
This is a repository copy of When move acceptance selection hyper-heuristics outperform
metropolis and elitist evolutionary algorithms and when not.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/192199/

Version: Accepted Version

Article:

Lissovoi, A., Oliveto, P.S. and Warwicker, J.A. (2023) When move acceptance selection
hyper-heuristics outperform metropolis and elitist evolutionary algorithms and when not.
Artificial Intelligence, 314. 103804. ISSN 0004-3702

https://doi.org/10.1016/j.artint.2022.103804

Article available under the terms of the CC-BY-NC-ND licence
(https://creativecommons.org/licenses/by-nc-nd/4.0/).

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse

This article is distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs
(CC BY-NC-ND) licence. This licence only allows you to download this work and share it with others as long
as you credit the authors, but you can’t change the article in any way or use it commercially. More
information and the full terms of the licence here: https://creativecommons.org/licenses/

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

When Move Acceptance Selection Hyper-Heuristics Outperform

Metropolis and Elitist Evolutionary Algorithms and When Not 1

Andrei Lissovoia, Pietro S. Olivetoa, John Alasdair Warwickerb

aDepartment of Computer Science, University of Sheffield, UK
bInstitute of Operations Research, Karlsruhe Institute of Technology, Germany

Abstract

Selection hyper-heuristics (HHs) are automated algorithm selection methodologies that choose

between different heuristics during the optimisation process. Recently, selection HHs choosing

between a collection of elitist randomised local search heuristics with different neighbourhood

sizes have been shown to optimise standard unimodal benchmark functions from evolutionary

computation in the optimal expected runtime achievable with the available low-level heuristics. In

this paper, we extend our understanding of the performance of HHs to the domain of multimodal

optimisation by considering a Move Acceptance HH (MAHH) from the literature that can switch

between elitist and non-elitist heuristics during the run. In essence, MAHH is a non-elitist search

heuristic that differs from other search heuristics in the source of non-elitism.

We first identify the range of parameters that allow MAHH to hillclimb efficiently and prove

that it can optimise the standard hillclimbing benchmark function ONEMAX in the best expected

asymptotic time achievable by unbiased mutation-based randomised search heuristics. After-

wards, we use standard multimodal benchmark functions to highlight function characteristics

where MAHH outperforms elitist evolutionary algorithms and the well-known METROPOLIS non-

elitist algorithm by quickly escaping local optima, and ones where it does not. Since MAHH

is essentially a non-elitist random local search heuristic, the paper is of independent interest to

researchers in the fields of artificial intelligence and randomised search heuristics.

Keywords: Hyper-heuristics, Runtime analysis, Non-elitism, Metropolis, Move acceptance

operators, Theory

1. Introduction

Selection hyper-heuristics (HHs) are automated algorithm selection methodologies designed to

choose which of a set of low-level heuristics to apply in the next steps of the optimisation pro-

cess [15]. Rather than deciding in advance which heuristic and related parameter settings to apply

for a problem, either by manual trial and error in preliminary experiments or using automated

algorithm configurators [32, 64], the aim behind HHs is to automate the process at runtime. Origi-

nally shown to effectively optimise scheduling problems, such as the scheduling of a sales summit

1An extended abstract of this manuscript has appeared at the 2019 Association for the Advancement of Artificial

Intelligence Conference (AAAI 2019) [46].

Preprint submitted to Artificial Intelligence September 5, 2022

and university timetabling [15, 16], they have since been successfully applied to a variety of hard

combinatorial optimisation problems (see e.g., [7, 6, 27, 40, 58, 64] for surveys of results).

Selection HHs consist of two separate components: (1) a heuristic selection method, often

referred to as the learning mechanism, to decide which heuristic to be applied in the next step

of the optimisation process, and (2) a move acceptance operator to decide whether the newly

produced search points should be accepted.

The majority of heuristic selection methods in the literature apply machine learning techniques

that generate scores for each heuristic based on their past performance. A commonly used method

for the purpose is reinforcement learning [15, 50, 5]. Despite their numerous successful applica-

tions, very limited rigorous theoretical understanding of their behaviour and performance is avail-

able [43, 1].

Recently, it has been proved that a reinforcement learning HH and a simple selection HH called

Random Descent [15, 16], both choosing between elitist randomised local search (RLS) heuristics

with different neighbourhood sizes, can respectively optimise the standard unimodal benchmark

functions ONEMAX and LEADINGONES in the best possible runtimes achievable (up to lower

order terms), with the available low-level heuristics [22, 48]. Since the Random Descent HH

does not store information on the past performance of the low-level heuristics, it is necessary to

run the selected low-level heuristics for a sufficient amount of time, called the learning period,

to allow the HH to accurately determine how useful the chosen heuristic is at the current stage

of the optimisation process. However, the optimal duration of the learning period may change

during the optimisation process. Doerr et al. recently introduced a self-adjusting mechanism

and rigorously proved that it allows the HH to track the optimal learning period throughout the

optimisation process for LEADINGONES [25]. The optimal asymptotic performance of the same

self-adjusting Random Descent HH has recently been shown also for the ONEMAX and RIDGE

unimodal benchmark functions [47]. For a survey of the available theoretical results regarding the

performance of HHs, see [51].

In this paper we aim to extend the understanding of the behaviour and performance of HHs to

multimodal optimisation problems. In order to evaluate their capability at escaping local optima,

we consider elitist and non-elitist selection operators (called move acceptance operators) that have

been used in the HH literature. Move acceptance operators (also referred to as selection operators

in the classic evolutionary computation literature) are classified as either deterministic, where the

same decision is made independent of the stage of the optimisation process, or non-deterministic,

where different decisions for the same solutions might be made at different stages [56].

Cowling et al. introduced two variants of deterministic move acceptance operators: the eli-

tist ONLYIMPROVING (OI) operator, which only accepts moves that improve the current solution,

and the non-elitist ALLMOVES (AM) operator, which accepts any new solution independent of

its quality [15, 16]. Another move acceptance operator that has been considered in the literature

is the IMPROVINGANDEQUAL (IE) operator which, in addition to accepting improving solutions,

also accepts solutions of equal quality [2, 4, 55]. In the mentioned works, the acceptance operator

remains fixed throughout the run, with the HH only switching between different mutation oper-

ators. However, it would be more desirable that HHs are allowed to decide to change the move

acceptance operator and hence, the selection pressure at different stages of the optimisation pro-

cess. For instance, they may use elitist move acceptance in exploitation phases of the search, such

as hillclimbing, and non-elitism for exploration, for instance to escape from local optima.

Indeed, Qian et al. analysed a HH that switches between move acceptance operators in the

2

context of multi-objective optimisation [60]. They considered a HH that selects between the elitist

(IE) and the strict elitist (OI) move acceptance operators and presented a function where it is nec-

essary to mix the two acceptance operators. Lehre and Özcan presented the only available analysis

of a HH which chooses between elitist and non-elitist low level heuristics [43]. In particular, the

HH uses the above described OI (strict elitist) and AM (non-elitist) acceptance operators. The

considered Move Acceptance HH (MAHH) uses 1-bit flips (i.e., local mutations) as the mutation

operator and selects the AM acceptance operator with probability p and the OI acceptance operator

with probability 1 − p. Essentially, the algorithm is a randomised local search (RLS) algorithm

that switches between strict elitism, by only accepting improvements, and extreme non-elitism,

by accepting any new found solution. For the standard ROYALROADk benchmark function from

evolutionary computation, which consists of several blocks of k ≥ 2 bits each that have to be set

correctly to observe a fitness improvement, they proved that it is necessary to mix the acceptance

operators for MAHH to be efficient, because by only accepting improvements (i.e., p = 0) the run-

time is infinite due to MAHH not being able to cross the plateaus of equal fitness while by always

accepting any move (i.e., p = 1), the algorithm simply performs a random search. By choosing

the value of the parameter p appropriately they provide an upper bound on the expected runtime of

the HH of O(n3 · k2k−3) versus the O(n log(n) · (2k/k)) expected time required by evolutionary

algorithms with standard bit mutation (i.e., each bit is flipped with probability 1/n) and with the

standard selection operator that accepts new solutions if their fitness is at least as good as that of

their parent [26]. In particular, just using the IE acceptance operator throughout the run leads to

a better performance. Hence, the advantages of switching between selection operators rather than

just using one all the time were not evident.

In this paper we present a systematic analysis of the same HH considered by Lehre and Özcan

[43] for multimodal optimisation problems2, where the considerable advantages of changing the

move acceptance operator during the run may be highlighted. In particular, we will increase our

understanding of the behaviour and performance of MAHH by providing features of multimodal

landscapes where it is efficient at escaping local optima and features where it is not. Further-

more, we provide a comparative analysis with the well-studied METROPOLIS non-elitist algorithm

[37] and steady-state evolutionary algorithms (EAs), which highlights when MAHH has superior

performance, thus should be preferred and when not.

We first perform an analysis of the standard unimodal ONEMAX benchmark function from

evolutionary computation to identify the range of parameter values for p that allow MAHH to

hillclimb, and hence to locate local optima efficiently. In particular, we prove that for any p =
O((log log n)1−ε/n) and any constant ε > 0, MAHH is asymptotically as efficient as the best

unary unbiased (i.e., mutation-based) randomised search heuristic [44] even though it does not

rely on elitism. On the other hand, we show that for larger p = ω(
√
n log n)/n), MAHH cannot

optimise any function with unique optimum in polynomial time with high probability.

