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Abstract

We characterise the strategic equivalence among k-winner contests using simultane-

ous and sequential winner selection. We test this prediction of strategic equivalence

using a series of laboratory experiments, contrasting 1-winner contests with 2-winner

contests, varying in the latter whether the outcome is revealed sequentially or in a

single stage. We find that in the long run, average bidding levels are similar across

strategically-equivalent contests. However, adaptation in 2-winner contests is slower

and less systematic, which is consistent with the property that simultaneous winner

selection results in outcomes that are more random than in the 1-winner case.
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1 Introduction

Many contests result naturally in more than one contestant “winning.” Universities

admit a subset of the students who apply each year; only some athletes trying out

for a sports team will “make the cut”; and many academic conferences accept only

some of the papers submitted.1 In most of these cases the final outcome is stochastic

instead of deterministic, and therefore the framework initiated by Tullock (1980) is

appropriate. However, although in these settings each contestant chooses an “effort”

level once, the same effort can be used for multiple selection draws (e.g., Clark and

Riis 1996; Fu et al. 2014), and unlike Tullock’s original model, more than one of them

are successful.

For the case of a single-winner contest, Tullock (1980)’s model sets the ratio of

the probabilities that any two contestants i and j win the contest to be the ratio of

their respective effort levels. Several different approaches have been proposed which

extend this contest success function to the case in which there are k ≥ 1 of prizes with

equal value. Berry (1993) was the first to propose such an extension. Berry (1993)’s

approach can be thought of as a contest among all subsets of contestants of size k.

Specifically, for each subset of k players, the effort of that subset is given by summing

the efforts of the players comprising the subset. These group efforts are then the inputs

into Tullock’s contest success function. The “contestants” in Berry’s model are thus

not the individual players, but the possible subgroups of winners, and the winners are

determined as a joint selection as a group. In the case of k = 1 it is immediate that

Berry’s mechanism reduces to Tullock’s.

Berry (1993)’s description of this extension to the Tullock contest success func-

tion therefore has an unusual feature: contestants are ultimately successful as a group,

but each chooses their efforts individually and independently. Loosely speaking, in

an n-contestant contest, their efforts contribute to the chances of winning of
(

n−1
k−1

)

“teams” with different compositions. Chowdhury and Kim (2014) proposed an alter-

native mechanism which does not express the chances of success in terms of groups:

their survivor selection mechanism ranks players from last up to first, eliminating one

player at each stage using a Tullock-style contest failure function, and so unfolds over

(up to) n − 1 stages.

There are a few experimental studies looking at the relative optimality of different

types of multi-winner contests vis-á-vis the single-winner contest. For example, Her-

bring and Irlenbusch (2003) and Muller and Schotter (2010) report that multiple prizes

generate higher effort than a single prize in perfectly discriminating all-pay contests,

whereas, Chen et al. (2011), Sheremeta (2011), and Shupp et al. (2014) study multiple

prizes in imperfectly discriminating contests. In particular, Chen et al. (2011) study

the provision of an additional prize in a rank-order tournament with heterogeneous

players, and Sheremeta (2011) and Shupp et al. (2014) compare a single-winner con-

test with multi-winner contests where the multiple winners are selected via a sequence

of single-winner draws as in Clark and Riis (1996).

1 See (Sisak 2009) for a complete survey on multi-winner contests.
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In this paper, we provide a first experimental study in contest design in multi-winner

Tullock-style contests.2 We generalise the analysis of Chowdhury and Kim (2014) to

show that, in the case in which there are k winners who each receive a prize of the

same value, the survivor selection mechanism produces the same distribution over

prize allocations as Berry (1993)’s joint selection, for all configurations of contes-

tants’ efforts. This result proposes a null hypothesis that these mechanisms should be

equivalent in principle, and will elicit comparable levels of efforts from the partici-

pants. This equivalence is important to note. As shown in Fu and Lu (2009), under

a sequential winner selection process, a grand contest provides higher level of effort

than a set of small contests. However, Chowdhury and Kim (2017) show that this

result is reversed when a sequential loser elimination process is employed. Hence, the

equivalence noted above also means that a simultaneous winner selection should be

accompanied with a set of small contests.

Another attractive feature of survivor selection is that, as noted by Fu et al. (2014),

it mirrors the way that contest outcomes are sometimes revealed, with the announce-

ment of the elimination of unsuccessful candidates first.3 Because Berry (1993)’s rule

requires consideration of the chances of winning across
(

n−1
k−1

)

teams while survivor

selection takes only up to n − 1 stages to resolve the prizes, a possible benefit of

survivor selection is that it might be more learnable. Contestants might find it easier

to follow the logic of how their efforts map into chances of winning a prize because

the process of determining the successful contestants is not expressed across many

possible teams.4

However, survivor selection breaks a symmetry in Berry (1993)’s expression of the

contest success function, in which not only the k winning places are indistinguishable

from each other, but the n −k unsuccessful places are likewise indistinguishable.5 The

equivalence between joint selection and survivor selection would fail if contestants

distinguished among the unsuccessful places due to behavioural reasons such as joy

of winning (Sheremeta 2010) or, conversely, preferences over the sequence of losing

out.

We develop the concept of the effective prize value of a Tullock-style contest using

the survivor selection mechanism for any arbitrary set of prize values. The effective

prize value is defined as the value of the prize of a single-winner Tullock contest

which would generate the same best response function for a risk-neutral contestant.

This allows us to calibrate our comparisons of the performance of both multi-winner

mechanisms against the familiar and well-studied single-winner case. We show that

efforts in the survivor selection mechanism would be lower if participants valued

finishing as the “first runner-up”.

2 See Corchón and Serena (2018) for a discussion on the theory of contests and Dechenaux et al. (2014) for

a thorough survey of contest experiments. Mealem and Nitzan (2016) and Chowdhury et al. (2020) revisit

design issues in contests.

3 This practice, which is alluded to in this paper’s title, in part led to the (in)famous confusion at the 2015

Miss Universe pageant, in which host Steve Harvey mistakenly announced the first-runner up as the winner.

4 Whereas learning in contests is documented earlier in terms of uncertainty and contest size (Fallucchi

et al. 2021), ability (Krähmer 2007), feedback (Ederer 2010), no previous study has investigated the effects

of winner selection on learning.

5 de Palma and Munshi (2013) make a similar observation.
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We investigate, for the first time in the literature, the contest design questions of

equivalence and learnability of these mechanisms in a laboratory experiment in which

we extend the ticket-based implementation of Tullock contests developed in Chowd-

hury et al. (2019) to the Berry (1993) and Chowdhury and Kim (2014) mechanisms.

Our results are broadly supportive of both equivalence and learnability. In the long run

average bids are similar in 1-winner and 2-winner contests, and in the sequential and

simultaneous implementations of 2-winner contests. However, we observe somewhat

slower adaptation in the 2-winner contests, which would be consistent with the link

between effort and success being more random in these 2-winner contests than the

1-winner counterpart.

Section 2 provides a self-contained analysis of the mechanisms of Berry (1993) and

Chowdhury and Kim (2014), generalising the results from both and introducing the

concept of the effective prize value as a sufficient statistic measuring the incentives

to give effort in these mechanisms. Section 3 outlines the experimental design we

developed for evaluating the performance of contests which are strategically equivalent

under standard assumptions. We report our data and results in Sect. 4, and conclude

with a brief discussion in Sect. 5.

2 Theoretical framework

2.1 A Tullock contest with discriminated prizes

There are n ≥ 2 players, indexed by i = 1, 2, . . . , n who compete in a contest for a

set of prizes {vr }
n
r=1.6 Each player i chooses a bid bi ∈ [0,∞), which is irrevocably

sunk, irrespective of the outcome of the contest. The outcome of the contest is a rank

ordering of the players (pr )
n
r=1, where pr is the index of the player assigned rank

r . Any given profile b = (bi )
n
i=1 of bids results in a probability distribution over

the set of possible rank orderings. Let ρir (b) denote the probability that player i is

assigned to rank r given bid profile b. The payoff to player i given profile b is then

ui (b) =
∑n

r=1 ρir (b)vr − bi .

