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Abstract 

 

Working memory (WM) training typically leads to large performance gains in the practiced 

tasks, but transfer of these gains to other contexts is elusive. One possible explanation for the 

inconsistent findings of past research is that transfer may only occur when cognitive 

strategies acquired during training can also be applied in the transfer tasks. Therefore, we 

systematically varied the content domains and WM operations assessed by training and 

transfer tasks and, thereby, the extent to which similar cognitive strategies could be applied. 

We randomly assigned 171 young adults to 1 of 8 experimental groups who trained 1 of 2 

working memory operations (storage and processing or relational integration ) with materials 

from 1 of 4 content domains (verbal, numerical, figural-icon, or figural-pattern), to an active 

or to a passive control group. Before and after 12 sessions of adaptive training within 2-3 

weeks, performance was assessed in all eight WM tasks. Bayesian generalized-mixed effects 

models revealed improved performance in the trained tasks compared to the active control 

group. However, these improvements did not generalize to tasks measuring the same WM 

operation with different materials. Moreover, the comparison of the training groups with an 

active and a passive control group showed considerable differences, thus highlighting the 

importance of distinguishing between active and passive control. Overall, the findings 

revealed no evidence for transfer between tasks assumed to afford the same strategies. 

Therefore, the adoption of specific cognitive strategies alone is unlikely to be responsible for 

transfer of WM training gains between tasks. 

Keywords: working memory training, transfer effect, storage and processing, 

relational integration 
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Limits of Near Transfer: Content- and Operation-Specific Effects of Working 

 

Memory Training 

 

Working memory (WM), the ability to maintain limited information in the face of 

interference, is a strong predictor of other higher cognitive functions and real-world 

behaviors (Barrett et al., 2004). Based on the assumption that the correlations between WM 

and other cognitive abilities reflect functional overlap, it has been hypothesized that training 

WM can improve not only WM performance but also complex cognition more broadly (e.g., 

Jaeggi et al., 2008; Klingberg et al., 2002; for a review see Schwaighofer et al., 2015). 

However, a growing body of studies in children (e.g., Ang et al., 2015), young adults (e.g., 

Clark et al., 2017; Foster et al., 2017; Harrison et al., 2013; Minear et al., 2016; Redick et al., 

2013), and older adults (e.g., von Bastian et al., 2013) shows that the typically large gains in 

the trained WM tasks rarely generalize to untrained tasks measuring different yet related 

constructs (i.e., far transfer), and sometimes not even to untrained WM tasks assessing other 

WM content domains or operations (near transfer; e.g., De Simoni & von Bastian, 2018; 

Guye & von Bastian, 2017; Soveri et al., 2017; Sprenger et al., 2013). It is essential to note 

that the WM training literature may suffer from publication bias – the positive transfer effects 

found in the previous studies could be overestimated (e.g., Simons et al., 2016). 

However, one possible explanation for the limited transfer of improved performance 

in the trained tasks to other contexts is that trainees acquire strategies during training that are 

difficult to apply in other contexts. Hence, transfer might occur only if training and transfer 

tasks afford the same strategies (see also Gathercole et al., 2019). However, the extent to 

which transfer of training is task-specific (i.e., material-dependent) or process-specific (i.e., 

material-independent) is yet unclear. For example, Ericsson et al. (1980) showed that training 

with numbers did not improve the recall of letters, but Hilbert et al. (2014) found transfer 

between mirror-reversed letters and mirror-reversed numbers. The present study investigated 
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the extent to which transfer is material-dependent by systematically varying the WM content 

domains and operations assessed by the training and transfer tasks. 

The Facet Model of Working Memory 

 

The present study design is based on the facet model of WM (Oberauer et al., 2003) 

positing that WM capacity comprises two facets: content domains and operations. Each facet 

is further split into three categories. The content facet contains verbal, numerical, and figural- 

spatial WM; the operation facet distinguishes the three WM functions storage and processing, 

relational integration, and supervision. Storage and processing reflects the maintenance of 

briefly presented new information over a short period of time when simultaneously 

processing information. Relational integration refers to the ability to build new relations 

between information elements and integrate them into structures. Supervision corresponds to 

the shifting factor in Miyake et al.’s (2000) model of executive functions. It involves the 

activation of relevant goal representations, suppression of distraction, and switching between 

task sets. Whereas storage and processing and relational integration are consistently found to 

be highly correlated due to taxing attention control (i.e., ignoring irrelevant information; 

Himi et al., 2019), supervision is often only weakly related to the other two operations (e.g., 

Bühner et al., 2005; Hilbert et al., 2017, Oberauer et al., 2003; Oberauer et al., 2008; von 

Bastian & Oberauer, 2013). Therefore, following the rationale of functional overlap, transfer 

is most likely to occur between storage and processing and relational integration and, thus, 

the present study focuses on these two operations. 

Strategy Use in Working Memory Training 

 

Similar to the general body of WM training literature, past training studies based on 

the facet model of WM have also reported mixed evidence for near and far transfer after 

storage and processing and relational integration training (Lange & Süß, 2015; von Bastian et 

al., 2013; von Bastian & Oberauer, 2013). For example, in von Bastian and Oberauer’s 
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(2013) study, large gains observed in the trained tasks transferred to distant measures of 

reasoning but not to untrained measures assessing the same WM function. Similarly, Hilbert 

and colleagues (2017) observed transfer from verbal to numerical material and vice versa 

(within WM operations) but not between verbal/numerical and figural material. Von Bastian 

and Oberauer (2013) as well as Hilbert et al. (2017) speculated that trainees might have 

acquired task-specific strategies during training that were not applicable to the structurally 

different near transfer tasks. More precisely, Hilbert et al. assumed that this could be 

attributed to verbalization strategies acquired in the verbal and numerical tasks, which are not 

useful for solving the figural tasks. Indeed, there is evidence for content domain-specific 

differences in strategy use. Specifically, it has been shown that training can yield a significant 

increase in verbal strategy use when performing untrained verbal tasks (Dunning & Holmes, 

2014). Likewise, visual strategies have been found to be effective in enhancing performance 

in visuospatial WM tasks (Stieff et al., 2020). Furthermore, serial order encoding of verbal or 

spatial information in WM is not domain-general (Ginsburg et al., 2017, Experiments 1, 2, & 

3; Zimmermann et al., 2016). More recently, Forsberg et al. (2020) showed that instructing 

WM trainees with visualization strategies can considerably boost WM training performance 

in the absence of transfer to structurally different transfer tasks (see also Laine et al., 2018). 

Conversely, if training and transfer tasks afford similar strategies, transfer may be 

observed. For example, Comblain (1994) showed that training a rehearsal strategy with 

verbal materials (e.g., pictures of a noun) can improve performance in numerical (digit) and 

verbal (letter) memory span task performance. Hence, transfer may not be driven by 

functional overlap but overlap in cognitive strategies and routines that can be applied (see 

also Gathercole et al., 2019; Norris et al., 2019). Critically, this implies that transfer observed 

does not reflect increased WM capacity (i.e., the overall amount of information that someone 

can access and process in the present moment) but instead enhances WM efficiency by 
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making it easier to handle the cognitive load using the pre-existing WM capacity (von 

Bastian & Oberauer, 2014; von Bastian et al., 2022). This efficiency may well be due to the 

application of the cognitive strategy used in a given context, meaning how information is 

processed internally. However, not all cognitive strategies (grouping, sentence generation, 

mental imagery, or rote repetition) are effective to the same extent (Bailey et al., 2014; 

Dunlosky & Kane, 2007), and people might not use the same strategy at all times (Morrison 

et al., 2016). Moreover, Hilbert et al. (2015) showed that individuals relying on verbal 

processing strategies can be distinguished from those relying on visual strategies in WM 

tasks. Evidence from the neuroimaging results suggests that the changes occur following training 

in the middle frontal gyrus (Olesen et al., 2004), which is also responsible for verbal cognitive 

strategy (Hilbert et al., 2015), corroborating the presumed relation between cognitive strategies 

and training-related effects. 

Gaining a better understanding of how strategy acquisition impacts patterns of 

transfer requires a task-analytic training procedure that isolates the cognitive processes that 

are trained and improved (see also Gathercole et al., 2019; Taatgen et al., 2013). So far, few 

studies have directly ascertained transfer of training with one particular material to other WM 

tasks with different materials (e.g., Fellman et al., 2020; Linares et al., 2019). For example, 

Hilbert et al. (2017) systematically varied the stimulus content domains using verbal, 

numerical, and figural materials for training the two WM functions storage and processing 

and relational integration. The results indicated transfer between verbal and numerical but not 

figural materials in tasks measuring the same WM function. Hilbert et al. suggested that 

processing letters and numbers equally affords silent rehearsal, a strategy frequently used to 

remember stimuli in WM tasks. However, silent rehearsal is not applicable to all types of 

visually presented stimuli, as they first need to be recoded into verbal information (see also 

Hilbert et al., 2015). To further test this proposition, the present study set out to replicate and 
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extend Hilbert et al.’s (2017) study by including a newly developed figural WM task that 

comprises stimuli that can be easily coded verbally and thus should facilitate silent rehearsal. 

The Current Study 

 

The main goal of the current investigation was to determine why WM training leads 

to material-specific transfer but not to transfer effects on structurally different tasks. We 

hypothesized that transfer of training occurs if training and transfer tasks involve the same 

cognitive strategies. For this purpose, we developed a process-based task-specific training 

regimen and examined the role of strategy by contrasting performance in tasks affording a 

verbal strategy to tasks that do not. Specifically, we expected that using a verbal strategy 

would be associated with transfer to tasks comprising easily verbalizable stimuli such as 

words, numbers, and icons but not to tasks with stimuli that are difficult to verbalize such as 

figural patterns. Building on Hilbert and colleagues’ (2017) study design, we selected training 

tasks measuring the two WM operations storage and processing and relational integration and 

extended the content domains by distinguishing between figural materials that allow for 

applying a verbal strategy (icons) and figural materials that are difficult to verbalize 

(patterns) and, therefore, are unlikely to evoke the same cognitive strategy. Moreover, this 

study incorporated both an active and a passive control group, and an adaptive training 

paradigm to minimize the methodological limitations of Hilbert et al.’s (2017) study. 

In addition to testing for transfer between content domains, we also investigated 

transfer between training the two WM operations storage and processing and relational 

integration. Notably, however, neither Hilbert et al. (2017) nor von Bastian and Oberauer 

(2013) observed such effects. The present study provides a further test of this hypothesis. 

This also allowed for exploring how the newly developed figural-icon tasks related to other, 

established WM tasks. Moreover, much of the inconsistencies of findings from previous 

training studies has been attributed to methodological differences such as the type of control 
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group (Shipstead et al., 2012; von Bastian & Oberauer, 2014; but see Au et al., 2020). 

Previous studies demonstrating transfer effects are often criticized for including only passive 

control groups (Dougherty et al., 2016). Specifically, whereas a passive control group 

minimizes confounding training-related improvements with the effects of multiple testing, an 

active control group additionally controls for non-specific effects of training such as 

expectancy effects. To estimate the effect of the type of control group, we included a passive 

as well as an active control group. Finally, the present study uses a robust methodology and 

well-defined pretest/posttest study design by including both active control and passive control 

groups, theory-based task selection, and random assignment of the participants to groups. 

Methods 

 

The study protocol was preregistered during the process of data collection but before 

data had been analyzed 

(https://osf.io/jwr9h/?view_only=21e95876f9a5423da3ab8917d1e3451d). The preregistration 

was late due to a miscommunication within the lab yet contains all original hypotheses. 

Participants 

 

Participants were 171 university students (74.9% female, all others male) recruited 

from the Ludwig Maximilians-University of Munich (n = 146) and the University of 

Regensburg (n = 25), Germany. According to an a priori power analysis, our original plan 

was to collect data from 200 participants, as stated in our preregistration. However, the 

COVID-19 pandemic forced us to stop data collection early. The median participant age was 

22.0 years (1st quartile: 19.0 years; 3rd quartile: 25.0 years). About half of the participants 

(59.6%) were psychology students. Before training, participants were randomly assigned to 1 

of 10 possible groups: storage and processing verbal, numerical, figural-icon, or figural- 

pattern, or relational integration verbal, numerical, figural-pattern, or figural-icon, or active 

control, or passive control. Initially, 222 students participated in the pre-test, but 48 did not 
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proceed with the study due to problems installing the training software. Three other 

participants did not complete the training sessions. The final sample of 171 participants 

completed all sessions. 

