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We consider the maintenance of ‘product’ cell populations from ‘progenitor’
cells via a sequence of one or more cell types, or compartments, where each
cell’s fate is chosen stochastically. If there is only one compartment then
large amplification, that is, a large ratio of product cells to progenitors comes
with disadvantages. The product cell population is dominated by large
families (cells descended from the same progenitor) and many generations
separate, on average, product cells from progenitors. These disadvantages
are avoided using suitably constructed sequences of compartments: the ampli-
fication factor of a sequence is the product of the amplification factors of
each compartment, while the average number of generations is a sum over
contributions from each compartment. Passing through multiple compart-
ments is, in fact, an efficient way to maintain a product cell population from
a small flux of progenitors, avoiding excessive clonality and minimizing the
number of rounds of division en route. We use division, exit and death rates,
estimated from measurements of single-positive thymocytes, to choose
illustrative parameter values in the single-compartment case.We also consider
a five-compartment model of thymocyte differentiation, from double-negative
precursors to single-positive product cells.
1. Introduction
Cell populations in organs and tissues are continuously replenished. There are
many biological systems in which a small flux of progenitor cells continuously
replenishes large populations of ‘product’ cells via a structured developmental
journey through a sequence of intermediate cell types [1–3]. Each cell type is
referred to as a ‘compartment’, whether or not it corresponds to a physical
location. In different contexts, product cells may be termed ‘mature’, ‘exhausted’,
‘fully differentiated’ or ‘effector’ cells [4–6]. We model such systems, assuming
that cells in each compartment may die, divide or ‘transit’ to the next compart-
ment, according to probabilistic rules. Only cells that reach the end of the
sequence are called product cells. The set of product cells descended from a
single progenitor is called a family. Theoretical and experimental arguments
suggest that variability of family sizes is unavoidable if the fates of individual
cells are subject to chance [7–10].

The dynamics of cellular developmental pathways is studied using recently
developed heritable labels, where individual progenitor haematopoietic and
immune cells are tagged and their progeny counted [9–12]. Different experimental
definitions of what constitutes a compartment are adopted: most often, human or
mouse cells are classified by the abundance of one or more types of molecules on
their surface, measured using flow cytometry. For example, in a study of the
specific CD8+ T-cell response to persistent Toxoplasma gondii infection, the surface
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Figure 1. The one-compartment system. A single progenitor cell (shown on the left, green) is the founder of the population. In the compartment (represented by
the dashed box), each cell (shown as a blue filled circle), independently, may die, divide or ‘exit’. An exit event is the differentiation of a cell to product cell type
(shown as a red empty circle). The random variable R is the number of product cells when no cells remain in the compartment. We count the product cells as a
cumulative total and do not consider any death or division events of product cells. The quantity N = IE(R) is the ‘amplification factor’: the mean number of product
cells per progenitor.
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markers CXCR3 and KLRG1 were used to identify an inter-
mediate T-cell subset between memory and effector cells [13].

Maturation and selection of T cells in the thymus takes place
via a sequence of cellular phenotypes, from bone-marrow pro-
genitors to single-positive (SP4 or SP8) thymocytes [14–17],
leading, in the case of an adult mouse, to about one million T
cells per day exiting the thymus [18,19]. In an adaptive immune
response, naive antigen-specific T-cell populations expand dra-
matically. The numbers and phenotypes of descendants of
individual naive T cells are highly variable, but the magnitude
of the total response is reproducible when the output of many
families is combined [9,10,20]. Variability of family sizes is
confirmed by direct time-lapse observations in vitro [8].

Hundreds of billions of blood cells are replaced every day
in a typical adult, all descended from small numbers of
haematopoietic stem cells (HSCs) [21–23]. HSCs produce
multi-potent progenitor cells (MPPs) [2,10,24] through a hierar-
chy of cellular states [25]: more primitive HSC1s and more
mature HSC2s, followed by MPP1, MPP2 and MPP3 cells.
Low rates of division of cells in early compartments of a lineage
are conjectured to reduce the risk that potentially cancerous
mutations accumulate [26–28]. Increased risk of T-cell acute
lymphoblastic leukaemia [29,30] is indeed found if the early
compartments of the usual thymic sequence are absent [31,32].

Here, we examine the amplification of a small flux of
progenitor cells to continuously replenish a product cell
population from a theoretical perspective, based on stochastic
rules governing the fates of individual cells. We calculate the
probability distributions of the number of product cells per
progenitor cell, and of the number of rounds of division
that separates them. Our particular focus is on how these dis-
tributions depend on the number of compartments. Every
cell in each compartment undergoes one of three fates: the
cell may divide, die or make a transition to the next compart-
ment [33–36]. The ‘transition’ event, corresponding to cell
differentiation in many biological contexts, is called ‘exit’
for short. The balance of probabilities between fates depends
on the compartment but each cell in a compartment chooses
its fate independently. In this sense, our scheme is simpler
than models that include interaction and competition
between cells [37,38]. A consequence of our assumption of
independence is that a cell’s division probability must be
less than one half (otherwise the mean number of cells that
descend from it would be infinite).

We analyse the possible descendants of one progenitor
cell, families of cells that journey through the sequence of
compartments. The number of cells from one family that
become product cells is the random variable R. To model the
case where a small input flux of progenitors replenishes a
larger product population, the mean of R will be large. In §2,
we find the probability distribution of R as the ultimate state
of a multi-type branching process [39]. The mean number of
product cells per progenitor, IE(R), is denoted N. If there is a
constant mean influx, ϕ, of progenitor cells, then there is a con-
stant mean outflux, Nϕ, of product cells. The single-
compartment case is illustrated in figure 1. It may be termed
‘direct differentiation’ because only one such event is needed
to convert a progenitor cell to a product cell. We note that the
product cell population (red circles) consists of cells that
become product cells at different times. Similarly, the solid
blue circles in figure 1 represent cells that are born, and may
die, at different times. In this single-compartment scheme,
large values of N are always associated with a high degree of
clonality. Excessive ‘clonality’, where the variation in family
size, from one progenitor to another, causes the population of
product cells to be dominated by a few large families, may
increase the risk of cancerous mutations becoming established
in the population [40,41]. For example, themean ofR is equal to
10 if 10 per cent of progenitors yield 100 product cells, and the
remainder yield none. One of our main results is that large
values of N are possible without excessive clonality when the
number of compartments, C, is greater than one, as illustrated
in figure 2.

The ability of product cells to perform their functionmay be
negatively affected by the number of rounds of cell division
that separates them from their progenitor, because every
round of division brings with it a risk of mutation [42,43].
For this reason, as well as identifying an individual cell by
the compartment it belongs to, c = 1,…, C, we label it by gener-
ation, n = 0, 1,…. The progenitor cell is said to be in generation
0.Whenever a cell in generation n divides, the result is two cells
in generation n + 1 [44,45]. From this point of view, the popu-
lation of product cells is heterogeneous because it is made up
of cells of different generations (figure 3), cells with different
‘replicative histories’ [23] or ‘replicative ages’ [46]. Our analysis
centres on the random variableG, defined to be the generation
number of a randomly selected product cell.

The paper is organized as follows. Sections 2–4 consist of
the main theoretical results and a set of remarks. In §2, we
analyse the case C = 1. Explicit expressions for the distri-
bution of family sizes are obtained via the probability
generating function. In §3, we consider sequences of