A special case of this is the single-winner (or 1-winner) contest, in which v1 = w

and vr = 0 for 2 ≤ r ≤ n. In the model of Tullock (1980), the probability player i

wins the prize w is given by the contest success function

ρi1(b) =

{

bi
∑n

j=1 b j
if

∑n
j=1 b j > 0

1
n

if
∑n

j=1 b j = 0

Player i’s utility function is ui (b) = ρi1(b)w − bi . Assuming v1 > 0, that is, that

winning the single prize is a good thing, his best-response function if
∑

j �=i b j > 0 is

6 It would be natural to assume v1 ≥ v2 ≥ · · · ≥ vn ≥ 0, but interestingly our analysis depends neither on

non-negativity nor monotonicity of prizes. Non-monotonic prizes could result in the effective prize value ṽ

defined in Proposition 1 being non-positive, in which case zero effort would be expended in the equilibrium.
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b⋆
i (b−i ) = max

⎛

⎝

√

w
∑

j �=i

b j −
∑

j �=i

b j , 0

⎞

⎠ . (1)

In the contingency where
∑

j �=i b j = 0, the best response is not well-defined because

of the discontinuity in the payoff function at b = 0. Importantly, bi = 0 is not a

best response to b−i = 0, and therefore b = 0 is not an equilibrium. The unique

Nash equilibrium profile is symmetric, with b1W
i = n−1

n2 w for all bidders.7 To embed

Tullock (1980)’s model in our setting, any distribution over ranks for the remaining

n − 1 players can be chosen, insofar as prizes 2 to n are payoff-equivalent.

Turning to the general case where prizes are distinguished, one method for determin-

ing the rank ordering is the survivor selection mechanism proposed by Chowdhury

and Kim (2014), in which ranks are determined from the lowest rank (n) upwards in

sequence. We extend their analysis to allow for asymmetric bid profiles, and for any

sequence of prize values. There are n − 1 stages, which we number n, n − 1, . . . , 2

for convenience; at stage r , the identity of the player assigned to rank r and receiving

prize vr is determined. The final stage, stage 2, determines the player receiving prize

v2, with the last unassigned player receiving prize v1. Let Mr be the set of players still

active at the start of stage r . In this mechanism, the conditional probability of a player

i ∈ Mr being eliminated at stage r is a Tullock-type contest failure function,

ρir (b|i ∈ Mr ) =

⎧

⎨

⎩

∑

j∈Mr \{pr } b j

(r−1)
∑

j∈Mr
b j

if
∑n

j=1 b j > 0

1
n

if
∑n

j=1 b j = 0
(2)

Proposition 1 A risk-neutral player’s best response function in a contest with prizes

{vr }
n
r=1 conducted using the survivor selection mechanism is the same as their best

response function in a single-winner Tullock contest in which the value of the single

nonzero prize is ṽ ≡ v1 −
∑n

r=2 vr

n−1
. In particular, a risk-neutral player i’s best response

to any b with
∑

j �=i b j > 0 is

b⋆
i (b−i ) = max

⎛

⎝

√

ṽ
∑

j �=i

b j −
∑

j �=i

b j , 0

⎞

⎠ (3)

and the unique Nash equilibrium profile if all bidders are risk-neutral is

bN E
i =

{

n−1
n2 ṽ if ṽ > 0

0 if ṽ ≤ 0
(4)

for all bidders i .

7 In the case in whichv1 ≤ 0, then the player can minimise his chances of winning by choosing b⋆
i
(b−i ) = 0.

The case of winning being a bad is usually not interesting and therefore generally not mentioned in the

single-winner case. In what follows we consider behavioural extensions with non-monetary values assigned

to specific rankings; we call attention to this case only insofar as it shows our subsequent analysis does not

require us to place any restrictions on those non-monetary values.
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Proof See Appendix A. ⊓⊔

We refer to the quantity ṽ as the effective prize value for a given prize structure.8

2.2 Multiple winners with identical prizes

Distinguishing among the winners of different prizes is only essential when prizes

are distinct. In this section, we consider the case of a k-winner contest, in which the

top k prizes are identical to each other, v1 = · · · = vk ≡ w, and all other prizes

vk+1 = · · · = vn = 0. It is natural to refer to the players receiving the top k prizes as

the winners. In this setting the effective prize value is ṽ = n−k
n−1

w.

Berry (1993) proposed a joint selection mechanism, in which a subset of k players

is selected directly in one step to receive the top k prizes. Let Nk denote the set of

all subsets consisting of exactly k players. The probability a given subset K ∈ Nk of

players is selected to be the winners of the k prizes is

fK(e) =

∑

j∈K b j
∑

κ∈Nk

∑

j∈κ b j

. (5)

Proposition 2 Fix k ≥ 1, and let vr = w for r ≤ k and vr = 0 for r > k. For

each profile b of bids, the joint selection mechanism of Berry (1993) and the survivor

selection mechanism of Chowdhury and Kim (2014) produce identical distributions

of allocations of the prizes.

Proof See Appendix A. ⊓⊔

2.3 Behavioural extensions

In the model as analysed so far, the utility function assumes that each prize has a value

which is measured in units of the cost of bids.9 The specific subjective values players

assign to prizes are not directly observable. In a laboratory setting, prizes are usually

set to be cash amounts, and the cash values of the prizes and the cost per unit effort

can be used to generate a predicted equilibrium effort level for risk-neutral players

using (4).

In laboratory experiments with 1-winner Tullock contests, bids frequently exceed

the (risk-neutral) Nash equilibrium. One factor which has been proposed to contribute

to high bids is that the value of receiving the prize is more than its cash value, for

example, due to a joy of winning (Sheremeta 2010; Astor et al. 2013; Herbst 2016;

Boosey et al. 2017). In the 1-winner case, one of the reasons a prize may be more

8 The expression of the effective prize value is a generalisation of an observation made by Clark and Riis

(1996). Mathematically, the mechanism can be expressed as awarding one prize according to the standard

1-winner Tullock success function, and all other prizes uniformly at random irrespective of bids.

9 We have used the term “bid” in our theoretical exposition because this is the terminology we use in our

experiment, following common practice in comparable experiments. A more general interpretation of the

theory is that the strategic choice is “effort” or “investment”, in which case the prize values are in units of

the cost of effort.
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highly valued is that it is unique; there is only one prize and only one player receives

it. In the k-winner contest, winning may still bring some joy, but the prize is no longer

unique. The absence of uniqueness would decrease the non-monetary component of

the value of the prize.

Hypothesis 1 Fix 1 < k < n, and consider a 1-winner and a k-winner contest which

have the same effective prize value ṽ when measured in monetary terms. Because the

prize is unique in the 1-winner contest, efforts will be higher in the 1-winner than the

k-winner when using the joint selection mechanism.

Justification If both contests have the same effective prize value in monetary terms,

then the uniqueness of the prize in the 1-winner contest implies it has a higher effective

prize value when taking into account non-monetary considerations. The best-response

function (3) shows that the effort level will therefore be higher for each given b−i in

the 1-winner contest than the k-winner contest. ⊓⊔

In the k-winner contest setting, there is no need to distinguish among the ranks k−1

to n, insofar as all of those prizes are identical. Nevertheless, the survivor selection

mechanism could be useful in this setting for practical reasons; it might be easier for

players to understand, and echoes mechanisms for revealing results that are used in

real life, such as naming a “runner up” (and sometimes a “second runner up” and so

on). Suppose, as envisaged by Chowdhury and Kim (2014), we implement a k-winner

contest in which the survivor selection continues until the point where k players remain,

and then terminates with the remaining players awarded the k winning prizes without

distinction among them. The information about the ordering of elimination of the

unsuccessful players is irrelevant in terms of the material outcomes of the mechanism,

in that all eliminated players receive identical prizes. Nevertheless, players might

attach additional significance to the rank ordering; for example, valuing being the

runner up by finishing in (k + 1)st place. This would be captured in the game by

assigning a value vk+1 > 0 to the (k + 1)st prize.

Hypothesis 2 Fix 1 < k < n, and consider a k-winner contest with the same prize

value w, implemented in one case using survivor selection and in another using joint

selection. Because being named a runner up (e.g. for the (k + 1)st place) may be

valued, efforts will be higher for each given b−i in the joint selection mechanism than

the survivor selection mechanism.

Justification In terms of the model, valuing being named a runner up in the survivor

selection mechanism would set vk+1 > 0 (and possibly other prizes between k +2 and

n − 1) while retaining vn = 0. The best-response function (3) shows that the resulting

effort level would be lower for each given b−i in the survivor selection mechanism

than in the joint selection mechanism. ⊓⊔

We note that the comparative statics which generate Hypotheses 1 and 2 are based on

inspection of the best-response function, and require neither equilibrium nor symmetry

in the idiosyncratic prize valuations across players.