All participants provided written informed consent before the pre-test. APA Ethical 

Principles for human research were followed, and anonymity and confidentiality were 

maintained. The study was double-blinded, that is, neither the participants nor the 

experimenter were informed about the group assignment. Participants were informed that 

they would be assessed in different activities concerning their cognitive functioning. All 

participants reported normal or corrected-to-normal vision and no neurological or diabetic 

problems. Participants were compensated with either €35 or course credit. In addition, in 

order to motivate participants to practice the training task seriously at home, a monetary 

reward for good performance was promised. 

Procedure 

 

Participants were tested in groups of up to five people in a university laboratory. 

Cognitive assessment was conducted in two sessions (pre- and post-test) on separate days 

within approximately three weeks, and each session lasted about 1.5 hours (including a 5-min 

break). All tasks were administered in the same order across participants to minimize subject- 

by-treatment interactions. During the pre-test session, first all storage and processing tasks 

were administered (verbal, numerical, figural-icon, figural-pattern), followed by the four 

relational integration tasks (verbal, numerical, figural-icon, figural-pattern). In the post-test 

session, these tasks were administered in reverse order to minimize sequence effects. 

Between the pre- and post-test sessions, participants of the WM training groups and the 

active control group completed their respective training intervention at home for 20 min on 

each of 12 days within 2 to 3 weeks. The passive group did not receive any training. All tasks 

were administered in German. 
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Pre- and Post-Test Assessment 

 

Participants completed the WM tasks (adapted from Oberauer et al., 2003; von 

Bastian & Oberauer, 2013), written in Python 2.7 (see https://www.python.org). A standard 

computer keyboard registered manual responses. We used the same WM tasks for pre- and 

post-tests. All tasks were used in previous work except for the storage and processing and 

relational integration figural-icon tasks (see Figure 1). The icons were pronounceable as 

words with one or two syllables in German. In the pre-post test session participants were 

asked which strategy they used to perform each task. 

Storage and Processing 

 

Participants completed four storage and processing tasks assessing the maintenance of 

briefly presented information in the face of distraction. These tasks were similar to the 

Brown-Peterson paradigm (Brown, 1958) with verbal, numerical, figural-icon, and figural- 

pattern materials, respectively. Participants were first presented a sequence of 3 to 7 words, 4 

to 8 numbers, 3 to 7 icons, or 2 to 4 patterns that they were asked to memorize. Following 

these sequences, participants completed a processing task comprising materials of the same 

content domain. In the verbal version, the processing task was to categorize words as a city or 

a country. In the numerical version, numbers were to be classified as odd or even. In both 

figural tasks, participants had to decide whether arrows pointed upward or downward. After 5 

s, participants were asked to recall the memoranda in the same order as they were initially 

presented. Each of the tasks comprised 15 test trials and 2 practice trials, taking about 12 to 

15 min to complete. The mean proportion of correctly recalled elements in each trial (i.e., 

partial-credit score; cf. Conway et al., 2005) was considered as dependent measure. 

Relational Integration 
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The relational integration tasks required participants to detect a critical relation by 

integrating single information elements. As for the storage and processing tasks, participants 

completed four relational integration tasks with verbal, numerical, figural-icon, and figural- 

pattern materials. For the verbal version, nine words in a 3 × 3 matrix were displayed and one 

word randomly changed every 2000 ms. Participants were asked to respond when three 

rhyming words were shown either in a row, column, or diagonal within the matrix. 

Participants completed 111 test trials and 12 practice trials. The numerical version presented 

nine three-digit numbers in a 3 × 3 matrix in which one of the numbers was randomly 

replaced every 2000 ms. Participants had to respond when three identical last digits appeared 

either in a row, column, or diagonal. The task comprised 112 test trials and14 practice trials. 

For the figural-icon version, nine sets of icons, with each set consisting of three icons, were 

presented in a 3 × 3 matrix. One of the sets of icons was randomly replaced every 2000 ms. 

Participants had to respond when three identical middle icons appeared either in a row, 

column, or diagonal. Participants completed 112 test trials and 14 practice trials. In the 

figural-pattern version, 20 black dots were presented in a 10 × 10 matrix, with two black dots 

changing their location every 2000 ms. Participants were asked to respond when four black 

dots formed a square. Participants completed 115 test trials and 14 practice trials. The tasks 

took about 6 min. each. The dependent variable was the discriminability index (d′), reflecting 

the sensitivity of target detection. It is computed by relating the hit rate and false alarm rate 

(d′ = z (hit rate) – z (false alarm rate)), where z indicates standardized score. In order to 

correct perfect hit and false alarm rates for the discriminability index we used 1/2N (N = 

number of false alarms) instead of false alarm rate of 0, and 1- 1/2N (N = number of targets) 

instead of hit rate of 1. 
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Cognitive Strategies Questionnaires 

 

A cognitive strategies questionnaire was presented at both pre- and post-test. 
 

Participants made a forced-choice of whether they primarily used visualization or 

verbalization in doing storage and processing and relational integration tasks. They were also 

required to indicate which cognitive strategies they used to complete each of the storage and 

processing and relational integration tasks: verbalization, visualization, both, a different 

strategy, or no strategy at all (for details see Himi et al., 2022).1 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
 
 

 
1 The detailed analysis of cognitive strategies questionnaire was not included in the present study 

because of the manifold analyses and the reduced sample size. 
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Figure 1 
 

Figural-Icon WM Tasks Used in the Pre-/Post-Test and Training Sessions. 
 
 

Note. (a) An example item for the storage and processing figural-icon task in which participants had to 

remember the icons while judging whether the arrow pointed upwards and downwards. (b) An example item for 

the relational integration figural-icon task in which participants had to respond when three identical middle 

icons appeared either in a row, column, or diagonal. The highlighted red boxes are for illustration purposes only. 

 

 
Working Memory Training 

 

Participants in each WM training group practiced one of the WM operations (storage 

and processing or relational integration) from one content domain for 12 days, with each 

session lasting 20 min. Thus, the total training dose was 4 hours spread over 2 to 3 weeks 

(with a mean of 15.85 days). We developed the WM training tasks based on the tasks of 

Oberauer et al. (2003) and von Bastian and Oberauer (2013). Whereas the materials were the 

same as in the pre-/post-test tasks described above, the specific stimuli of the training tasks 
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were different from the stimuli at pre- and post-test to minimize recognition effects. The self- 

administered training was conducted at home via a Python 2.7 (https://www.python.org) 

based on a freely accessible online platform hosted by the Leibniz-Rechenzentrum der 

Bayerischen Akademie der Wissenschaften (LRZ; English: Leibniz Supercomputing Center 

of the Bavarian Academy of Sciences and Humanities). The training program could be 

installed on Windows and Mac OS and, thus, was reasonably platform-independent, and 

could be used at home. 

Data produced during training were automatically uploaded and saved on a remote 

LRZ server and exported as comma-separated raw data (.csv) files. Every time a participant 

started a training session, the data and settings (i.e., screen resolution, operating system, and 

time of access) were updated to verify the accuracy of the data with a Hash function. 

Performance-based feedback was given after each session. The scoring procedures were 

identical to the ones used for pre- and post-test WM tasks. 

Adaptive Algorithm 

 

We used a procedure similar to the adaptive training algorithm used by von Bastian 

and Oberauer (2013). In the first session, an individual benchmark was established based on 

the initial performance of the participant (first 40% of trials). Performance was continuously 

checked after each 40% of trials. If a participant outperformed the benchmark after 40% of 

trials, difficulty was increased; otherwise, it remained at the same level and the participant 

had three retries to exceed the benchmark. If they still did not succeed, task difficulty was 

reset to the initial difficulty level, and a new benchmark was set (this deviates from von 

Bastian & Oberauer, 2013). The benchmark was restricted to fall between 75% to 95% 

accuracy to avoid individual benchmarks being too low or too high. Each session started with 

the same level of difficulty that a participant has attained in the previous session. 
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In the storage and processing task, difficulty could be titrated either by increasing the 

processing time duration (5s, 10s, and 15s) or by increasing the number of memoranda (from 

3 to 10 for verbal, 4 to 11 for numerical, 3 to 10 for figural-icon, and 2 to 5 for figural- 

pattern) one at a time. Difficulty was adjusted to individual performance by alternating 

between these two parameters. Specifically, if a participant outperformed the benchmark with 

an already increased processing duration, the number of elements was increased and vice 

versa. If participants’ accuracy was below 75% or above 95%, task difficulty was adjusted 

according to the most recent change. For example, if the most recent increase in difficulty 

was an increase in the number of memoranda, then the processing duration was increased 

next. If, after this change, accuracy dropped below 75%, the most recent change was reversed 

– in this example, the algorithm would reverse the processing duration to its previous level. 

In the relational integration tasks, the difficulty level was adjusted across trials either 

by decreasing the time interval between changing elements (2.0 s, 1.5 s, 1.0 s, and 0.75 s) or 

by increasing the number of changing elements (e.g., from 1 to 3 for verbal, numerical, and 

figural-icon; from 2 to 5 for figural-pattern) one at a time. As for the storage and processing 

tasks, these two parameters were alternated to adjust the task difficulty. The difficulty level of 

the training tasks was established by following Hilbert et al. (2017). 

Active Control Group Training 

 

Like the WM training groups, the active control group completed 12 sessions (20 min. 

each). During these sessions, participants completed the Objektiver Leistungsmotivations- 

Test (OLMT; English: objective achievement motivation test; Schmidt-Atzert, 2004), in 

which they had to follow a specified route as quickly as possible by pressing the left and right 

‘shift’ button (Figure 2). Each route contained up to 100 fields with red and green arrows. 

The arrows indicated the direction of the route and, thus, the key that had to be pressed in 

order to proceed. Green arrows pointed to the right direction, and red arrows pointed to the 
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left. This test is assumed to have only minor WM demands, as evidenced by a non-significant 

correlation with WM (see test manual; Schmidt-Alzert, 2004). The OLMT comprised three 

subtests targeting different aspects of motivation. First, for targeting task-related effort, 

participants had to make as many moves as possible within 10 s. Second, to practice 

motivation arising from setting personal goals, participants were asked to set and achieve 

movement targets. Finally, to trigger motivation arising from competition, participants had to 

outperform a virtual opponent. Each subtest was made up of 10 identical runs that lasted for 

10 s. The length of sequence covered by pressing the buttons in the last three runs of the first 

subtest was the dependent variable. Participants received performance feedback after each 

run. 

Figure 2 
 

Screenshot of the English Version of OLMT Training Platform. 
 

Note. In the OLMT task, participants had to follow a specified route as quickly as possible by pressing the left and right 

‘shift’ button. Green arrows pointed to the right direction, and red arrows pointed to the left. 

Statistical Analyses 

 

All analyses were conducted using the statistical programming language R (R 

Development Core Team, 2015). First, data were preprocessed with the “tidyverse” package 
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(Wickham, 2021). Second, we confirmed the structure of the facet model of WM using the 

‘blavaan’ package (Merkel et al., 2020) to perform a Bayesian latent-variable analysis on the 

pre-test and post-test scores. Third, for each WM task, we applied Bayesian generalized 

linear mixed-effects models using the “blme” package (Dorie, 2015) to assess performance 

improvement after training. Fourth, the “brms” package (Bürkner et al., 2021) was used to 

compute Bayes factors (BF) with flat prior settings (normal 0, 1). The ‘hypothesis’ function 

of this package computes an evidence ratio (i.e., the BF in favor of H0) for each hypothesis. 

BFs range on a continuous scale from 0 to ∞, with a BF of 1 reflecting no evidence. BFs 

below 1 represent evidence for the null hypothesis, and BFs above 1 indicate evidence in 

support of the alternative hypothesis (for conventions for the interpretation of the size of BFs, 

see Wetzels & Wagenmakers, 2012). All figures were created using the “ggplot2” package 

(Wickham, 2009). 

Bayesian Confirmatory Factor Analysis 

 

Bayesian approaches have been shown to provide more accurate estimates of effects 

than frequentist approaches of latent-variable analysis (see Kruschke, 2013). We used the 

default priors to fit a two-factor structure representing storage and processing and relational 

integration. We deemed coefficient estimates credible if zero did not fall within the densest 

95% of the distribution, which refers to the Highest Density Interval (HDI). 

