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ABSTRACT Many models account for the traffic flow of road users, but few take the details of local
interactions into consideration and how they could deteriorate into safety-critical situations. Building on an
existing model of human sensorimotor control, we develop an agent-based modeling framework applying
the principles of utility maximization, motor primitives, and intermittent action decisions to account for
the details of interactive behaviors among road users. The framework connects the three principles to the
decision theory and is tested to determine whether such an approach can reproduce the following four
phenomena. Firstly, when two pedestrians travel on crossing paths, their interaction is sensitive to initial
kinematic asymmetries, and secondly, based on the asymmetries, the two pedestrians rapidly resolve collision
conflict by adapting their behaviors. Thirdly, when a pedestrian crosses a road while facing an approaching
car, the pedestrian adapts his or her crossing behavior according to the time-to-arrival of the car, and fourthly,
either the pedestrian or the driver of the car may yield to the other to resolve their conflict. We show that
these phenomena emerge naturally from our modeling framework. We believe the proposed behavior model
and phenomenon-centered approach of analysis offer promising tools to examine road user interactions.
We conclude with a discussion on how the model can be generalized to safety-critical situations and to
include other variables affecting road-user interactions.

INDEX TERMS Utility maximization, adaptive control, agent-based modeling, behavior model, decision
theory.

I. INTRODUCTION
Human locomotion, alone or in relation with others, is a long-
standing topic of empirical and modeling research, not least
in the context of road traffic [1]. Recently, the push towards
increasingly fully automated vehicles has highlighted further
the importance of this line of research. Crucially, one of
the remaining challenges hindering automated vehicles from
operating in urban environments is the lack of a sufficiently
detailed understanding of how humans interact with others in
such conditions and how the understanding could be quan-
tified in computational models [2]. These models will be
informative both as components in online algorithms, tomake
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real-time predictions about road user trajectories [3], [4] and
as virtual agents in offline simulations, for safety testing
of the algorithms driving automated vehicles before deploy-
ment [5], [6]. Automated vehicles, like human drivers, must
trade between being sufficiently cautious to keep the risk
of crashes minimal and being assertive to make meaningful
progress in traffic. This balance is achieved in human drivers
by being sensitive to subtle cues in the behavior of others,
enabling rapid resolution of conflicts when needed [7], [8].
The balancing task is often successful in human drivers, but
occasionally their interactions deteriorate into safety-critical
situations. For automated vehicles to be deployed safely in
an urban environment, they must resolve not only routine but
also safety-critical interactions. In sum, a further understand-
ing in details of how human drivers resolve these situations
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and how they interact with pedestrians can help the design
of the algorithms driving automated vehicles to realistically
capture both the subtleties of conflicts between road users
and the local problems in the unresolved conflicts leading to
crashes.

The current lack of widespread deployment of auto-
mated vehicles on urban roads, could, to some extent,
be attributable to these gaps in existing models. This suggests
many road-user models in examining interactive behaviors
have yet meet the two above-mentioned criteria. Many mod-
els describe the interactions of a multitude of road users,
allowing for predictions of traffic flow at the infrastructure
level [9], [10], and some of them generalize to simulate the
crashes caused by human error [11], [12]. These models have
not focused on the details of local interactions. For instance,
they do not explain how individuals collect information over
time to reach decisions and how these decisions trigger dif-
ferent actions. Furthermore, models which do examine local
interactions among road users, mostly assume that agents
move to keep in lane and maneuver around obstacles [13],
[14], [15] and assume that surrounding agents are static obsta-
cles that do not interact. Fewmodels started to examine subtle
cues in road user interactions in some specific scenarios, such
as routine local interactions between two or more road users
in the highway merging [16], pedestrian road crossing [17],
or locomotion in shared space [18]. Our paper aims to build
on these models and to develop a modeling framework that
could examine interactive scenarios, including safety-critical
interactions, so as to enable a good understanding of the
rationale in road-user interactions.

A different genre of models, namely machine-learning
(ML) models, most prominently aim to bring automated
vehicles to commercial uses and, in some cases, have also
been used to study more complex interactions [19], [20]. The
success of these models depends considerably on training
them with sufficient data of good quality and their suc-
cess does not necessarily inform understanding of road user
interactions. Furthermore, the data of safety-critical situa-
tions are scarce and usually of poor quality so that ML
models frequently rely on extrapolations to predict these
high-stakes situations. Moreover, validation of ML mod-
els often uses the metrics that are also used in optimiz-
ing them. These metrics are statistically meaningful, but do
not always result in an optimized model that is also mean-
ingful for human road users, even in routine, non-critical
interaction [21], [22].

Here, we leverage a cognitive theory for modeling senso-
rimotor control [23], which describes movement as consist-
ing of discrete action primitives, triggered after one collects
sufficient sensory information favoring a chosen action. This
framework has been utilized in modeling driver behavior,
investigating both near-optimal, closed-loop movement con-
trol (as is typical of routine driving) and sub-optimal open-
loop maneuvers triggered after long, uncontrolled delays (as
is typical of near-crash driving). This framework has been
shown capable of accounting for driver behavior across a

range of situations including both routine and near-crash
driving [23], [24], [25], [26].