We turn now to a consideration of how the dynamics of bidding across the experi-

ment might differ between 1-winner and k-winner contests. The potential learnability
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of the k-winner contests is relevant to assessing their suitability for practical implemen-

tation. On the surface, the description of both implementations of k-winner contests is

more complex than for the 1-winner counterpart. Berry’s formula for the simultaneous

selection of winners involves more terms, while eliminating contestants sequentially

means there are multiple stages that a contestant might need to reason through. This

assessment of the apparent complexity of the k-winner contest is based heuristically

on the description of the two k-winner mechanisms. In contrast, the two k-winner

mechanisms generate the exact same distributions over outcomes. This would sug-

gest that players who experience the mechanisms, reflecting on and reacting to the

expected payoffs associated with their bids, should find the mechanisms equally easy

(or difficult) to learn how to play.

There is, however, evidence that people respond more to the realised outcome of

the contest than to the expected outcome. Chowdhury et al. (2014) demonstrated

the dynamics of play converge more tightly around the Nash equilibrium when the

expected payoffs are realised using the share rule, and Lim et al. (2014), among

others, find that participants adjust their bids differently after winning a contest than

after losing one.

Hypothesis 3 Fix 1 < k < n, and consider a 1-winner and a k-winner contest which

have the same effective prize value. Bidders will adapt their bids less systematically

in the k-winner contest.

Justification The expression for the effective prize value shows that the k-winner

contests we consider are equivalent, in expected earnings terms, to conducting a

1-winner contest for one prize, and then allocating the remaining k − 1 prizes at

random. Even when the 1-winner and k-winner contests result in the same expected

earnings, the realised payoff from the k-winner contest is therefore more noisy. If

participants condition changes in their bid on the realised outcome of the contest,

the changes they make will be less systematic in the k-winner contest than in the

1-winner. ⊓⊔

3 Experiment

3.1 Parametric design

We implement three contest environments in which the effective prize size is held

constant. In our experiments we choose n = 4, the most common number of players

in the literature of experiments with Tullock contests. We described the task as “bidding

for a reward.”10 We set the monetary value of the effective prize value to be 160,11

which means in the 1-winner (1W) treatment, the reward is 160. If prize uniqueness is

indeed relevant, we expect the maximum contrast would be between the 1-winner and

2-winner cases. Therefore, we implement 2-winner contests using both joint selection

(2J) and survivor selection (2S) mechanisms; to generate the same monetary effective

10 The full instructions are included as Appendix B.

11 All monetary amounts are in UK pence. At the time of the experiments, 1 GBP ≈ 1.50 USD.
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prize value, in these settings the two winners each received rewards of 240. We follow

the most common convention in the literature and give each participant at the start of

each contest an endowment equal to the value of the reward.12 A participant’s monetary

payoff from a single contest game was equal to their endowment minus their bid, plus

the value of the reward if they were selected to receive one.

3.2 Implementation of the contests

In each given session, participants played 30 contest periods in one of the environments.

The number of periods was announced in the instructions. The groups of participants

were randomly assigned at the start of a session, then held fixed throughout the session.

Within a group, members were referred to anonymously by ID numbers 1, 2, 3, and

4; these ID numbers were randomised after each period. All interaction was mediated

through computer terminals, using zTree. Fischbacher (2007) A participant’s complete

history of their own bids and their earnings in each period was provided throughout the

experiment. Formally, therefore, the 4 participants in a group play a repeated game of

30 periods, with a common public history. By standard arguments, the unique subgame-

perfect equilibrium of this supergame interaction is to play the Nash equilibrium of

30 in all periods.

A practical challenge in a controlled implementation of survivor selection and joint

selection is the translation of the selection probabilities (2) and (5), respectively, into

an accessible format. Our behavioural hypotheses are on the potential non-monetary

valuations associated with rankings that participants may have, which could be con-

founded by the more complex calculation that is inherent in determining those selection

probabilities in the 2-winner case.

We therefore implemented the contests using an extension of the ticket protocol as

described and tested for the 1-winner contest in Chowdhury et al. (2019). At the start

of each period, each participant selected a bid, which could be any integer number of

pence from 0 up to v1, inclusive. These bids were translated into tickets of different

types.

Each virtual ticket was given a number from 1 up to the total number of tickets

created. The computer drew one of those ticket numbers at random, displayed the

ticket number drawn, and indicated the type of the ticket with that number.13 The

type of ticket determined which players received, or were eliminated from receiving,

a reward.

In the 1-winner (1W) treatment, for each player i there was a corresponding ticket

type Type i . The number of tickets of Type i was given by player i’s bid bi , resulting in

b1 +b2 +b3 +b4 tickets. The recipient of the reward was determined by a single draw

from the pool of tickets; if a Type i ticket was drawn, player i received the reward.

12 We maintain the endowment equal to reward size in parallel to the standard in 1-winner experiments.

Baik et al. (2020) show that bids in 1-winner contests are lower both when the endowment is lower than

the reward size as well as when it is higher, compared to the baseline of endowment equal to the reward.

13 In our data, at least one player made a positive bid in every group in every period. In the event there

had been a group with bids of zero from all players, one ticket type would have been drawn uniformly and

randomly to determine the outcome.
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In the joint selection (2J) treatment, for each pair of players (i, j) there was a

corresponding ticket type Type i& j . The number of tickets of Type i& j was given by

bi + b j , resulting in 3(b1 + b2 + b3 + b4) tickets. The recipients of the rewards were

determined by a single draw from the pool of tickets; if a Type i& j ticket was drawn,

players i and j received the rewards.

In the survivor selection (2S) treatment, the outcome was realised in two stages.

In the first stage, for each triad of players (i, j, k) there was a corresponding ticket

type Type i& j&k. The number of tickets of Type i& j&k was given by bi + b j + bk ,

resulting in 6(b1+b2+b3+b4) tickets. The survivors of the first stage were determined

by a draw from this pool of tickets; if a Type i& j&k ticket was drawn, players i , j ,

and k survived to the second stage.14 The second stage is procedurally identical to

joint selection, except restricted to the three surviving players. A new pool of tickets

was then created. If players i , j , and k were the surviving players, then there would

be bi + b j tickets of Type i& j , bi + bk tickets of Type i&k, and b j + bk tickets of

Type j&k, for a total of 2(bi + b j + bk) tickets. The recipients of the rewards were

determined by a single draw from this pool of tickets.

3.3 Procedures

We report on four sessions for each treatment.15 There were 12 participants in each

session, who were randomly allocated into the fixed groups of four, in which they

remained for the entire experiment. There are therefore 12 independent groups in each

treatment. Sessions were conducted at the Centre for Behavioural and Experimental

Social Science (CBESS) at the University of East Anglia, using the participant pool of

student subjects maintained by hRoot. Bock et al. (2014) At the end of each session,

5 of the 30 periods were selected at random to determine earnings. Sessions lasted

between 60 and 90 min, with 2S sessions naturally lasting slightly longer due to the

two-stage realisation of the outcomes. Participants earned in 1W between £4.92 and

£12.76 (mean £8.64, SD £1.55); in 2J between £10.16 and £22.83 (mean £16.29, SD

£3.36); and in 2S between £9.73 and £24.05 (mean £16.15, SD £3.20).

4 Results

We begin with an overview of all of the bids in our sample. Figure 1 provides dotplots

for all bids made in each period. Overlaid are solid lines indicating the mean bid

in the period, and a shaded area which covers the interquartile range of bids for the

period. Broadly speaking, the dynamics of play over time are similar to those which

are typically found in Tullock contest experiments. Bids in the initial period are above

the Nash equilibrium. Over time the measures of central tendency of the bids move

towards the equilibrium, while dispersion around the mean or median persists.

14 Therefore, tickets were always labeled with the ID numbers of the players who were “successful” if that

ticket was drawn, where “success” in the first stage of survivor selection means not yet being eliminated.

15 The sessions for 1-winner (1W) are the UEA sessions reported as part of the ticket treatment in Chowd-

hury et al. (2019).
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Fig. 1 All bids by period, grouped by treatment. Each dot represents the bid of one participant in one period.