Bayesian Generalized Linear Mixed-Effects Models 

 

This analysis framework allows for both fixed effects (i.e., experimental conditions or 

predictors) and random effects (i.e., individuals in experimental conditions) parameters (see 

Hilbert et al., 2019). Fixed effects describe the relation between the criterion and predictor 

variables, whereas random effects explain the variability in sampling. We used the default 

prior of the covariance matrix (inverse Wishart). The random-intercept term was allowed to 

vary across the subjects. 
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To evaluate the training gains and transfer effects, we specified a fixed effect 

associated with a dichotomous growth variable representing linear growth over time that 

served as a single predictor and was additionally included in the models as an interaction 

term with the group variables. The group variables were dummy-coded, with the active 

control group serving as the reference group. This means that each of the eight WM training 

groups and the passive group were coded 1 for each participant in the respective groups and 0 

for everyone else. Participants with the value 0 in all group variables, thus, belonged to the 

active control group. Accordingly, the dichotomous growth variable models the difference 

between pre- and post-test for the control group. The difference in gain between pre- and 

post-test in each WM training group, compared to the active control group, are reflected by 

the regression weight of the interaction between the corresponding group dummy variable 

and the growth variable. Finally, the fixed intercept parameter represents the baseline mean in 

the active control group. The main effects of the group variable were not included in the 

model to keep the models sparse and because there was no reason to assume group 

differences at pre-test, due to the random assignment. In addition, we ran a second analysis, 

in which the passive control group was considered the reference group. All other parameters 

were remained the same. 

Missing data 

 

All participants completed 12 training sessions. However, due to technical issues that 

led to server downtimes, some training data were not saved online. One day’s data was 

missing for 12 participants, two days for seven participants, and three days for five 

participants. Consequently, we treated them as missing values and excluded them from the 

analyses while calculating the mean training performance. If participants completed more 

than 12 training sessions, these additional sessions were also discarded from the analyses. 

Results 



LIMITS TO NEAR TRANSFER 19 
 

 

 

 

The Facets of WM 

 

The correlated two-factor model (Figure 3) for pre- and post-test scores was tested to 

see whether storage and processing and relational integration were two separable but 

correlated factors and how the new tasks related to the latent constructs. Both models were 

evaluated by Bayesian root mean square error of approximation (BRMSEA). A lower 

BRMSEA indicates a better model fit (Hu & Bentler, 1999). The BRMSEA values were .080 

[95% credible interval (.026 − .135)], and .029 [95% credible interval (.00 − .088)] for the 

model of pre-test and post-test scores, respectively. Factor loadings (see Table 1) of all the 

indicators onto their respective latent variables were moderate to high (storage and 

processing: λ = .38 to λ = .81, relational integration: λ = .42 to λ = .70), and significantly 

different from zero. Critically, the new figural-icon tasks loaded significantly on their 

respective operational WM factors. Storage and processing was correlated with relational 

integration (pre-test: r = .47; post-test: r = .51). 

Figure 3 
 

Measurement Model Representing the Facet Model of WM. 
 
 

 
Note. The values in the parentheses represent the post-test measure. All parameters were statistically significant. 
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Table 1 
 

Factor Loadings on Latent Variables (Unstandardized Loadings). 
 

 
 

Loading 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Note. Highest density interval (HDI) is between 2.5% and 97.5%. SPV = storage and processing verbal; SPN = storage and 

processing numerical; SPFI = storage and processing figural-icon; SPFP = storage and processing figural-pattern; RIV = 

relational integration verbal; RIN = relational integration numerical; RIFI = relational integration figural-icon; RIFP = 

relational integration figural-pattern; SP = storage and processing; RI = relational integration. 

 
 

Training Performance 

 
Figure 4 depicts the results of the mean performance achieved by the storage and 

processing, relational integration, and active control groups over the training period. For the 

storage and processing groups (Figure 4a), performance somewhat improved for the figural- 

pattern group, whereas the verbal and figural-icon groups showed relatively consistent 

performance from the first to the last session. The numerical group showed a decrease in the 

first five sessions, then started to improve from the sixth session onward and showed 

relatively consistent performance but did not recover to reach the level from the first session. 

 
All four relational integration groups (Figure 4b) showed a drop in performance with 

practice. The slopes fluctuated in their steepness, with a less pronounced mean performance 

decrease for the figural-icon group relative to the other three groups. Different to the 

Variables Pre-test HDI Post-test HDI 

 
SP 

Unstandardized 
Loading 

Lower Upper Unstandardized Lower Upper 

SPV 1.00   1.00   

SPN 0.28 0.19 0.37 0.18 0.09 0.28 

SPFI 0. 67 0.51 0.89 1.45 0.96 2.09 

SPFP 0.82 0.56 1.14 0.73 0.52 1.02 

RI        

RIV  1.00   1.0   

RIN  1.46 0.77 2.77 1.7 0.87 3.58 

RIFI  1.33 0.64 2.70 0.57 0.17 1.37 

RIFP  0.60 0.25 1.17 1.26 0.58 2.73 

 
Covariance 

Pre-test    Post-test   

SP ~~ RI  0.02 0.00 0.02 0.01 0.00 0.02 
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relational integration groups, the active control group (Figure 4c) showed a relatively steady 

increase in performance with training due to practice effect. A closer inspection of the data 

showed that performance increased across training days if accuracy scores instead of the 

discriminability index were used as performance measure of the relational integration tasks 

(see Figure A1). Thus, participants generally did improve in their general task performance 

(i.e., they identified the critical constellations correctly) but they did not equally improve in 

reducing their false alarms (i.e., they were not able to detect the critical constellations). 

 
To statistically assess whether performance changed with training, we evaluated 

training performance across the 12 training sessions with Bayesian linear mixed-effects 

models, using sessions as fixed-effect and participants as random-effect. The first training 

session acted as reference category. The results revealed that the training sessions had a 

significant effect on training performance for six groups: storage and processing figural- 

pattern, 2(11) = 48.81, p < .001; relational integration verbal, 2(11) = 71.70, p < .001; 

relational integration numerical, 2(11) = 106.18, p < .001; relational integration figural-icon, 

2(11) = 97.36, p < .001; relational integration figural-pattern, 2(11) = 36.23, p < .001; 

active control, 2(11) = 56.12, p < .001. The regression parameters for the effect of sessions 

were negative for all relational integration groups but positive for the storage processing 

figural-pattern and the active control groups. 
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Figure 4 
 
Training Performance During Twelve Training Sessions. 

 

Note. The values for the storage and processing tasks represent the partial credit scores, whereas it is discriminability index scores for the relational integration tasks. Error bars represent 95% 

confidence intervals. (a) Storage and Processing Training; (b) Relational Integration Training; (c) Active Control (OLMT) Training. 
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Training Gains and Transfer Effects 

 

Descriptive statistics for pre- and post-test performance are presented in Table 2. 
 
First, we estimated baseline group differences with analysis of variance (ANOVA) using pre- 

test scores as dependent variables. There was no evidence for baseline differences between 

the groups in any task (all ps ≥ .293, see Table A1). Next, to examine the training gains from 

pre- to post-test, we compared the performance improvement in the corresponding WM tasks 

for all training groups with the active and the passive control groups. In addition, the 

near/nearest transfer effects to structurally similar (within the same WM operation) and 

structurally dissimilar WM tasks (between WM operations) were examined. 

Mean pretest-posttest scores in WM performance are illustrated in Figures 5 and 6. 
 
Overall, each of the storage and processing and relational integration training groups 

significantly improved from pretest to posttest performance in their respective tasks. The only 

exception is the storage and processing numerical task in which all the groups performed 

equally well in the pre- and post-test. Interesting, we found significant near transfer effects on 

untrained and structurally dissimilar WM tasks in some cases. For example, the relational 

integration training groups showed improvement in the verbal storage and processing task. 

However, passive group showed stable performance in the storage and processing figural- 

pattern, figural-icon, and the relational integration figural-pattern tasks. 

Bayesian Multi-level Generalized Linear-Model 

 

Given the relatively moderate group sizes, we estimated WM training effects also 

with a Bayesian multi-level generalized linear model (see Tables 3 and 4). Because this 

model is based on a binomial distribution (indicating two outcomes ‘yes’ and ‘no’), we used 

item-based accuracy (i.e., the correct/wrong responses of each item) of the storage and 

processing and relational integration tasks as dependent variable for estimating this model. 
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Active control group. The active control group showed improvement from pre- to 

post-test in the storage and processing verbal and figural-pattern tasks and the relational 

integration verbal, numerical, and figural-pattern tasks. The passive control group improved 

overall from pretest to posttest as well but showed a mean decrease in storage and processing 

verbal material measures relative to the active control group (b = -0.50, p = .023, CI = -0.91 – 

-0.08; BF10 = 3.13). In addition, all training groups improved in the training tasks, with these 

effects being supported by at least substantial evidence, BF10 ≥ 4.55. The only exception is 

the relational integration figural-pattern group for which the effect was non-significant, p = 

.068, and the evidence was ambiguous, BF10 = 1/1.40 (see Tables 3 − 4). Importantly, we 

found no solid evidence for the near/nearest transfer on structurally similar but untrained WM 

tasks. One exception to this pattern was that the relational integration figural-icon group 

showed a mean increase in the relational integration verbal task compared to the active 

control group, b = 0.32, p = .043, CI = 0.10 – 0.70. Hence, this was the only comparison 

among all WM tasks supporting our hypothesis that easily verbalizable materials like the 

figural-icon task might show transfer to other tasks with verbal materials. However, the BF 

indicated that the evidence was highly ambiguous, BF10 = 1.18. 

Furthermore, regarding possible transfer to structurally different WM tasks, the results 

indicated no transfer effect between the two WM operations (i.e., storage and processing and 

relational integration), with one exception. The group training with the storage and 

processing figural-pattern task showed higher gains in performance in the relational 

integration figural-icon task, compared to the active control group, b = 0.73, p = .012, CI = 

0.16 – 1.30. However, again, the evidence was ambiguous only, BF10 = 2.56. 
 

Passive control group. We conducted further analysis with the passive control group 

as the reference group (see Tables A2 – A3). The results notably differed from those 

comparing the WM training groups to the active control group. All trained groups 
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outperformed the passive control group in all tasks, except the figural-pattern and the figural- 

icon relational integration groups in their respective tasks. Along with the training gains, the 

results further indicated transfer effects within and between WM operations. Interestingly, 

training with the figural-icon storage and processing task went along with improvement in 

verbal task and vice versa, compared to the passive control group, b = 0.49, p = .021, and b = 

0.51, p = .032, respectively. However, the evidence was ambiguous in both instances, BF10 = 

1.27 and BF10 = 1.39, respectively. 
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Table 2 

Difference between Pre- and Post-Test in the Working Memory Tasks as a Function of Training Groups. 