Afterwards we highlight the power of MAHH by analysing its performance for standard bench-

2In the literature, the term ‘multimodal optimisation’ is also used to refer to optimisation tasks that involve identi-

fying a set of local or global optima (several or all) rather than just the global optimum [59]. In this paper, we use the

term to simply refer to the fact that the optimisation functions are not unimodal, i.e., they have local optima in which

the algorithms may get trapped. Concerning the term ‘multimodal function’, we use the same definition as in the cited

book, i.e., “Naturally, some objective functions do only possess one optimizer. These are generally considered easier

to optimize and are called unimodal. All others are called multimodal”.

3

mark function classes chosen because they allow us to isolate important properties of multimodal

optimisation landscapes. Firstly, we consider the CLIFFd class of functions, consisting of local

optima that, once escaped, allow the identification of a new slope of increasing fitness. For this

class of functions, we rigorously prove that MAHH efficiently escapes the local optima and on the

hardest instances of the function class for elitist search heuristics [12], it even achieves the best

possible expected runtime of O(n log n) (for unary - mutation only - unbiased randomised search

heuristics) for any problem with up to a polynomial number of optima [3]). Thus, we prove that

it considerably outperforms established elitist and non-elitist evolutionary algorithms, including

the METROPOLIS algorithm. We then consider the standard JUMPm multimodal instance class of

functions to provide an example of fitness landscape where to identify a new slope with increasing

gradient towards the optimum is as hard as possible. While MAHH has a runtime that is expo-

nential in the size of the basin of attraction, it is efficient for instances of moderate jump size (i.e.,

constant) where it still considerably outperforms METROPOLIS which requires exponential time in

the problem size with overwhelming probability independent of the basin’s size.

The superior performance of MAHH over METROPOLIS for the considered function classes is

mainly due to the large fitness value difference between the local optima and their neighbouring

solutions. To this end, we design a smoother function class, called CLIFFJUMPd,r,s, for which the

sizes of the basins of attraction of both local and global optima and the steepness of the negative

slope that has to be traversed to escape from the local optima can be tuned. Our aim is to identify

basin-of-attraction characteristics where MAHH outperforms METROPOLIS and vice-versa. CLIF-

FJUMPd,r,s combines aspects of both CLIFFd and JUMPm. From the local optima, a ‘JUMPm’ slope

returning to the local optima has to be overcome to identify a CLIFFd slope leading to the global

optimum. If the negative slope leading away from the local optima decreases in fitness gently, then

METROPOLIS can be configured to always outperform any variant of the HH. Conversely, if the

slope is steep, then the HH can be configured to be faster than any variant of METROPOLIS. Hence,

the analysis shows that MAHH is preferable on rugged landscapes with steep changes in fitness,

while METROPOLIS is more efficient on smoother ‘well-behaved’ landscapes where neighbouring

points have similar fitness values. However, while MAHH is always efficient if the length of the

negative slope is not too large independent of steepness of the slope, METROPOLIS is inefficient

even when the slope is small if the descending gradient is not gentle. As a corollary, the function

class allows us to point out what kinds of basin of attraction are overcome more efficiently by the

non-elitist hyper-heuristic compared to elitist evolutionary algorithms using standard bit mutation.

In particular, for small basins of attraction located at a super-constant distance from the optimum,

non-elitism may make a difference between small polynomial and super-polynomial runtimes, in-

cluding exponential ones.

We use this insight to complete the picture by presenting fitness landscape characteristics where

METROPOLIS is efficient while MAHH is not. The benchmark function we consider has a very

gentle slope with a smooth fitness-decreasing gradient surrounded by points of considerably lower

fitness. While METROPOLIS is efficient for the function because it can follow the gentle path

by rejecting the points of lower fitness, the function is deceptive for MAHH since it is likely to

accept worsening solutions that are not on the path resulting in exponential optimisation time with

overwhelming probability. Since MAHH is essentially a non-elitist random local search heuristic

that differs from other search heuristics in the source of non-elitism, the paper is of general interest

outside the parameter control [21] and hyper-heuristics community, in particular to researchers in

randomised search heuristics and artificial intelligence in general (see, e.g., [36, 10, 18] for other

4

Algorithm 1 Move Acceptance Hyper-Heuristic (MAHHOI) [43]

1: Choose x ∈ {0, 1}n uniformly at random

2: while termination criteria not satisfied do

3: x′ ← FLIPRANDOMBIT(x)
4: Choose r ∈ [0, 1] uniformly at random

5: if r ≤ p then x← x′ // AM

6: else ∆f ← f(x′)− f(x)
7: if ∆f > 0 then x← x′ // OI

analyses emphasising the effectiveness of non-elitism).

The rest of the paper is structured as follows. In the next section we formally introduce the

move-acceptance hyper-heuristics (MAHHOI and MAHHIE), the problem classes and the math-

ematical analysis tools used in the rest of the paper. In Section 3, we analyse MAHHOI on the

unimodal benchmark function ONEMAX. In Sections 4 and 5, we analyse MAHHOI on the multi-

modal CLIFFd and JUMPm functions, comparing its expected runtime with that of the well known

METROPOLIS algorithm. Section 6 analyses the ability of MAHHOI and METROPOLIS to escape

basins of attraction with tuneable gradients and size. In Section 7, we analyse an example function

where METROPOLIS provably outperforms MAHHOI. We finish the paper with some conclusions

on when MAHH performs well and when it doesn’t, as well as offering some promising avenues

for future research.

Compared to its conference version [46], this manuscript has been considerably extended.

We include all proofs that were omitted due to space constraints, and many theorems have been

strengthened. Furthermore, sections 6 and 7 are completely new additions.

2. Preliminaries

In this section, we will formally introduce the hyper-heuristic algorithms and the problem

classes we will analyse in this paper, and briefly state some widely-known mathematical tools

for the runtime analysis of randomised search heuristics that we will use throughout the paper.

Algorithms

We will analyse the Move Acceptance hyper-heuristic previously considered by Lehre and

Özcan [43]. In each iteration, one bit chosen uniformly at random will flip and with probability

p, the ALLMOVES (AM) acceptance operator is used, while with probability 1− p, the ONLYIM-

PROVING (OI) acceptance operator is used. Algorithm 1 shows its pseudocode.

We also consider the MAHHIE variant of Algorithm 1 whereby the IMPROVINGANDEQUAL

(IE) acceptance operator (which accepts all moves which either increase or maintain the current

fitness) is used instead of the OI operator. Thus, in MAHHIE, the AM acceptance operator is used

with probability p, and the IE acceptance operator is used with probability 1− p. However, for the

problem classes we consider, changing the number of 1-bits in the bit-string by 1 (as is done by

the FLIPRANDOMBIT mutation operator of Algorithm 1) will always change the fitness value, i.e.,

there are no plateaus of constant fitness. Therefore, we point out that, given these conditions, all

the statements made in the paper for the MAHHOI hyper-heuristic will also hold for the MAHHIE

5

Algorithm 2 METROPOLIS Algorithm [49]

1: Choose x ∈ {0, 1}n uniformly at random, set α(n) ≥ 1
2: while termination criteria not satisfied do

3: x′ ← FLIPRANDOMBIT(x)
4: ∆f ← f(x′)− f(x)
5: if ∆f ≥ 0 then x← x′

6: else choose r ∈ [0, 1] uniformly at random

7: if r ≤ α(n)∆f then x← x′

Algorithm 3 (1+1) Evolutionary Algorithm

1: Choose x ∈ {0, 1}n uniformly at random

2: while termination criteria not satisfied do

3: x′ ← flip each bit of x independently with probability 1/n
4: ∆f ← f(x′)− f(x)
5: if ∆f ≥ 0 then x← x′

hyper-heuristic. Thus, in the rest of the paper, we will focus the analysis on the MAHHOI hyper-

heuristic.

Throughout this paper, we will compare the performance of the MAHHOI hyper-heuristic with

the well-known METROPOLIS algorithm [49] which also allows for global exploration through

non-elitism, and with a standard elitist evolutionary algorithm ((1+1) EA) which uses global muta-

tions to escape from local optima [39]. While all local mutations which find improving solutions

are accepted, METROPOLIS also accepts worsening moves with some non-zero probability. Sup-

pose the parent solution x has fitness f(x), and the offspring solution y has a fitness f(y), where

f(y) − f(x) = ∆f < 0. METROPOLIS accepts the worsening move with probability α(n)∆f , for

some function α(n) ≥ 1. The pseudocode for METROPOLIS is shown in Algorithm 2. The (1+1)

EA only accepts solutions of non-decreasing fitness (i.e., elitism) and flips each bit with a fixed

probability (i.e., 1/n) so that it can reach any area of the search space in a single step, while the

probability of reaching a new point decreases with the increased Hamming distance to the current

point. The pseudocode for the (1+1) EA is shown in Algorithm 3.