Recently, we and others have begun expanding this model-
ing approach to interactive traffic situations. Boda et al. [27]
showed the framework could be extended to account for how
drivers control longitudinal maneuvers when cyclists crossed
the drivers’ path. Others researchers have shown the onset
latency of the road-crossing decisions in drivers and pedestri-
ans could be modeled by the principle of analyzing sensory
cues [28], [29], [30]. However, these models had only studied
one agent in their interactive scenarios. Our paper presents a
first step in the direction of a scenario-agnostic framework to
model multiple road-user agents in interactive, time-evolving
scenarios.

One modeling decision that we make is to formulate the
framework, using the utility maximization (UM) principle.
Our previous modeling work has instead emphasized the
association between perceptual quantities (e.g., optical invari-
ants [14]) and motor primitives for deciding on actions (i.e.,
action decisions), but perceptual quantities tend to be highly
situation-specific, whereas the UM principle allows a more
general model formulation.

When aiming to account for complex behaviors, the
models themselves necessarily become complex, with a
rapidly branching tree of modeling decisions, and there-
fore a primary concern becomes: Which model assumptions
are needed to capture what behavioral phenomena? Instead
of optimizing models around various data sets, we take a
phenomenon-centric approach and take advantage of the
computation power of modern computers by surveying many
candidate models and examining them against a selection of
typical road-user behavior phenomena reported in literature.
This allows us to study the entire parameter space of our
model to determine whether our model is at all capable of
exhibiting the road-user behavior phenomena in question and
if so in which parameter regions. This approach resembles
the parameter space partitioning method used by cognitive
modelers [31], [32], [33], which to our knowledge has not
been previously used in the road user modeling domain.

This paper provides a first step in this direction, where we
start with simple routine interactions, where the interacting
agents are on straight crossing paths. We adopt a very simple
utility function, and focus on deterministic simulations, but
also show how the evidence accumulation mechanisms can
be incorporated to generate stochastic model behavior. Using
this approach, we show that our framework, despite its rel-
ative simplicity, can naturally account for several empirical
phenomena that have been previously reported in interactions
between pedestrians and between pedestrians and drivers, and
in each case, we also provide a more detailed demonstration
of how the model reproduces the road user behaviors in
question, by comparing to empirical data in the literature.

Section II introduces the modeling framework, two target
interactive scenarios and how we quantify behavioral data
to test the model in these scenarios. Section III presents the
results of the model analyses, and Sections IV and V discuss

VOLUME 10, 2022 118889



Y.-S. Lin et al.: Utility Maximization Model of Pedestrian and Driver Interactions

FIGURE 1. Outline of the assumptions in the modeling framework
proposed in this paper. Evidence accumulation is present only in the
stochastic version of the model, being represented in grey color. xego
refers to the kinematic state, such as speed, acceleration, and positions,
of an ‘‘ego’’ agent. The term, ‘‘ego’’ refers to a first-person point of view.
xoth refer to an ‘‘other’’ agent, relative to the ‘‘ego’’ agent. 1Um is the
accumulated evidence for a motion primitive, m. 1̂Um signifies that the
accumulated evidence is an estimated value subject to noise influence.

the results, focusing on how the principle of utility maximiza-
tion and our model can be extended to account for further
variables in the road user interactions both in routine and
safety-critical situations.

II. METHODOLOGY
A. MODELING FRAMEWORK
1) MOTOR PRIMITIVES
The sensorimotor control framework on which we base our
model [23] assumes agents move by initiating an intermit-
tent, discrete, and ballistic motor primitive [34]. The motor
primitive acts as a limited-duration motoric adjustment to an
ongoing motion. The motoric adjustment cannot be changed
once initiated but can act atop any ongoing adjustments, for
example allowing midway changes of action before another
primitive completes (see Figure 1 for an illustration of the
modeling framework).

We assume the agent possesses a limited discrete set of
motor primitives, with vehicle agents adjusting accelera-
tion and yaw rate, and pedestrian agents speed and yaw
angle. In the simulations below, we consider only longi-
tudinal movement; therefore, any changes in yaw rates or
angles become inconsequential. This simplifying assump-
tion, as shown in the Result section, is applicable to a suite
of data from both laboratory and field studies. Furthermore,
we assume vehicle agents possessing the repertoire of motor
primitives, −1, −0.5, 0, 0.5, and 1 m/s2 and pedestrian
agents, −1, −0.5, 0, 0.5, and 1 m/s. These primitives adjust
the ongoing action. All primitives are implemented as a con-
stant pulse of signal of a duration 1T , here set to 0.3 s. For
example, if pedestrian agents at standstill decide to apply a
motor primitive of 1 m/s, their speed will increase linearly
from zero to 1 m/s over 1T s, and then remain at 1 m/s.
While that adjustment is taking place, the agent could decide
to apply another motor primitive acting on top of the ongoing
action.

