conclusions 
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from these tests clearly show that, in all cases considered, our proposed preconditioned Newton-Krylov algorithm is the 
best choice.

Throughout this research the development and testing of the proposed AMG-based preconditioner has only considered 
sequential implementation on a single CPU. Consequently, comparisons against FAS and Newton-MG have also been made 
only on a single CPU. An important future extension of this work would be to consider parallel implementations for different 
architectures. The FAS approach has been shown to work effectively on this problem in parallel across multiple CPU cores, 
[20,31], and has recently been applied successfully in other fluid flow applications on GPUs [45]. Whilst the AMG imple-
mentation used in this work is inherently sequential, [6,26], parallel AMG algorithms and software have been developed in 
recent years [15]. In principle therefore the preconditioner proposed here could be implemented in parallel too, however 
this would require more significant structural changes to the code organization than the relatively straightforward domain 
decomposition approaches used in [20,31].

In conclusion, to the authors’ knowledge, this is the first paper to demonstrate how AMG may be used as the key 
component of the solution process when solving thin film flow problems. Furthermore, we have been able to demonstrate 
significant computational improvements from using this approach relative to the existing state-of-the-art methods.
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