Benchmark Function Classes

We will start by considering standard benchmark function classes defined over bit strings of

length n commonly used in the theory of randomised search heuristics to evaluate their perfor-

mance. These problem classes are artificially constructed with the purpose of reflecting and iso-

lating common difficulty profiles that are known to appear in classical combinatorial optimisation

problems and are expected to appear in real-world optimisation.

The ONEMAX problem class is a class of unimodal functions which provide a consistent fitness

gradient leading to the global optimum. The class displays the typical function optimisation feature

that improving solutions are harder to identify as the optimum is approached. It is generally used to

evaluate and validate the hillclimbing performance of randomised search heuristics. The function

6

is defined as follows:

ONEMAX(x) :=
n∑

i=1

xi.

In the above definition, the global optimum is placed in the 1n bit-string for convenience of the

analysis, i.e., the fitness increases with the number of 1-bits. The results we derive will hold for

any instance in the function class, i.e., the optimum may be any bit string and the fitness function

returns the number of matching bits. This class of functions is known to be the easiest among all

functions with a unique global optimum for unary unbiased black box algorithms (i.e., mutation-

based EAs) [44].

We also consider the CLIFFd and JUMPm multimodal problem classes, where the optimisation

algorithm will need to escape from local optima in order to reach the global optimum. The two

classes differ in whether the fitness function guides the search towards or away from the global

optimum once the algorithm has escaped the local optimum.

The CLIFFd class of functions was originally proposed as an example where non-elitist evo-

lutionary algorithms outperform elitist ones [36]. Functions within the class generally lead the

optimisation process to a local optimum, from which a fitness-decreasing mutation can be taken to

find another fitness-improving slope leading to the global optimum. An example instance is shown

in Figure 1a. We define the CLIFFd class of functions (for 1 < d < n/2) as follows:

CLIFFd(x) :=

{
ONEMAX(x) if |x|1 ≤ n− d,

ONEMAX(x)− d+ 1/2 otherwise.

As for ONEMAX, the global optimum is placed at the 1n bit string to simplify notation. The

parameter d controls both the fitness decrease from the local optimum to the lowest point on the

slope leading to the global optimum and the length of this second slope. This class of problems

captures real-world problems where local optima have narrow basins of attraction: if it is able to

escape from the local optimum, a search heuristic has good chances of identifying a new basin of

attraction.

The JUMPm class of functions is similar to CLIFFd, but has both fitness gradients leading to-

wards the local optima: thus, to find the global optimum, search algorithms should not only take

a fitness-decreasing mutation to escape the local optimum, but also disregard the fitness gradient

in further iterations. An example instance is shown in Figure 1b. We define the JUMPm class of

functions (for 1 < m < n/2) as follows:

JUMPm(x) :=





n+m if |x|1 = n,

m+ ONEMAX(x) if |x|1 ≤ n−m,

n− ONEMAX(x) otherwise.

As for ONEMAX, the global optimum is placed at the 1n bit string to simplify notation. Compared

to CLIFFd, this class of functions features a local optimum with a much broader basin of attraction,

making it more difficult for the search heuristics to escape the basin and locate the global optimum.

Additionally, we define a function class which combines the features of both CLIFFd and

JUMPm, allowing both the local and global optima to have basins of attraction in the region of

7

0 5 10 15 20
0

5

10

15

20

d = 5

Global Optimum

|x|1

F
it

n
es

s
v
al

u
e

(a) CLIFF5

0 5 10 15 20
0

10

20

30

m = 5

Global Optimum

|x|1

(b) JUMP5

0 5 10 15 20
0

10

20
d = 8

d − r = 5

Global Optimum

|x|1

(c) CLIFFJUMP8,3,1

0 5 10 15 20
0

10

20
d = 8

d − r = 5

Global Optimum

|x|1

(d) CLIFFJUMP8,3,2

Figure 1: Examples of the CLIFFd, JUMPm, and CLIFFJUMPd,r,s benchmark functions for n = 20.

the search space between the two optima. Thus, to optimise this function, which we name CLIF-

FJUMPd,r,s, a search algorithm employing local mutations may need to take multiple steps away

from the local optimum before a slope leading towards the global optimum can be found. Example

instances are shown in Figures 1c and 1d for s = 1 and s = 2. We define this class of functions

(for 1 ≤ r < d < n/2 and s > 0) as follows:

CLIFFJUMPd,r,s(x) :=





n if |x|1 = n,

ONEMAX(x) if |x|1 ≤ n− d,

ONEMAX(x)− r − rs if |x|1 ≥ n− d+ r,

(n− d)− s · (ONEMAX(x) + d− n) otherwise.

The global optimum is placed at the 1n string, while the d and r parameters control the lengths of

the positive and negative slopes following the local optimum: after reaching the local optimum,

r mutations, each decreasing the fitness by s, must be taken by a local search heuristic before a

fitness-increasing slope of length (d− r) becomes accessible.

We further consider the following function (which we rename GENTLENEGATIVESLOPE),

which was originally introduced by Jansen and Wegener as an example of fitness landscape where

8

METROPOLIS considerably outperforms the (1+1) EA [38].

GENTLENEGATIVESLOPE(x) :=





2n · n+ 1 if x = 0n,

2n · n− (n− i) if x = 1i0n−i, i ∈ {1, . . . , n},
2n · ONEMAX(x) otherwise.

GENTLENEGATIVESLOPE (GNS) is a deceptive function that will lead most algorithms away

from the global optimum at 0n. There is a steep ONEMAX style path to the 1n bit-string followed

by a ridge with gently decreasing fitness towards the global optimum.

Mathematical Analysis Tools

We now present some well known drift analysis theorems often used to bound the expected

runtime of randomised search heuristics. Drift analysis is a very general mathematical technique

that allows to make statements regarding the long term performance (i.e., the runtime) of a ran-

domised search heuristic by analysing the expected progress that the algorithm makes in one step.

All that is required to apply drift analysis is a potential function (sometimes called a ‘distance

function’) to estimate the distance of the current solution to a target area of the search space (e.g.,

the global optimum), and a bound on the expected one-step change (referred to as the ‘drift’) that

the algorithm makes with respect to the potential function conditional on the current distance from

the target. Hence, given that at time step t the distance from the target is Xt, analysing the drift

requires providing bounds on the quantity E(Xt − Xt+1 | Xt) to quantify the expected one-step

progress of the algorithm. For a gentle introduction to drift analysis we refer to [42], while for a

more extensive overview we refer the reader to Lengler’s recent book chapter [45].

We will apply the following theorems throughout the paper for our analyses using the Hamming

distance as a measure of distance to the optimum (or another set of target solutions), and write ∆(i)
to refer to the drift conditioned on the parent solution containing i 1-bits. The following Additive

Drift Theorem provides upper and lower bounds on the expected runtime given, respectively, lower

and upper bounds on the drift which hold throughout the process.

Theorem 1 (Additive Drift Theorem [34]). Let {Xt}t≥0 be a sequence of random variables over

a finite set of states S ⊆ R
+
0 and let T be the random variable that denotes the first point in time

for which Xt = 0. If there exist δu ≥ δl > 0 such that for all t ≥ 0, we have

δu ≥ E(Xt −Xt+1 | Xt) ≥ δl,

then the expected optimisation time E(T) satisfies

X0

δu
≤ E(T | X0) ≤

X0

δl
, and

E(X0)

δu
≤ E(T) ≤ E(X0)

δl
.

When the expected drift is negative in a non-trivial region of the search space, exponential

lower bounds on the runtime can be derived using the Negative Drift Theorem.

Theorem 2 (Negative Drift Theorem [52, 53]). Let Xt, t ≥ 0, be the random variables describing

a Markov process over some state space, and let δt(i) := (Xt − Xt+1 | Xt = i) for i ∈ S and

t ≥ 0. Suppose there exist an interval [a, b] of the state space and two constants δ, ǫ > 0 such that

for all t ≥ 0 the following two conditions hold:

9

1. E(δt(i)) ≤ −ǫ for a < i < b,

2. Pr(|δt(i)| ≥ j) ≤ 1/(1 + δ)j for i > a and j ≥ 0.

Then there is a constant c∗ > 0 such that for T ∗ := min{t ≥ 0 : Xt ≤ a | X0 ≥ b} it holds

Pr(T ∗ ≤ 2c
∗(b−a)) = 2−Ω(b−a).

We will also use the Negative Drift Theorem with Scaling which allows the negative drift ε to

be sub-constant in magnitude.

Theorem 3 (Negative Drift Theorem with Scaling [54]). Let Xt, t ≥ 0, be real-valued random

variables describing a stochastic process over some state space. Suppose that there exist an inter-

val [a, b] ⊆ R and, possibly depending on ℓ := b − a, a drift bound ε := ε(ℓ) > 0, as well as a

scaling factor r := r(ℓ) such that for all t ≥ 0 the following conditions hold:

1. E(Xt+1 −Xt | X0, . . . , Xt; a < Xt < b) ≥ ε,

2. Pr(|Xt+1 −Xt| ≥ jr | X0, . . . , Xt; a < Xt) ≤ e−j for all j ∈ N0,

3. 1 ≤ r2 ≤ εℓ/(132 log(r/ε)).