2) AGENT’s UTILITY FUNCTION
To estimate the utility of a motor primitive, the agent makes
a prediction for Tp s into the future and assesses what states
the motor primitive will lead to. Meanwhile, it assumes other
agents remain in their current kinematic states. The agent then

calculates the utility corresponding to each of the primitives
it can muster. The agent then favors the primitive resulting
in the maximum utility at that (time) step. Here, we assume
the action duration is equivalent to that of the prediction
(Tp = 1T ). The agent associates a future state with a utility
prediction, assuming the following utility function:

U = −kgḋg − kdvv2 − kdaa2 −6n
i=1Ci (1)

The velocity and acceleration are denoted by, v and a;
ḋg denotes the rate of change of the distance dg to a goal,
reflecting an agent’s desire to reach its destination. The agent,
in this paper, engages only in longitudinal control, so ḋg
is further simplified to −v. The agent assumes the velocity
and the acceleration components as energy consumption in
the vehicle agent and as discomfort in experiencing high
speeds and rapid accelerations in the pedestrian agent. Such
assumption is common in the models of minimizing cost in
sensorimotor control [35], [36]. The agent assumes a collision
discomfort term, Ci, when it is on a collision course with
other agents or obstacles i. In this paper we only consider
a single other agent, therefore, n = 1. If a motor primitive
does not predict a collision course with others, Ci reduces to
zero, whereas if it does predict a collision course, then for the
speed-controlling pedestrian agent,Ci becomes kc 1τi , where τi
is the time left to collision from a predicted state. A collision
course is defined as that the two agents’ projected future paths
come within a tolerance distance dc. This is to assume agents
maintain their state. These assumptions are based on the
literature examining the role of the inverse time to collision in
locomotion [37], [38]. The acceleration-control vehicle agent
assumes this term as Ci = ksca2sc,i, where asc,i =

v2
2di
=

v
2τi

,
the acceleration needed to stop before reaching the collision
point a distance di away [39]. Theoretically, by partial dif-
ferentiating (1) regarding to v and assuming Ci = 0, the
maximumutility is achievedwhen agents are traveling at their
theoretical free speed vfree =

kg
2kdv

. In summary, our utility
function expresses the agents’ desire to progress toward their
goals with minimal discomfort from excessive kinematics
and collision threats, as expressed by the utility function
parameters, kg, kdv, kda, and kc or ksc. The parameters can be
optimized to fit individuals with different characteristics in a
wide range of situations. Therefore, a change in any of the
parameters tunes an agent’s specific characteristics for speed
preference, acceleration tendency, and collision avoidance;
for example an increase in kg increase the agent’s relative
preference for making quick progress.

3) DETERMINISTIC ACTION DECISIONS
An action decision to apply a motor primitive is only taken
when its utility gains a positive margin over the others.
In every time step, a favored action is derived by sweep-
ing through all motor primitives, m = 0, 1, . . . , n, and
estimating its utility, Um, as described above. This sweep
includes U0, the utility of not applying any motor primitive.
If one or more motor primitives m 6= 0 is identified with
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1Um ≡ Um − U0 > 0, the motor primitive with the high-
est 1Um is selected, and the corresponding action is then
initiated.

4) STOCHASTIC ACTION DECISIONS
An important feature of the sensorimotor control framework
on which we base our model [23] is that it assumes that senso-
rimotor decisions are made not deterministically as described
above, but by accumulation of noisy sensory evidence to a
decision threshold, in line with extensive research in decision
theory [40]. This assumption has proven crucial for describ-
ing full probability distributions of driver behavior in both
routine and near-crash situations [23], [24], [25], [26], and has
also been recently adopted in models of pedestrian and driver
road-crossing decisions [27], [28], [29], [30]. We incorporate
evidence accumulation into our framework by generalizing
the deterministic decision variable above to the stochasti-
cally accumulated decision variable. This generalization thus
enables the probabilistic human errors that might happen in
near-crash situations [30].

1̂Um(k)=1̂Um(k − 1)+
d1̂Um(k)

dt
1t+σε(k)

√
1t (2)

where 1̂U (k) is now the accumulated evidence in favor of
motor primitivem at time step k of a simulation with time step
length 1t , and where σε(k) is Gaussian noise with standard
deviation σ . The agent gathers evidence up to a threshold,
Ea. When the accumulated evidence surpasses the threshold,
namely 1̂Um > Ea, the motor primitive m is triggered, and
all 1̂Um are reset to zero. The rate of change of the evidence
could be implemented several different ways; here we have
opted for a formulation which makes 1U interpretable as a
low-pass filtered version of a noisy 1Um:

d1̂Um(k)
dt

=
1
T
[1Um(k) − 1̂Um(k − 1)] (3)

where T is a scaling parameter on the rate of evidence growth.
Thus, we transform the idea of evidence accumulation, pro-
posed for instance in [25], to not only enable the agent to
travel but also motivate it to maximize the utility.

In the deterministic version of the model, the exact util-
ity values Um of individual motor primitives are not very
important; only their relative magnitude compared to each
other. However, in the stochastic formulation of the model,
the exact values ofUm clearly affect the model dynamics, and
in particular the Ci term can cause arbitrarily large negative
Um. For this reason, the utility values are squashed to the
[−1, 1] range before being used in (2) and (3), by applying
an arctan function.