Figure 2. The multiple-compartment system. A single progenitor cell (shown on the left, green) is the founder of the population. Each cell in compartment c,
independently, may die, divide or transit from compartment c to compartment c + 1, where c = 1,…, C− 1. Cells that exit compartment C are product cells
(shown in red). The overall amplification factor N is the mean number of product cells per progenitor, which is the product of the amplification factors in
each compartment.
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Figure 3. We classify the set of product (red) cells according to generation (number of divisions from the progenitor cell). The progenitor cell is said to be in
generation 0. Whenever a cell in generation n divides, the result is two daughter cells in generation n + 1. The final state of the process is a population of red cells,
each having made the transition at a different time and each with its own generation number. The case C = 1 is illustrated here. If C > 1 then the mean number of
divisions in the product population is the sum of the mean numbers of divisions in each compartment.
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compartments: cells may make a transition from compart-
ment c to compartment c + 1, for c = 1,…, C− 1. We treat
the structured journey of development from a single progeni-
tor cell to a population of product cells as a realization of a
multi-type branching process [47,48]. By contrast, we note
that discretized age-structured models [49] are different
from sequences of compartments because birth events pro-
duce new individuals in the first compartment only. Since
we are interested in the ultimate fate of the system, we pro-
ceed as in the theory of discrete-time branching processes,
by defining relationships between random variables using
probability generating functions. For instance, the probability
generating function of the number of cells that exit the final
compartment, descended from one progenitor cell, is given
as a composition of probability generating functions. Note
that, while mean quantities can also be obtained by solving
linear systems of ordinary differential equations [50–54], the
full distribution of R is encoded in its probability generating
function. The product cell population, classified into gener-
ations, is examined in §4. In particular, we consider the
random variable G: its mean value, D, and its distribution
(as encoded in its probability generating function). In §5,
we generalize our considerations to include a fourth type of
event: asymmetric division; that is, a division event that
leaves one daughter cell in the same compartment in which
the mother cell divided and the other daughter cell exits
the compartment. The appendices provide additional details,
not included in the main body of the manuscript. In particu-
lar, the recursion relations that we use to generate the
probability that k cells exit from one or two compartments
are given in appendix A; the variance of the random variable
R, which is proportional to N2+1/C when N is large, is calcu-
lated in appendix B; and the generalization of our methods to
include asymmetric division is presented in appendix C.
2. How many cells exit a compartment?
The case of one compartment is illustrated in figure 1. Three
types of single-cell events contribute to the creation of a
family of product cells from a single progenitor: individual
cells may divide, die or transit (or differentiate) to a different
cell type, or compartment. Our assumption is that every cell
in a given compartment follows the same rules, indepen-
dently, which is a fundamental assumption in branching
processes [55,56]. Here, we restrict ourselves to counting
cells, ignoring both inter-event times and the total time
taken for progeny to disappear from all intermediate com-
partments and exit from the last one.

Analyses based on ordinary differential equations can
calculate mean quantities, such as the mean number of
product cells per progenitor. We, instead, calculate full distri-
butions using first-step arguments and the probability
generating function. The full distribution is of particular rel-
evance in experiments where only a finite number of
families can be tracked. When the rules at the level of a
single cell are stochastic, some progenitors do not yield any
product cells, while some found large families.

In this section, we analyse the case of one compartment,
C = 1. Each cell in the compartment, independently, may
die, divide or exit the compartment, with respective probabil-
ities pd, pb and pe, where pd + pb + pe = 1. We assume that

pd þ pe . pb, ð2:1Þ

so that extinction is the ultimate fate of the population of
(blue) cells in the compartment. Exit has the same effect as
death on the population in the compartment because exited
cells play no further part in the dynamics of that compart-
ment. Although the ultimate fate of the system is not
affected by the inter-event time distributions, it is useful to
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keep in mind some examples that satisfy the assumptions that
every cell independently, dies, divides or exits with probabil-
ities pd, pb and pe, respectively.

— A continuous-time birth–death-migration Markov process
with exponential waiting times, where the probabilities
pb, pd and pe are related to the rates of death, division and
exit (i.e. migration), μ, λ and ν, respectively, by

pd ¼ m

mþ nþ l
, pb ¼ l

mþ nþ l
and

pe ¼ n

mþ nþ l
:

ð2:2Þ

Sawicka et al. [14] estimated μ, λ and ν for SP4 and SP8
thymocytes based on experimental data [57]. The estimated
division rates were λ4 = 0.181 day−1 and λ8 = 0.085 day−1;
death rates μ4 = 0.040 day−1 and μ8 = 0.110 day−1; and exit
rates ν4 = 0.231 day−1 and ν8 = 0.152 day−1, respectively
for SP4 and SP8 (see §3.3, table 2 of [14]).

— A population in which each cell is assigned three inde-
pendent random variables: a death time τd, a division
time τb and a differentiation time τe. The fate of the cell
is whichever is the minimum of the three times [8,58].
Then, probabilities can be defined as follows:

pd ¼ P(td , tb and td , te),

pb ¼ P(tb , td and tb , te),

and pe ¼ P(te , tb and te , td):

We note that (2.2) holds in the case where the probability
densities of τd, τb and τe are exponential.

The random variable R is the total number of product cells,
starting from a single progenitor cell. Let us define qk
as follows:

qk ¼ P(R ¼ k), k ¼ 0, 1, 2, . . . : ð2:3Þ

We make use of the following argument based on the first
event that occurs in the compartment. If the first event is
cell division, then the two daughter cells, independently,
follow the same rules as their mother. Therefore, q0 satisfies
the quadratic equation

q0 ¼ pd þ pbq20: ð2:4Þ

We can read (2.4) as a sum over the three possible first events,
making use of the law of total probabilityX

s[fd,e,bg
ps P(R ¼ 0j first event is s) ¼ pd1þ pe0þ pbq20:

Because q0 is a probability, we take the solution of (2.4) in the
interval [0, 1], given by

q0 ¼ 1� D

2pb
¼ 2pd

1þ D
, where D2 ¼ 1� 4pdpb: ð2:5Þ

Similarly, the mean of R can be written as

N ¼ IEðRÞ ¼
X

s[fd,e,bg
ps IEðRj first event is sÞ

¼ pd0þ pe1þ pb2N, ð2:6Þ

so

N ¼ pe
1� 2pb

: ð2:7Þ
The condition (2.1), which is equivalent to 2pb < 1, assures
that N is finite. We also observe that pb must be close to 1

2
for N to be large.

The probability q1 satisfies an equation similar to (2.4)

q1 ¼ pe þ pb2q0q1: ð2:8Þ

Thus, we have q1 = pe/Δ. We may find further qk (for k≥ 2)
making use of the relationship

qk ¼ pb(qkq0 þ qk�1q1 þ � � � þ q1qk�1 þ q0qk), so

qk ¼ pb
D

Xk�1

j¼1

qjqk�j, k � 2:
ð2:9Þ

However, it is more convenient to consider the probability
generating function of the random variable R, defined as

fðzÞ ¼ IEðzRÞ ¼ q0 þ q1zþ q2z2 þ � � � : ð2:10Þ

The probability generating function, like q0, satisfies a quad-
ratic equation [59,60]

fðzÞ ¼
X

s[fd,e,bg
ps IEðzRj first event is sÞ

¼ pdz0 þ pez1 þ pbf2ðzÞ:

Thus, taking the sign of the square root that yields ϕ(1) = 1,
we obtain

fðzÞ ¼ 1� ð1� 4pbpd � 4pbpezÞ1=2
2pb

: ð2:11Þ

Using either (2.11) or (2.9), we find

qk ¼ pb
D

� �k�1 pe
D

� �k
ck�1, k � 1, ð2:12Þ

where c0 = 1 and for k≥ 1, we have

ck ¼ ð2kÞ!
k!ðk þ 1Þ! :

The ck are known as the Catalan numbers [61]. Examples of qk
are shown in figure 4 for two different choices of pb and pe.
With the estimates of Sawicka et al. [14], N≃ 2.57 (for SP4
thymocytes) and N≃ 0.86 (for SP8 thymocytes).

The distribution (2.12) of the random variable R is not one
of the well-known distributions, such as Poisson or geo-
metric. We therefore provide some remarks on its properties.

Remark 2.1. Given any two of pd, pb and pe, we can recover
the third using pd + pb + pe = 1. In fact, we may parametrize
the compartment in terms of any two, linearly independent,
combinations of pd, pb and pe. We will, on occasions, use N
itself along with pd. That is, using N = pe/(1− 2pb), we
can write

pb ¼ N � 1þ pd
2N � 1

and pe ¼ Nð1� 2pdÞ
2N � 1

: ð2:13Þ

Remark 2.2. The variance, V, of R is given by

V ¼ f00ð1Þ þN �N2 ¼ 2pb
pe

N3 þN �N2, ð2:14Þ
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Figure 4. The quantity qk is the probability that k cells exit a compartment, descended from one progenitor cell. Results, using (2.12), are shown for two different
choices of pb and pe. (a) We use the estimates of Sawicka et al. [14]: pb = 0.4004 and pd = 0.0885 for SP4 thymocytes. (b) Their estimates for SP8 thymocytes: pb =
0.2449 and pd = 0.3170.
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2 q

k

Figure 5. (a) The probability, qk (using (2.12) and (2.16)), that the number of product cells is k, logarithmic scales, with and without death. The dashed line is the
power law qk = k−3/2. (b) k3/2qk in the same two cases. The vertical dotted lines, at k = 6N2/(1− 2pd), indicate where the power law ceases to be an accurate
approximation. The parameter values, calculated using (2.13) so that N = 2.57 in both cases, are pd = 0, pb = 0.455, pe = 0.545, and pd = 0.0885, pb = 0.4004,
pe = 0.5111. The latter set of values corresponds to those of SP4 thymocytes, as discussed above.
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which can be rewritten as

V ¼ 2
1� 2pd

ðN � 1þ pdÞN2 þN �N2: ð2:15Þ

Thus, the standard deviation of R is proportional to N3/2 as
N→ +∞.