Storage and processing training groups Relational integration training groups  Active 
Control 

Passive 

 

 Verbal Numerical Figural 
-pattern 

Figural 
-icon 

Verbal Numerical Figural 
-pattern 

Figural 
-icon 

 

Group Size (excluding 
dropouts) 
Drop out 

16 
 

6 

17 
 

7 

18 
 

4 

20 
 

5 

17 
 

5 

17 
 

7 

14 
 

9 

16 
 

6 

20 
 

2 

16 
 

0 

Test           

Storage and Processing           

Verbal Pre-test 0.76 (0.11) 0.72 (0.10) 0.73 (0.13) 0.73 (0.13) 0.74 (0.11) 0.76 (0.11) 0.71 (0.10) 0.69 (0.13) 0.72 (0.11) 0.69 (0.15) 

Post-test 0.88 (0.07) 0.80 (0.12) 0.80 (0.11) 0.81 (0.11) 0.81 (0.10) 0.87 (0.08) 0.79 (0.12) 0.79 (0.16) 0.82 (0.09) 0.75 (0.14) 

Numerical Pre-test 0.94 (0.05) 0.96 (0.03) 0.95 (0.06) 0.96 (0.04) 0.94 (0.04) 0.96 (0.04) 0.94 (0.05) 0.95 (0.06) 0.96 (0.03) 0.95 (0.03) 

Post-test 0.96 (0.03) 0.98 (0.02) 0.96 (0.03) 0.96 (0.04) 0.96 (0.03) 0.97 (0.35) 0.95 (0.04) 0.94 (0.06) 0.96 (0.03) 0.96 (0.04) 

Figural-pattern Pre-test 0.58 (0.14) 0.55 (0.14) 0.61 (0.13) 0.52 (0.12) 0.51 (0.11) 0.60 (0.14) 0.50 (0.16) 0.57 (0.12) 0.56 (0.11) 0.52 (0.12) 

Post-test 0.66 (0.18) 0.58 (0.16) 0.94 (0.04) 0.67 (0.14) 0.58 (0.16) 0.66 (0.15) 0.55 (0.23) 0.65 (0.10) 0.61 (0.10) 0.53 (0.14) 

Figural-icon Pre-test 0.90 (0.07) 0.85 (0.87) 0.89 (0.08) 0.89 (0.78) 0.89 (0.05) 0.89 (0.06) 0.88 (0.07) 0.88 (0.08) 0.87 (0.06) 0.87 (0.08) 

Post-test 0.92 (0.07) 0.88 (0.09) 0.93 (0.04) 0.93 (0.06) 0.88 (0.10) 0.91 (0.06) 0.89 (0.10) 0.91 (0.06) 0.88 (0.05) 0.87 (0.07) 

Relational Integration           

Verbal Pre-test 2.56 (0.54) 2.29 (0.55) 2.12 (.62) 2.50 (0.78) 2.08 (0.74) 2.42 (.76) 2.15 (0.51) 2.34 (0.70) 2.26 (0.42) 2.28 (0.75) 

Post-test 2.55 (0.55) 2.61 (0.59) 2.55 (.67) 2.87 (0.63) 3.02 (0.78) 2.85 (.74) 2.73 (0.68) 2.96 (0.51) 2.61 (0.51) 2.54 (0.67) 

Numerical Pre-test 2.56 (0.57) 2.70 (0.56) 2.74 (.66) 2.82 (0.70) 2.48 (1.19) 2.98 (.71) 2.75 (0.50) 2.84 (0.60) 2.80 (0.54) 2.32 (0.88) 

Post-test 3.00 (0.52) 2.84 (0.63) 2.93 (.55) 2.98 (0.43) 3.08 (0.70) 3.53 (.58) 2.97 (0.50) 3.32 (0.61) 3.04 (0.60) 2.89 (0.63) 

Figural-pattern Pre-test 2.24 (0.37) 2.25 (0.61) 2.19 (.27) 2.20 (0.41) 2.22 (0.44) 2.36 (.52) 2.17 (0.35) 2.45 (0.29) 2.17 (0.42) 2.36 (0.34) 

Post-test 2.61 (0.45) 2.52 (0.43) 2.55 (.42) 2.45 (0.42) 2.47 (0.41) 2.55 (.43) 2.78 (0.36) 2.62 (0.32) 2.45 (0.40) 2.42 (0.39) 

Figural-icon Pre-test 3.83 (0.81) 3.56 (0.65) 3.41 (.79) 3.66 (0.62) 3.68 (0.66) 3.93 (.64) 3.60 (0.84) 3.64 (0.83) 3.89 (0.69) 3.60 (.95) 

Post-test 4.14 (0.51) 3.94 (0.56) 4.07 (.63) 4.11 (0.55) 4.13 (0.44) 4.15 (.50) 4.12 (0.52) 4.26 (0.34) 3.96 (0.79) 4.05 (0.65) 

Note. Means and standard deviation (in parenthesis) of each task performance for the pre-test or post-test are presented. The values for the storage and processing tasks represent the partial 

credit scores, whereas it is discriminability index scores for the relational integration tasks. 
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Figure 5 

Pre- and Post-Test Performance in Trained and Untrained Storage and Processing Tasks as 

a Function of Groups. 

 
Note. Error bars represent 95% confidence intervals. RI = relational integration; SP = storage and processing. 
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Figure 6 
 

Pre- and Post-Test Performance in Trained and Untrained Relational Integration Tasks as a 

Function of Groups. 

 
Note. Error bars represent 95% confidence intervals. RI = relational integration; SP = storage and processing. 
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Table 3 

Parameters Estimates from Bayesian Generalized Linear Mixed-Effects Models for Storage 

 
and Processing Tasks.  

Tasks/Covariates Estimate SE z p CI low CI high BF10 

 

SP Verbal Task 
       

Intercept -0.54 .05 -9.95 .002 -0.65 -0.44 
 

Active 0.63 .15 4.32 .001 0.34 0.92 
 

Active*SPV 0.57 .22 2.64 .008 0.15 0.99 10.00 

Active*SPN -0.18 .21 -0.86 .389 -0.59 0.23 1/3.65 

Active*SPFP 0.15 .21 0.74 .460 -0.25 0.56 1/3.63 

Active*SPFI 0.01 .20 -0.01 .993 -0.40 0.39 1/5.15 

Active*RIV -0.08 .21 -0.40 .689 -0.49 0.33 1/4.81 

Active*RIN 0.20 .21 0.96 .336 -0.21 0.62 1/2.95 

Active*RIFP -0.05 .22 -0.21 .834 -0.48 0.39 1/4.66 

Active*RIFI -.012 .21 -0.55 .582 -0.53 0.30 1/4.36 

Active*Passive -0.50 .21 -2.31 .023 -0.91 -0.08 3.13 

SP Numerical task 
       

Intercept 0.68 .07 9.76 <.001 0.54 0.82 
 

Active 0.16 .16 1.01 .31 -0.16 0.48 
 

Active*SPV 0.26 .24 1.06 .29 -0.22 0.74 1/2.74 

Active*SPN 0.85 .26 3.27 < .001 0.34 1.36 50.00 

Active*SPFP 0.15 .24 0.65 .51 -0.31 0.62 1/3.95 

Active*SPFI 0.06 .23 0.28 .78 -0.39 0.52 1/4.52 

Active*RIV 0.38 .24 1.57 .12 -0.10 0.86 1/1.40 

Active*RIN 0.22 .25 0.90 .37 -0.26 0.70 1/3.18 

Active*RIFP -0.17 .25 0.66 .51 -0.66 0.33 1/3.00 

Active*RIFI -0.04 .24 0.18 .86 -0.52 0.43 1/4.24 

Active*Passive -0.07 .24 0.31 .76 -0.54 0.40 1/4.08 

 
Note. Covariates presented in bold showed effects significantly different from zero. BFs reported only for the interaction 

terms. CI = credible interval; BF10 = Bayes factor in favor of H1; Active = mean change between pre- and post-test in the 

active control group; Active*WM Group = difference in change between the WM training group and the active control 

group; Active*Passive = difference in change between the passive and the active control group; SP = storage and 

processing; RI = relational integration; V = verbal; N = numerical; FP = figural-pattern; FI = figural-icon. 
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Table 3 (Continued) 

Parameters Estimates from Bayesian Generalized Linear Mixed-Effects Models for Storage 

and Processing Tasks. 

Tasks/Covariates Estimate SE z p CI low CI high BF10 

 
SP Figural-Pattern Task 

 
Intercept -1.07 .06 -17.03 <.001 -1.19 -0.94  

Active 0.35 .16 0.23 025 0.04 0.66 

Active*SPV 0.27 .23 0.16 244 -0.18 0.71 1/2.83 

Active*SPN -0.20 23 0.89 373 -0.65 0.25 1/2.64 

Active*SPFP 2.08 .24 8.71 <.001 1.61 2.55 > 1,000 

Active*SPFI 0.32 .22 1.46 .144 -0.11 0.75 1/2.00 

Active*RIV 0.01 .23 0.06 .953 -0.43 0.46 1/4.64 

Active*RIN 0.11 .23 0.48 .634 -0.33 0.55 1/4.55 

Active*RIFP -0.17 .25 -0.70 .482 -0.66 0.31 1/3.04 

Active*RIFI 0.24 .23 1.05 .293 -0.21 0.69 1/3.27 

Active*Passive 
 

SP Figural-Icon Task 

-0.25 .24 -1.05 .294 -0.71 0.22 1/2.13 

 

Intercept 

 

0.36 

 

.06 

 

6.20 

 

<.001 

 

0.25 

 

0.47 

 

Active 0.10 .15 0.65 .513 -0.20 0.39 
 

Active*SPV 0.41 .23 1.82 .069 -0.03 0.87 1/1.15 

Active*SPN 0.13 .21 0.58 .563 -0.30 0.55 1/4.52 

Active*SPFP 0.38 .21 1.74 .081 -0.05 0.81 1/1.31 

Active*SPFI 0.72 .22 3.30 <.001 0.29 1.14 50.00 

Active*RIV -0.02 .22 -0.08 .937 -0.44 0.41 1/4.79 

Active*RIN 0.36 .22 1.62 .104 -0.07 0.80 1/1.66 

Active*RIFP 0.14 .23 0.60 .550 -0.31 0.59 1/4.14 

Active*RIFI 0.33 .23 1.45 .146 -0.11 0.77 1/1.95 

Active*Passive -0.10 .22 -0.46 .649 -0.53 0.33 1/3.96 

 
Note. Covariates presented in bold showed effects significantly different from zero. BFs reported only for the interaction 

terms. CI = credible interval; BF10 = Bayes factor in favor of H1; Active = mean change between pre- and post-test in the 

active control group; Active*WM Group = difference in change between the WM training group and the active control 

group; Active*Passive = difference in change between the passive and the active control group; SP = storage and 

processing; RI = relational integration; V = verbal; N = numerical; FP = figural-pattern; FI = figural-icon. 
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Table 4 
 

Parameters Estimates from Bayesian Generalized Linear Mixed-Effects Models for 

Relational Integration Tasks. 

 
Tasks/Covariates Estimate SE z p CI low CI high BF10 

RI Verbal Task        

Intercept 2.35 
 

.04 

 
62.87 

 
.000 

 
2.28 2.42 

Active 0.26 .10 2.56 .010 0.06 0.45 

Active*SPV -0.16 .15 -1.10 .269 -0.45 0.13 
1/3.53 

Active*SPN -0.02 .15 -0.13 .896 -0.30 0.27 
1/6.74 

Active*SPFP 0.02 .14 0.17 .862 -0.25 0.30 
1/7.04 

Active*SPFI 0.10 .14 0.69 .488 -0.18 0.38 
1/5.67 

Active*RIV 0.40 .15 2.58 .009 0.10 0.70 
4.55 

Active*RIN 0.13 .15 0.86 .392 -0.17 0.42 
1/4.75 

Active*RIFP 0.10 .16 0.66 .506 -0.20 0.41 
1/5.21 

Active*RIFI 0.32 .16 2.02 .043 0.01 0.62 
1.18 

Active* Passive -0.10 

RI Numerical Task 

.14 0.71 .481 -0.39 
0.18 

1/5.45 

Intercept 2.67 .04 5.90 .000 2.59 2.75 

Active 0.27 .12 0.34 .019 0.04 0.50 

Active*SPV 0.07 .17 0.40 .686 -0.26 0.40 
1/5.73 

Active*SPN -0.14 .16 0.89 .371 -0.46 0.17 
1/3.96 

Active*SPFP -0.09 .16 0.55 .580 -0.41 0.23 
1/5.17 

Active*SPFI -0.03 .16 0.18 .858 -0.34 0.28 
1/6.22 

Active*RIV 0.20 .17 0.18 .238 -0.13 
0.52 

1/3.09 

Active*RIN 0.54 .19 0.84 .005 0.17 0.91 
11.11 

Active*RIFP -0.03 .17 0.18 .856 -0.37 0.31 
1/5.69 

Active*RIFI 0.26 .18 0.45 .148 -0.09 0.61 
1/2.05 

Active* Passive 0.04 .17 0.24 .807 -0.28 0.36 
1/5.94 

Note. Covariates presented in bold showed effects significantly different from zero. BFs reported only for the interaction 

terms. CI = credible interval; BF10 = Bayes factor in favor of H1; Active = mean change between pre- and post-test in the 

active control group; Active*WM Group = difference in change between the WM training group and the active control 

group; Active*Passive = difference in change between the passive and the active control group; SP = storage and 

processing; RI = relational integration; V = verbal; N = numerical; FP = figural-pattern; FI = figural-icon. 
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Table 4 (Continued) 

Parameters Estimates from Bayesian Generalized Linear Mixed-Effects Models for 

Relational Integration Tasks. 