B. INTERACTIVE CONFLICTS AND MANIFESTED
BEHAVIORS
In this section, we first divide the interactions into two cat-
egories, pedestrian-pedestrian and pedestrian-vehicle inter-
actions. In each category, we describe the assumptions that
facilitate the investigation of each interactive conflict, and

FIGURE 2. Two interactive scenarios, depicted from a top-view
perspective. In panel (a), the dotted lines show from the line-of-sight of
Agent 0 to Agent 1. tsee represents the time when the agents first see
each other behind the dividing curtain (the horizontal thick black line).
Panel (b) shows the paths of a pedestrian and a vehicle. The triangle and
circle represent different starting positions in the two scenarios, conflict
resolution and crossing decision. The open symbols show different
starting positions. The solid diamonds show the agent’s destinations.
We avoid clutter by drawing the starting positions in Crossing Decision
scenario off the axes.

the modeling set-ups that enable the examination of the
parameter regions generating the naturally-observed behav-
iors. Second, we operationalize the behavior generated by the
model simulations, based on the empirical behaviors reported
in literature. Third, we describe the experimental designs,
assumptions and metrics used in the previous studies [28],
[37], [41], [42], and the model set-ups used to reproduce the
qualitative patterns observed in these studies.

1) PEDESTRIAN-PEDESTRIAN CONFLICT
When two pedestrians are crossing each other’s paths, they
adapt to avoid collision. This was studied in a pair of pub-
lications by Olivier et al. [41], [43], where each of the two
human participants walked along crossing diagonal lines in
a square-shaped room in which a curtain initially occluded
them from seeing each other. We illustrated their experimen-
tal setting in the upper panel in Figure 2. A main finding
was that the pedestrian who had the initial lead, i.e., who
was closer in time to the prospective collision zone at the
time tsee, tended to speed up and pass the midpoint first, and
the other participant contributed to the collision resolution
accordingly by decelerating to give way. tsee refers to the
time when two pedestrians were first able to see each other.
These behaviors imply that the participants negotiated the
priority by observing the other’s kinematic state, without
verbal communication.

We assumed two homogeneous pedestrians by assign-
ing them identical model parameters and symmetrical ini-
tial positions to simulate the pedestrian-conflict paradigm.
To create asymmetric kinematics at tsee, we assigned the
agents with different initial speeds. In this first scenario,
we investigated the parameter regions of the discomfort of
speeding up, kdv and of colliding, kc, with an aim to reproduce
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the empirical observations [41], [43]. We fixed the parameter
kg reflecting the desire of reaching the destination at 1, with-
out loss of generality since the utility function is in arbitrary
units (all parameters can be scaled by an arbitrary constant
without changing the relative utilities of different actions),
and for simplicity, when not noted, we assumed agents are
free of acceleration discomfort, kda = 0. We then tested dif-
ferent combinations of kdv, and kc, with the former restricted
to the range of 0.28 to 0.71 (chosen to produce pedestrian free
walking speeds vfree between 0.7 and 2m/s [44]) and the latter
to the range of 0 to 10. We varied the agents’ initial speeds
from 0 to 0.9m/swith a step size of 0.1m/s. In total, for each
model parameterization (kdv, kc) we tested 100 different pairs
of initial speeds.

We operationalize the key observations in [43] and [41]
using the following Boolean metrics: (1) Lead agent passed
first (LAPF) is true, if the lead agent passes the crossing point
earlier than the other agent. The lead agent is the one with the
shortest time to the crossing point at tsee, assuming constant
speeds; (2) First-passer accelerated (FPA) is true, if the lead
agent increases its speed just after tsee, operationalized as a
speed v(tsee + Ta) > v(tsee), with Ta = 0.5 s; (3) Second-
passer decelerated (SPD) is true, if the lag agent decreases its
speed just after tsee.
We consider a model parameterization effectively repro-

ducing the natural behaviors if the LAPF is true in more than
80%1 among a set of 100 simulations of the different initial
speeds and if the FPA and SPD are both true in more than
20%2. The exact values of these thresholds are not important;
a slight change in the percentages, for instance changing
LAPF to 75% or to 85% or changing FPA to 15%, does not
alter the qualitative pattern of the result. The main purpose of
using these criteria is to investigate regions in the parameter
space that produce the qualitative patterns in the empirical
data [31], [32], [33].

Moreover, we define three excluding metrics, to discard
model parameterizations yielding behaviors that were in
direct conflict with the natural behaviors: (1) First-passer
decelerated (FPD) (2) Second-passer accelerated (SPA), and
(3) Collision occurred (CO). The first two are defined anal-
ogously to FPA and SPD above and the latter one is true if
the agents collided (distance below dc = 1 m). We consider
themodel parameterizations reproducing unnatural behaviors
when any of the three metrics exceeds 5%.

In addition to the excludingmetrics, we compare the result-
ing trajectories from our simulations quantitatively with the
empirical observations in [41], by calculating the minimal
predicted distance (MPD), dmin. The metric was defined in
[41] as the smallest future distance at any point in time t
between the agents, assuming that they will travel in constant
speeds from t onward.

1100% is not to be expected, because the times to crossing at tsee will
sometimes be nearly or completely identical.

2The FPA and SPD are expected to be considerably lower than 100%,
because for many combinations of initial speed, most cases the lead agent
was in a higher speed than that of the other agent.

2) PEDESTRIAN-VEHICLE CONFLICT
Comparing to the interaction in pedestrians, the interaction
between pedestrians and vehicles often manifests a differ-
ent set of behaviors, for instance, the lead agent might not
pass first [42]. Importantly, the time gap influences these
behaviors. Specifically, the time gap refers to the moment-to-
moment difference in the time to the crossing point between
the two agents. The accelerating agents, like vehicles, often
asserted the lead role to pass earlier even when they were not
in a lead position [42], [45] (see also Figure 2).