Remark 2.3. It is convenient to generate values of qk, (k≥ 1),
via the recursion relation

qkþ1 ¼ 2k � 1
k þ 1

2pbpe
1� 4pbpd

qk: ð2:16Þ

Remark 2.4. We note that [62]

qk ,
peffiffiffiffi
p

p
D
gk�1
1 k�3=2, k � 1, ð2:17Þ

where we have introduced

g1 ¼
4pbpe

1� 4pbpd
: ð2:18Þ

If N≫1, then we have γ1≃ 1− ((1− 2pd)/4N
2).

Remark 2.5. The factor k−3/2 in (2.17) can be understood
[63–65] as resulting from the square-root singularity in
the probability generating function (2.11) rearranged
as follows:

2pbfðzÞ ¼ 1� Dð1� g1zÞ1=2: ð2:19Þ

Remark 2.6. The right-hand side of (2.17) is the asymptotic
form of qk as k→ +∞ [62]. That is, we have

log
qkþ1

qk

� �
≃ logg1 �

3
2
log 1þ 1

k

� �
,

when k≫ 1. If, in addition, N≫1 then we can write

log
qkþ1

qk

� �
≃ � 1� 2pd

4N2 � 3
2
1
k
: ð2:20Þ

The decrease in qk as a function of k is primarily due
to the factor k−3/2, when (1− 2pd)k < 6N2; thereafter, it
is due to the factor gk1 (figure 5). We may summarize the
behaviour of qk as having two regimes: it is first governed
by the power law when k is small enough that gk1 ≃ 1,
then by the geometric term at values of k greater than 6N2/
(1− 2pd).

Remark 2.7. In a population of cells made up of multiple
realizations of R, we can also understand the dominance of
large families of cells by evaluating k50, the lowest value of
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k such that half of the cells are part of a family of fewer than k
cells. That is,

N
2
,
Xk50
k¼1

kqk:

Using (2.17), kqk , ð pe= ffiffiffiffi
p

p
DÞð1= ffiffiffi

k
p Þ, so we can write

ffiffiffi
p

p
D

2pe
N ,

Xk50
k¼1

1ffiffiffi
k

p ,

ffiffiffi
p

p
D

2pe
N , 2

ffiffiffiffiffiffi
k50

p

and k50 . pD2

16p2e
N2:

ð2:21Þ

Assuming N > 1 and using (2.13), we conclude

k50 .
p

16
D2

ð1� 2pdÞ2
ð2N � 1Þ2: ð2:22Þ

The factor Δ2/(1− 2pd)
2 is an increasing function of pd. In sum-

mary, for a given value of N, k50 is minimized by setting pd = 0.
An analytical bound on this minimum is k50 > (π/16)(2N− 1)2.
Some numerical examples are: whenN = 10 and pd = 0, k50 = 83
and the analytical bound (2.22) is k50 > 71; when N = 102 and
pd = 0, k50 = 9009 and the bound is k50 > 7775.
3. How many cells exit a sequence of
compartments?

We now consider the case where there are C compartments
before the final population of product cells. The random vari-
able R is the number of product cells, descended from one
cell in the first compartment. That is, there are C ‘transition’
or ‘differentiation’ events between the progenitor and the
product phenotype. The case C = 1 was analysed in §2. The
case C≥ 2 is illustrated in figure 2.

Each cell, independently,maydie, divideormakeatransition
from its current compartment to the next, with probabilities

pdðcÞ, pbðcÞ and peðcÞ,
where pd(c) + pb(c) + pe(c) = 1 for each c, with c= 1,…,C. The con-
dition (2.1), that guarantees a finite number of product cells, is
imposed in each compartment

pdðcÞ þ peðcÞ . pbðcÞ, for each c, with c ¼ 1, . . . , C:

The quantity Nc = pe(c)/(1− 2pb(c)) is the mean number of cells
exiting compartment c for each cell that makes a transition to
that compartment (from compartment c− 1). If Rc is the
number of cells exiting compartment c, descended from one
cell in compartment c, then the probability generating function
of Rc is

fcðzÞ ¼
1� [D2

c � 4pbðcÞpeðcÞz]1=2
2pbðcÞ , c ¼ 1, . . . , C, ð3:1Þ

with D2
c ¼ 1� 4pdðcÞpbðcÞ. We can write Nc= IE(Rc) = ϕ0c(1).

We seek Qk(C ), the probability that the number of product
cells, descended from a single progenitor via C intermediate
compartments, is equal to k. We can write

QkðCÞ ¼ P(R ¼ k), k ¼ 0, 1, 2, . . . : ð3:2Þ
The probability generating function of R is given by

FCðzÞ ¼ IEðzRÞ ¼ Q0ðCÞ þ zQ1ðCÞ þ z2Q2ðCÞ þ � � � : ð3:3Þ
If C = 1 (there is only one compartment) then we recover the
results of §1. That is, Qk(1) = qk and F1ðzÞ ¼ f1ðzÞ. If C = 2, we
may write

R ¼
XR1

i¼1

R2,i, ð3:4Þ

where the R2,i are identical and independent random variables
with the same distribution asR2. Using (3.4), we find [55,56,60]

F2ðzÞ ¼ f1ðf2ðzÞÞ: ð3:5Þ
In general, we have

FCðzÞ ¼ f1ðf2ð� � �fCðzÞÞÞ: ð3:6Þ
Wemaintain the notation thatR is the number of product cells,
N the mean and V the variance of R. The overall amplification
factor is then given by

N ¼
YC
c¼1

Nc: ð3:7Þ
Remark 3.1. The definition (3.3) relates the probability gener-
ating function to a set of probabilities. Different algorithms
exist for extracting numerical values of the probabilities in
situations where the probability generating function is
known [66]. Because we have found it convenient to generate
values of Qk(C) using a recursion relation similar to (2.16), we
show how to obtain such relations in appendix A.

Remark 3.2. An interesting feature of the distribution of R is
the universality of its large-k behaviour

QkðCÞ/ gkCk
�3=2, as k ! þ1: ð3:8Þ

We may determine γC by locating the square-root singularity
of FCðzÞ [63–65]. We find that g1 ¼ 4pbð1Þpeð1Þ=D2

1 and γ2
satisfies 4pbð1Þpeð1Þf2ðg�1

2 Þ ¼ D2
1.

We define

xCðzÞ ¼ f2ðf3ð� � �fCðzÞÞÞ, ð3:9Þ
so that (2.19) is generalized to

[1� 2pbð1ÞFCðzÞ]2 ¼ D2
1½1� g1xCðzÞ�: ð3:10Þ

We expand around z = 1, making use of the fact that χ(1) = 1
and χ0(1) =N/N1, to obtain

1� g1xCðzÞ ≃ 1� g1 1� ð1� zÞ N
N1

� �

¼ g1
N

N1 � 1

� �
þ 1

� �
1� g1N=N1

g1ðN=N1 � 1Þ þ 1
z

� �
:

We are then able to identify

gC ¼ 1þ 1� g1
g1N=N1

� ��1

: ð3:11Þ

If N1, N≫ 1 then 1� g1 ≃ 1=4N2
1 and we can approximate γC

by the following expression:

gC ≃ 1� 1� 2pdð1Þ
4N1N

: ð3:12Þ

Remark 3.3. If C > 2, we may make further progress with
some assumptions to reduce the number of parameters. For
example, consider the case where Nc is independent of c
and pd(c) = 0 in each compartment. Then



1 C = 1

C = 2

C = 10

10–1

10–2

102 103

k

k3/
2 Q

k(
C

)

Figure 6. Plot of k3/2Qk(C ) as a function of k, with logarithmic scales, for C = 1, C = 2 and C = 10. The distribution of R narrows as the number of compartments
increases. The solid lines are the exact results, computed using (2.16) and (A 10). The dots are averages obtained from Gillespie realizations. Parameter values,
chosen using (2.13) with N = 25, are C = 1: pd = 0, pb = 0.4898; C = 2: pd(1) = pd(2) = 0, pb(1) = pb(2) = 0.4444 and N1 = N2 = 5; C = 10: pd(c) = 0, pb(c) =
0.2158 and Nc = 1.38 for each c = 1,…, 10.
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— the variance of R is proportional to N2+(1/C ) as N→ +∞
(for details, see appendix B), and

— the constant γC can be written as follows:

gC ¼ 1� 1
4

1
N1þ1=C þ 1

16
1

N2ð1þ1=CÞ þ � � � : ð3:13Þ

Figure 6 shows k3/2Qk(C ) as a function of k, with parameters
chosen as just described above. In all three cases shown, the
mean number of product cells, N, is equal to 25 and Nc is
independent of c. We shall see, below, that this choice of par-
ameters is optimal from the perspective of minimizing the
mean number of divisions per cell. The fact that the most effi-
cient arrangement of compartments is found when each has
the same amplification factor does not rule out different
dynamics in different compartments. Indeed, a common
scenario in cell biology is each compartment has faster rates
than its predecessor [67–69].