Then for the first hitting time T ∗ := min{t ≥ 0 : Xt ≤ a | X0 > b} it holds that Pr(T ∗ ≤
eεℓ/(132r

2)) = O(e−εℓ/(132r2)).

3. Unimodal Optimisation: Hillclimbing

We begin the study of MAHHOI by analysing its performance on unimodal functions. Since

accepting worsening moves is never required in this setting, the hyper-heuristic cannot outperform

elitist algorithms. Nevertheless, Theorem 7 shows that MAHHOI can still be very efficient when

optimising ONEMAX, even with p > 0. We first introduce Theorem 4 and Theorem 5, which

show that the parameter p should not be too large. Theorem 6 subsequently states that the expected

runtime of MAHHOI for ONEMAX is a lower bound for its expected runtime on all functions with

a unique global optimum.

For ONEMAX, the larger the value of p, the greater the probability of accepting moves away

from the global optimum during the optimisation process, and the greater the expected runtime of

the hyper-heuristic. For constant values of p, the standard Negative Drift Theorem (Theorem 2) can

be applied directly to show that an exponential number of iterations is required with exponentially

high probability.

Theorem 4. The runtime of MAHHOI on ONEMAX, with p = Θ(1), is at least 2Ω(n) with proba-

bility at least 1− 2−Ω(n).

Proof. Let i denote the number of 1-bits in the current bit-string, and consider the expected change

in the Hamming distance (i.e., drift) to the optimum (which for ONEMAX is equivalent to the

expected change in solution fitness) in an iteration of MAHHOI:

∆(i) =
n− i

n
− p · i

n
= − i+ pi− n

n
, (1)

as improving mutations (which require flipping one of the n− i remaining 0-bits) are accepted by

both acceptance operators, while worsening mutations (flipping one of the i 1-bits) are accepted

only by the AM operator, chosen with probability p.

10

Let p > 0 be a constant. We have that for i ≥ 1+C
1+p
· n, ∆(i) ≤ −C, for some constant C, with

p > C > 0. Hence, for a region of size (n − 1) − 1+C
1+p
· n = Ω(n), the drift is negative (at most

−C). Since MAHHOI is a local search algorithm, this region of negative drift cannot be escaped

by a large jump. By the Negative Drift Theorem (Theorem 2), the runtime in this case will be at

least 2Ω(n) with overwhelming probability 1− 2−Ω(n).

For smaller values of p, yet still too large, we apply the negative drift theorem with scaling

(Theorem 3).

Theorem 5. The runtime of MAHHOI for ONEMAX, with p = ω((
√
n log n)/n), is at least nω(1)

with probability at least 1− n−ω(1).

Proof. To prove this result, we will apply the Simplified Drift Theorem with Scaling (Theorem 3),

which handles regions of sub-constant negative drift.

Recall Equation 1 from the proof of Theorem 4: the drift in one iteration for MAHHOI for

ONEMAX, when the current solution contains i 1-bits, is

∆(i) =
n− i

n
− p · i

n
= − i+ pi− n

n
.

We will consider the drift in the region of n − c
√
n ≤ i < n of length ℓ = c

√
n, where c > 0

is a constant. Let p = c+ · (√n log n)/n, where c+ = ω(1). As ∆(i) decreases with i, the negative

drift is weakest at i = n− ℓ:

∆(n− ℓ) = −(n− ℓ) + (n− ℓ)p− n

n
= −np− ℓp− ℓ

n

= −
(
p− c

√
np

n
− c
√
n

n

)
= −

(
p− o(p)−O(n−1/2)

)
= −Ω(p)

and thus ε = ω
(√

n logn
n

)
satisfies the drift condition of the Simplified Drift Theorem with Scaling

(Theorem 3).

The second condition, forbidding large jumps, is satisfied by choosing r = 2 and verifying that

for all j ∈ N0, the probability that the magnitude of the fitness change is at least jr is at most e−j ,

which is trivially true: for j = 0, e−j = 1, and for j ≥ 1, the probability that the distance to the

optimum changes by at least jr ≥ 2 is 0, as the mutation operator used by MAHHOI only flips one

bit per iteration.

Finally, we need to verify the following condition, 1 ≤ r2 ≤ εℓ/(132 log(r/ε)). To this end,

we note that

εℓ = ω

(√
n log n

n

)
· c
√
n = ω(log n),

and

132 log(r/ε) = 132 log

(
2
√
n

ω(log n)

)
≤ 132 log(2

√
n) ≤ 66 log(n) +O(1).

Thus εℓ/(132 log(r/ε)) = ω(∞) is greater than r2 = 4 for sufficiently large n.

Having verified that all of the conditions of the Simplified Drift Theorem with Scaling are

satisfied, we apply the theorem, concluding that the probability that the optimum is found within

eεℓ/(132r
2) = nω(1) iterations is at most O(eεℓ/(132r

2)) = n−ω(1).

11

We remark that the ω((
√
n log n)/n) lower bound on the probability of applying the AM selec-

tion operator is the lowest such bound for which the Negative Drift Theorem with scaling yields a

super-polynomially high probability of requiring a super-polynomial number of iterations to opti-

mise ONEMAX. We note that εℓ = ω(log n) is required for Theorem 3 to yield a super-polynomial

runtime bound, and further reducing p would require reductions to both the drift bound ε and the

length of the negative drift region ℓ. Closing the gap to the upper bound on this probability for

which a positive result is presented in Theorem 7 would thus require other proof techniques to be

applied.

The following theorem proves that MAHHOI in the same setting cannot solve any function with

a unique global optimum in polynomial time. Thus we provide a pretty general lower bound on

the value of parameter p for efficient optimisation. We follow the proof idea of [23, Theorem 9],

which showed that the expected runtime of the (1+1) EA on ONEMAX is a lower bound on its

expected runtime for any function with a unique global optimum. [65, Theorem 10] further proved

the same result for arbitrary mutation-based EAs with mutation probability 1/n.

Theorem 6. The expected runtime of MAHHOI for any function with a unique global optimum is

at least as large as the expected runtime of MAHHOI for ONEMAX with the same setting for p.

Proof. Let f denote any function with a unique global optimum and without loss of generality we

set the unique global optimum of f at the bit-string 1n. We will prove that the expected runtime of

MAHHOI for f is at least as large as the runtime of MAHHOI for ONEMAX. Formally, we aim to

show that

Ef
MAHHOI

≥ EONEMAX

MAHHOI
. (2)

Let Ef
MAHHOI

(i) denote the minimum expected time required by MAHHOI to find the global

optimum of f , given that MAHHOI has only sampled solutions x with |x|1 ≤ i so far. MAHHOI

only samples Hamming neighbours and hence must sample at least one solution with |x|1 = j for

all j > i before reaching the global optimum. By definition,

Ef
MAHHOI

(n) ≤ Ef
MAHHOI

(n− 1) ≤ · · · ≤ Ef
MAHHOI

(0).

We further define ẼONEMAX

MAHHOI
(i) be defined the same as EONEMAX

MAHHOI
(i) yet with the added constraint that

a solution with |x|1 = i has been sampled. By definition, ẼONEMAX

MAHHOI
(i) ≥ EONEMAX

MAHHOI
(i).

We will verify the claim in Equation 2 by proving that Ef
MAHHOI

(i) ≥ ẼONEMAX

MAHHOI
(i) holds for all

i. We use proof by induction. Firstly, note that Ef
MAHHOI

(n) = ẼONEMAX

MAHHOI
(n) = 0, and we assume

that Ef
MAHHOI

(j) ≥ ẼONEMAX

MAHHOI
(j) for all j > i.

Since MAHHOI uses local search with a neighbourhood size of one, the number of 1-bits in the

solution can either decrease by one (if a worsening move is accepted by the AM operator), stay the

same (if a worsening move is rejected by the OI operator) or increase by one. If the number of 1-

bits increases, the expected optimisation time is at least Ef
MAHHOI

(i+ 1). Let Y denote the number

of 1-bits in the solution after the mutation is accepted or rejected; using the induction hypothesis,

Ef
MAHHOI

(i) ≥ 1 + Pr(Y = i+ 1) · Ef
MAHHOI

(i+ 1) + Pr(Y ≤ i) · Ef
MAHHOI

(i)

≥ 1 + Pr(Y = i+ 1) · ẼONEMAX

MAHHOI
(i+ 1) + Pr(Y ≤ i) · Ef

MAHHOI
(i).

12

Hence,

Ef
MAHHOI

(i) ≥
1 + Pr(Y = i+ 1) · ẼONEMAX

MAHHOI
(i+ 1)

1− Pr(Y ≤ i)
.

Furthermore, for MAHHOI on ONEMAX we have,

ẼONEMAX

MAHHOI
(i) = 1 + Pr(Y = i+ 1) · ẼONEMAX

MAHHOI
(i+ 1) + Pr(Y ≤ i) · ẼONEMAX

MAHHOI
(i),

and hence,

ẼONEMAX

MAHHOI
(i) =

1 + Pr(Y = i+ 1) · ẼONEMAX

MAHHOI
(i+ 1)

1− Pr(Y ≤ i)
.

Therefore, we have proven that Ef
MAHHOI

(i) ≥ ẼONEMAX

MAHHOI
(i) ≥ EONEMAX

MAHHOI
(i). Since MAHHOI is ini-

tialised uniformly at random regardless of the fitness function used, the distribution of the number

of 1-bits in the initial solution is the same. Hence, the theorem holds.