In the second part of the investigation in the road-user
interactive conflicts, we again harness the modeling frame-
work to examine two questions: (1) how the time gap affects
crossing decisions (CD) and (2) how pedestrians and drivers
reach conflict resolution (CR). We define the natural behav-
ior of time-gap dependent CD as: When the time gaps are
small, the pedestrian yields to the vehicle, whereas, when
the time gaps are large, the pedestrian may cross in front
of the vehicle. In between, the crossing decisions depend on
pedestrians’ evaluation of the vehicle kinematics. The param-
eter, kc reflects such evaluations. CR, on the other hand, was
observed as either road user noticeably altering their behavior
either to slow down or to speed up [7], [17]. These CR actions
are often read as gauging the uncertainty in decelerations,
or as asserting priority in accelerations. Therefore, we define
the natural behavior of CR in the pedestrian as yielding in the
‘‘encounter’’ (see the following for its definition) time gaps.

To examine these two sets of natural behaviors, we set up
two scenarios to investigate how the time gaps associate with
themodel parameters and how they associate with the CD and
CR behaviors. The first, crossing decision scenario places a
vehicle at 17 different locations on the x axis, starting from
20m to 100m by a 5-m step. These starting positions result in
17 time gaps between 1.4 s and 7.2 s. when the vehicle starts at
its free-flow speed at 13.9 m/s (about 50 km/h). Meanwhile,
a pedestrian stands still on the negative side of the y axis at
2.5 m. The second, conflict resolution scenario places a free-
speed vehicle at ten different starting positions, from 10 m
to 100 m by a 10-m step on the x axis. The pedestrian in
this scenario walks at a speed of 1.1 m/s, starting from the
negative side of the y axis at 5 m away from the crossing
point. One major difference between the two scenarios is the
pedestrian starts at zero speed in the former and, in the latter
starts at a walking speed.

These two scenarios focus on the behavior of collision
aversion and thus examine how the model parameters, kc in
the pedestrian and ksc in the vehicle jointly affect a pedes-
trian to make crossing decisions and to resolve collision
conflicts. The two parameters were selected because how
different road users – pedestrians, human drivers, and auto-
mated drivers – perceive and weight the risk of collision has
significantly societal impact both on current and near-future
traffic. Similarly to the approach in the pedestrian interaction,
we systematically examine 100 evenly spaced kc and ksc
values from 0 to 5, across the time gaps in the CD scenario.
We reduce the upper limit to 2.5 in the CR scenario and
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keep surveying 100 evenly spaced parameters, because in the
deterministic case, the values above 2.5 did not change the
result substantially.

After testing deterministic model in the CD scenario to
compare it to pedestrian gap acceptance data [37], we car-
ried on investigating whether the stochastic version of the
model can reproduce the empirically observed distributions
of pedestrian crossing initiation times [28], showing an asso-
ciation between the response time distribution and the time
gaps. We reused data from the study [28], which invited
20 human participants to perform a road-crossing task in
a virtual reality environment where a constant-speed vehi-
cle drove towards the crossing zone. The study divided
the data set into three groups based on the time gaps,
2.29, 4.58 and 6.87 s.

Similarly, the parameter survey in the CR scenario was
followed by an investigation to see whether the utility-
maximization model is capable of reproduce the CR data in
a field study [42]. The drivers in this study were found to
accelerate to assert their priority, even when they were in a
lag position. Following [42], we define an ‘‘encounter’’ as
a situation, which a pedestrian and a vehicle would reach
the crossing point within 1 s of each other’s prediction time,
assuming they maintain their speeds. The encounter time
then includes both the cases when either the vehicle or the
pedestrian is closer to the crossing point (i.e., lead position).
We create 859 encounter time gaps in this scenario by placing
a pedestrian agent on 60 evenly spaced positions between
−10 m to −5 m on the y axis and a vehicle agent also on
60 evenly spaced positions between 10 m to 79 m. The two
agents assumed their speeds at 1.4m/s and 13.9m/s similar to
those reported in [42] and reacted to each other immediately
after the simulation started.

III. RESULT
A. PEDESTRIAN-PEDESTRIAN CONFLICT
Figure 3 summarizes the parameters producing the natu-
ral behavior that the pedestrian agents resolve interaction
conflicts. These are the parameter meeting all six, exclu-
sion and inclusion, criteria. These ‘‘accepted’’ parameters
cover a non-trivial region, including two strips and some
scattered areas. Specifically, when the values of kc and kdv
are close to zero and when kdv are large, the parameters do
not produce natural behaviors. Figure 4 shows the result of
individual criterion. Almost all surveyed parameters could
reproduce LAPF irrespective of the initial speeds. The two
associated behaviors, the FPA and the SPD, filtered out most
parameters, when kc values were near zero and when kdv
values were very large. The former reflects the pedestrian
agent does not overlook collisions completely, and the latter
reflects the pedestrian does not increase speed drastically.
The contrasting behaviors, the FPD and the SPA, excluded
the parameters, associated with atypical pedestrian behav-
iors. When kdv values were small, the parameters resulted
in collisions.

FIGURE 3. Parameters reproducing the behavior of leading agent passing
first.

FIGURE 4. Individual criterion on the parameters reproducing the typical
behavior of pedestrian interaction.