The solid line plots the evolution of the overall mean bid, and the shaded areas the interquartile range. The

horizontal dashed line indicates the Nash equilibrium bid of 30

Fig. 2 Distribution of group mean bids by treatment. For each period, the vertical boxes plot the interquartile

range of average bids across groups. The black diamonds indicate the median of the group averages

Table 1 Descriptive statistics on average bids by group

Treatment N bN E All periods First half Second half

Mean Median SD Mean Median SD Mean Median SD

1W 12 30 40.4 42.3 9.0 45.1 48.3 10.5 35.6 37.7 9.8

2J 12 30 43.1 46.5 20.4 52.0 58.4 23.0 34.2 33.7 19.7

2S 12 30 43.1 42.7 15.6 50.0 48.3 16.9 36.1 32.0 20.4

Recalling that participants played in fixed groups for all 30 periods, we turn to

looking at the group as the unit of independent observation. For each group in each

period we compute the mean bid of the group, and, in Fig. 2, we present boxplots

capturing the distribution of these group mean bids across periods. This view of the

data tells a similar story to that of Fig. 1, while pointing out that for some periods late

in the 2-winner treatment, the median group actually bids slightly less on average than

the equilibrium prediction. Figures 1 and 2 also illustrate that there is one outlier, a

participant in 2S who consistently bid 150, resulting in the mean bid of their group

being consistently around 90. From this it can be seen that the other participants in

that outlier group bid on average about 20, which qualitatively is in the direction

recommended by the reaction function in the presence of a persistently high bidder.

Table 1 reports summary statistics of average bids across groups, using the group

as the unit of observation. When looking across the entire 30-period supergame, bids

are slightly higher in the 2-winner contests. Closer inspection reveals this is a game of

two halves. Higher bids in 2-winner contests are driven by behaviour in the first half
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Fig. 3 Distribution of average group bids, all periods. Each dot represents the average bid in one group.

The horizontal box indicates the interquartile range of each distribution

Table 2 Descriptive statistics for

first-period bids. The unit of

observation is the individual

bidder

Treatment N bN E Mean SD Quartiles

1W 48 30 60.1 44.4 (17.5, 60.0, 80.0)

2J 48 30 73.9 53.3 (40.0, 67.0, 100.0)

2S 48 30 94.6 74.7 (40.0, 80.0, 130.0)

of the supergame; in the second half, the average across groups is similar across all

treatments, and the median group bids are actually lower in 2-winner contests. Groups

in 2-winner contests, however, are more heterogeneous. Figure 3 plots the distribution

of group mean bids over the full supergame; more extreme groups, both with higher

and lower bids, tend to be observed in 2-winner treatments.

Result 1 First-period bids are higher in 2-winner contests.

Proof (Support) When looking at the first period, we are able to treat all bids as

independent as participants have had as yet no interaction. Table 2 provides summary

statistics of the distribution of first-period bids. A Mann–Whitney–Wilcoxon (MWW)

test comparing bids in 1W against those in 2-winner contests (2J and 2S pooled) rejects

the null hypothesis of equal distributions (p = 0.05, r = 0.40).16 If we are willing

also to attach significance to the magnitudes of the bids instead of only their relative

ranking, a two-sample t-test with unequal variances rejects the null hypothesis of equal

mean bids between 1W and 2-winner contests (p = 0.005). ⊓⊔

Because this result goes so strongly in the opposite direction from the prediction of

Hypothesis 1, it deserves further comment. As an ex-post explanation, we propose this

result is driven by a naïve response of participants to the description of the environment.

In the first period, participants do not yet have experience with the mechanisms, and, in

particular, the strategic importance of the fact that two participants receive the reward

in the 2-winner contests. Our theoretical development in 2 shows how to integrate

the number of winners and the value of the reward to determine the effective prize

value, which is sufficient to determine strategic responses. Participants only see the

raw information in the instructions, and, in particular, that the value of the prize is 240.

As a rough calculation, recall that the equilibrium effort is proportional to the effective

prize size. If participants neglected the fact of multiple winners in the 2-winner contest

and looked only at the headline prize value of 240, we might expect bids to be 50%

higher than in 1W, in which the prize value is 160. The grand average of first-period

16 We report the effect size r for MWW tests. This is the probability that a randomly-selected observation

in the first-named group is greater than a randomly-selected observation in the second-named group.
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bids across both 2-winner contests is 84.3, compared to 60.1 in 1W, an increase of

approximately 40%.

Our experiment was not designed to identify potential causes of this pattern of

first-period bids. However, these initial conditions are transient; experience with the

mechanism in all cases leads to similar average bidding behaviour.

Result 2 Mean bids across groups are not different across treatments in the second

half of the supergame.

Proof (Support) A Kruskal-Wallis test comparing the three treatments does not reject

the null hypothesis of equal distributions (p = 0.87). Pairwise comparisons of treat-

ments using MWW likewise show small effect sizes when comparing 1W to 2J

(p = 0.82, r = 0.53), 1W to 2S (p = 0.49, r = 0.58), and 2J to 2S (p = 0.86,

r = 0.48), as does comparing 1W to the pooled 2-winner contests (p = 0.59,

r = 0.56). ⊓⊔

The ranking of 1W against the 2-winner contests is in the direction of Hypothesis 1,

but the effect sizes are negligible; we find no evidence in support of a hypothesis that

uniqueness of the prize is an important driver of behaviour after repeated experience

with the mechanism. We also find no evidence that revealing outcomes simultaneously

or sequentially affects long-run behaviour, in contrast to Hypothesis 2.17

To address our hypotheses about the learnability of 2-winner contests, we follow

Chowdhury et al. (2019) by looking at the payoff space. Consider a group g in session

s of treatment m, and let bi t be the bid submitted by bidder i in period t . This bid had

an expected payoff to i of18

πi t =
bi t

∑

j∈g b j t

× 160 − bi t + Km .

Let Bi t =
∑

j∈g: j �=i b j t be the sum of the bids of others in the group, the ex-post best

response for bidder i , b̃i t , would be given by (3) if bids were permitted to be continuous.

Bids are required to be discrete in our experiment; the quasiconcavity of the expected

payoff function ensures that the discretised best response b⋆
i t ∈ {⌈b̃⋆

i t⌉, ⌊b̃⋆
i t⌋} This

discretised best response generates an expected payoff to i of

π⋆
i t =

b⋆
i t

b⋆
i t + Bi t

× 160 − b⋆
i t + Km .

We then define the measure of disequilibrium for the group as εmsgt = mediani∈g{π
⋆
i t−

πi t }. By construction εmsgt ≥ 0 with εmsgt = 0 only at the Nash equilibrium.

17 The structure of the 2-winner contests, in which a contestant can win even if bidding zero, suggests that

some participants might be tempted to “free-ride” by submitting a bid of zero. Our data show no evidence

of this: of the 1440 bids in each treatment, in 1W 100 (6.9%) of bids are exactly zero, compared to 111

(7.7%) in 2J and 103 (7.2%) in 2S.

18 Km is a treatment-specific constant. K1W = 160, accounting for the endowment. The 2-winner

treatments are equivalent to giving each player a non-contingent payment of 80, and then conducting a

single-winner Tullock contest for the effective prize value. Incorporating the endowment, we arrive at

K2J = K2S = 320.
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Fig. 4 Ex-post measure of disequilibrium within groups (εcsgt ), by period. Each dot indicates the value of

the measure for one group in the corresponding period. The solid line plots the evolution of the mean across

groups, and the shaded areas the interquartile range. The two arrows in 2S indicate one group in each of

periods 1 and 2 with εmsgt > 120

Fig. 5 Average value of disequilibrium measure ε in period t + 1, as a function of a group’s realised ε in

current period t

In Fig. 4 we show the evolution of the distribution of the disequilibrium measure ε

across groups over the experiment. Graphically this supports the assertion of Hypoth-

esis 3, insofar as in both 2-winner treatments we observe some groups playing strategy

profiles with large ε even in the periods at the end of the experiment. This plot how-

ever does not take into account across-group heterogeneity, and so to assess whether

adaptation is indeed systematically different across treatments a panel approach is

required.