Tasks/Covariates Estimate SE z p CI low CI high BF10 

 

RI Figural-Pattern Task 
 

Intercept 2.29 .03 86.57 .000 2.23 2.34  

Active 
0.17 .08 2.00 .045 0.00 0.33  

Active*SPV 0.09 .12 0.72 .474 -0.15 0.33 1/6.51 

Active*SPN -0.02 .12 -0.19 .854 -0.25 0.21 1/8.30 

Active*SPFP 0.06 .12 0.51 .611 -0.17 0.29 1/7.64 

Active*SPFI -0.01 .11 -0.09 .922 -0.23 0.21 1/8.69 

Active*RIV -.03 .12 -0.23 .817 -0.26 0.21 1/8.30 

Active*RIN 0.07 .12 0.59 .554 -0.17 0.31 1/7.21 

Active*RIFP 0.24 .13 1.83 .068 -0.02 0.51 1/1.40 

Active*RIFI 0.10 .13 0.83 .406 -0.14 0.35 1/5.67 

Active*Passive 
 

RI Figural-Icon Task 

-0.02 .12 -0.16 .870 -0.26 0.22 1/8.22 

 

Intercept 

 

3.96 

 

.09 

 

42.43 

 

.000 

 

3.78 

 

4.14 

 

Active 0.22 .19 1.15 .249 -0.16 0.61 
 

Active*SPV 0.62 .32 1.95 .052 -0.01 1.25 1/1.07 

Active*SPN 0.11 .28 0.39 .693 -0.43 0.65 1/3.84 

Active*SPFP 0.73 .29 2.51 .012 0.16 1.30 2.56 

Active*SPFI 0.49 .29 1.70 .088 -0.07 1.06 1/1.62 

Active*RIV 0.58 .31 1.90 .058 -0.02 1.18 1/1.18 

Active*RIN 0.40 .31 1.26 .207 -0.22 1.01 1/2.36 

Active*RIFP 0.50 .31 1.60 .109 -0.11 1.11 1/1.66 

Active*RIFI 1.00 .34 2.98 .003 0.34 1.65 9.09 

Active*Passive 0.56 .30 1.86 .063 -0.03 1.14 1/1.28 

 

Note. Covariates presented in bold showed effects significantly different from zero. BFs reported only for the interaction 

terms. CI = credible interval; BF10 = Bayes factor (in favor of H1); Active = mean change between pre- and post-test in 

the active control group; Active*WM Group = difference in change between the WM training group and the active 

control group; Active*Passive = difference in change between the passive and the active control group; SP = storage and 

processing; RI = relational integration; V = verbal; N = numerical; FP = figural-pattern; FI = figural-icon. 
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Cognitive Strategy Survey Report 

 

Table 5 displays the frequency of strategies reported. For storage and processing tasks, 

the dominant strategy was verbalization, reported by 82.5% of participants before training and 

86.5% after training; for relational integration tasks, it was visualization (80.1% at pre-training 

and 71.3% at post-training). Notably, storage and processing showed an increase in verbalization 

and relational integration showed a decrease in visualization strategies between pre- and post-test. 

As expected, whereas most participants used visualization in the storage and processing figural- 

pattern task (62.60% at pre and 49.10% at post-test), verbalization was the primary reported 

strategy in the storage and processing figural-icon task (53.20% at pre and 59.60% at post-test).2 

In contrast, most participants used verbalization only in the verbal relational integration task 

(54.40% at pre and 63.70% at post-test) but not in any of the other relational integration tasks. In 

addition, some participants reported to have used either both strategies, an alternative/different 

approach, and no strategy in both storage and processing, and relational integration tasks (see 

Table 5). For example, alternative strategies reported included naming the shape in storage and 

processing figural-pattern task, focusing on the potential combination of the stimuli or monitoring 

the movement of the stimuli in the relational integration task. 

When shifting attention from descriptive to exploratory inferential statistics to test to 

what extent strategy reports can explain the training effects, the results tell a similar story. 

We conducted a multinomial logistic regression to examine whether task-specific training 

would contribute to use task-specific strategies (Tables A4 - A5). Group was the predictor, 

 
 

 
 
 

 
2 The Wilcoxon Sign-rank test revealed that there was significant difference in the use of cognitive strategies 

between figural-icon and figural-pattern storage and processing tasks (z = -4.349, p < .001). Median strategy use was 

verbalization for figural-icon, whereas it was visualization for figural-pattern. 
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with the figural-pattern group as the reference category, and type of strategy was the 

criterion, with visual strategy serving as the reference category. This analysis compared the 

figural-pattern group to the other groups (i.e., verbal, numerical, and figural-icon), and 

visual strategy use to the use of other strategies (i.e., verbal, both, alternate, or no strategy), 

with all other variables held constant in the model. Note that, due to the uneven distribution 

of strategy use in some groups, and the small numbers of participants in some of the cells, 

some of the odds ratios are inconclusive. Largely though, results revealed no significant 

differences in verbal strategy relative to visual strategy use between the figural-pattern group 

and the verbal and numerical groups, for both WM operations. The only difference occurred 

when comparing the storage and processing figural-pattern to the figural-icon group in the 

storage and processing figural-icon task, where the multinomial logit was 11.98 times higher 

for using a verbal strategy relative to a visual strategy when being a member of the figural- 

icon group. Taken together and this exception aside, task-specific training did not contribute 

to use task-specific strategies. 
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Table 5 
 

Percentages of Using Different Strategies across WM Tasks. 
 

Storage and processing tasks 
 

Types of SP verbal SP numerical SP figural-icon SP figural-pattern SP total 
strategies   

Pre-test Posttest Pre-test Posttest Pre-test Posttest Pre-test Posttest Pre- Posttest 
test 

Visualize 9.9% 11.1% 8.2% 8.8% 19.3% 17.0% 62.6% 49.1% 17.5% 13.5% 

Verbalize 62.6% 75.4% 73.1% 77.2% 53.2% 59.6% 14% 25.1% 82.5% 86.5% 

Both strategies 27.5% 11.7% 18.7% 12.9% 27.5% 20.5% 19.3% 8.7%   

No strategy 0.0% 0.6% 0.0% 0.6% 0.0% 0.6% 4.1% 2.3%   

Alternate 
strategy 

0.0% 1.2% 0.0% 0.6% 0.0% 2.3% 2.6% 4.8%   

Relational integration tasks 
 

RI verbal RI numerical RI figural-icon RI figural-pattern RI total 
 

 Pre-test Posttest Pre-test Posttest Pre-test Posttest Pre-test Posttest Pre- 
test 

Posttest 

Visualize 19.3% 17.0% 48.5% 53.2% 59.1% 56.1% 77.8% 81.7% 81.1% 71.3% 

Verbalize 54.4% 63.7% 22.2% 25.1% 10.5% 15.2% 2.3% 1.8% 18.9% 28.7% 

Both strategies 5.3% 7.6% 5.8% 7.0% 7.6% 13.5% 0.6% 4%   

No strategy 9% 3% 9.4% 5.3% 14% 4.7% 10.5% 7.7%   

Alternate 
strategy 

12% 8.8% 14.1% 9.4% 8.8% 10.5% 8.8% 4.7%   

Note. SP = storage and processing; RI = relational integration. 
 

Discussion 

 

In this study, we aimed to investigate why transfer of WM training is more likely to 

occur on tasks with similar materials than on other types of tasks. Specifically, we tested the 

hypothesis that transfer occurs if training and transfer tasks afford the same strategies. We 

addressed this question by training and assessing the same WM operations (storage and 

processing and relational integration) with a range of materials that we expected to afford 

different strategies (verbalization vs. visualization). We designed the tasks based on the facet 

model of WM (Oberauer et al., 2003; see also Hilbert et al., 2017). To facilitate adoption of 

verbalization strategies in the figural-icon task, we used icons as stimuli that were easy to 

verbalize in contrast to the less easily verbalizable patterns in the figural-pattern task. In line 

with our expectations, more participants stated to have used a verbal strategy with the former 
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compared to the latter in the storage and processing tasks. However, this was not the case for 

the figural-icon and figural-pattern relational integration tasks. For both operations, the newly 

developed theory-based figural stimuli for measuring WM capacity shared more variance 

with the respective latent factors than the original verbal, numerical, and figural-pattern 

stimuli in Oberauer et al.’s (2003) study. 

The higher loading of the storage and processing figural-icon task on storage and 

processing suggests that this task differs from other storage and processing tasks regarding 

retrieval of information − recall and recognition. This task requires participants to perform a 

recognition task in which they have to choose the correct set of icons from a number of 

candidates, whereas other storage and processing tasks involve freely recalling the 

words/numbers/patterns. The ability of recognition is an essential determinant for storage and 

processing tasks (measured with complex span tasks; Lilienthal et al., 2015). 

In line with our hypotheses, we found consistent evidence of gains in the tasks trained 

for most training groups. Contrary to our hypotheses, however, there was no evidence for 

transfer of training to untrained but structurally similar tasks, even when they afforded 

verbalization or visualization to a similar extent. Finally, no transfer was observed between 

the two WM operations, storage and processing, and relational integration, except one 

significant effect from figural-pattern storage and processing training to the figural-icon 

relational integration task. However, given that the evidence for this effect was ambiguous 

only, and that there was no effect from training the figural-icon relational integration task to 

performance in the figural-pattern storage and processing task, it seems safe to assume that 

these gains reflected only random data fluctuation. 

Furthermore, to address the still ongoing debate over what constitutes an adequate 

control group (e.g., Au et al., 2020), we incorporated both an active and a passive control 

group. Whereas comparing the WM training groups with the active control group indicated 
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little differences in performance gains from pre- to post-test, we observed better performance 

at post-test in the WM training groups relative to the passive control group – a result that 

could have led to falsely inferring WM training-induced transfer effects. These findings 

highlight the importance of including an active control group. 

Replication of the Facet Model 

 

We focused on the facet model of WM (Oberauer et al., 2003), as this study is a 

continuation of Hilbert et al. (2017). The Bayesian confirmatory factor analysis of the two- 

factor model (Figure 3) showed that storage and processing and relational integration were 

correlated but distinct factors, thus, replicating the original model with the new task materials 

included. However, as the strategy reports showed, this distinction between storage and 

processing and relational integration might be confounded with the two types of strategies 

people use in these tasks; specifically, participants reported to have predominantly used 

verbalization in the storage and processing tasks, and visualization in the relational 

integration tasks. A possible explanation for this difference in strategies used is that 

information is presented sequentially in the storage and processing tasks, thereby encouraging 

people to spontaneously encode information semantically and construct episodes (Wyer, 

2004). In contrast, in relational integration tasks, information was arranged in a grid and 

participants were instructed to consider the spatial relations between the items (e.g., three 

identical last digits appear either in a row, column, or diagonal line in a 3 × 3 matrix). 

Verbalization strategies – which also draw on semantics – may have been more useful for the 

storage and processing tasks (exception for the figural-pattern storage and processing task), 

and visualization for the relational integration tasks (except for the verbal relational 

integration task). The two factors could, therefore, reflect differences in domain-specific 

processing rather than in operational facets of WM. 

Training Gains in Accuracy but not Detection Performance 
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Relative to previous WM training studies, we found some unusual patterns of WM 

performance changes over 12 days of training (see Hilbert et al., 2017 for similar findings). 

Whereas the storage and processing figural-pattern group and the active control group 

showed improvements in performance, the other storage and processing groups’ performance 

remained relatively stable (Figure 4). Although accuracy scores were used for the storage and 

processing tasks, training performance did not improve as much as expected. Specifically, 

performance of the storage and processing numerical group questions the training 

effectiveness. This training group showed performance decreases until the first few sessions, 

but after that performance increased. Possibly, because we deal more often with verbal, 

numerical, and icon (easy to verbalize) materials compared to visuo-spatial material in 

everyday life, participants of these groups already function close to the optimal level 

(accuracy close to .80) and have less room for improvement in the beginning of training. The 

improved storage and processing figural-pattern task and the OLMT task reflect participant’s 

capacity to adapt to the training environment of these tasks. 