Figure 5 is the result of the model simulations compared
to the empirical data, collected in a controlled experiment,
using human participants [41], [43]. We compared the data
with the trajectory simulations based on the accepted model
parameters. First, we identified the 3072 accepted parameters
shown in Figure 3 and used them to calculate the MPD
between the agents at every time point, before they reached
the intersection. Thereafter, following the same approach as
in [41], these trajectories were then divided into ten groups,
according to an ascending order of MPD at the time of
tsee. The model simulations show that the simulated MPDs
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FIGURE 5. Comparison of minimal predicted distances between the
empirical data in [41] and the simulations, at both tsee and tcross.

at the tcross are in line with the empirically observed data,
suggesting that the model resolves the collision conflicts in
a similar way as the natural behaviors observed in humans
participating in a controlled experiment.

B. PEDESTRIAN-VEHICLE CONFLICT
1) CROSSING DECISION
Figure 6 shows the evolution of speed, acceleration, and
distance to the crossing zone in three simulation examples,
where a pedestrian reacted to a constant-speed vehicle. When
the time gap was 2.16 s, the pedestrian decelerated to yield.
When the time gap was 4.32 s, the pedestrian passed the
crossing earlier than the vehicle by stepping up the speed
to 1.5 m/s. These simulations are in line with empirical
observations of pedestrians accelerating when crossing in
front of approaching vehicles [46]. When the time gap was
6.47 s, the pedestrian passed without accelerating drastically.
In other words, the model naturally exhibits a number of
typical features in the behaviors of pedestrian gap acceptance.

Figure 7 summarizes the results of the CD scenario. The
top panel shows the results for simulations with ksc = 0,
i.e., with a constant-speed vehicle. As long as the pedestrian
model had a minimal degree of collision aversion (kc > 1),
it was able to cross without collision, with accepted time
gaps starting from 3.96 s. This is in line with Experiment
2 in [37], where the participants in the age groups of 20-30
and 60-70 made crossing decision between 3 to 4 s. It can be
noted that increasing kc creates increasingly cautious pedes-
trians, requiring larger time gaps to cross. The middle and
lower panel of Figure 7 show results with a vehicle who
is responsive to the pedestrian, ksc > 0. The shortest time
gap safely accepted by the pedestrian decreased to 2.88 s
when the vehicle was moderately cautious (ksc = 0.51) and

FIGURE 6. Behavior of crossing decision in three time gaps. The
parameters were extracted from the top panel in fig 6 where no collision
occurred. The dashed and solid lines show, respectively, the observations
prior the crossing and those after.

FIGURE 7. Association between the time gaps and the collision aversion
in the pedestrian and the vehicle agent. The crosshairs highlight the time
gaps described in text.

decreased further to 2.16 swhen the vehicle was very cautious
(ksc = 1.01).
Next, we tested whether applying the utility maximization

in the decision process results in a model that is capable of
mimicking empirical data. That is, we tested the ability of the
stochastic version of the model to reproduce full probability
distributions of crossing response times of human pedestrians
for different time gaps. We chose the parameters, kg = 1,
kc = 1, kdv = 0.38, based on the parameter survey in
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FIGURE 8. Model simulations of stochastic road-crossing decisions. The
time gaps are highlighted by the dashed lines. The black traces in the
middle row are the evolution of evidence values, and the grey dots are
the resultant responses. The upper and lower rows show the density
histogram of the response times.

deterministic simulations and applied (2) and (3) to generate
stochastic simulations of pedestrian road-crossing, for the
same road crossing scenarios as in the empirical study in [28],
and applied some limited manual tuning to the stochastic
model assumptions setting T = 2, Ea = 0.25. As can be
seen in Figure 8, when the time gap was 2.29 s, the empirical
data showed the participants mostly crossed after the vehicle
had passed, with some rare responses before the vehicle, and
the same was true for the model. Secondly, when the time
gap was long, namely 6.87 s, the data showed most human
crossing responses occurred before the vehicle passed, and
the model also reproduced this pattern. Third, when the time
gap was in between (4.58 s), the data showed a balance of
pre- and post-vehicle pass responses. The model in this case
predicted a small proportion of post-vehicle responses. For all
three time gaps, the model was able to capture the shape and
scale of the distribution of crossing responses. In summary,
the model has shown a good capacity to account for both the
field- and laboratory-observed data in crossing decisions.

2) CONFLICT RESOLUTION
Figure 9 summarizes the results for the CR scenario, survey-
ing the region of the two collision-discomfort parameters, ksc
and kc. We investigated ten time gaps and divided the sur-
veyed region by the frequency of collisions. The low-left cor-
ners in the fourth column shows neither agent yielded, leading
to frequent collisions. These are the parameters enabling the
agents to be more willing to take risks (i.e., kc < 0.28 and
ksc < 0.13). Of course, a risk insensitive road user does
not always run into other, for example cautious, road users.
For example, in the first column, when the pedestrian was

FIGURE 9. Parameter survey of conflict resolution. The number of
collisions was tallied in the ten tested time gaps.

prone to risk-taking (kc < 0.28), but the vehicle was rendered
to be risk-averse, (ksc larger than 0.5), the vehicle yielded.
Overall, the pedestrian and vehicle agents yielded when their
collision-discomfort parameters, kc and ksc, are greater than
0.28 and 0.38. Interestingly, there were model parameteri-
zations for which both pedestrian and vehicle yielding was
observed (shown in orange in Figure 9), depending on the
time gap. Figure 10 shows two time-series simulations for
one such chosen pair of kc and ksc parameters, which result
in collision-free interaction for all investigated time gaps (the
orange area of the leftmost panel in Figure 9). The model is
able to exhibit yielding both by the pedestrian (for the shorter
TTA) and by the vehicle (for the longer TTA).