Remark 3.4. One effect of the presence of multiple compart-
ments can be understood by comparison with the k50
values in remark 2.7 (for a single compartment). If C = 2,
N = 10 and pd = 0, then the k50 value is 33; if C = 2, N = 100
and pd = 0, it is 1010. The corresponding k50 values when
C = 3 are 25 and 528, for N = 10 and N = 100, respectively.
4. The population of exiting cells: how many
divisions?

The progenitor cell is in generation 0. Daughter cells of the
progenitor cell are said to be in generation 1. Daughter cells
of a cell in generation n are in generation n + 1. In this way,
the product cell population is classified by generation
number, which is the number of divisions that separates a
cell from the progenitor, or the depth of the cell in the
tree that begins with the progenitor [70]. In §§2 and 3, we
calculated the distribution of R, the number of product cells
per progenitor, its mean and variance. In this section, we
derive the probability generating function of the random
variable G, the generation number of a randomly selected
product cell.
4.1. Classifying cells by generation: a single
compartment

To define the random variable G, we begin with two simple
random variables, U and V, with state space {0, 2} and {0, 1},
respectively, and such that

P(U ¼ 0) ¼ 1� pb, P(U ¼ 2) ¼ pb and

P(V ¼ 0) ¼ 1� pe, P(V ¼ 1) ¼ pe:

We recall the random variables of a discrete-time branching
process [55,56,71]. Let us introduce Z0 = 1 and

Znþ1 ¼
XZn

i¼1

Ui, n ¼ 0, 1, 2, . . . , ð4:1Þ

where, for each i, Ui is an independent copy of U. Zn is the
number of cells in generation n, whatever their fate, and
each Ui is the number of daughter cells from one cell. Here,
we also need to define

Yn ¼
XZn

i¼1

Vi, n ¼ 0, 1, 2, . . . , ð4:2Þ

where each Vi is an independent copy of V. Yn is the number
of product cells in generation n. The random variables R and
G are defined via

R ¼
Xþ1

n¼0

Yn and P(G ¼ n) ¼ 1
N
IEðYnÞ: ð4:3Þ

One realization of the process is shown in figure 7.
The mean values of Yn are given by

IEðYnÞ ¼ peIEðZnÞ ¼ peð2pbÞn: ð4:4Þ
The condition (2.1) is equivalent to 2pb < 1. Hence, as n→ +∞,
EðZnÞ ! 0 and EðYnÞ ! 0.

Recall that the average number of product cells is N = pe/
(1− 2pb). The average generation number in the product cell
population is given by

D ¼ IEðGÞ ¼ pe
N

Xþ1

n¼1

nð2pbÞn ¼ 2pb
1� 2pb

: ð4:5Þ

Using (4.3), we find that the variance of G is given by
var(G) =D(D + 1).



0 1 2 3 4 5

Figure 7. One realization with C = 1, showing generation numbers from left to right, with Z0 = 1. Cyan cells divide, red cells exit and black cells die. In this
realization Y0 = 0, Y1 = 1, Y2 = 0, Y3 = 1, Y4 = 2 and Y5 = 2. Thus, we have R = 6. The parameter values are pb = 0.45 and pd = 0.15.

1.0

0.8

N = 0.1

N = 1
N = 2

N =
 4

N
 =

 1
0

D = 0.5 D = 1 D = 2 D = 4 D = 10N = 0.25

N = 0.5
0.6

0.4

p d

0.2

0
0.1 0.2

SP8

SP4

0.3 0.4 0.5
p
b

Figure 8. Lines of constant D (red) and lines of constant N (blue) in the part of the plane representing possible parameter values. The two quantities characterizing
the population of cells exiting a compartment, as functions of pb and pd, (2.7) and (4.5). Each blue line is the set of pairs ( pb, pd) corresponding to the indicated
value of N. Each red line is the set of pairs ( pb, pd) corresponding to the indicated value of D. The triangular part of parameter space corresponding to N > 1 is at
bottom right. The green dots are the estimates of Sawicka et al. [14], for SP4 and SP8 thymocytes.
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In figure 8, N and D are displayed as functions of pb and
pd: lines of constant N are blue and lines of constant D are red.
Also shown (in green) are the estimates of Sawicka et al. [14]:
pb = 0.4004 and pd = 0.0885 (SP4 thymocytes) and pb = 0.2449
and pd = 0.3170 (SP8 thymocytes). We note the following
limits: (i) as pb ! 1

2 with pd fixed, D/N→ 2/(1− 2pd); (ii) as
pb→ 0 with pd fixed, N→ 1− pd and D→ 0.

Remark 4.1. As in §2, we make use of the freedom to express
all single-compartment quantities in terms of N and pd. Com-
bining (2.6) and (4.5) gives the following linear relationship
between D and N:

D ¼ 2N � 1
1� 2pd

� 1: ð4:6Þ

Given N > 1, the minimum possible value of D is found when
pd = 0:

Dmin ¼ 2ðN � 1Þ: ð4:7Þ

Remark 4.2. We may express all single-compartment quan-
tities in terms of variables which can be experimentally
measured, such as number of product cells and generations,
N and D. In particular, we have

pb ¼ 1
2

D
Dþ 1

and pe ¼ N
Dþ 1

:

These relationships could enable pb, pd and pe to be deter-
mined from experimentally measurable quantities, N = IE(R)
and D = IE(G) [9,10,20]. The corresponding variances have
simple expressions: V = var(R) =N2(D− 1) +N and var(G) =
D(D + 1), respectively.
4.2. Classifying cells by generation: a sequence of C
compartments

Cells that transit from compartment c to compartment c + 1,
with c = 1,…C− 1, retain their generation number. Cells
that exit compartment C are product cells. To analyse the
multi-compartment system, we define the following sets of
random variables, Zn(c) and Yn(c), as follows:

— For n≥ 0 and 1≤ c≤C, Zn(c) is the number of generation n
cells in compartment c, whatever their fate. We assume
that Z0(1) = 1.



0 1 2 3 4 5

Figure 9. One realization with C = 2, showing generation numbers from left to right. Cells in the first compartment are shown as circles, and cells in the second
compartment as squares. Cyan cells divide, red cells exit and black cells die. Arrows indicate a transition from the first to the second compartment. In this realization
Y0(1) = 0, Y1(1) = 0, Y2(1) = 1, Y3(1) = 2, Y4(1) = 1 and Y5(1) = 0; Y0(2) = 0, Y1(2) = 0, Y2(2) = 0, Y3(2) = 1, Y4(2) = 3 and Y5(2) = 0. Thus, we have R = 4. The
parameter values are C = 2, pb(1) = pb(2) = 0.45 and pd(1) = pd(2) = 0.15.
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— For n≥ 0 and 1≤ c≤C, Yn(c) is the number of generation n
cells that exit compartment c. That is, Yn(c)≤Zn(c).

Then

Z0ðcÞ ¼ Y0ðc� 1Þ, c ¼ 2, . . . , C:

To express the relationships between the random variables
Zn(c) and Yn(c), we introduce for 1≤ c≤C, the random vari-
ables U(c) and V(c), with state space {0, 2} and {0, 1},
respectively, such that

P(UðcÞ ¼ 0) ¼ 1� pbðcÞ, P(UðcÞ ¼ 2) ¼ pbðcÞ
and P(VðcÞ ¼ 0) ¼ 1� peðcÞ, P(VðcÞ ¼ 1) ¼ peðcÞ:
The relation (4.1), standard in branching processes, is gener-
alized to one that may appear in a branching process with
immigration. For c≥ 2, we have Znþ1ð1Þ ¼

PZnð1Þ
i¼1 Uið1Þ and

Znþ1ðcÞ ¼ Ynþ1ðc� 1Þ þ
XZnðcÞ

i¼1

UiðcÞ,

c ¼ 2, . . . , C, n ¼ 0, 1, . . .