In contrast, the relational integration groups mean performance significantly 

decreased over the course of training (Figure 4). This decrease in task performance is likely 

due to how difficulty was adjusted by the adaptive algorithm. Specifically, whereas accuracy 

– the proportion of correct responses – was used to trigger adjusting task difficulty, we used 

detection performance for the analysis of training performance. Detection performance, 

assessed by the discriminability index, incorporates both hits (correct responses when targets 

are present) and false alarms (wrong responses when targets are absent), and it can vary even 

if accuracy remains stable. For example, if both hit and false-alarm rates are reduced, 

accuracy will remain the same, but detection performance will drop. Indeed, exploring 

change in accuracy over the course of relational integration training showed the expected 

steady increase in performance. This was due to an increase in responding correctly when the 
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target was present, with wrong responses remaining on a stable level. With increasing task 

difficulty of the present task, item complexity and speed demands were raised, manipulations 

which have been shown to result in drops in detection performance in comparable paradigms 

such as multiple-objects tracking tasks (Howard & Holocombe, 2008). However, as long as 

overall accuracy did not fall below 75%, the adaptive algorithm would not reduce task 

difficulty even if detection performance would decrease, resulting in the unusual pattern of 

training performance we observed3.Therefore, future studies of relational integration training 

should base their adaptive algorithm on detection performance rather than accuracy. 

Material- and Operation-Specific Performance Gains 

 

Consistent with previous literature on WM training (e.g., Hilbert et al., 2017; Himi, 

2018; Himi et al., 2018; Redick et al., 2015; von Bastian & Eschen, 2016), the present results 

largely indicate improvement on identical tasks to those used at training from pre- to post-test 

(Figures 5 and 6) relative to the active control group, suggesting that training leads to task- 

specific improvement (‘stimuli-specific expertise’, De Simoni & von Bastian, 2018). 

However, unlike previous studies demonstrating transfer from complex span training to other 

span-based measures (e.g., Harrison et al., 2013; Hilbert et al., 2017; but see Minear et al., 

2016), no evidence was found for transfer of training to untrained tasks, even when those 

tasks involved the same narrow ability but used different stimuli materials, which has been 

referred to as the ‘curse of specificity’ (Green & Bavelier, 2012, p. 198; see Tables 3 and 4). 

However, these previous studies differed from the present study in several critical aspects. 

Specifically, Harrison et al. (2013) used the core training procedure (multiple training 

regimens - adaptive operation and symmetry span tasks), thereby increasing variability and 

 
 
 

 
3 While we took the accuracy scores for the relational integration training tasks, performance increased over 

 

training. 
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minimizing automatization, which may have led to transfer to the reading span task. The 

present findings also seem to contradict the results reported by Hilbert et al. (2017), although 

they used highly similar training tasks. However, Hilbert et al. did not test baseline cognitive 

performance, which may have led to biased effect sizes (Melby-Lervåg et al., 2016). 

The most obvious potential explanation for the absence of transfer effects in storage 

and processing and relational integration tasks is that intensive practice on specific content 

domains (narrow training) may simply not expand domain-general WM capacity. In this 

regard, it is important to keep in mind that the variance observed in gains can substantially 

differ from the variance in the (baseline) scores (Hayes et al., 2015). More specifically, the 

latent-variable analysis (Figure 3) revealed that the latent storage and processing and 

relational integration factors accounted for 28% to 66% and 18% to 35%, respectively, of the 

variance in each of their four indicators. This suggests that each of the single tasks possesses 

unique variances which are not explained by domain-general storage and processing and 

relational integration. If training-related changes are specific to the variance not captured by 

the domain-general factor, no domain-general transfer will occur. A recent meta-analysis 

concluded that benefits of training with specific materials only might indeed be limited to 

training gains (Schwaighofer et al., 2015). 

Moving beyond capacity-driven transfer, we hypothesized that these highly task- 

specific gains are due to the acquisition of strategies. We deliberately designed the tasks to 

facilitate transfer from verbal and numerical to figural-icons and vice versa, and we predicted 

that transfer would occur for tasks affording similar strategies (see also Gathercole et al., 

2019). However, our results suggest that strategy use and affordability cannot fully explain 

the lack of transfer either. The present data did neither support that training can expand 

general cognitive ability (transfer effects to untrained different tasks) nor that the acquisition 

of strategies improved cognitive efficiency – (transfer effect on an untrained similar task). An 
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alternative possibility is that trainees take advantage of statistical regularities in their 

particular training tasks (Brady et al., 2009; von Bastian et al., 2022). These regularities 

enable participants to compress the presented information and use their available WM 

capacity more efficiently. 

When a person is confronted with a novel cognitive task, that person’s response 

primarily relies on their preferred meta-cognitive strategy, using prior knowledge from long- 

term memory. Over the course of the training, one typically develops a strategy that involves 

the task-surface feature of this particular task and relies less on semantic and episodic aspects 

of long-term memory. In this study, participants may have reported their cognitive style, 

instead of an actual training task-specific strategy, while the specific strategy in the task can 

be adapted irrespective of the habitual cognitive processing style (Hilbert et al., 2015). This 

could explain the absence of a significant relationship between task-specific training and the 

participants’ reported strategy use. The language of the present self-report strategy 

questionnaire (fixed-choice format) might restrict the participants response and, therefore, 

lead to biases. However, the strategy variable of the current study is categorized relatively 

broadly as verbal and visual strategy to increase the precision of the self-report. Moreover, 

previous studies report relatively acceptable reliability estimate (i.e., Kappa) of strategy 

reports in WM task (Waris et al., 2021). However, a possibly useful asset for future studies 

might be the use of nondirective measurement procedures by asking participants an open- 

ended question (‘How do you do the task?’). Alternatively, future research could use 

experience-sampling methods – repeated assessment of strategy use over the course of time – 

to determine the applied strategy. 

Considering the cognitive-routine framework (Gathercole et al., 2019), we cannot 

rule out that participants used strategies they had already acquired prior to training and, 

therefore, did not develop novel routines. Therefore, future research would benefit from 
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assessing not only which strategies people use but also whether they would have used those 

or similar routines before in other contexts. Alternatively, whereas all three tasks (verbal, 

numerical, and figural-icon) afforded verbal strategies, they might have differed in the exact 

types of verbal strategies that can be applied. More specifically, to understand this issue a 

real-life example might be helpful: In the numerical task, the digit ‘9’ indicates not only a 

number, but may also hold some meaning (e.g., by using verbal strategies such as associating 

the digit “9” with the month September and, thereby associating with some personal semantic 

meaning, such as having been born in September). This makes it more distinct from other 

digits such as ‘7’ or ‘8’. Inherently, such a strategy would be helpful to remember more digits 

but would be highly stimulus-specific and, therefore, not transferable to other materials, even 

if all digits generally afford a similar verbal strategy. More generally, training with one of 

these three tasks may have led to using or developing a new yet highly specific verbal 

strategy that could not be applied to the other tasks affording other verbal strategies. 

Furthermore, in the present study, spontaneously generated-strategies may have mainly 

depended on task-surface features (e.g., grouping information with common feature), rather 

less relying on deep information processing such as self-reference elaborative type strategy 

(e.g., semantic connection with own life or personally experienced episodic aspects of long- 

term memory; Wyer et al., 2008) or the mnemonics strategy (e.g., chunking; for details, see 

McCabe et al., 2016). Future research would benefit from using a more fine-grained 

categorization of types of strategies. 

Similarly, the theory of transfer (Barnett & Ceci, 2002) explains transfer as a function 

of the content of practiced elements (i.e., specific stimuli) and the context in which practice 

and transfer occurs (i.e., a situation). It seems that transfer only takes place if the stimuli and 

the context of the task are synchronized. This issue could be explained more clearly by 

differentiating between familiarity-based processing (recalling item regardless of context) 
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and recollection-based processing (recalling item together with its context), as discussed by 

De Simoni and von Bastian (2018). Transfer is only observed when participants use 

recollection-based processing (dealing with interference). After critically inspecting the 

transposition errors (i.e., recalling a correct item at the wrong position; for a similar approach, 

see De Simoni & von Bastian, 2018) in a few datasets of verbal storage and processing task, 

we found that participants could accurately recall more items regardless of correct serial 

position, thus reflecting familiarity-based processing. People may be able to distinguish 

between stimuli more clearly, but may not be able to keep many of them in WM 

simultaneously, resulting in lack of transfer. 

Further, it is also possible that the absence of transfer effects was observed because of 

low training intensity (i.e., the number of trials practiced in each session). The number of 

trials in the storage and processing and relational integration training sessions varied as a 

function of participants' performance and training group. Participants in the relational 

integration groups practiced more trials (on average 500 trials) in each session than those in 

the storage and processing groups (on average 50 trials), but the storage and processing tasks 

required more time to complete. We cannot rule out that a longer training regime would have 

led to transfer effects; however, the lack of even a trend of transfer effects leaves us 

pessimistic that a higher training intensity would have been more effective. 

Finally, it is possible that individual differences may affect the amount of transfer 

observed. Previous studies have explored demographics (e.g., age and gender), baseline 

cognitive abilities, and personality (Bürki et al., 2014; Foster et al., 2017; Guye et al., 2017; 

Wiemers et al. 2019). However, only age and baseline cognitive ability have been shown to 

explain individual differences in training effects. In the present study, we explored whether 

baseline cognitive ability could explain the presence or absence of transfer effects by 

extending our comparisons of participants performing in the top third to those performing in 
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the bottom third at pretest to all training groups (Figure A2)4. Whereas we found no group 

differences for the storage and processing verbal, numerical, and figural-icon groups, top and 

bottom performers in the figural-pattern storage and processing and the relational integration 

groups showed a different picture: In accordance with Jaeggi et al. (2011), individuals with 

lower initial WM capacity improved more strongly than high performers over the course of 

training. The findings suggest that high performing individuals show less benefit, possibly 

because they are already functioning at close to optimal level and thus have less room for 

improvement. Our results conform to compensatory accounts of cognitive change but are 

contrary to magnification effects reported in other studies (Foster et al., 2017; Guye et al., 

2017; Wiemers et al., 2019). However, it is worth to mentioning that this kind of responder 

analysis (degree of transfer depends on how much improvement occur on the trained task) 

has been criticized in the training literature regarding the effectiveness of cognitive training 

(Tidwell et al., 2014). 

Transfer Effect between WM Operations 

 

Furthermore, the present results also provided no compelling evidence for a near 

transfer across the WM operations (storage and processing, and relational integration), except 

the transfer between relational integration figural-icon and storage and processing figural- 

pattern; however the evidence was highly ambiguous and observed unidirectionally only. 

The present findings are in line with previous studies (Hilbert et al., 2017; von Bastian & 
 

 

 
 
 
 
 

4 We rank-ordered participants by their pre-test performance for each experimental group separately. We identified 

participants as high performers when they were the top third and as low performers when they were in the bottom third of 

this rank order. 
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Oberauer, 2013). In the Bayesian confirmatory factor analysis (Figure 3), the storage and 

processing, and relational integration factors shared about 26% of the variance, indicating 

that training may tap the remaining 74% of the variance but not affect the shared variance 

(for a similar description, see Lange & Süß, 2015). Accordingly, even though storage and 

processing and relational integration are positively correlated, it is not necessarily the case 

that repeatedly practicing on specific tasks goes hand in hand with improvement in the 

common processes shared with other measures as well. Moreover, correlation does not entail 

causation, as exemplified by Harrison et al. (2013; see also Meiran et al., 2019): Although 

body weight and height are correlated, making somebody heavier would not necessarily make 

this person taller. Instead, the positive correlation may result from another underlying ability 

that is related to both constructs but is not trained. For example, people with higher 

intelligence scores would perform better in both tasks (hence the shared variance) but, 

because intelligence is not trained, no transfer is observed. In addition, the neural networks 

respond differently to various WM tasks (storage and processing: Chein et al., 2011; 

relational integration: Parkin et al., 2015), which might be another reason for the lack of near 

transfer. 

Limitations and Future Directions 

 

One limitation of our study is the small sample size, which resulted in lower statistical 

power than we originally aimed for to detect possible transfer effects. Low power not only 

reduces the likelihood of detecting a true effect but also leads to a low positive predictive 

value and potential overestimation of the magnitude of the effect (Button et al., 2013; Halsey 

et al., 2015). Cumming (2011) recommended using precision analysis (the size of the 

confidence intervals) instead of power analysis, as the confidence interval of a parameter 

indicates how close the estimated value is to the population value. The relatively small group 

sizes may have contributed to why we gathered only ambiguous evidence for some 

https://link.springer.com/article/10.3758/s13423-013-0453-9#ref-CR11
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comparisons. That said, notably, the majority of effects were associated with Bayes factors 

indicating sufficient evidence for either the alternative or the null hypotheses (see Tables 3 - 

4). Nevertheless, to achieve sufficient power and increased precision, future interventions 

trying to induce transfer effects should incorporate large-scale samples (cf. von Bastian et al., 

2020). 