To provide a view of the data which respects this panel structure, in Fig. 5 we plot

the average value of εmsg(t+1) as a function of εmsgt , where we round the latter value

to the nearest multiple of 10 for aggregation. In this graph, the 45-degree line indicates

no systematic adaptation in the sense defined by this measure; the farther below the

45-degree line, the more rapid the adaptation towards bids which leave less money on

the table. We observe that the 2-winner treatments are comparable to each other, but

lie not too far below the 45-degree line, indicating relatively slow adaptation, while in

the 1-winner treatment we observe adaptation which reduces ε more systematically.
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Table 3 Parameter estimates for

model (6) of evolution of εmsgt

over time

1W 2J 2S 2J+2S

Constant 7.646 7.291 6.202 7.166

(1.169) (1.199) (2.415) (1.601)

εmsgt 0.265 0.555 0.476 0.494

(0.099) (0.061) (0.094) (0.067)

Ngroups 12 12 12 24

Nobs 336 336 336 672

χ2(1) 7.11 81.72 25.29 53.61

Fixed point 10.4 16.4 11.8 14.1

Robust standard errors in parentheses

Result 3 Learning, as measured by ex-post amounts of money left on the table, is

generally more systematic in 1-winner than 2-winner treatments. The long run dise-

quilibrium level is higher in 2-winner treatments.

Proof (Support) For each treatment m, and for the 2-winner treatments pooled, we

estimate the dynamic panel model

εmsg(t+1) = αm + βmεmsgt , (6)

using the method of Arellano and Bond (1991), and report the results in Table 3.

Comparing 1-winner and 2-winner treatments in aggregate, we reject the hypothesis

that ε1W,sgt = ε2J+2S,sgt at the 10% level (p = .056 against two-sided alternative).

The evidence is more clear when comparing 1W to 2J (p = .013) than 1W to 2S

(p = .122).

We can use the point estimates of α and β to compute the implied fixed-point of

(6). This would be the prediction for the long-run value of the amount of money left

on the table ex-post. All the fixed points are above zero. ⊓⊔

The analysis above indicates that, to the extent we can say play is converging over

time, it is a convergence not to the point prediction of the Nash equilibrium, but towards

a distribution of play in some neighbourhood of the equilibrium in which the ex-post

suboptimality of bids in expected-payoff terms is small but persistent.19

19 Alternatively, one could take a directional-learning approach, and ask, at the level of individual par-

ticipants, whether they move in the direction of the myopic best response to the previous period’s play.

This can be done in two ways: in the strategy space (is |bi,t+1 − b⋆(b−i,t )| < |bi,t − b⋆(b−i,t )|?) or in

the earnings space (is ui (bi,t+1, b−i,t ) > ui (bi,t , b−i,t )?). In the strategy space, this occurs 31.3% of

the time in 1W, 30.1% of the time in 2J, and 27.5% of the time in 2S; in the earnings space, this occurs

34.6% of the time in 1W, 34.2% of the time in 2J, and 30.6% of the time in 2S. These are broadly similar

in magnitude to data using this measure reported by Lim et al. (2014) for 1-winner contests with four

bidders. The analysis of the disequilibrium measure in the main text provides a more nuanced picture, as

it reflects that the bidding behaviours of the participants in a group co-evolve over time, and incorporates

the principle that the likelihood of adjusting a bid in an earnings-increasing direction is a function of the

potential earnings gains.

123



S. M. Chowdhury et al.

5 Discussion

We provide one of the first experimental studies on selecting multiple winners in

Tullock-style imperfectly discriminating contests. We extend to the case of multiple

winners a lottery ticket paradigm to implement the random realisation of the outcome

of the contest. Our results provide some guidance for the practical implementation of

Berry’s extension of the Tullock contest to the selection of multiple winners. Theoret-

ical analysis, combined with previous behavioural results on how people adapt their

play over time in contests, suggested that the 2-winner contests would be more difficult

for people to “learn”. Indeed we find evidence to support this hypothesis; adaptation is

indeed less systematic in the more noisy 2-winner contests, but nevertheless in the long

run bids on average in the 2-winner contests are similar to the strategically equivalent

1-winner contest.

Empirically studying the learnability of a mechanism is important because previous

experiments have reported that people do react to the ex-post outcome of the contest.

In the context of our controlled laboratory experiment, a heuristic of taking the contest

outcome into account for formulating strategy is not optimal for maximising payoffs.

We provide the full profile of bids in each period, and this is enough, in principle

at least, for a contestant to determine their best response, whether they wished to

maximise expected earnings, or if they wanted to take into account risk or explicitly

target probabilities of winning. The outcome of the contest contains no additional

information. Although reacting to the contest outcome is therefore not optimal in our

experiment, it would not at all naïve for someone playing a contest “in the wild”, in

which other’s bids may not be observed, or, in the case of contests where the bid is, for

example, an effort choice, even meaningfully observable. In that setting, one’s own

previous choices and the outcome of the contests may be all a contestant has to go on.

Therefore, the observation that adaptation is slower in the 2-winner contests could be

a relevant consideration for implementation.

There is a sense in which the 2-winner contests are more complex to implement

and, presumably, to understand solely from their description. In the 1-winner Tullock

contest, the probability of winning a prize is straightforward to operationalise, for

example using the instantiation of (virtual) tickets as in our experiment. It is less

straightforward to understand immediately from the description of the Berry CSF

how one’s chances of winning a prize in the 2-winner contest change as a function

of one’s own bid, given some arbitrary conjecture of bids by the other participants in

the group. As a crude counting-based measure of complexity, there are simply more

types of tickets in both of the the 2-winner contests than in the 1-winner contest, and

further there are two layers of ticket types in our exposition of the survivor selection

mechanism.

Although our analysis in Sect. 2 establishes strategic equivalence for contests with

the same effective prize value, the algebra in that section does not directly inform

how either of the 2-winner contests are implemented. To clarify this point, consider

a famous example of strategically equivalent mechanisms in the setting of auctions

for a single indivisible good when bidders have private values. It is well-known that

there is an equivalence in theory between the second-price sealed-bid auction, and an

ascending “clock” auction. In both cases it is a weakly dominant strategy to “bid one’s
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own value.” Experimentally, it is routinely found that many participants do not bid

their value in the second-price auction, while after a small amount of experience most

bidders do drop out at their value in the clock version. One reason for this is that the

clock auction takes the bidder through the chain of strategic reasoning that we use in

the game-theoretic analysis, making it transparent that the sensible thing to do is to

stay in the auction as long as the price is below their value, and exit as soon as it is

above; in effect it helps bidders reason contingency-by-contingency, which is exactly

how game theory says they ought to. Viewed this way, the ascending clock auction

translates game-theoretic reasoning into a procedure people find it easy to follow.

The parallel in imperfectly-discriminating contests using Berry’s success function

would be to transform to a 1-winner contest with the equivalent prize value, and

allocate the remaining prizes/payoffs randomly. As noted, this is not natural, or even

feasible in many situations in which prizes are not (only) amounts of money.20 It is

therefore an empirical question, whether people compete differently in multi-winner

contests when the procedure for realising the winner is described and implemented

differently. The mechanism in survivor selection is used in practice to communicate the

outcome of contests. This makes it a natural candidate for consideration; on the one

hand participants might find this implementation easier to understand, but survivor

selection necessarily creates a distinction among otherwise identical “non-winner”

places which could trigger idiosyncratic preferences for valuing, e.g., being the “first

runner-up.” We do not find significant differences between joint and survivor selection,

indicating that a contest designer is indeed free to choose either to suit their needs.21
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OpenAccess This article is licensed under a Creative Commons Attribution 4.0 International License, which
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20 This interpretation of the Berry success function was raised by Clark and Riis (1996); de Palma and

Munshi (2013) note that implementing the success function in this way would break the inherent indistin-

guishability of the winning prizes, and as such would not be applicable in all settings.

21 And, given the prevalence of survivor selection-type framing—perhaps not least because of the drama

it lends to the revelation of results—the hosts of pageants, and awards shows and dinners, will need to

continue exercising care as they read out results!
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A Proofs

A.1 Proposition 1

Before stating the proof of Proposition 1, we first establish two lemmas.

Lemma 1 Fix a profile of bids b with bi > 0 for at least one player i , and any

stage 2 ≤ r ≤ n. The probability that a given sequence (pn, pn−1, . . . , pr+1) is the

sequence of players eliminated prior to stage r is

(r − 1)!
∑

j∈Mr
b j

(n − 1)!
∑

j∈Mn
b j

(7)

Proof We prove the claim by induction. For the base case of r + 1 = n, Eq. (7)

simplifies to
(n−2)!