ð4:8Þ

and

YnðcÞ ¼
XZnðcÞ

i¼1

ViðcÞ, c ¼ 1, . . . , C, n ¼ 0, 1, . . . ð4:9Þ

The number of product cells is the number of cells exiting the
final compartment

R ¼
Xþ1

n¼0

YnðCÞ: ð4:10Þ

A realization of the multi-compartment process is illustrated
in figure 9. The random variable G is the generation number
of a randomly selected product cell

P(G ¼ n) ¼ 1
N
IEðYnðCÞÞ: ð4:11Þ

We consider the two mean quantities that characterize
each compartment

Nc ¼ peðcÞ
1� 2pbðcÞ and Dc ¼ 2pbðcÞ

1� 2pbðcÞ , c ¼ 1, . . . , C:

ð4:12Þ
Thus, Nc is the mean number of cells exiting compartment c,
descended from a single cell in compartment c, while Dc is
the average increase in the generation number in the com-
partment (the average number of divisions undergone). We
now introduce the following probability generating functions
(for details, see appendix C.2), to keep track of the increase in
generation number in compartment c, for c = 0, 1,…, C

jcðzÞ ¼
peðcÞ
Nc

Xþ1

n¼1

(2zpbðcÞ)n ¼ 1� 2pbðcÞ
1� 2pbðcÞz : ð4:13Þ

For the whole sequence of compartments, let N be the mean
number of product cells for every progenitor cell, and D be
the average generation number of a product cell. Then

N ¼ IEðRÞ ¼ N1N2 � � �NC and

D ¼ IEðGÞ ¼ D1 þD2 þ � � � þDC: ð4:14Þ
The difference between a single compartment and a sequence
of multiple compartments is already apparent if we compare
C = 1 with C = 2, given the same value of N. In figure 10, we
plot the average generation number, D, as a function of the
mean number of exiting cells, N. In the examples with C =
2, shown on figure 10b, N1 =N2. The green lines show cases
where there is no cell death. Given a value of N, D is lower
when C = 2 (proportional to

ffiffiffiffi
N

p
as N→ +∞) than when

C = 1 (proportional to N as N→ +∞). Figure 11 illustrates
the probability distribution of G for different values of C
with N fixed. The distribution narrows as the number of
intermediate compartments increases.

Finally, the probability generating function of G, defined
as JðzÞ ¼Pþ1

n¼0 P(G ¼ n)zn, is given by the product

JðzÞ ¼ j1ðzÞj2ðzÞ � � � jCðzÞ, ð4:15Þ
where, for each c = 1,…, C, ξc(z) has been defined in (4.13).
4.3. Minimizing the average generation number
Since excessive ‘clonality’ may increase the risk of cancerous
mutations becoming established [40,41], and because every
round of division brings with it a risk of mutation, senescence
or exhaustion [72–75], we now ask ourselves, how should a
sequence of C compartments be constructed in order to
yield a given amplification of progenitor to product cells,
while minimizing the average number of divisions? Thus,
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Figure 10. Average generation number of product cells, as a function of the mean number of exiting cells. (a) Plot for the case C = 1. (b) Plot for the case C = 2,
with parameters chosen so that N1 = N2. Given a value of N, D is lower when C = 2 (proportional to

ffiffiffi
N

p
as N→ +∞) than when C = 1 (proportional to N as

N→ +∞).
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Figure 11. The probability distribution of the random variable G, the generation number in the product cell population. One, two and three compartments have
been shown. In all cases, N = 100, and all compartments are identical. Solid lines correspond to pd = 0 and dotted lines to pd = 0.05.
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given N, we seek to minimize D, given by (4.14). We write
(4.12) as follows:

Dc ¼ acNc � bc, where ac ¼ 2
1� 2pdðcÞ and

bc ¼
2� 2pdðcÞ
1� 2pdðcÞ :

Let us imagine that the probabilities pd(c) are fixed, but the
probabilities pb(c) are variable. Using the Lagrange multiplier
method, we impose the constraint N =N* by defining

Lðpbð1Þ, . . . , pbðCÞ, LÞ ¼ D� LðN �N�Þ

¼
XC
c¼1

2pbðcÞ
1� 2pbðcÞ

� L
YC
c¼1

1� pbðcÞ � pdðcÞ
1� 2pbðcÞ �N�

 !
:

ð4:16Þ
We make use of the partial derivatives

@L
@pbðcÞ ¼

2

ð1� pbðcÞÞ2
1� L

N�

acNc

� �
, c ¼ 1, . . . , C,

to find the following conditions:

a1N1 ¼ a2N2 ¼ � � � ¼ aCNC: ð4:17Þ
We continue the analysis by defining the arithmetic and geo-
metric means of the αc

�a ¼ 1
C

XC
c¼1

ac and ~a ¼
YC
c¼1

ac

 !1=C

: ð4:18Þ
Then, the optimal values of Nc have the property that

acNc ¼ N1=C~a, for each 1 � c � C: ð4:19Þ
The corresponding minimum value of D is then given by

Dmin ¼
XC
c¼1

ðacNc � bcÞ ¼ C ~aN1=C � 1
2
�a� 1

� �
, ð4:20Þ

which is an increasing function of each of the pd(c) for 1≤ c≤C.
An interesting observation that can be made from the con-

ditions (4.17) is that, if pd(c) does not depend on c, then Nc is
also independent of c. That is, if the death probability does
not vary from compartment to compartment, then the opti-
mal arrangement of division rates is such that each
compartment has the same amplification factor, Nc =N1/C.
Then, we have

Dmin ¼ 2C
1� 2pd

(N1=C � 1þ pd): ð4:21Þ

Given N and C, Dmin is an increasing function of pd. We
observe that Dmin is a decreasing function of C. As C→ +∞,
Dmin→ 2log N, recovering the logarithmic behaviour charac-
teristic of binary trees [42,76].
5. Asymmetric division
A subject of recent research is the possibility of asymmetric
cell division, where one daughter cell remains in the mother’s
compartment while the other transitions to the next compart-
ment [9,38,46,77–83]. From the point of view of Markov
processes, an asymmetric division event is unusual, in that
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Figure 12. (a) Mathematical model of T cell development from the DN3a to the SP stage [81]. (b,c) Numerical results for two cases of the five-compartment
thymus model. The histograms show the distributions of family sizes and of cell generation number in the population of product cells. The difference between
the two cases is the first compartment, where only death and asymmetric division have non-zero probabilities. Table 1 gives the probabilities for all five compart-
ments, and quantities derived from them.
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division and change of cell type are supposed to be simul-
taneous. From a biological point of view, on the other
hand, defining such an event may be natural: the mother’s
intra-cellular and cell-surface proteins will not be exactly
evenly partitioned between the two daughters, who may
experience different conditions during the process of cell
division [84,85]. From a modelling perspective, one could
imagine the constant flux of progenitor cells in our scheme
as being produced by a constant pool of stem cells
undergoing asymmetric division.

The mathematics of asymmetric division is accommo-
dated, as detailed in appendix C, by introducing a fourth
type of event, asymmetric division, and its corresponding
probability, pa. It is also possible to consider a fifth, where
both daughter cells exit their mother’s compartment at birth
[76], and to incorporate ‘de-differentiation’: cells moving
backward in the hierarchy [86]. Böttcher et al. [46] developed
a mathematical model with three types of event that all
involve division: both daughter cells may remain in a com-
partment, both may transition, or one may remain and one
transition. In this section, we explore and apply our methods
to a biological system in which asymmetric cell division may
play a role: T-cell development [81].

The development of thymocytes involves waves of
proliferation, intertwined with differentiation, apoptosis
and self-renewal to produce mature T cells, each with a
unique T-cell receptor (TCR). T cell development takes
place in the thymus and starts with lymphoid precursor
cells, lacking expression of CD4 and CD8 co-receptors,
known as double-negative (DN) thymocytes. The structured
journey of development of these precursor cells involves the
following stages, each of them defined by the cell-surface
expression of developmentally regulated markers: DN1,
DN2, DN3a, DN3b, DN4 and double-positive (DP) thymo-
cytes [87,88]. Transition from the DN1 to DN2 stage marks
the initiation of gene rearrangement at the TCRβ gene locus
[87]. The DN3 stage is characterized by the expression of
the pre-T cell receptor (pre-TCR). It is at this stage that β-
selection takes place; a checkpoint which defines the tran-
sition from the pre-selection DN3a to the post-selection
DN3b stage. The DN3b population gives rise to the DN4
subset, which in turn undergoes proliferation and differen-
tiation [88]. Further development involves the up-regulation
of both CD4 and CD8 co-receptors to generate DP cells.
Finally, DP cells go through gene rearrangement at the
TCRα gene locus and the resulting αβ TCR heterodimer
then undergoes major histocompatibility complex (MHC)-
mediated selection to yield SP4 or SP8 cells.