Theorem 6 combined with the statements of Theorem 4 and Theorem 5 shows that the ex-

pected runtime of MAHHOI on any function with unique global optimum is at least nΩ(logn) if

p ≥ (
√
n log2 n)/n and at least 2Ω(n) if p = Θ(1).

We now provide an upper bound on p for which the hyper-heuristic is efficient at hillclimbing

ONEMAX.

Theorem 7. The expected runtime of MAHHOI for ONEMAX, with p = O((log log n)1−ǫ/n), for

any constant ǫ > 0, is O(n log n). With p = O((log n)1−ǫ/n), for any constant ǫ > 0, the expected

runtime of MAHHOI for ONEMAX is o(n2 log n).

Proof. Let Yt denote the current solution at iteration t, h(Yt) be its Hamming distance to the

ONEMAX optimum, g : N0 → R≥0 be an injective function with g(0) = 0, and g−1 the inverse

function of g. To prove this result, we will apply the additive drift theorem on the process Xt :=
g(h(Yt)), bounding the expected number of steps before Xt = 0 for the first time (and hence

MAHHOI has constructed an optimal solution for the first time).

Consider the drift ∆(i) := E(Xt−Xt+1 | g−1(Xt) = i), i.e. the expected decrease of the Xt+1

value when the current solution is a Hamming distance of i away from the optimum. If MAHHOI

mutation produces an improvement, it will be accepted regardless of which selection operator is

used and hence decrease h(Yt) by 1. If MAHHOI mutation produces a worsening, it will only be

accepted if the AM operator is applied (with probability p), in which case h(Yt) will increase by 1;

otherwise, h(Yt) and hence also Xt will remain unchanged. Combining the above yields:

∆(i) =
i

n
· (g(i)− g(i− 1))− n− i

n
· p · (g(i+ 1)− g(i)). (3)

Let g(x) =
∑x

i=1(
1
i
+ s(i)), where s : N→ R≥0 is a monotonically decreasing function; then,

∆(i) =
1

n

(
1 + i · s(i) + ip

(
1

i+ 1
+ s(i+ 1)

)
− np

(
1

i+ 1
+ s(i+ 1)

))

≥ 1

n

(
1 + i · s(i)− np

i+ 1
− np · s(i+ 1)

)
(4)

13

Suppose s(1) = 0; then, ∆(i) ≥ 1
n

(
1− np

1+i

)
. When p = (2 − c)/n for any 0 < c ≤ 2,

∆(i) ≥ c/(2n) for all i > 0 (i.e., all i ≥ 1), and hence the additive drift theorem yields an upper

bound on the expected runtime of MAHHOI of at most g(n)/(c/(2n)) = O((n/c) log n).
For p ≥ 2/n, we will need to modify s to ensure that the drift ∆(i) remains positive throughout

the search space. Observe that in equation (3), the bound on ∆(i) can be increased by increasing

s(i); and that as long as the expression in the parentheses produces at least a positive constant,

a drift of Ω(1/n) can be maintained. First, we show that for i ≥ 2np, no adjustment to s(i) is

necessary to achieve this:

∆(2np) · n ≥ 1− np

2np+ 1
≥ 1

2
,

and as ∆(i) is an increasing function, ∆(i) ≥ 1/(2n) for all i ≥ ⌈2np⌉.
Let i0 be the minimum Hamming distance to the optimum at which 1 − np

i0+1
≥ 1

2
and hence

∆(i) ≥ 1/(2n) for all i ≥ i0. Per the above, i0 ≤ ⌈2np⌉. If i0 = 1, a direct application of the

additive drift theorem with s(i) = 0, as described previously, yields a O(n log n) upper bound on

the runtime. Thus, it remains to consider the case that 2 ≤ i0 ≤ ⌈2np⌉.
Let ij = i0 − j for j ∈ {1, . . . , i0 − 1}. Using that s(i0) = 0, we can adjust s(i1) to ensure

that ∆(i1) is sufficiently large. We will show by induction that s(ij) = (np)j/(3ij) is sufficient to

ensure that ∆(ij) ≥ 1/(2n).
To begin, consider the drift at i1:

∆(i1) · n ≥ 1 + i1 s(i1)−
np

i1 + 1
≥ 1− np

i0 + 1
− np

3
+ i1 s(i1) ≥

1

2
− np

3
+ i1 s(i1),

using that 1
ij+1

= 1
i0−j+1

= 1
i0+1

+ j
i02+(2−j)i0+1

≤ 1
i0+1

+ 1
3

as i0 ≥ 2 and j ≤ i0 − 1. Hence,

setting s(i1) ≥ np/(3i1) ensures that ∆(i1) ≥ 1/(2n), establishing the induction base case.

For j ≥ 2, both s(ij) and s(ij + 1) = s(ij−1) are positive. Given that the induction hypothesis

holds for s(ij−1),

∆(ij) · n ≥ 1 + ij s(ij)−
np

ij + 1
− np s(ij + 1) ≥ 1− np

i0 + 1
− np

3
− np s(ij−1) + ij s(ij)

≥ 1

2
− np

3
− (np)j

3ij−1

+ ij s(ij) ≥
1

2
− (np)j

3
+ ij s(ij),

using that np
3
≤ (np)2

6
as np ≥ 2, ij−1 ≥ 2, and j ≥ 2. Hence, setting s(ij) ≥ (np)j/(3ij) ensures

that ∆(ij) ≥ 1/(2n).
Thus, s(ij) = (np)j/(3ij) = (np)i0−ij/(3ij) for 1 ≤ ij < i0 ≤ ⌈2np⌉, and s(i) = 0 for

i ≥ i0 is sufficient to ensure that ∆(i) ≥ 1/(2n) for all i ≥ 1. Additionally, it holds that s(1) ≤
(np)i0−1/3 ≤ (np)2np/3, and for p = O((log log n)1−ǫ/n) with any constant ǫ > 0, (np)2np =
o(log n), and hence s(1) = o(log n).

For p = O((log log n)1−ǫ/n) and np ≥ 2,
∑n

i=1 s(i) ≤
∑n

i=1 s(1)/2
i−1 < 2s(1) = o(log n),

and hence g(n) = O(log n). Applying the additive drift theorem with X0 = O(log n) and δ =
Ω(1/n) thus yields that Xt = 0 is found in expectation after at most X0/δ = O(n log n) steps.

Hence, MAHHOI with any p = O((log log n)1−ǫ/n) and constant ǫ > 0 optimises ONEMAX in

O(n log n) iterations in expectation.

14

For p = O((log n)1−ǫ/n), (np)2np = o(n), and hence g(n) = o(n). Applying the additive

drift theorem yields that MAHHOI with any p = O((log n)1−ǫ/n) and constant ǫ > 0 optimises

ONEMAX in o(n2 log n) iterations in expectation.

For simplicity throughout the remainder of the paper, we consider MAHHOI with p = 1
(1+ε)n

for any constant ǫ > 0, which still gives the desired O(n log n) runtime. This value of p allows

MAHHOI to maintain a positive drift throughout the search space of ONEMAX, and removes the

need for complicating (log n)1−ε/n terms in the subsequent calculations. We will show how with

this parameter value the hyper-heuristics can, as well as hill-climbing efficiently, escape from

difficult local optima effectively.

Regarding the performance of METROPOLIS for ONEMAX, we present the following Theorem

from Jansen and Wegener [38], which provides a polynomial upper bound on the expected runtime

of METROPOLIS for ONEMAX given that the function α(n) is chosen to be sufficiently large with

respect to the problem size.

Theorem 8. [38, Theorems 4&7] The expected runtime of METROPOLIS for ONEMAX is poly-

nomially bounded if and only if α(n) = Ω(n/ log n). Furthermore, if α(n) ≥ εn for a constant

ε > 0, then the expected runtime of METROPOLIS for ONEMAX is O(n log n).

4. Multimodal Optimisation: Easy Basins of Attraction

We now analyse the performance of the search heuristics for the multimodal CLIFFd (1 < d <
n/2) class of benchmark functions. Recall that CLIFFd features local optima that the heuristics

must escape before climbing a fitness gradient towards the global optimum. We refer to the local

optimum at i = n − d as the ‘cliff’, the two ONEMAX style hillclimbs as the ‘first slope’ and

‘second slope’ respectively (see Figure 1a), and use d to denote the length of the cliff.

To find the global optimum of the CLIFFd function, it is necessary to escape the local optimum,

either by dropping down from the cliff and accepting a worse candidate solution and then climbing

up the second slope, or by making a prohibitive jump to the global optimum on the other side of

the cliff (this is possible with standard bit mutation, by requiring expected exponential time in the

distance between the cliff and the optimum, but not with local mutations).

We now consider the performance of MAHHOI for CLIFFd. Clearly, with p = 1, MAHHOI

reduces to a random walk across the fitness landscape. Similarly, if p = 0, with probability at

least 1/2, the bit-string is initialised with at most n/2 1-bits, and will hillclimb to the top of the

cliff. There is no improving step from this position and the global optimum cannot be reached.