Another potential limitation is the degree of participants attrition (22.97%), although 

it did not differ among the ten groups, 2(9) = 11.94, p = .217, and was lower than in other 

training studies (e.g., 36.78% in Harrison et al., 2013; 43.84% in Redick et al., 2013). 

However, this dropout rate may reflect individual differences in motivational and 

metacognitive aspects between people who completed the intervention and those who 

dropped out. In addition, the metamemory framework of Nelson and Narens (1990) suggests 

that memory control processes contribute to the application of effective strategies. However, 

we did not include any measures to explicitly assess participants’ motivational or meta- 

memory aspects, such as self-efficacy or self-monitoring. Yet, these factors could play a role 

in better understanding how WM training promotes improvements and may provide insight in 

future research. 

Last, we employed a control group that actively engaged in a task that was non- 

adaptive (different from the WM training groups). Therefore, participants in this group 

completed a specific task every session (without increasing the difficulty level), which may 

have been monotonous. In this regard, Shipstead et al. (2012) recommended using an 

adaptive task for the control group to minimize the treatment difference in terms of the rigor 

of practice. Thus, expectations might differ between the WM training groups and the active 

control group. In addition, Boot et al. (2013) emphasized that failure to match expectations 

between training and active control groups weakens causal inference. However, this concern 

is somewhat mitigated given that each of three subtests of OLMT is built around a particular 
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challenge (e.g., task-related effort, comparing performance with a superior opponent, or 

others) that contributes to motivating participants' performance, and that participants also 

received feedback about their performance. Indeed, the steadily increasing training curve of 

the OLMT group (see Figure 4c) suggests that the current task was effective in motivating the 

participants. Furthermore, the active control group also outperformed the other groups on 

some WM measures in the post-test. These findings align with practice-related improvement 

(Ackerman et al., 2010). The OLMT assesses processing speed (i.e., how many fields can be 

covered in 10s), which tends to be related to WM (Oberauer et al., 2003; Schmiedek et al., 

2007). Therefore, the comparison of WM training groups with the OLMT group might 

underestimate the transfer effect (cf. von Bastian & Oberauer, 2014). Appropriate task for 

active control group might be used in future study. 

Conclusion 

 

This study made an essential step towards examining the role of cognitive strategies 

in training and transfer effects within the framework of Oberauer et al.’s (2003) facet model 

of WM ˗ an important aspect of cognitive processing in general and WM in particular. 

Despite substantial gains in the trained tasks, our data showed little evidence for transfer of 

these gains between tasks that afford the same strategies. The present results are conclusive − 

the hypothesis that the lack of transfer can be explained (at least primarily) by strategy use 

was rejected. As this idea has been floating around in the literature for a while now (e.g., von 

Bastian & Oberauer, 2013; Laine et al., 2018; Forsberg et al., 2020), the findings of a direct 

test of this hypothesis are an important theoretical contribution. Instead, the results suggest 

that highly task-specific strategies and actions were trained that did not transfer to tasks that 

do not require them. Spontaneously developed task-specific strategies might involve the task- 

surface features of a certain task and, to a lesser extent, rely on semantic and episodic aspects 

of long-term memory, which might be associated with these features. Moreover, the 
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comparison of the training groups with an active and a passive control group showed 

considerable differences in the transfer effects, thus highlighting the importance of 

distinguishing between active and passive controls. The most obvious practical implication of 

our findings is that if tasks rarely generalize across different domains, the most effective way 

to acquire a skill is to train exactly that particular skill. Finally, the present study advocates 

conducting further research by including a large-scale sample. Such replication of our work 

may permit to fully evaluate the effects of training on the performance of other WM tasks. 

Context Paragraph 

 

Working memory training can be used as an intervention to improve WM and related 

cognitive skills, and it may be particularly beneficial for people who have problems in 

everyday life. Prior studies found some evidence in support of, but also against, this claim. 

The extent to which transfer of training is task-specific (i.e., material-dependent) or process- 

specific (i.e., material-independent) is still subject to debate. One possible explanation for the 

inconsistent findings of past research is that transfer may only occur when cognitive 

strategies acquired during training can also be applied in the transfer tasks. To shed further 

light on this issue, we systematically varied the content and operation domains of WM 

assessed by training and transfer tasks and, thereby, examined the role of strategy by 

contrasting performance in tasks eliciting a verbal strategy to tasks that do not. Specifically, 

we expected that using a verbal strategy would be associated with transfer to tasks 

comprising easily verbalizable stimuli such as words, numbers, and icons but not to tasks 

with stimuli that are difficult to verbalize, such as figural patterns. The consistent absence of 

the expected effects throughout our analysis, leads us to the conclusion that WM training 

with a small number of tasks has little chance of having a significant impact on the broader 

WM domain. During training, a spontaneous cognitive strategy is likely to be developed for 

the specific task at hand, and establishes a salient relationship between to-be-remembered 
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information and information already exists in memory. The current work provides evidence 

in favor of task-specific benefits, which suggests important practical implications for 

education and skill acquisition program to enhance particular cognitive or physical ability. 
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Appendix A 

 
 

Table A1 

Significance Testing Results for Baseline Differences among the Groups. 
 

Tasks F df p 

Storage and Processing Verbal 0.743 9 .669 

Storage and Processing Numerical 0.521 9 .858 

Storage and Processing Figural-Pattern 1.191 9 .304 

Storage and Processing Figural-Icon 0.691 9 .716 

Relational Integration Verbal 1.054 9 .400 

Relational Integration Numerical 1.208 9 .293 

Relational Integration Figural-Pattern 0.887 9 .539 

Relational Integration Figural-Icon 0.794 9 .623 

Note. F = F-value of the independent measures ANOVA; df = degrees of freedom. 
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Table A2 

Parameters Estimates from Linear Mixed-Effects Models for Storage and Processing Tasks. 
 
 

Tasks/Covariates Estimate SE z p BF10 

SP Verbal Task      

Intercept -0.54 0.05 -9.95 <.001  

Passive 0.13 0.16 0.83 .41  

Passive*SPV 1.06 0.23 4.66 <.001 > 1,000 

Passive*SPN 0.31 0.22 1.42 .156 1/2.99 
Passive*SPFP 0.65 0.22 2.95 .003 7.14 

Passive*SPFI 0.49 0.21 2.30 .021 1.27 

Passive*RIV 0.41 0.22 1.86 .063 1/1.69 
Passive*RIN 0.70 0.22 3.13 .002 11.11 

Passive*RIFP 0.45 0.23 1.92 .056 1/1.36 
Passive*RIFI 0.38 0.23 1.67 .10 1/2.09 

Passive*Active 
SP Numerical Task 

0.50 0.21 2.31 .021 1.30 

Intercept 0.68 0.07 9.77 <.001  

Passive 0.09 0.18 0.50 .614  

Passive*SPV 0.33 0.26 1.31 .758 1/2.24 
Passive*SPN 0.92 0.27 3.42 <.001 100.00 

Passive*SPFP 0.23 0.25 0.92 .571 1/3.41 
Passive*SPFI 0.14 0.24 0.57 .571 1/4.34 
Passive*RIV 0.46 0.26 1.79 .358 1/1.11 
Passive*RIN 0.30 0.26 1.15 .074 1/2.65 
Passive*RIFP -0.09 0.26 -0.35 .252 1/3.49 
Passive*RIFI 0.03 0.26 0.12 .907 1/4.47 

Passive*Active 
SP Figural-Pattern Task 

0.07 0.24 0.31 .728 1/4.68 

Intercept -1.07 0.06 -1.702 < .001  

Passive 0.10 0.18 0.56 0.57  

Passive*SPV 0.51 0.25 2.80 0.04 1/1.04 

Passive*SPN 0.04 0.25 0.18 0.86 1/4.18 
Passive*SPFP 2.33 0.26 9.07 < .001 > 1,000 

Passive*SPFI 0.57 0.24 2.39 0.02 1.79 

Passive*RIV 0.26 0.25 1.06 0.29 1/3.52 
Passive*RIN 0.36 0.24 1.45 0.15 1/2.6 
Passive*RIFP 0.07 0.26 0.28 0.78 1/3.99 
Passive*RIFI 0.49 0.25 1.98 0.05 1/1.17 

Passive*Active 
SP Figural-Icon Task 

0.25 0.24 1.05 0.29 1/3.65 

Intercept 0.36 0.06 6.19 .000  

Passive 0.00 0.17 -0.01 .989  

Passive*SPV 0.52 0.24 2.14 .032 1.39 

Passive*SPN 0.23 0.23 0.98 .327 1/3.58 
Passive*SPFP 0.48 0.23 2.08 .037 1.28 

Passive*SPFI 0.82 0.23 3.55 < .001 50.00 

Passive*RIV 0.08 0.23 0.36 .718 1/4.64 
Passive*RIN 0.46 0.2 1.97 .049 1/1.01 
Passive*RIFP 0.24 0.24 0.98 .327 1/3.36 
Passive*RIFI 0.43 0.24 1.80 .071 1/1.30 
Passive*Active 0.10 0.22 0.45 .649 1/4.70 

Note. Covariates presented in bold showed effects significantly different from zero. BFs reported only for the interaction terms. 

BF10 = evidence in support of H1; Passive = mean change between pre- and post-test in the passive group; Passive*WM Group = 

mean difference in change between the working memory training group and the passive group; Passive*Active = difference in 

change between the active and the passive group; SP = storage and processing; RI = relational integration; V = verbal; N = 

numerical; FP = figural-pattern; FI = figural-icon. 
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Table A3 

Parameters Estimates from Linear Mixed-Effects Models for Relational Integration Tasks. 
 

Tasks/Covariates Estimate SE z p BF10 

RI Verbal Task      

Intercept 2.34 0.04 62.88 <.001  

Passive 0.15 0.11 1.45 .147  

Passive*SPV -0.06 0.15 -0.39 .691 1/5.90 
Passive*SPN 0.08 0.15 0.56 .579 1/5.90 
Passive*SPFP 0.13 0.15 0.87 .387 1/5.15 
Passive*SPFI 0.20 0.15 1.37 .172 1/2.99 
Passive*RIV 0.50 0.16 3.17 .002 25.00 

Passive*RIN 0.23 0.15 1.49 .136 1/2.44 
Passive*RIFP 0.21 0.16 1.29 .198 1/3.05 

Passive*RIFI 0.42 0.16 2.60 .009 3.85 

Passive*Active 0.10 0.14 0.71 .480 1/5.63 

RI Numerical Task 
Intercept 

 
2.67 

 
0.04 

 
65.89 

 
<.001 

 

Passive 0.31 0.12 2.56 .010  

Passive*SPV 0.03 0.17 0.16 .872 1/5.68 

Passive*SPN -0.18 0.17 -1.11 .266 1/3.17 
Passive*SPFP -0.13 0.17 -0.78 .436 1/4.31 
Passive*SPFI -0.07 0.16 -0.42 .675 1/5.45 
Passive*RIV 0.16 0.17 0.92 .357 1/3.69 

Passive*RIN 0.50 0.19 2.56 .011 5.88 

Passive*RIFP -0.07 0.18 -0.40 .688 1/5.26 

Passive*RIFI 0.22 0.18 1.19 .234 1/2.59 

Passive*Active -0.04 0.17 -0.25 .807 1/5.93 
RI Figural-Pattern Task      

Intercept 2.29 0.03 86.58 <.001  

Passive 0.15 0.09 1.59 .112  

Passive*SPV 0.11 0.13 0.83 .405 1/5.80 

Passive*SPN 0.00 0.13 -0.02 .987 1/8.28 

Passive*SPFP 0.08 0.13 0.64 .522 1/6.84 
Passive*SPFI 0.01 0.12 0.07 .943 1/8.54 
Passive*RIV -0.01 0.13 -0.06 .952 1/8.02 
Passive*RIN 0.09 0.13 0.72 .473 1/6.21 
Passive*RIFP 0.26 0.14 1.89 .059 1/1.28 

Passive*RIFI 0.12 0.13 0.95 .345 1/5.05 

Passive*Active 
RI Figural-Icon 

Intercept 

0.02 
 

3.96 

0.12 
 

0.09 

0.16 
 

42.44 

.870 
 

<.001 

1/8.16 

Passive 0.78 0.23 3.42 <.001  

Passive*SPV 0.07 0.34 .20 .063 1/3.12 
Passive*SPN -0.45 0.30 1.49 .866 1/1.43 
Passive*SPFP 0.17 0.31 0.5 6 .634 1/2.69 

Passive*SPFI -0.06 0.31 0.21 .213 1/3.63 

Passive*RIV 0.03 0.33 0.08 .933 1/3.26 

Passive*RIN -0.16 0.34 -0.48 .579 1/3.06 
Passive*RIFP -0.06 0.33 -0.17 .137 1/3.35 

Passive*RIFI 0.44 0.35 1.24 .836 1/1.12 
Passive*Active -0.56 0.30 -1.86 .842 1.43 

Note. Covariates presented in bold showed effects significantly different from zero. BFs reported only for the interaction terms. 