∑

j∈Mn\{pn } b j

(n−1)!
∑

j∈Mn
b j

=

∑

j∈Mn\{pn } b j

(n−1)
∑

j∈Mn
b j

, which is (2) for s = n as desired.

Now, fix a stage r and a sequence (pn, pn−1, . . . , pr+1, pr ), and assume the induc-

tion claim is true for (pn, pn−1, . . . , pr+1). The probability that pr is eliminated in

stage r , conditional on pn, pn−1, . . . , pr+1 being previously eliminated, is

(r − 1)!
∑

j∈Mr
b j

(n − 1)!
∑

j∈Mn
b j

×

∑

j∈Mr \{pr }
b j

(r − 1)
∑

j∈Mr
b j

=
(r − 2)!

∑

j∈Mr \{pr }
b j

(n − 1)!
∑

j∈Mn
b j

=
(r − 2)!

∑

j∈Mr−1
b j

(n − 1)!
∑

j∈Mn
b j

,

which is exactly the induction hypothesis with r − 1 replacing r . ⊓⊔

Lemma 2 Fix a profile of bids b with bi > 0 for at least one player i . The probability

that a given player i is eliminated at a given stage 2 ≤ r ≤ n, and therefore receives

prize vr , is

ρir (b) =

∑

j �=i b j

(n − 1)
∑

j∈N b j

, (8)

which is independent of r .

Proof Fix a stage r , and let Mi
r be the set of subsets of players, which consist of

exactly r players, one of whom is player i . Fix one such subset Mr ∈ Mi
r . There are

(n − r)! sequences of prior eliminations of the players in Mn \ Mr that result in Mr

being the remaining set at the start of stage r . Lemma 1 shows that the probability of

each one of these sequences is identical, as the expression (7) does not depend on the

order of elimination. By a counting argument, the probability that the set Mr is the set

of players to survive elimination rounds n, n − 1, . . . , r + 1 is therefore

(n − r)!
(r − 1)!

∑

j∈Mr
b j

(n − 1)!
∑

j∈Mn
b j

=

∑

j∈Mr
b j

(

n−1
k−1

)
∑

j∈Mn
b j

.
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The joint probability that Mr have survived to stage r and then i is eliminated in stage

r is

∑

j∈Mr
b j

(

n−1
r−1

)
∑

j∈Mn
b j

×

∑

j∈Mr \{i}
b j

(r − 1)
∑

j∈Mr
b j

=

∑

j∈Mr \{i}
b j

(n−1)!
(r−2)!(n−r)!

∑

j∈Mn
b j

=

∑

j∈Mr \{i}
b j

(n − 1)
(

n−2
r−2

)
∑

j∈Mn
b j

. (9)

Only the numerator of (9) depends on Mr . Consider
∑

Mr ∈Mi
r

∑

j∈Mr \{i}
b j . For each

other player j �= i , there are
(

n−2
r−2

)

sets in Mi
r which also contain player j , and

therefore b j appears
(

n−2
r−2

)

times in the double sum. Therefore, the total probability of

player i being eliminated at stage r is

∑

Mr ∈Mr

∑

j∈Mr \{i}
b j

(n − 1)
(

n−2
r−2

)
∑

j∈Mn
b j

=

(

n−2
r−2

)
∑

j �=i b j

(n − 1)
(

n−2
r−2

)
∑

j∈Mn
b j

=

∑

j �=i b j

(n − 1)
∑

j∈Mn
b j

.

⊓⊔

Proof of Proposition 1 Fix a profile of bids b with bi > 0 for at least one i . Lemma 2

shows that the conditional Tullock-type failure function (2) results in all prizes other

than the first being awarded uniformly according to the unconditional Tullock-type

failure function (8). The probability of receiving the first prize v1 is therefore

1 − (n − 1)

∑

j �=i b j

(n − 1)
∑

j∈N b j

=
bi

∑

j∈N b j

,

which is exactly the standard Tullock-type success function. If, on the other hand,

b = 0, the probability of receiving v − 1 is 1
n

, just as in the single-winner Tullock

game. Therefore the expected payoff to player i is

ui (b) =

⎧

⎨

⎩

bi
∑

j∈N b j
v1 +

∑

j �=i b j
∑

j∈N b j
·

∑n
r=2 vr

n−1
− bi if

∑n
j=1 b j > 0

1
n
v1 + 1

n

∑n
r=2 vr if

∑n
j=1 b j = 0.

This is exactly equivalent to a single-winner Tullock contest in which all non-winners

receive a payoff of
∑n

r=2 vr

n−1
, and is therefore strategically equivalent to a single-winner

Tullock contest with w = v1 −
∑n

r=2 vr

n−1
as the prize. In particular, player i’s best

response to any b with
∑

j �=i b j > 0 is

b⋆
i (b−i ) = max

⎛

⎝

√

√

√

√

(

v1 −

∑n
r=2 vr

n − 1

)

∑

j �=i

b j −
∑

j �=i

b j , 0

⎞

⎠
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and the unique Nash equilibrium is

bSS =

⎧

⎨

⎩

n−1
n2

(

v1 −
∑n

r=2 vr

n−1

)

if v1 −
∑n

r=2 vr

n−1
> 0

0 if v1 −
∑n

r=2 vr

n−1
≤ 0.

Defining ṽ ≡ v1 −
∑n

r=2 vr

n−1
completes the result. ⊓⊔

A.2 Proposition 2

Proof of Proposition 2 There are
(

n
k

)

sets in Nk . Each player j appears in exactly
(

n−1
k−1

)

of those sets. Therefore

∑

κ∈Nk

∑

j∈κ

b j =

n
∑

j=1

(

n − 1

k − 1

)

b j .

Let N i
k denote the set of all subsets consisting of exactly k players, one of which is

player i . There are
(

n−1
k−1

)

sets in N i
k . Observe that each player j �= i appears in exactly

(

n−2
k−2

)

of those sets. Therefore

∑

K∈N i
k

∑

j∈K

b j =

(

n − 1

k − 1

)

bi +
∑

j �=i

(

n − 2

k − 2

)

b j .

Player i receives one of the prizes valued at w if one of the sets in N i
k is selected,

which occurs with probability

∑

K∈N i
k

pK(b) =

∑

K∈N i
k

∑

j∈K b j
∑

κ∈Nk

∑

j∈κ b j

=

(

n−1
k−1

)

bi +
∑

j �=i

(

n−2
k−2

)

b j
∑n

j=1

(

n−1
k−1

)

b j

=
bi

∑n
j=1 b j

+
k − 1

n − 1
·

∑

j �=i b j
∑n

j=1 b j

. (10)

We see immediately that (10) is exactly the probability of winning the first prize in

survivor selection, plus k − 1 times the probability (8) of winning any of the other

prizes. Therefore, for each contingency b, the probability of player i winning one of

the k prizes valued v is the same as in the survivor selection mechanism. ⊓⊔
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B Instructions

Introduction (common to all treatments)

Welcome! You are about to participate in an experiment in the economics of decision-

making.

If you follow the instructions and make appropriate decisions, you can earn an

appreciable amount of money. At the end of today’s session you will be paid in private

and in cash.

It is important that you remain silent and do not look at other people’s work. If

you have any questions, or need assistance of any kind, please raise your hand and an

experimenter will come to you. If you talk, laugh, exclaim out loud, etc., you will be

asked to leave and you will not be paid. We expect and appreciate your cooperation.

Today’s session consists of two parts. The decisions you make in the two parts are

completely unrelated to each other. Your earnings for the session will be the total of

your earnings from the two parts.

Treatment-specific instructions for 1W

Part 2 of the session consists of 30 decision-making periods. At the conclusion of Part

2, any 5 of the 30 periods will be chosen at random, and your earnings from this part

of the experiment will be calculated as the sum of your earnings from those 5 selected

periods.

At the beginning of Part 2, you will be randomly and anonymously placed into a

group of 4 participants. Within each group, one participant will have ID number 1, one

ID number 2, one ID number 3, and one ID number 4. The composition of your group

remains the same for all 30 periods but the individual ID numbers within a group are

randomly reassigned in every period.

In each period, you may bid for a reward worth 160 pence. In your group, one of

the four participants will receive a reward. You begin each period with an endowment

of 160 pence. You may bid any whole number of pence from 0 to 160; fractions or

decimals may not be used.

If you receive a reward in a period, your earnings will be calculated as:

Your payoff in pence = your endowment − your bid + the reward.