These results show that the model is generally capable
of reproducing conflict resolution that is human-like at least
in a qualitative sense. One empirically observed behavioral
phenomenon that the model did not replicate in these tests,
however, was priority assertion by vehicle drivers, who have
been observed to increase speed to pass in front of pedes-
trians, even in situations where the pedestrian has the kine-
matic lead [42]. As mentioned in the Methods, we also ran
a number of encounter scenarios specifically targeting this
phenomenon. We found that in order to reproduce this phe-
nomenon, we needed to reduce the kdv parameter of the driver
agent from the initial value of 0.45 to 0.018, thus effectively
raising its free speed from 13.9 m/s to 27.8 m/s. All other
parameters were unchanged. This implies that the model
assumes that an assertive driver will drive as fast as 27.8 m/s
when no other vehicles and obstacles are present, effectively
defining the characteristic of aggressive as someone who
tends to drive faster when no others are present. With this
parameterization, we observed vehicle acceleration in the
encounter scenarios to assert its priority.
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FIGURE 10. Two examples of deceleration to yield. Dashed line showed
the period before the intersection. TTA stands for the time to arrival. The
parameters in the examples were for the pedestrian, kc = 0.61, for the
vehicle, ksc = 0.64.

The CR simulation thus reproduced drivers’ assertive
behavior. Amongst the 859 possible time gaps of encounter,
the vehicle agent accelerated in 616 (i.e., about 72%) occa-
sions. The vehicle started from a lag position in 331 of the
859 time gaps, within which 286 occasions, the vehicle agent
accelerated. This result is in line with what the field study
observed, where 73% of the drivers maintained the same
speed or accelerated [42].

To sum up, by tuning different combinations of param-
eters, the model reproduced natural behaviors both in
pedestrian-pedestrian conflict and in pedestrian-vehicle con-
flict, revealing several interesting questions regarding the
subtle interactions in road users. The model predictions
derived from the parameter-space investigation enable one to
explain and to examine further questions, for instance, inwhat
situations a pedestrian may yield to the other pedestrian and
in what situations, a driver with the characteristic of driving
faster than a regular free speed, may assert his / her position
even not in a lead position.

IV. DISCUSSION
We developed a modeling framework by applying the prin-
ciple of maximizing one’s psychological utility in order to
understand interactions among road users in traffic. By apply-
ing the three principles – motor primitives, utility maximiza-
tion, and intermittent action decisions – our model enables an
expandable framework that helps to examine several ques-
tions in road user interactions. For example, a plausible
hypothesis is that individuals assess collision risk differ-
ently and data from different people will result in different
optimized kc parameters. In its current form, the model has

successfully reproduced different scenarios of traffic interac-
tions, where road users resolve interactive conflicts and make
critical decisions. Computational models that capture these
subtleties are needed to help achieve safe and acceptable vehi-
cle automation [47], [48]. Previous work focused on account-
ing for the perceptual and attentional aspects in processing
of sensory information with the traffic tasks in mind [48],
[49]. These models resulted in quantitative descriptions in
the traffic task performance but depend on identifying many
perceptual quantities in different scenarios. Complementary
to describing perceptual quantities in traffic tasks, in this
paper, we applied the principle of utility maximization to not
only account for deterministic and stochastic interactions in
road-crossing decisions, but also organize the descriptions of
perceptual quantities in a general framework by associating
them with a linear utility function. The approach mitigates
the problem of non-linearly growing model complexity and
makes a conceptual shift from just quantifying perceptual
quantities to maximizing utility.

Specifically, the proposed model is a useful tool to help to
examine and understand how subtle details in road user inter-
actions affect individual traffic decisions. We started from the
existing framework formodeling sustained sensorimotor con-
trol [23], previously applied to modeling of non-interactive
control behavior of single drivers. Then we generalized it
to model road user interactions, including both driver and
pedestrian agents. The rationale for building on this specific
framework is that it has been shown capable of accounting for
not only routine driving control, but also near-crash behavior,
including probability distributions of open-loop defensive
reactions, which are enabled by the evidence accumulation
and motor primitive assumptions of the framework [23], [24],
[25], [26] – notably the same assumptions used here allowed
us to model entire probability distributions of pedestrian
crossing onset (Figure 8). An important avenue for future
workwill be to leverage these capabilities of the framework to
study and to model near-crash behavior in multi-agent inter-
actions, involving road users with different, such as cyclists,
kinematic profiles.