BF10 = evidence in support of H1; Passive = mean change between pre- and post-test in the passive group; Passive*WM Group = 

mean difference in change between the working memory training group and the passive group; Passive*Active = difference in 

change between the active and the passive group; SP = storage and processing; RI = relational integration; V = verbal; N = 

numerical; FP = figural-pattern; FI = figural-icon. 
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Table A4 
 

Multinomial Logistic Regression for Strategy Use of the Storage and Processing Groups. 
 

 

 
Effect Estimate SE z Odds ratio p value 

 

Strategy use in SPV task 

Intercept 2.013 0.75 2.67 7.49 .007 

 
verbal vs figural-pattern 9.20 

 
75.66 0.12 9942.14 .903 

 numerical vs figural-pattern 0.54  1.28 0.43 1.73 .669 

 Figural-icon vs figural-pattern 0.06  1.06 0.05 1.06 .953 

 Intercept -0.69  1.22 -0.56 .49 .569 

 verbal vs figural-pattern 10.44  75.67 0.13 34416.11 .890 

 numerical vs figural-pattern 1.78  1.68 1.06 5.99 .288 

 figural-icon vs figural-pattern 0.69  1.58 0.4 2.00 .660 

Strategy use in SPN task        

 Intercept 2.01  0.75 2.68 7.50 .007 

 verbal vs figural-pattern 9.39  83.36 0.11 12045.51 .910 

 numerical vs figural-pattern 0.69  1.27 0.54 1.99 .587 

 figural-icon vs figural-pattern -0.40  0.98 -0.41 0.66 .680 

 Intercept -0.69  1.22 -0.56 0.50 .571 

 verbal vs figural-pattern 10.63  83.37 0.12 41696.64 .898 

 numerical vs figural-pattern 0.69  1.87 0.37 1.99 .711 

 
Strategy use in SPFP task 

figural-icon vs figural-pattern 0.28  1.52 0.18 1.33 .850 

 Intercept 0.18  0.60 0.30 120.02 .763 

 verbal vs figural-pattern -0.36  0.85 -0.42 0.69 .670 

 numerical vs figural-pattern -1.88  0.97 -1.92 0.15 .053 

 figural-icon vs figural-pattern -0.47  8.11 -5.79 0.63 .562 

 Intercept .00  0.63 0.00 1.00 .999 
 verbal vs figural-pattern -0.18  0.87 -0.20 0.83 .834 

 numerical vs figural-pattern -1.29  0.90 -1.43 0.27 .152 

 figural-icon vs figural-pattern -0.69  8.80 -7.87 0.49 .430 

 Intercept  -. 0.83 -1.09 0.40 .273 

 verbal vs figural-pattern -25.08  NaN NaN 0.00 NaN 

 numerical vs figural-pattern -29.06  NaN NaN 0.00 NaN 

 figural-icon vs figural-pattern -22.88  .00 -1627190.0 0.00 .000 

 Intercept -1.51  668.35 -0.02 0.00 .982 
 verbal vs figural-pattern -1.80  523.78 -0.00 0.17 .997 

 numerical vs figural-pattern 12.71  668.35 0.01 331083.6 .985 

 figural-icon vs figural-pattern 13.72  6.68 0.02 910484.2 .984 

Strategy use in SPFI task        

 Intercept 0.28  0.54 0.53 1.33 .593 

 verbal vs figural-pattern 0.11  0.84 0.139 1.12 .888 

 numerical vs figural-pattern 2.27  1.16 1.94 9.74 .052 

 figural-icon vs figural-pattern 2.48  1.163 2.13 11.98 .032 
 Intercept -0.69  0.70 -0.97 0.50 .327 
 verbal vs figural-pattern 1.09  0.95 1.147 3.00 .251 
 numerical vs figural-pattern 1.79  1.35 1.32 5.99 .186 
 figural-icon vs figural-pattern 1.79  1.35 1.32 5.99 .186 
 Intercept -1.78  1.0 -1.65 0.17 .097 
 verbal vs figural-pattern -12.18  541.37 -0.02 0.00 .982 
 numerical vs figural-pattern -8.93  213.17 -0.04 0.00 .960 
 figural-icon vs figural-pattern -9.70  313.83 -0.03 0.00 .975 

Note. The differences in verbal strategy relative to visual strategy use between the figural-pattern group and verbal/numerical/figural-icon groups were of interest for the current study. 

Covariate presented in bold is significant. Some coefficients are ambiguous due to the uneven distribution of the strategies in the respective group. SP = storage and processing; V = 

verbal; N = numerical; FP = figural-pattern; FI = figural-icon. 
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Table A5 
 

Multinomial Logistic Regression for Cognitive Strategy Use of the Relational Integration 

 
Groups.  

 Effect Estimate SE z Odds ratio p value 

Strategy use in RIV task  
Intercept 

 
0.69 

 
0.71 

 
0.98 

 
1.99 

 
.327 

 verbal vs figural-pattern 1.94 1.25 1.55 7.00 .120 

 numerical vs figural-pattern 16.82 0.56 30.21 2.018925e+07 .000 

 figural-icon vs figural-pattern 0.81 0.00 0.769 2.25 .441 

 Intercept -0.41 0.91 -0.44 0.67 .656 

 verbal vs figural-pattern 1.09 1.52 0.72 3.00 .471 

 numerical vs figural-pattern -10.08 0.00 -3.806e+13 0.00 .000 

 figural-icon vs figural-pattern 1.09 1.25 0.873 3.04 .382 

 Intercept 0.00 0.82 0.00 -0.56 .999 

 verbal vs figural-pattern -18.99 0.00 -7.694718e+08 0.15 .000 

 numerical vs figural-pattern -6.71 0.00 -1.253807e+10 -0.13 .000 

 figural-icon vs figural-pattern -21.91 0.00 -1.147978e+10 0.00 .000 

 Intercept -21.96 0.54 -3.992810e+01 0.00 .000 

 verbal vs figural-pattern -4.73 0.00 -6.649871e+11 0.00 .000 

 numerical vs figural-pattern 36.70 0.56 65.92 8.694164e+15 .000 

 

Strategy use in RIN task 

figural-icon vs figural-pattern 

 
 

Intercept 

21.26 

 
 

-0.56 

0.77 

 
 

0.63 

27.39 

 
 

-0.89 

1.22511e+09 

 
 

0.57 

.000 

 
 

.371 

 verbal vs figural-pattern 0.15 0.82 0.19 1.16 .850 

 numerical vs figural-pattern -0.13 0.88 -0.15 0.87 .878 

 figural-icon vs figural-pattern 0.27 0.83 3.29 1.31 .742 

 Intercept -16.46 0.42 -38.92 0.00 .000 

 verbal vs figural-pattern 14.96 0.69 21.49 3127309 .000 

 numerical vs figural-pattern 14.38 0.86 16.70 1759109 .000 

 figural-icon vs figural-pattern 14.38 8.61 16.70 1759130 .000 

 Intercept -1.25 1.07 -1.56 0.29 .118 

 verbal vs figural-pattern -21.48 0.00 -1.162082e+10 0.00 .000 

 numerical vs figural-pattern -0.13 1.33 -0.12 1.75 .905 

 figural-icon vs figural-pattern -20.93 1.51 -6.91 0.00 .000 

 Intercept -1.95 1.07 -1.82 0.14 .068 

 verbal vs figural-pattern -17.07 0.00 -8.35 0.00 .000 

 numerical vs figural-pattern 0.56 1.33 0.42 1.75 .673 

 figural-icon vs figural-pattern -0.13 1.50 -8.86 0.88 .920 

Note. The differences in verbal strategy relative to visual strategy use between the figural-pattern group and verbal/numerical/figural-icon groups were of 

interest for the current study. Some coefficients are ambiguous due to the uneven distribution of the strategies in the respective group. RI = relational integration; 

V = verbal; N = numerical; FP = figural-pattern; FI = figural-icon. 
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Table A5 (continued) 
 

Multinomial Logistic Regression for Cognitive Strategy Use of the Relational Integration 

Groups. 

 
Effect Estimate SE z Odds ratio p value 

Strategy use in RIFP task       

 
Intercept -2.30 1.04 -2.19 0. 99 .028 

 verbal vs figural-pattern -16.68 3540.87 -0.00 0.00 .990 

 numerical vs figural-pattern -17.42 0.00 -49169.27 0.00 .000 
 figural-icon vs figural-pattern 0.35 1.29 0.28 1.42 .782 

 Intercept -1.60 0.77 -2.07 0.19 .037 

 verbal vs figural-pattern -1.02 1.29 -0.79 0.36 .425 

 numerical vs figural-pattern 23.81 NaN NaN 0.00 NaN 
 figural-icon vs figural-pattern -23.02 0.00 -6.261980e+07 0.00 .000 

 Intercept -2.30 1.05 -2.19 0.01 .028 

 verbal vs figural-pattern -0.33 1.47 -0.22 0.71 .819 

 numerical vs figural-pattern -18.43 0.00 -2653130.45 0.00 .000 

 figural-icon vs figural-pattern -17.75 0.00 0.00 0.00 .000 

 Intercept -2.30 -19.34 -39.72 0.00 .000 

 verbal vs figural-pattern -16.68 16.70 21.66 1797088 .000 

 numerical vs figural-pattern -17.42 16.57 21.55 1572453 .000 

 figural-icon vs figural-pattern 0.35 -10.54 -4.507638e+ 0.00 .000 

Strategy use in RIFS task 
      

 
Intercept -1.25 0.80 -1.56 0.29 .118 

 verbal vs figural-pattern -0.45 1.11 -0.40 0.63 .684 

 numerical vs figural-pattern 0.15 1.04 0.14 1.16 .882 
 figural-icon vs figural-pattern -0.45 1.11 -0.41 0.63 .684 

 Intercept -1.94 1.06 -1.82 0.14 .068 

 verbal vs figural-pattern 0.65 1.25 0.51 1.90 .605 

 numerical vs figural-pattern -0.25 1.50 -0.16 0.78 .867 
 figural-icon vs figural-pattern 0.24 1.31 0.18 1.27 .854 

 Intercept -1.25 0.80 -1.56 0.29 .118 

 verbal vs figural-pattern -1.14 1.31 -0.86 0.31 .384 

 numerical vs figural-pattern -0.25 1.11 -0.22 0.78 .822 
 figural-icon vs figural-pattern -16.56 2231.50 -0.01 0.00 .994 

 Intercept -1.25 0.80 -1.56 0.29 .118 

 verbal vs figural-pattern -16.47 2128.67 -0.01 0.00 .993 

 numerical vs figural-pattern -0.25 1.12 -0.22 0.78 .822 

 figural-icon vs figural-pattern -1.14 1.31 -0.86 0.32 .384 

 
 

Note. The differences in verbal strategy relative to visual strategy use between the figural-pattern group and verbal/numerical/figural-icon groups were of 

interest for the current study. Some coefficients are ambiguous due to the uneven distribution of the strategies in the respective group. RI = relational integration; 

V = verbal; N = numerical; FP = figural-pattern; FI = figural-icon. 
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Figure A1 

Training Performance of Relational Integration task During 12 Training Sessions. 
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Figure A2 

The 12 Training Sessions of High and Low Performers based on Pre-Test Storage and Processing and Relational Integration Task 

Performance. 