By the law of total expectation, the expected runtime will be infinite. We will show that using

MAHHOI with p = 1
(1+ε)n

, which has been shown to hillclimb efficiently (Theorem 7), will still

allow worsening moves with sufficiently high probability to be able to move down from the cliff

and reach the global optimum in expected polynomial time.

Theorem 10 bounds the expected runtime of MAHHOI for CLIFFd from above. We begin,

however, by introducing a helper Lemma which was proved by Droste et al. for trajectory based

algorithms which can only change the number of 1-bits in the bit-string by 1 [29]. The lemma was

subsequently used to analyse the performance of the (1+1) EA for noisy OneMax for small noise

strength [28]. Unlike in noisy optimisation, where the noise represents uncertainty with the respect

to the true fitness of solutions, in hyper-heuristics the AM operator is intended to be helpful to the

optimisation process by allowing the algorithm to escape from local optima.

15

Lemma 9. [29, Lemma 3] Let E(T+
i) be the expected time to reach a state with i+1 1-bits, given a

state with i 1-bits, and p+i and p−i be the transition probabilities to reach a state with, respectively,

i+ 1 and i− 1 1-bits. Then:

E(T+
i) =

1

p+i
+

p−i
p+i
· E(T+

i−1).

Within the context of non-elitist local search algorithms, such as MAHHOI, the transition prob-

ability p+i (p−i) refers to the probability of making a local mutation which increases (respectively

decreases) the number of 1-bits in the offspring solution and accepting that solution.

Theorem 10. The expected runtime of MAHHOI for CLIFFd, with p = 1
(1+ε)n

for any constant

ε > 0, is O
(
n log n+ n3

d2

)
.

Proof. Let i denote the number of 1-bits in the bit-string at any time t > 0. We wish to bound

the expected runtime from above by separately bounding four ‘stages’ of the optimisation process,

each starting once all earlier stages have ended, and ending once a solution with at least certain

number of 1-bits has been constructed for the first time during the optimisation process (i.e., the

HH may go backwards afterwards yet will remain in the same stage): the first stage ends when

i ≥ n− d is reached, the second when i ≥ n− d+1, the third when i ≥ n− d+2, and the fourth

when i = n, i.e., the optimum has been constructed. We use T1, . . . , T4 to denote the number of

iterations the algorithm spends in each of these stages, and note that by definition of these stages,

the number of iterations T before the optimum is reached is T = T1+T2+T3+T4, and by linearity

of expectation,

E(T) = E(T1) + E(T2) + E(T3) + E(T4). (5)

In the first stage, while i < n−d, CLIFFd resembles the ONEMAX function, and we can use the

upper bound for the expected runtime of MAHHOI for ONEMAX with p = 1
(1+ε)n

from Theorem 7.

Hence, E(T1) = O(n log n).
The second stage begins when i ≥ n− d for the first time, and ends when i ≥ n− d+1 for the

first time. When i = n− d, there are no improving moves. If the OI operator is selected, there will

be no change in the candidate solution. Hence, any move must come from use of the AM operator,

which is selected with probability 1
(1+ε)n

. A mutation step may either increase the number of 1-bits

in the bit-string with probability d/n, or decrease the number of 1-bits with probability (n− d)/n.

We use Lemma 9 to bound E(T2), the expected time to jump down from the cliff,

E(T2) = E(T+
n−d) =

n2(1 + ε)

d
+

n− d

d
· E(T+

n−d−1). (6)

We now must bound E(T+
n−d−1). At i = n− d− 1, the drift is as follows:

∆(n− d− 1) =
d+ 1

n
− 1

(1 + ε)n
· n− d− 1

n

=
n(d+ ε(d+ 1)) + d+ 1

n2(1 + ε)
,

16

as flipping any one of the (d + 1) remaining 0-bits increases the fitness by 1 and is accepted by

either operator, and flipping any one of the (n− d− 1) 1-bits decreases the fitness by 1 and is only

accepted if the ALLMOVES operator is chosen, which occurs with probability p = 1/((1 + ε)n).
Clearly, for all 0 ≤ i ≤ n−d− 1, the drift is bounded from above by the drift at i = n−d− 1,

while the distance to the required point from i = n − d − 1 is 1. By the Additive Drift Theorem

(Theorem 1), we have

E(T+
n−d−1) ≤ 1/∆(n− d− 1)

=
n2(1 + ε)

n(d+ ε(d+ 1)) + d+ 1
= O

(n
d

)
.

We can now return to bounding E(T2) in Equation 6:

E(T2) =
n2(1 + ε)

d
+

n− d

d
· E(T+

n−d−1)

=
n2(1 + ε)

d
+

n− d

d
·O
(n
d

)
= O

(
n2

d

)
. (7)

The third stage begins with i ≥ n− d+ 1, and ends once i ≥ n− d+ 2. When i = n− d+ 1,

all moves are improving moves and all moves will be accepted, regardless of the choice of the OI

or AM operator. With probability (d− 1)/n, the accepted move decreases the number of 1-bits to

i = n − d i.e., the hyper-heuristic returns to the local optimum. With probability (n − d + 1)/n,

the accepted move instead increases the number of 1-bits to i = n− d+2. We again use Lemma 9

to bound E(T3), the expected time to take one step up the second slope. Noting that E(T+
n−d) =

O(n2/d) by Equation 7, we get

E(T3) = E(T+
n−d+1) =

n

d− 1
+

n− d+ 1

d− 1
· E(T+

n−d)

=
n

d− 1
+

n− d+ 1

d− 1
·O
(
n2

d

)
= O

(
n3

d2

)
.

If d = 2, the CLIFFd function will have been optimised at this point. However, for d ≥ 3, it is

necessary to climb further up the second slope. If d = 3, we point out that E(T4) = E(T+
n−d+2),

and by applying Lemma 9 bound

E(T+
n−d+2) =

n

d− 2
+

1

(1 + ε)n
· n− d+ 2

d− 2
· E(T+

n−d+1)

=
n

d− 2
+

1

(1 + ε)n
· n− d+ 2

d− 2
·O
(
n3

d2

)

=
n

d− 2
+O

(
n3

d3

)
.

For d > 3, we know that i = n− d+ 2 and i = n− d+ 3 are points on the second slope, and

17

by applying Lemma 9 bound

E(T+
n−d+3) =

n

d− 3
+

1

(1 + ε)n
· n− d+ 3

d− 3
· E(T+

n−d+2)

=
n

d− 3
+

1

(1 + ε)n
· n− d+ 3

d− 3
·O
(
n3

d3

)

=
n

d− 3
+O

(
n3

d4

)
.

For d > 4 this trend will continue as MAHHOI progresses closer towards the global optimum; in

particular, for k < d, we will have E(T+
n−d+k) =

n
d−k

+O
(

n3

dk

)
.

Hence, E(T4) =
∑d−1

k=2 E(T+
n−d+k). The terms in the summation will be asymptotically domi-

nated by the O(n3/d3) term in E(T+
n−d+2) if d is sub-linear, giving

E(T4 | d = o(n)) ≤ d ·O(n3/d3) = O(n3/d2).

However, if d is linear in the problem size, the first terms will dominate, and we will have:

E(T4 | d = Θ(n)) = O(1) +
d−1∑

i=2

n

d− i
≤ O(1) +

d−1∑

i=0

n

d− i

= O(1) + n ·
d∑

j=1

1

j
= O(n log n).

Combining the bounds for the sub-linear and linear d, we conclude that

E(T4) = O

(
n log n+

n3

d2

)
.

We now return to our overall runtime bound from Equation 5 and complete the proof:

E(T) = E(T1) + E(T2) + E(T3) + E(T4)

= O

(
n log n+

n2

d
+

n3

d2
+ n log n+

n3

d2

)
= O

(
n log n+

n3

d2

)
.

Theorem 10 gives an expected runtime bound of MAHHOI for CLIFFd of O (n log n+ n3/d2).
This bound is smallest when d is large, suggesting that the algorithm is fastest when the cliff is

hardest for elitist algorithms, i.e., a linear cliff length, d = Θ(n), gives an expected runtime of

O(n log n). This runtime asymptotically matches the best case expected performance of artificial

immune systems, which escape the local optimum with an ageing operator, also O(n log n) in

expectation [8, 9, 11, 12, 14], which is the best runtime known for hard CLIFFd functions. We

suspect MAHHOI is faster in practice (i.e., by having smaller leading constants in its expected

runtime), but leave this proof for future work. Mutation based EAs have an expected runtime of

Θ(nd) for d ≤ n/2 [57]; for d = ω(1), this will give at least super-polynomial expected runtime

18

in the length of the gap. Steady-state Genetic Algorithms which use crossover have recently been

proven to be faster by at least a linear factor [17], but would still require exponential expected

runtimes for large gaps.

The worst-case scenario for MAHHOI is a constant gap length, giving a runtime of O(n3).
This means that the (1+1) EA will outperform MAHHOI if d < 3, but will be slower for any

3 < d ≤ n/2, with a performance gap that increases exponentially with the distance between the

cliff and the optimum.