Mammalian T-cell development suggests a possible role
for asymmetric cell division [81] during the β-selection
stage; subsequent divisions are predominantly symmetric.
Pham et al. experimentally studied the DN3a to SP transition
and defined a deterministic mathematical model of the
process [81] (figure 12). Cells of the first compartment,
DN3a-pre, can only die or undergo asymmetric cell division
[81]. Thus, cells have already divided at least once when they
arrive in the second compartment, as experimentally
observed. The finding of Pham et al. that the death rate was
larger than the rate of asymmetric division at the DN3a-pre
stage implies, in the context of our model, that the probability
of asymmetric cell division in the first compartment, pa(1), is
smaller than 1

2, with pa(1) + pd(1) = 1. Cells in compartments
two (DN3a-post), three (DN3b), four (DN4) and five (DP)
can die, divide (symmetrically) or differentiate (transition to
the next compartment). We then write pb(c) + pd(c) + pe(c) = 1
for c = 2, 3, 4, 5. DN3 thymocytes undergo β-selection,
which raises their probability of death. Accordingly, we
choose pb(c) < pd(c) for DN3a-post and DN3b. By contrast,
DN4 and DP thymocytes are more likely to divide than to
die [87,88] (table 1).

The analysis of Pham et al. was purely deterministic and
therefore only considered mean numbers of cells in each com-
partment. In figure 12, we show the distributions of two
biologically significant random variables in our stochastic
model: the number of product cells in a family founded by
one progenitor and the generation number of a cell in the
product cell (here, SP) population. Two cases are shown,
pa(1) = 0.1 and pa(1) = 0.45. In the first, 90% of DN3a-pre
cells die, so the average family size in the product population,
N = 0.36, is smaller, on average, than in the second case, when
only 55% of DN3a-pre cells die and N = 2.651. (These values
are the product of the Nc values in table 1.) Nevertheless, in



Table 1. Parameter values for the five-compartment thymocyte development
model. For any 1≤ c≤ 5, pb(c) is the probability that a cell in compartment
c divides, pd(c) is the probability that a cell in compartment c dies, pe(c) is
the probability that a cell in compartment c transitions to compartment c +
1 and pa(c) is the probability that a cell in compartment c undergoes an
asymmetric division event, where one daughter remains in compartment c
and one transits to compartment c + 1. The values of Nc and Dc are
calculated using (2.7) and (4.5).

DN3a-pre DN3a-post DN3b DN4 DP

pb (c) 0 0.25 0.25 0.45 0.45

pe (c) 0 0.3 0.3 0.3 0.3

pd (c) 0.55/0.9 0.45 0.45 0.25 0.25

pa (c) 0.45/0.1 0 0 0 0

Nc (9/11)/(1/9) 0.6 0.6 3 3

Dc (20/11)/(10/9) 1 1 9 9
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both cases families of over 102 cells are not uncommon.
Single-positive thymocytes are released from the thymus to
the periphery, where families of cells correspond to TCR
clonotypes [18,19,89–91]. In a mouse, where division of
naive T cells in the periphery is rare, the diversity of the
T-cell repertoire (the number of different TCRs simul-
taneously present) and the distribution of family sizes are
determined by the distribution of family sizes at the time of
release from the thymus [90–94].

The distributions of generation number G are also shown
in figure 12. They are relatively narrow: product cells with
G > 100 are rare. The difference between the distributions
with pa(1) = 0.1 and pa(1) = 0.45 is small because, in both
cases, the majority of cells that make the transition DN3a-
pre to DN3a-post do so in the first generation. The mean
values, D = 21.1 and D = 21.9, respectively, may be obtained
by summing the values of Dc, c = 1,…, 5 given in table 1.

In the example we have analysed in this section, the inter-
mediate compartments have a rationale related to TCR
selection that is independent of family sizes and the distri-
bution of generation numbers: we may conclude nature has
made a virtue of the necessity of passing through multiple
stages. However, intermediate compartments are also found
in other cellular replenishment systems without an obvious
independent reason.
6. Conclusion
Cells of the same phenotype are often thought of as belonging
to a compartment, which may correspond to a spatial location,
a biological function, or simply a set of cell-surface attributes
which can be measured with flow cytometry. In many circum-
stances, a population of ‘product’ cells performing a specific
role is maintained, via a sequence of compartments, from a
much smaller progenitor population. Why are multiple such
compartments so often observed rather than a simpler one-
step differentiation from progenitor to product cell? Using
theoretical arguments, we show why such schemes are advan-
tageous. In our model, individual cells in a compartment may
die or divide (in the compartment), or transition to the next
compartment, meaning that they change phenotype or ‘differ-
entiate’. Our mathematical approach is based on two
fundamental biological (or empirical) observations: amplifica-
tion (from progenitor cell to product cell populations) and
stochasticity (of the fate of individual cells). Thus, we assume
that each cell in a given compartment, independently, chooses
one of the available fates according to a shared set of probabil-
ities: pb, pe and pd are the probabilities of division, transition and
death, respectively. When a cell divides, its daughter cells,
independently, follow the same rules as their mother. Hence,
all population properties are deduced from a complete under-
standing of the possible progeny of a single progenitor.
Furthermore, the population of product cells is the sum of
families, each founded by a single progenitor cell. We do
not consider inter-event times. Rather, each realization is a
sequence of events that ultimately results in extinction of the
progeny in the pre-product compartment or compartments,
with only product cells surviving. We construct sequences of
C compartments, where cells may transit from compartment
c to compartment c + 1, with c = 1,…, C− 1. Given an overall
amplification factor, N, the dominance of large families of
cells in the product cell population decreases as C increases.
Using probability generating functions, we find Qk(C), the
probability that the number of product cells, descended from
a single progenitor via C intermediate compartments, is
equal to k. When k is large, QkðCÞ/ gkCk

�3=2, with γC < 1.
Our model deals in probabilities, which we relate to two

important quantities, N and D, that can be measured in some
experiments. The first, N, is the average number of product
cells descended from a single progenitor, which can be
measured if the progenitor cell is given a heritable label.
The second, D, is the mean generation number of the product
cell population, which can be measured if progenitor cells are
stained with a fluorescent dye that dilutes with division, such
as cell trace CFSE or cell trace violet. A recently developed
genetic tracing technique called DivisionRecorder makes it
possible to measure the mean number of divisions of
immune cell populations up to dozens of rounds of division
[20]. The analysis presented in this manuscript shows that
both N and D have long-tailed distributions when there are
no intermediate compartments, and it allows us to quantify
the reduction of clonality and long-term division history in
product cell populations as the number of compartments is
increased [95].

When there is only a single compartment (that is, when
progenitor cells differentiate directly into product cells) the
mean number of product cells per progenitor is related to
an individual cell’s division and exit probabilities by N =
pe/(1− 2pb) and the mean generation number in the product
cell population is given by D = 2pb/(1− 2pb). Thus, large
values of N, found when the value of pb is less than but
close to 1

2, lead to large values of D. The presence of inter-
mediate compartments is advantageous from this point of
view: the mean generation number, D, decreases as C
increases. Given N, the minimum value of D, found when
pd is zero, is given by Dmin = 2C(N1/C− 1). Whatever the
value of pd, the most efficient arrangement of compartments
is found when each has the same amplification factor.

Our theoretical analyses are found in §2 for a single com-
partment, §3 for a sequence of compartments and §4 for the
number of divisions in the compartmental system. We find
that a sequence of compartments achieves the amplification
of progenitor to product cells required in tissue organization
and homeostasis while avoiding excessive clonality and mini-
mizing the average number of divisions. Section 5 applies our
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methods to the structured development journey of thymo-
cytes, where we generalize our considerations to include
asymmetric division; that is, a division event that leaves
one daughter cell in the same compartment in which the
mother cell divided and the other daughter cell exits the com-
partment. Additional details have been provided in the
appendices: the recursion relations to obtain the probability
that k cells exit from one or two compartments are given in
appendix A; the variance of the random variable R is calcu-
lated in appendix B; and the generalization of our methods
to include asymmetric division is presented in appendix C.
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Appendix A. Recursion relation for the
probabilities Qk(C )
In principle, the whole distribution of a random variable can
be obtained once its probability generating function is
known. In practice, an algorithm is required to compute the
numerical values of the desired probabilities [66]. Here, we
describe equations that we have used, relating the probability
that the random variable R is equal to k to the probability that
it is equal to k− 1, in the simplest case (C = 1), and to k− 1
and k− 2 in other cases (C = 2).