That is,

Your payoff in pence = 160 − your bid + 160.

If you do not receive a reward in a period, your earnings will be calculated as:

Your payoff in pence = your endowment − your bid

That is,

Your payoff in pence = your endowment − your bid

The chance that you receive a reward in a period depends on how much you bid,

and also how much the other participants in your group bid. At the start of each period,
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all four participants of each group will decide how much to bid. Once the bids are

determined, a computerised lottery will be conducted to determine which participant

in the group will receive the reward. In this lottery draw, there are four types of tickets:

Type 1, Type 2, Type 3 and Type 4. Each type of ticket corresponds to the participant

who will receive the reward if a ticket of that type is drawn. So, if a Type 1 ticket

is drawn, then participant 1 will receive the reward; if a Type 2 ticket is drawn, then

participant 2 will receive the reward; and so on.

The number of each type of ticket depends on the bids of the corresponding participant:

• Number of Type 1 tickets = Bid of participant 1

• Number of Type 2 tickets = Bid of participant 2

• Number of Type 3 tickets = Bid of participant 3

• Number of Type 4 tickets = Bid of participant 4

Each ticket is equally likely to be drawn by the computer. If the ticket type that is

drawn has your ID number, then you will receive a reward for that period.

We will now work through an example of how the numbers of lottery tickets are

computed, and what you will see during a typical period of the session.

An example. Suppose participant 1 bids 80 pence, participant 2 bids 6 pence,

participant 3 bids 124 pence, and participant 4 bids 45 pence. Then:

• Number of Type 1 tickets = Bid of participant 1 = 80

• Number of Type 2 tickets = Bid of participant 2 = 6

• Number of Type 3 tickets = Bid of participant 3 = 124

• Number of Type 4 tickets = Bid of participant 4 = 45

There will therefore be a total of 80 + 6 + 124 + 45 = 255 tickets in the lottery. Each

ticket is equally likely to be selected. In each period, the calculations above will be

summarised for you on your screen, using a table like the one in this screenshot:

Interpretation of the table: The horizontal rows in the above table contain the

ID numbers of the four participants in every period. The vertical columns list the

participants’ bids, the corresponding ticket types, the total number of each type of

ticket (second column from right) and the range of ticket numbers for each type of
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ticket (last column). Note that the total number of each ticket type is exactly same as

the corresponding participant’s bid. For example, the total number of Type 1 tickets

is equal to Participant 1’s bid.

The last column gives the range of ticket numbers for each ticket type. Any ticket

number that lies within that range is a ticket of the corresponding type. That is, all the

ticket numbers from 81 to 86 are tickets of Type 2, which implies a total of 6 tickets of

Type 2, as appears in the ‘Total Tickets’ column. In case a participant bids zero, there

will be no ticket that contains his or her ID number. In such a case, the last column

will show ‘No tickets’ for that particular ticket type.

The computer then selects one ticket at random. The number and the type of the

drawn ticket will appear below the table. The ID number on the ticket type indicate

the participant receiving the reward.

At the end of 30 periods, the experimenter will approach a random participant and

will ask him/her to pick up five balls from a sack containing 30 balls numbered from

1 to 30. The numbers on those five balls will indicate the 5 periods, for which you

will be paid in Part 2. Your earnings from all the preceding periods will be throughout

present on your screen.

Treatment-specific instructions for 2J

Part 2 of the session consists of 30 decision-making periods. At the conclusion of Part

2, any 5 of the 30 periods will be chosen at random, and your earnings from this part

of the experiment will be calculated as the sum of your earnings from those 5 selected

periods.

At the beginning of Part 2, you will be randomly and anonymously placed into a

group of 4 participants. Within each group, one participant will have ID number 1, one

ID number 2, one ID number 3, and one ID number 4. The composition of your group

remains the same for all 30 periods but the individual ID numbers within a group are

randomly reassigned in every period.

In each period, you may bid for a reward worth 240 pence. In your group, two of

the four participants will receive a reward. You begin each period with an endowment

of 240 pence. You may bid any whole number of pence from 0 to 240; fractions or

decimals may not be used.

If you receive a reward in a period, your earnings will be calculated as:

Your payoff in pence = your endowment − your bid + the reward.

That is,

Your payoff in pence = 240 − your bid + 240.

If you do not receive a reward in a period, your earnings will be calculated as:

Your payoff in pence = your endowment − your bid

That is,

Your payoff in pence = your endowment − your bid

The chance that you receive a reward in a period depends on how much you bid,

and also how much the other participants in your group bid. At the start of each
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period, all four participants of each group will decide how much to bid. Once the

bids are determined, a computerised lottery will be conducted to determine which two

participants in the group will receive the rewards.

In this lottery draw, there are six types of tickets: Type 1&2, Type 1&3, Type 1&4,

Type 2&3, Type 2&4, and Type 3&4. Each type of ticket corresponds to the two

participants who will receive the rewards if a ticket of that type is drawn. So, if a Type

1&2 ticket is drawn, then participants 1 and 2 will receive the rewards; if a Type 1&3

ticket is drawn, then participants 1 and 3 will receive the rewards; and so on.

The number of tickets of each type depends on the bids of the corresponding two

participants:

• Number of Type 1&2 tickets = Bid of participant 1 + Bid of participant 2

• Number of Type 1&3 tickets = Bid of participant 1 + Bid of participant 3

• Number of Type 1&4 tickets = Bid of participant 1 + Bid of participant 4

• Number of Type 2&3 tickets = Bid of participant 2 + Bid of participant 3

• Number of Type 2&4 tickets = Bid of participant 2 + Bid of participant 4

• Number of Type 3&4 tickets = Bid of participant 3 + Bid of participant 4

Each ticket is equally likely to be drawn by the computer. If the ticket type that is

drawn includes your ID number, then you will receive a reward for that period.

We will now work through an example of how the numbers of lottery tickets are

computed, and what you will see during a typical period of the session.

An example. Suppose participant 1 bids 80 pence, participant 2 bids 6 pence, partic-

ipant 3 bids 124 pence, and participant 4 bids 45 pence. Then:

• Number of Type 1&2 tickets = Bid of participant 1 + Bid of participant 2 = 80 +

6 = 86

• Number of Type 1&3 tickets = Bid of participant 1 + Bid of participant 3 = 80 +

124 = 204

• Number of Type 1&4 tickets = Bid of participant 1 + Bid of participant 4 = 80 +

45 = 125

• Number of Type 2&3 tickets = Bid of participant 2 + Bid of participant 3 = 6 +

124 = 130

• Number of Type 2&4 tickets = Bid of participant 2 + Bid of participant 4 = 6 + 45

= 51

• Number of Type 3&4 tickets = Bid of participant 3 + Bid of participant 4 = 124 +

45 = 169

There will therefore be a total of 86 + 204 + 125 + 130 + 51 + 169 = 765 tickets in

the lottery. Each ticket is equally likely to be selected. In each period, the calculations

above will be summarised for you on your screen, using a table like the one in the

following screenshot.
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Interpretation of the table: The horizontal rows in the above table show the

different types of lottery tickets that are generated by the computer in every period.

The vertical columns list the participants’ bids, the total number of each type of

ticket (second column from right) and the range of ticket numbers for each type of

ticket (last column). Note that the total number of each ticket type is the sum of the

two corresponding participants’ bids. For example, total number of Type 1&2 tickets

is the sum total of Participant 1’s bid and participant 2’s bid. Therefore, the table

cell corresponding to Type 1&2 and Participant 4’s bid is kept blank, and so is the

table cell corresponding to Type 1&2 and Participant 3’s bid. Similarly, the table cell

corresponding to Type 2&3 and Participant 1’s bid is kept blank, and so is the one

corresponding to Type 2&3 and Participant 4’s bid.

The last column gives the range of ticket numbers for each ticket type. Any ticket

number that lies within that range is a ticket of the corresponding type. That is, all

the ticket numbers from 87 to 290 are tickets of Type 1&3, which implies a total of

204 tickets of Type 1&3, as appears in the ‘Total Tickets’ column. In case any three

participants all bid zero, there will be no ticket that contains those three ID numbers

together. In such a case, the last column will show ‘No tickets’ for that particular ticket

type.

The computer then selects one ticket at random. The number and the type of the

drawn ticket will appear below the table. The two ID numbers on the ticket type

indicate the two participants receiving the rewards.