Concerning non-elitist search heuristics, apart from the artificial immune systems, an upper

bound of O(nη) (for η ≈ 3.9767) on the expected runtime of the (1,λ) EA has recently been

proved [35], for a carefully chosen parameter λ that satisfies log e
e−1

n ≤ λ = O(log n), improv-

ing considerably upon the previously best known bound of n25) [36]). The best case expected

runtime of the non-elitist, strong-selection weak-mutation (SSWM) evolutionary regime, which

rejects fitness-improving mutations with a non-zero probability, is at most nd/eΩ(d) [57]. Hence,

MAHHOI is also faster than SSWM for 3 < d ≤ n/2.

We now compare the performance of MAHHOI for CLIFFd with the non-elitist METROPO-

LIS algorithm (Algorithm 2). Theorem 11 shows that MAHHOI will considerably outperform

METROPOLIS for CLIFFd for all d > 3.

Theorem 11. The expected runtime of METROPOLIS for CLIFFd is at least

min

{
n−d+1
2(d−1)

·
(

cn
logn

)d−3/2

, nω(1)

}
for some constant c > 0.

Proof. Let i denote the number of 1-bits in the bit-string at any time t > 0. The CLIFFd function

has two ONEMAX slopes (0 ≤ i ≤ n − d, n − d + 1 ≤ i ≤ n − 1). In order to reach the

global optimum, it is necessary for METROPOLIS to optimise these two slopes. The expected

runtime of METROPOLIS for ONEMAX is polynomially bounded in the problem size if and only if

α(n) = Ω(n/ log n) (by Theorem 8). Hence, α(n) = Ω(n/ log n) is necessary in order to optimise

the two slopes in polynomial time. However, the jump down to the bottom of the cliff will be

difficult for METROPOLIS.

The randomly initialised candidate solution has at most n/2 bits with probability at least 1/2.

METROPOLIS accepts the jump down from i = n − d to i = n− d+ 1 with probability at most

α(n)(n−d+3/2)−(n−d) = α(n)3/2−d. Hence, the expected time for this event to occur is at least

E(T+
n−d) ≥ α(n)d−3/2. From this state, it is necessary to make at least one improving move to find

the global optimum. Given that, at a state with i = n − d + 1 1-bits, all moves are accepted, we

use Lemma 9, with p+n−d+1 =
d−1
n

and p−n−d+1 =
n−d+1

n
:

E(T+
n−d+1) =

n

d− 1
+

n− d+ 1

d− 1
· E(T+

n−d)

≥ n

d− 1
+

n− d+ 1

d− 1
· α(n)d−3/2

≥
(
n− d+ 1

d− 1
· α(n)d−3/2

)
.

Given that we want to minimise the overall runtime, we have α(n) = Ω(n/ log n) such that the

hillclimb can be done in polynomial time. However, the jump down the cliff will take

E(T+
n−d+1) ≥

n− d+ 1

d− 1
·
(

cn

log n

)d−3/2

19

for some constant c > 0.

We note that if d = ω(1), the term E(T+
n−d+1) is exponential in the problem size, and setting

α = Ω(n/ log n) might not be optimal. In this case, the lower bound will be some exponential

term, nω(1), i.e., the time taken for the two hillclimbs.

Overall, in order to optimise the function, the jump down the cliff has to be made (with proba-

bility at least 1/2) and at least one step up the second slope must be made. Hence,

E(T) ≥ min

{
1

2
· n− d+ 1

d− 1
·
(

cn

log n

)d−3/2

, nω(1)

}
.

We have proven that while METROPOLIS cannot optimise hard CLIFFd variants in expected

polynomial time, MAHHOI is extremely efficient for hard cliffs, and has an expected runtime of

O(n3) in the worst case.

5. Multimodal Optimisation: Hard Basins of Attraction

We now consider the JUMPm function class (1 < m < n/2) as an example of a multimodal

function where MAHHOI has a harder time escaping the local optima. Unlike CLIFFd, the fitness

decreases on the second slope, making it harder to traverse.

Typically to optimise the JUMPm function (Figure 1b), a search heuristic first reaches the local

optimum at the top of the slope. Then, either a jump to the global optimum is made, which requires

exponential expected time in the length of the jump for unbiased mutation operators, or a jump is

made down to the slope of decreasing fitness, which must be traversed before the global optimum

is found.

Theorem 12. The runtime of MAHHOI for JUMPm, with p = 1
(1+ε)n

, is at least Ω(n log n + 2cm)

for some constant c > 0 and any constant ε > 0, with probability at least 1− 2−Ω(m).

Proof. Let i represent the number of 1-bits in the bit-string at any time t > 0. First, we consider

m = O(log n). The initialised candidate solution has at most n/2 bits with probability at least

1/2. The expected time to optimise the function will be bounded from below by the expected

time to reach the local optimum at the top of the slope. If m = O(log n), the algorithm must at

least hillclimb to some point i = n − k lnn, for some constant k > 0. The expected time to flip

n/2 − k lnn bits correctly is Ω(n log n); this can be proved by reusing arguments from the proof

of [30, Lemma 10].

Similarly, the time to optimise the function will be bounded from below by the time to traverse

the slope of decreasing fitness and find the global optimum, that is, to traverse the region where

n−m+1 < i ≤ n− 1. Consider the negative drift on the number of 1-bits in the bit-string within

this region:

−∆(i) =
i

n
− 1

(1 + ε)n
· n− i

n
=

i(n(1 + ε) + 1)− n

n2(1 + ε)

≥ n/2(n(1 + ε) + 1)− n

n2(1 + ε)

=
n(1 + ε)− 1

2n(1 + ε)
=

1

2
− 1

2n(1 + ε)
≥ 0.4.

20

We also note that the number of 1-bits can only change by 1 in each iteration, so there is no

chance of escaping the area of negative drift with large jumps. We can apply the Negative Drift

Theorem (Theorem 2) for the region from i = n−m+1 to i = n− 1, i.e. of length m− 2. Hence

there exists a constant c′ > 0 such that, with probability at least 1 − 2−Ω(m−2) = 1− 2−Ω(m), the

global optimum is not found from the area of negative drift within 2c
′·(m−2) = 2cm steps, where

c = c′(m− 2)/m > 0 is a different constant. If m = ω(log n), this term will dominate.

By considering both possibilities, we state that, for some constant c > 0, the expected time for

MAHHOI to optimise JUMPm is Ω(n log n+ 2cm) with probability at least 1− 2−Ω(m).

The following theorem provides an upper bound on the expected runtime by considering the

expected time for MAHHOI to accept m consecutive worsening moves from the local to the global

optimum.

Theorem 13. The expected runtime of MAHHOI for JUMPm, with p = 1
(1+ε)n

for any constant

ε > 0, is

O

(
n log n+

(1 + ε)m−1n2m

m2m!

)
.

Proof. Let i denote the number of 1-bits in the bit-string at any time t > 0. The expected time to

reach a bit-string with i = n−m 1-bits is O(n log n), by Theorem 7.

From this position, in order to make a move towards the global optimum, it is necessary to flip

one of the remaining 0-bits, and accept the result (with probability p = 1
(1+ε)n

). Starting from a

search point with i = n −m 1-bits (hence, m 0-bits), the probability of reaching a bit string with

i = n− 1 1-bits within the next m− 1 steps is given by

m∏

i=2

(
i

n
· 1

(1 + ε)n

)
=

m!

(1 + ε)m−1n2(m−1)
.

Let p+n−m ≥ m!
(1+ε)m−1n2(m−1) be the probability that a bit-string with n − 1 1-bits is reached in

m− 1 consecutive steps from the local optimum at i = n−m, and p−n−m be the probability that a

mutation which decreases the fitness to i = n −m − 1 is accepted. By noting that E(T+
n−m−1) =

O(n/m) (by the Additive Drift Theorem (Theorem 1)), we can use Lemma 9 to bound the expected

time to reach such a bit string from the local optimum:

E(T opt
n−m) ≤

(1 + ε)m−1n2(m−1)

m!
+

(1 + ε)m−1n2(m−1)

m!
·O
(n

m

)

= O

(
(1 + ε)m−1n2m−1

m2 · (m− 1)!

)
.

Hence, by a further application of Lemma 9, the expected time to reach the local optimum and

traverse the slope of decreasing fitness to find the global optimum, is

E(T) = O

(
n log n+

(1 + ε)m−1n2m

m2 ·m!

)
.

21

Using global mutations to jump allows smaller upper bounds on the expected runtime. The

expected runtime of the (1+1) EA with mutation rate 1/n for JUMPm is Θ(nm) [30] and a bound

of O(nm−1) for Steady State (µ+1) Genetic Algorithms using crossover and a slightly higher mu-

tation rate has recently been proved by Dang et al. [17], both outperforming our upper bound for

MAHHOI. Recent work has shown that by increasing even further the mutation rate, exponen-

tial speedups are achieved both by a static and adaptive Artificial Immune System [9, 12, 13] using

hyper-mutations and by (1+1) EAs with heavy-tailed mutation operators following a power law dis-

tribution [31, 24] or by using a stagnation detection mechanism to identify the best mutation rate to

overcome the local optima [61, 63, 62] (however, the expected runtime is still exponential in m). A

compact GA has super-polynomial speedups over these algorithms for super-constant jump lengths

when m = o(n) [33]. In particular for logarithmic jump lengths the algorithm optimises JUMPm

in expected polynomial time. We point out that steady state GAs with diversity mechanisms that

enhance the power of crossover can optimise JUMPm in expected time O(mn log n+4m) for jumps

up to m = n/8) [19] and in Θ(n log n+ 4m) with an unrealistically small crossover probability of

O(m/n) [41].