A.1. Recursion relation: a single compartment
In the case C = 1, we rewrite (2.11) as 2pbϕ(z) = 1−w(z), where
w2(z) = 1− 4pbpd− 4pbpez. We now compute the first deriva-
tive of ϕ(z). One can show that w(z)ϕ0(z) = pe and that ϕ(z)
satisfies the following differential equation:

w2ðzÞf0ðzÞ þ 2pepbfðzÞ � pe ¼ 0: ðA 1Þ
Inserting fðzÞ ¼Pþ1

k¼0 qkz
k in (A 1), and matching terms

proportional to zk yields the recursion relation (2.16).
A.2. Recursion relation: two compartments
We next consider the case C = 2. In what follows, we obtain a
differential equation for F2ðzÞ of the form

TðzÞF00
2ðzÞ þ RðzÞF0

2ðzÞ þ SðzÞ(1� 2pbð1ÞF2ðzÞ) ¼ 0, ðA 2Þ

with T(z), R(z) and S(z) polynomials in z (with real coeffi-
cients), and given by

TðzÞ ¼ t0 þ t1zþ t2z2, RðzÞ ¼ r0 þ r1z and SðzÞ ¼ s0:

Then, given that F2ðzÞ ¼ f1ðf2ðzÞÞ ¼
Pþ1

k¼0 Qkzk,

t0ðk þ 2Þðk þ 1ÞQkþ2 þ ½t1k2 þ ðr0 þ t1Þk þ r0�Qkþ1

þ ½t2k2 þ ðr1 � t2Þk þ s0�Qk ¼ 0: ðA 3Þ

Let us write D2
c ¼ 1� 4pdðcÞpbðcÞ and w2

c ðzÞ ¼ D2
c � 4pbðcÞ

peðcÞz, for c = 1, 2. We have 2pbð1ÞF2ðzÞ ¼ 1� w1ðf2ðzÞÞ and

F0
2ðzÞ ¼

peð1Þ
w1

f0
2ðzÞ ¼

peð1Þpeð2Þ
w1w2

, ðA 4Þ

where w1 is shorthand for w1(ϕ2(z)), and w2 is shorthand for
w2(z). Now, we compute the second derivative of F2ðzÞ

F00
2ðzÞ ¼

2peð1Þp2e ð2Þ
w3

1w
3
2

[pbð1Þpeð1Þw2 þ pbð2Þw2
1]: ðA 5Þ

Multiplying through by w3
1w

3
2, we can write

2peð1Þp2e ð2Þ[pbð2Þw2
1 þ pbð1Þpeð1Þw2]TðzÞ

þ peð1Þpeð2Þw2
2w

2
1RðzÞ þ w3

2w
4
1SðzÞ ¼ 0: ðA 6Þ

We make use of the fact that 1� 2pbð1ÞF2ðzÞ ¼ w1 and that
w2

1 ¼ D2
1 � kþ kw2, where κ = 2pe(1)( pb(1)/pb(2)). Equating

terms proportional to w2
2, w

3
2, w

4
2 and w5

2, we find

TðzÞ ¼ T2w2
2 þ T4w4

2, RðzÞ ¼ R0 þ R2w2
2 and

SðzÞ ¼ s0 ¼ 2pbð1Þp2e ð1Þp2e ð2Þ, ðA 7Þ

where

T2 ¼ �ðD2
1 � kÞ2, T4 ¼ k2, R0 ¼ �2pbð2Þpeð2ÞT2,

R2 ¼ �4pbð2Þpeð2ÞT4 and s0 ¼ 2pbð1Þp2e ð1Þp2e ð2Þ:

Making use of (A 7), we obtain

t0 ¼ D2
2T2 þ D4

2T4, t1 ¼ �4pbð2Þpeð2ÞT2 � 8pbð2Þpeð2ÞD2
2T4,

t2 ¼ 16p2bð2Þp2e ð2ÞT4, r0 ¼ 1
2
t1 and r1 ¼ t2:

The general two-compartment recursion relation (A 3) is thus
given by

[k2D4
2 � ðD2

1 � kÞ2D4
2]ðk þ 1Þðk þ 2ÞQkþ2

� pbð2Þpeð2Þ½2k2D2
2 � ðD2

1 � kÞ2�ð2k þ 1Þð2k þ 2ÞQkþ1

þ p2bð2Þp2e ð2Þk2ð16k2 � 1ÞQk ¼ 0: ðA 8Þ

If pd(1) = pd(2) = 0, then Δ1 = Δ2 = 1 and (A 8) takes the simpler
form

ð2k� 1Þðk þ 1Þðk þ 2ÞQkþ2 � pbð2Þpeð2Þðk2 þ 2k� 1Þ
ð2k þ 1Þð2k þ 2ÞQkþ1 þ p2bð2Þp2e ð2Þk2ð16k2 � 1ÞQk ¼ 0:

ðA 9Þ

https://doi.org/10.5281/zenodo.7181108
https://doi.org/10.5281/zenodo.7181108
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Figure 13. The standard deviation of R as a function of the mean of R, N, for different values of C. The lines use the formula (B 1), and each line corresponds to
one value of C. The dots are obtained as averages over numerical realizations. Parameter values have been chosen so that Nc is independent of c, pd(c) = 0, and thus,
Nc = N1/c, pe(c) = 1− pb(c) and pb(c) = (Nc− 1)/(2Nc− 1), for all c = 1,…, C.
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Appendix B. The variance of the distribution of
family sizes
The distributions of family sizes that we have found have a
pattern where the factor k−3/2 appears. One consequence of
this behaviour is that the relationship between the mean
and variance is different from that found in well-known
distributions such as the Poisson distribution.

With C compartments, the probability generating func-
tion of R is given by (3.6), and the variance of R is given by

V ¼ F00
Cð1Þ þN �N2: ðB 1Þ

We make use of (3.9), to write F0
CðzÞ ¼ f0

1ðxCðzÞÞx0CðzÞ
and F00

Cð1Þ ¼ f00
1ð1Þðx0Cð1ÞÞ2 þ f0

1ð1Þx00Cð1Þ, where F0
CðzÞ ¼

ðd=dzÞFCðzÞ.
We next assume that ϕc(z) = ϕ(z), c = 1,…, C. Then, one can

show that

f0ð1Þ ¼ N1=C, f00ð1Þ ¼ 2
pb
pe

N3=C and

F00
Cð1Þ ¼ 2

pb
pe

[N3=CN2ð1�1=CÞ]þN1=Cx00Cð1Þ:

We find

F00
1ð1Þ ¼ 2

pb
pe

N3, F00
2ð1Þ ¼ 2

pb
pe

(N5=2 þN2) and

F00
3ð1Þ ¼ 2

pb
pe

(N7=3 þN2 þN5=3), . . . :

That is, we have

F00
Cð1Þ ¼ 2

pb
pe

N2þ1=C
XC�1

c¼0

N�c=C: ðB 2Þ

The variance of R is proportional to N2+(1/C ) in the limit
N→ +∞ (figure 13).
Appendix C. Compartment analysis in the case of
asymmetric division
In an asymmetric division event, one daughter cell transits to
the next compartment and the other remains in the compart-
ment. Each cell, independently, may die, divide, undergo
asymmetric division, or transit to the next compartment,
with probabilities

pd, pb, pa and pe,
where pd + pb + pe + pa = 1. The analogue of (2.1), guaranteeing
extinction in the compartment, is

2pb þ pa , 1: ðC 1Þ

C.1. Family sizes
Proceeding to the calculation of the qk as in §2, we find that
(2.5) still holds, but (2.8) and (2.9) are replaced by Δq1 =
pe + pa q0 and

qk ¼ pb
D

Xk�1

j¼1

qjqk�j þ pa
D

qk�1, k � 2: ðC 2Þ

The probability generating function of R when C = 1, denoted
by ψ(z), satisfies

cðzÞ ¼ pd þ pezþ pazcðzÞ þ pbc2ðzÞ: ðC 3Þ
The solution is given by

cðzÞ ¼ 1� paz� ½ð1� pazÞ2 � 4pbpd � 4pbpez�1=2
2pb

: ðC 4Þ

Figure 14 compares qk in this case (asymmetric case) with that
of symmetric division only (pa = 0).