At the end of 30 periods, the experimenter will approach a random participant and

will ask him/her to pick up five balls from a sack containing 30 balls numbered from

1 to 30. The numbers on those five balls will indicate the 5 periods, for which you

will be paid in Part 2. Your earnings from all the preceding periods will be throughout

present on your screen.

Treatment-specific instructions for 2S

Part 2 of the session consists of 30 decision-making periods. At the conclusion of Part

2, any 5 of the 30 periods will be chosen at random, and your earnings from this part
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of the experiment will be calculated as the sum of your earnings from those 5 selected

periods.

At the beginning of Part 2, you will be randomly and anonymously placed into a

group of 4 participants. Within each group, one participant will have ID number 1, one

ID number 2, one ID number 3, and one ID number 4. The composition of your group

remains the same for all 30 periods but the individual ID numbers within a group are

randomly reassigned in every period.

In each period, you may bid for a reward worth 240 pence. In your group, two of

the four participants will receive a reward. You begin each period with an endowment

of 240 pence. You may bid any whole number of pence from 0 to 240; fractions or

decimals may not be used.

If you receive a reward in a period, your earnings will be calculated as:

Your payoff in pence = your endowment − your bid + the reward.

That is,

Your payoff in pence = 240 − your bid + 240.

If you do not receive a reward in a period, your earnings will be calculated as:

Your payoff in pence = your endowment − your bid

That is,

Your payoff in pence = your endowment − your bid

The chance that you receive a reward in a period depends on how much you bid,

and also how much the other participants in your group bid. At the start of each

period, all four participants of each group will decide how much to bid. Once the

bids are determined, a computerised lottery will be conducted to determine which two

participants in the group will receive the rewards.

This lottery will be conducted in two phases. In the first phase, there are four types

of tickets: Type 1&2&3, Type 1&2&4, Type 1&3&4, and Type 2&3&4. Each type of

ticket corresponds to the three participants who will continue on to the second phase

if a ticket of that type is drawn. So, if a Type 1&2&3 ticket is drawn, then participants

1, 2, and 3 will continue to the second phase; if a Type 1&3&4 ticket is drawn, then

participants 1, 3, and 4 will continue to the second phase; and so on.

The number of tickets of each type depends on the bids of the corresponding three

participants:

• Number of Type 1&2&3 tickets = Bid of participant 1 + Bid of participant 2 + Bid

of participant 3

• Number of Type 1&2&4 tickets = Bid of participant 1 + Bid of participant 2 + Bid

of participant 4

• Number of Type 1&3&4 tickets = Bid of participant 1 + Bid of participant 3 + Bid

of participant 4

• Number of Type 2&3&4 tickets = Bid of participant 2 + Bid of participant 3 + Bid

of participant 4

Each ticket is equally likely to be drawn by the computer. If the ticket type that is

drawn includes your ID number, then you will continue to the second phase.
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In the second phase, there are three types of tickets. The types of tickets depend on

which three participants have continued on to the second phase:

• If Participants 1, 2, and 3 have continued, then the types will be Type 1&2, Type

1&3, and Type 2&3;

• If Participants 1, 2, and 4 have continued, then the types will be Type 1&2, Type

1&4, and Type 2&4;

• If Participants 1, 3, and 4 have continued, then the types will be Type 1&3, Type

1&4, and Type 3&4;

• If Participants 2, 3, and 4 have continued, then the types will be Type 2&3, Type

2&4, and Type 3&4.

Each type of ticket corresponds to the two participants who will receive the two rewards

if a ticket of that type is drawn. So, if a Type 1&2 ticket is drawn, then participants

1 and 2 will receive the rewards; if a Type 1&3 ticket is drawn, then participants 1

and 3 will receive the rewards; and so on. The number of each type of tickets will

be computed using a formula similar to the one used in the first phase. Suppose, for

example, that in the first phase a Type 1&2&3 ticket was chosen, and Participants 1,

2, and 3 have continued to the second phase. Then, the number of tickets of each type

depends on the bids of the corresponding participants as follows:

• Number of Type 1&2 tickets = Bid of participant 1 + Bid of participant 2

• Number of Type 1&3 tickets = Bid of participant 1 + Bid of participant 3

• Number of Type 2&3 tickets = Bid of participant 2 + Bid of participant 3.

The formulas for the cases when a Type 1&2&4, Type 1&3&4, or Type 2&3&4

ticket is chosen in the first phase are similar. We will now work through an example

of how the numbers of lottery tickets are computed, and what you will see during a

typical period of the session.

An example. Suppose participant 1 bids 80 pence, participant 2 bids 6 pence,

participant 3 bids 124 pence, and participant 4 bids 45 pence. Then, in the first phase:

• Number of Type 1&2&3 tickets = Bid of participant 1 + Bid of participant 2 + Bid

of participant 3 = 80 + 6 + 124 = 210

• Number of Type 1&2&4 tickets = Bid of participant 1 + Bid of participant 2 + Bid

of participant 4 = 80 + 6 + 45 = 131

• Number of Type 1&3&4 tickets = Bid of participant 1 + Bid of participant 3 + Bid

of participant 4 = 80 + 124 + 45 = 249

• Number of Type 2&3&4 tickets = Bid of participant 2 + Bid of participant 3 + Bid

of participant 4 = 6 + 124 + 45 = 175

There will therefore be a total of 210 + 131 + 249 + 175 = 765 tickets in the

first phase lottery. Each ticket is equally likely to be selected. In each period, the

calculations above will be summarised for you on your screen, using a table like the

one in this screenshot:
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Interpretation of the table: The horizontal rows in the above table shows the

different types of lottery tickets that are generated by the computer in every period.

The vertical columns lists the participants’ bids, the total number of each type of

ticket (second column from right) and the range of ticket numbers for each type of

ticket (last column). Note that the total number of each ticket type is the sum of the

three corresponding participants’ bids. For example, total number of Type 1&2&3

tickets is the sum total of Participant 1’s bid, Participant 2’s bid and participant 3’s

bid. Therefore, the table cell corresponding to Type 1&2&3 and Participant 4’s bid is

kept blank. Similarly, the table cell corresponding to Type 2&3&4 and Participant 1’s

bid is blank. The last column gives the range of ticket numbers for each ticket type.

Any ticket number that lies within that range is a ticket of the corresponding type. That

is, all the ticket numbers from 211 to 341 are tickets of Type 1&2&4, which implies a

total of 131 tickets of Type 1&2&4, as appears in the ‘Total Tickets’ column. In case

any three participants all bid zero, there will be no ticket that contains those three ID

numbers together. In such a case, the last column will show ‘No numbers’ for that

particular ticket type.

The computer then selects one ticket at random. The number and the type of the

drawn ticket will appear below the table. The three ID numbers on the ticket type

indicate the three participants continuing to Phase 2.

Suppose a ticket of Type 1&2&3 is selected in the first phase. Then, in the second

phase, there will be Type 1&2, Type 1&3, and Type 2&3 tickets. The number of tickets

of each type will be:

• Number of Type 1&2 tickets = Bid of participant 1 + Bid of participant 2 = 80 +

6 = 86

• Number of Type 1&3 tickets = Bid of participant 1 + Bid of participant 3 = 80 +

124 = 204

• Number of Type 2&3 tickets = Bid of participant 2 + Bid of participant 3 = 6 +

124 = 130.

There will therefore be a total of 86 + 204 + 130 = 420 tickets in the second phase

lottery. Each ticket is equally likely to be selected.
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In each period, the calculations above will be summarised for you on your screen,

using a table like the one in the following screenshot.

The interpretation of this table is same as the table shown in phase 1. Since only three

participants survive for phase 2, this table contains three rows for the ticket types. The

columns and the interpretation of the cells are the same. Again the computer selects

one ticket at random. The number and the type of the drawn ticket will appear below

the table. The two ID numbers on the ticket type indicate the two participants receiving

the rewards.

At the end of 30 periods, the experimenter will approach a random participant and

will ask him/her to pick up five balls from a sack containing 30 balls numbered from

1 to 30. The numbers on those five balls will indicate the 5 periods, for which you

will be paid in Part 2. Your earnings from all the preceding periods will be throughout

present on your screen.
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C Feedback screen

Below is the screenshot of a typical feedback table for Treatment 2J. Similar screens

were used for 1W and 2S; in 2S, there were two such tables, one for each draw.
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