One requirement for doing so is to expand further the
framework to model agent beliefs about the intentions of
other agents, since this is an important cause of safety-
critical interaction failures [50], [51]. Such an extension may
also improve the model’s account of non-critical interactions,
because both empirical observation [2], [8], [30], and every-
day experience suggests that belief about others’ intentions
plays an important role in the nuances in road user interac-
tions. For example, a utility function in a vehicle agent can
factor in a driver’s belief in a pedestrian’s crossing intention,
and another utility function in the pedestrian agent can also
factor in the pedestrian intention and how it is affected by the
driver’s actions. This may help to explain why some drivers
tend to engage in priority-asserting acceleration. The hypoth-
esis would be that drivers believe that an increase in vehicle
speed decreases the probability of pedestrians to cross in front
of the car. One example to model this hypothesis has been
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framed in game-theoretic models, with beliefs not only about
others’ intentions but also about how those intentions are
affected by one’s own actions [52]. For some first indications
of how beliefs can be incorporated in the present framework,
see [26], [30].

Here, we started by testing model candidates that generate
simulations close to empirical behaviors and studied param-
eter space to understand the ability of the model to repro-
duce the behavior in question between two pedestrians and
between a pedestrian and a vehicle. An immediate next step is
to study the concept of utilitymaximization in the interactions
between drivers, where we found, using the neural network of
convolutional social pooling, the drivers in the lead position
stepped up speed to assert their way when driving on a
merging lane [21]. Although it remains an open question as to
whether the UM principle can be applied to naturalistic data,
we believe the detailed behavior of driver interactions could
also be accounted for by applying the principle. An important
avenue for future work will be to perform more complete
tests of the model against datasets from both controlled and
naturalistic studies of road user interaction.

Although, in this paper, we focused only on the influence of
time gap on crossing decisions, there are also other variables
that might play critical roles in road users’ crossing decisions.
These include the distance gap, the perception of yielding
deceleration by the vehicle, the size of the approaching agent
and explicit signals of communication [30]. The capacity of
the model can be further extended by adding these situation
variables and assuming their corresponding model parame-
ters. Next, we sketch the plan to investigate these variables
and how the UM model may help to understand their roles in
traffic interactions.

Despite the time gap, distance, and the speeds are bounded
by classical mechanics, they are not always processed in
strict physics principle by human road users. For example,
to make a left turn maneuver, a driver seemed to rely more
on the perceived distance to an opposing vehicle than on
the perceived speed and the time gap [53]. In a similar
example, drivers of over 56 years old accepted the same
distance gap, irrespective of whether an approaching vehicle
was at different speeds [54]. These findings imply that the
perceived distance and decisions thereof depend not only on
the physical but also on the psychological factors. Second,
whether an observation of deceleration is read as a yielding
sign also affects the crossing decisions. A study, analyzing
a series of traffic videos, showed the clear sign of a vehicle
to decelerate associated with an increase in the probabilities
of pedestrians’ crossing decision [17]. Third, smaller vehi-
cles, for instance cars versus motorcycles, are perceived as
approaching later. This cognitive illusion, dubbed size-arrival
effect, resulted in an increase in the risk of dangerous crossing
decision in pedestrians when a mixture of different vehicles
are in traffic [55]. A similar observation was also reported,
comparing trucks with motorcycles, even when both arrived
at the same time [56]. These variables can be also tested in
the UM model, which will help to discern their associations

with crossing decisions. A further step could be to examine
how these many traffic-related variables contribute to human
road-crossing decisions when, for instance, machine-driven
vehicles are on the road. We expect the knowledge will help
to design a safer environment when human and autonomous
vehicles coexist in future traffic.

Another key problem in bridging psychological decision
theory to traffic decision is that the time resolution typically
applied in traffic simulation is vastly different from the time
resolution typically used in the decision theory, such as the
diffusion decision model [40], which was built upon here
for the stochastic model formulation. To predict meaningful
traffic flow, 0.1 s is the usual lower bound on simulation time
step; however, in the decision theory, the decision process in
humans is often examined in the time scale of 1 ms. This
difference in time resolution makes bridging the traveling
path of an agent to its decision point challenging. At this
point, our model errs on the side of coarse time resolution
to enable the agent to travel with natural progress as in real
traffic. However, in some real critical incidents, a fatal deci-
sion happens in the range of tens to hundreds of milliseconds,
as observed in many human decision-making tasks. We hope
the next development of the UM model could enable such
dynamic changes in time resolutions as in what might happen
in real life traffic scenarios.

V. CONCLUSION
We extend an existing framework for modeling sensorimo-
tor control, incorporating the principle of utility maximiza-
tion. This effort results in a general modeling framework
that not only enables examination of detailed road user
interactions in different scenarios, but which is also based
on model assumptions that have been previously shown to
explain road user behavior across both routine and safety-
critical situations. One advantage of the utility maximiza-
tion formulation, compared to previous mechanistic mod-
els emphasizing perceptual cues, is that the model is more
easily expandable to new scenarios, without the need to
identify the exact perceptual cues being used by road users.
At this stage, we keep the model in a simple form to inves-
tigate the two-agent interaction. We have shown that the
model can reproduce several empirically observed phenom-
ena in pedestrian-pedestrian and driver-pedestrian interac-
tions. Important next steps, toward generalizing the model
and making it useful in automated vehicle applications,
include testing the model in safety-critical scenarios (where
our mechanistic approach has some potential advantages over
machine-learned models), and investigating what types of
model extensions (e.g., beliefs about other road users’ inten-
tions, more advanced utility functions, and so on) are needed
to cover other interaction phenomena.
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