Thus, in the case of asymmetric division, and for C = 1,
we have

N ¼ pe þ pa
1� 2pb � pa

: ðC 5Þ

Remark C.1. If qk ¼ P(R ¼ k) then, for k≥ 2,

qk¼D

pb

2pbq1þpa
2D

� �kXbk=2c
j¼0

ck�j�1
k�j
j

� � �2p2aD
ð2paþ4pbpeÞð2pbq1þpaÞ
� �j

¼D

pb

2pbq1þpa
2D

� �kXbk=2c
j¼0

1
k�j

2k�2j�1

k�j

� �
k�j
j

� �

� �2p2aD
ð2paþ4pbpeÞð2pbq1þpaÞ
� �j

:

Remark C.2. It is convenient to generate qk via a recursion
relation. Following the approach described in appendix A,
we rewrite (C 5) as

2pbcðzÞ ¼ 1� paz� waðzÞ,
where w2

aðzÞ ¼ D� ð2pa þ 4pbpeÞzþ p2az
2: ðC 6Þ
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Figure 14. The distribution of R, with and without asymmetric division, when C = 1. In red, the symmetric case (2.12), pa = 0, and in blue, the purely asymmetric
case, pe = 0, generated using (C 9). In both cases, we have chosen N = 25 and pd = 0.25.
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Thus, ψ(z) satisfies the following differential equation:

w2
aðzÞc0ðzÞ þ w0

aðzÞwaðzÞcðzÞ þ zðzÞ ¼ 0, ðC 7Þ

with zðzÞ ¼ ðp2a � pa þ 2papbpe � 4pbpeÞzþ D2 � pa � 2pbpe.
Matching terms proportional to zk leads to the following
recursion relation:

D2ðk þ 2Þqkþ2 ¼ ð2k þ 1Þðpa þ 2pbpeÞqkþ1 � ðk � 1Þp2aqk: ðC 8Þ

We note that in the asymmetric case, even for C = 1, the recur-
sion relation is of second order. This is due to the fact that
w2

aðzÞ is a polynomial of order two in z.

Remark C.3. As k→ +∞, we obtain the following behaviour:

qk / gkak
�3=2, ðC 9Þ
where γa satisfies the equation

ð1� 4pbpdÞg2a � ð2pa þ 4pbpeÞga þ p2a ¼ 0: ðC 10Þ
Remark C.4. We now consider the case C = 2, with two non-
identical compartments, i.e. ψ1(z)≠ ψ2(z). Let us introduce

C2ðzÞ ¼ c1ðc2ðzÞÞ ðC 11Þ
and

w2
a,cðzÞ ¼ 1� 4pbðcÞpdðcÞ � ½2paðcÞ þ 4pbðcÞpeðcÞ�z

þ p2aðcÞz2, c ¼ 1, 2: ðC 12Þ
Then, one can show that

2pbð1ÞC2ðzÞ ¼ H1ðzÞ �H2ðzÞ, ðC 13Þ
where H1(z) = 1− ( pa(1)/2pb(2)) + ( pa(1)pa(2)/2pb(2))− ( pa(1)/
2pb(2))wa2(z), and
H2ðzÞ2 ¼ p2að1Þp2að2Þ
2p2bð2Þ

z2 þ pað2Þ
pbð2Þ ðpað1Þ þ 2pbð1Þpeð1Þ � p2að1Þ

p2bð2Þ
ðpað2Þ þ pbð2Þpeð2ÞÞ

 !
z

þ pað1Þ þ 2pbð1Þpeð1Þ
pbð2Þ � p2að1Þð1� pað2ÞzÞ

2p2bð2Þ

 !
wa,2ðzÞ

þ D2ð1Þ þ p2að1Þ
2p2bð2Þ

ð1� 2pdð2Þpbð2ÞÞ � pað1Þ þ 2pbð1Þpeð1Þ
pbð2Þ :
In this instance, for the asymmetric case with C = 2, and
to calculate the distribution of probabilities, Qk(2), we
must compute two recursion relations: one for H1(z) and a
second one for H2(z). This strategy leads to a three-term
recursion relation for H1(z), and a six-term recursion relation
for H2(z).
C.2. Generation analysis
To define the random variable G, we begin with three simple
random variables U, V andW, with state spaces {0, 1, 2}, {0, 1}
and {0, 1}, respectively, where

P(U ¼ 0) ¼ 1� pb � pa, P(U ¼ 1) ¼ pa, P(U ¼ 2) ¼ pb

and

P(V ¼ 0) ¼ 1� pe, P(V ¼ 1) ¼ pe and

P(W ¼ 0) ¼ 1� pa, P(W ¼ 1) ¼ pa:
Let us introduce, as we did in the case of symmetric division,
Z0 = 1 and

Znþ1 ¼
XZn

i¼1

Ui, n ¼ 0, 1, 2, . . . , ðC 14Þ

where, for each i, Ui is an independent copy of U (as
defined above). The definition (4.1) still holds, but (4.2) is
replaced by

Yn ¼
XZn

i¼1

Vi þ
XZn�1

i¼1

Wi, n ¼ 0, 1, 2, . . . , ðC 15Þ

where each Vi, Wi are, respectively, an independent copy of V
and W. The mean values of Yn for n≥ 0, which generalize
(4.4), are given by IE(Y0) = pe and

IEðYnÞ ¼ peEðZnÞ þ paEðZn�1Þ
¼ peð2pb þ paÞn þ pað2pb þ paÞn�1:
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Figure 15. Lines of constant N (blue) and curves of constant D (red) in the part of the plane representing possible parameter values when pa = 0.2. Each blue line
is the set of pairs ( pb, pd) corresponding to the indicated value of N. Each red curve is the set of pairs ( pb, pd) corresponding to the indicated value of D.
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Once again, and due to condition (C 2), in the limit n→ +∞,
IE(Zn)→ 0 and IE(Yn)→ 0. We are interested in obtaining the
probability generating function of G. Making use of the defi-
nition of the random variables R and G, the probability
generating function of G is given by

jðzÞ ¼ 1
N

Xþ1

n¼0

IEðYnÞzn ¼ 1
N

pe þ
Xþ1

n¼1

IEðYnÞzn
" #

¼ pe þ paz
Nð1� ð2pb þ paÞzÞ : ðC 16Þ

This allows us to compute the expectation value of G in the
asymmetric case

IEðGÞ ¼ D ¼ 1
pe þ pa

pa þ peð2pb þ paÞ
1� 2pb � pa

: ðC 17Þ

The variance of G is also computed from (C 17)

varðGÞ ¼ 2pa þ pe
pe

DðDþ 1Þ: ðC 18Þ

Remark C.5. In the case of asymmetric division, we can
choose N, pa and pd as the three independent parameters,
so that (4.6) is given by

D ¼ 2N � 1
1þ pa � 2pd

1þ pa
N

� �
� 1: ðC 19Þ

Figure 15, constructed using (C 18), summarizes the effect
of asymmetric division (when compared with figure 8).
Remark C.6. We may express all single-compartment quan-
tities in terms of N, D and pa, to obtain

pb ¼ N½Dð1� paÞ � pa� � pa
2NðDþ 1Þ , pe ¼ N � paD

Dþ 1
and

pd ¼ N½2þDð1þ paÞ � 2N � pa� þ pa
2NðDþ 1Þ :

Note that, if we set pa = 0 then all quantities simplify to the
values derived in §4.

Remark C.7. In the case of C > 1 compartments, and asym-
metric division, we define for c ¼ 1, . . ., C the following
random variables U(c), V(c) and W(c):

P(UðcÞ ¼ 0) ¼ 1� pbðcÞ � paðcÞ, P(UðcÞ ¼ 1) ¼ paðcÞ,
P(UðcÞ ¼ 2) ¼ pbðcÞ, P(VðcÞ ¼ 0) ¼ 1� peðcÞ,
P(VðcÞ ¼ 1) ¼ peðcÞ and P(WðcÞ ¼ 0) ¼ 1� paðcÞ,
P(WðcÞ ¼ 1) ¼ paðcÞ:

We have in this case Z0(1) = 1, Z0(c) =Y0(c− 1) for c≥ 2, and

Znþ1ðcÞ ¼ Ynþ1ðc� 1Þ þ
XZnðcÞ

i¼1

UiðcÞ, c ¼ 2, . . . , C,

n ¼ 0, 1, 2, . . . ðC 20Þ
and

YnðcÞ ¼
XZnðcÞ

i¼1

ViðcÞ þ
XZn�1ðcÞ

i¼1

WiðcÞ, c ¼ 2, . . . , C,

n ¼ 1, 2, . . . : ðC 21Þ
The probability generating function of G is given by a pro-
duct of single-compartment generating functions making
use of (4.15).
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