Concerning algorithms that use non-elitism to escape from local optima, while the (µ, λ) EA

does not improve over the expected runtime of the elitist (µ + λ) EA [20], we will now show

that METROPOLIS has worse performance than MAHHOI on JUMPm. The large fitness difference

between the two points at i = n −m and i = n −m + 1 makes METROPOLIS unlikely to accept

the i = n−m+ 1 point when α(n) is set high enough to enable efficient hill-climbing of the first

slope.

Theorem 14. The runtime of METROPOLIS for JUMPm is 2Ω(n), with probability at least 1−2−Ω(n).

Proof. Let i represent the number of 1-bits in the bit-string at any time t > 0. The initialised

candidate solution has at most n/2 1-bits with probability at least 1/2. The jump down from the

local optimum will be accepted with probability α(n)f(n−m+1)−f(n−m) = α(n)m−1−n, and will

take expected time at least E(T+
n−m) ≥ α(n)n+1−m.

For i > n−m, we can again use Lemma 9, with p+i = α(n)−1 · n−i
n

and p−i = i
n

, to bound the

expected time to transition between neighbouring states:

E(T+
n−m+1) = α(n) · n

m− 1
+ α(n) · n−m+ 1

m− 1
· E(T+

n−m)

≥ α(n) · n

m− 1
+ α(n) · n−m+ 1

m− 1
· α(n)n+1−m

≥ α(n)n+2−m

E(T+
n−m+2) = α(n)

(
n

m− 2
+

n−m+ 2

m− 2
· E(T+

n−m+1)

)

≥ α(n) · n

m− 2
+ α(n) · n−m+ 2

m− 2
· α(n)n+2−m

≥ α(n)n+3−m.

We note that, in general, E(T+
n−m+k) ≥ α(n)n+(k+1)−m, and hence

E(T) ≥ E(T+
n−2) ≥ α(n)n+(m−2+1)−m = α(n)n−1.

22

We now require a lower bound on α(n). If m > n/5, consider the negative drift in the number

of 1-bits in the region from i = n −m + 1 to i = n − 1. Clearly, α(n) = 1 is the best choice for

this region, yet will still lead to a large area of negative drift:

−∆(i) =
i

n
− n− i

n
≥ −∆

(
4n

5

)
=

3

5
.

Since METROPOLIS is a local search algorithm, this region of negative drift cannot be escaped

by a large jump. Hence, by the Negative Drift Theorem (Theorem 2), the time to escape this region

will be at least 2Ω(n) with overwhelming probability 1 − 2−Ω(n). This will also be a lower bound

on the time to optimise the function.

If m ≤ n/5, with probability at least 1/2, METROPOLIS must hillclimb from i = 3n/4 to

i = 4n/5. Consider the drift on the fitness in this region when α(n) = 2:

−∆(i) =
1

2
· i
n
− n− i

n
≥ −∆

(
3n

4

)
=

1

8
.

Clearly, to avoid a large region of negative drift, α(n) ≥ 2 is required; giving E(T) ≥ 2n−1 =
2Ω(n).

Unlike METROPOLIS, MAHHOI does not consider the magnitude of the fitness difference be-

tween two solutions to decide whether to accept worsenings. This allows it to optimise JUMPm

with smaller jump sizes, such as m = Θ(1), in expected polynomial time, while METROPOLIS

requires exponential time in expectation in all cases.

6. Multimodal Optimisation: Basins of Attraction of Tuneable Gradient and Size

The CLIFFJUMPd,r,s function class (see Figure 1c) combines elements of both the CLIFFd and

JUMPm function classes. Upon reaching the local optimum (i.e., the top of the first ONEMAX

slope), r fitness-worsening mutations, each decreasing fitness of the current solution by s, must be

overcome before the slope leading to the global optimum can be reached. For algorithms that flip

one bit uniformly at random in each mutation step (e.g., RLS), setting r = 1 makes CLIFFJUMPd,r,s

similar to CLIFFd, while setting r = d makes it similar to JUMPm; thus, we consider this function

class with parameters 1 < r < d < n/2.

To begin, the following theorem shows that if the radius of the region of attraction around the

local optimum is too large i.e., super-logarithmic, both MAHHOI and METROPOLIS require super-

polynomial expected time to optimise CLIFFJUMPd,r,s, just like elitist heuristics using standard bit

mutation.

Theorem 15. On CLIFFJUMPd,r,s with r = ω(log n) and d < (0.5 − c)n for any constant 0 <
c < 0.5 and any s > 0, the expected optimisation time of MAHHOI and METROPOLIS, with any

parameters, is super-polynomial.

Proof. We note that both algorithms are with probability 1/2 initialised with a solution containing

at most n/2 1-bits, in which case they will need to descend the entire length of the negative-sloped

segment of CLIFFJUMPd,r,s. We will apply the Negative Drift Theorem to show that regardless

of the choice of algorithm parameters, reaching a solution with n − d + r 1-bits will then take

23

super-polynomial time in expectation, and hence the overall expected runtime of either algorithm

on CLIFFJUMPd,r,s will be super-polynomial by the law of total probability.

Let Xt denote the number of 1-bits in the current solution after t’th accepted mutation changing

the number of 1-bits in the current solution. Suppose n−d ≤ Xt < n−d+r. A solution with fewer

1-bits is generated with probability Xt/n ≥ (0.5 + c) and accepted with probability 1; let p− ≥
0.5 + c denote a lower bound on the probability that such a solution is generated and accepted in a

single iteration. A solution with more 1-bits is generated with probability (n−Xt)/n ≤ 0.5−c, and

accepted with probability at most 1; let p+ := 0.5−c denote an upper bound on the probability that

such a solution is generated and accepted in a single iteration. Thus, conditional on Xt changing, it

increases by 1 with probability at most p+/(p++p−) ≤ 0.5−c, and decreases by 1 with probability

at least p−/(p+ + p−) ≥ 0.5 + c. Thus, the expected change in the number of 1-bits is:

E(Xt+1 −Xt | n− d ≤ Xt < n− d+ r) ≤ 1 · (0.5− c)− 1 · (0.5 + c) = −2c = −Θ(1).

As both algorithms employ local mutations, P (|Xt+1−Xt| > 1) = 0, and hence we can apply the

Negative Drift Theorem (Theorem 2) to lower bound on the number of steps needed to increase Xt

from n−d to n−d+r (a region of length Ω(r)): with probability at least 1−2−Ω(r) = 1−2−ω(logn),

more than 2Ω(r) = 2ω(logn) = nω(1) accepted mutations changing the number of 1-bits are required.

This is also a lower bound on the number of iterations of MAHHOI (or METROPOLIS) required

to construct a solution with at least n − d + r 1-bits starting with a solution with at most n − d
1-bits. Thus, the expected optimisation time of MAHHOI and METROPOLIS, with any parameters,

on CLIFFJUMPd,r,s with r = ω(log n) and d < (0.5 − c) for any constant 0 < c < 0.5 is super-

polynomial.

The following theorem shows that when the radius of the region of attraction around the local

optimum is at most constant, MAHHOI is able to optimise CLIFFJUMPd,r,s in expected polynomial

time.

Theorem 16. The expected runtime of MAHHOI, with p = 1
(1+ε)n

for any constant ε > 0, for

CLIFFJUMPd,r,s with 1 ≤ r < d and any s > 0 is at most

O

(
(d− r)

(1 + ε)rn2r+2

(r + 1)2(r + 1)!

)
.

Proof. As MAHHOI only considers the sign of the fitness difference between the parent and off-

spring solutions (and not the magnitude), its behaviour is unaffected by the choice of the s param-

eter of CLIFFJUMPd,r,s.

For r = 1, the result can be proven exactly as in the proof of Theorem 10. For r > 1, we will

adapt the proof of Theorem 10 to cope with the larger basin of attraction around the local optimum.

Let Tu be the number of iterations before MAHHOI takes the first step up the slope leading to the

global optimum for the first time (i.e. constructs a solution with ONEMAX (x) = n− d + r + 1).

This is at most as difficult as finding the global optimum of JUMPm for m = r + 1, and thus

E(Tu) = O((1 + ε)rn2r+2/((r + 1)2(r + 1)!) per Theorem 13. If d = r + 1, the global optimum

has been found at this point; otherwise, we need to separately bound the time required to climb the

second slope, taking into the account the possibility of MAHHOI returning to the local optimum.

24

In the language of the proof of Theorem 10, we have that E(Tu) = E(T1) + E(T2) + E(T3), and

need to bound E(T4).
Let T+

j be the number of iterations between a solution with j 0-bits being accepted and the next

time a solution with (j−1) 0-bits is accepted. We bound E(T+
d−r) ≤ E(Tu), and for 1 ≤ j < d−r,

E(T+
j) = 1 + j/n · 0 + (1− j/n) · (p · E(T+

j+1) + E(T+
j))

=
1 + (1− j/n) · p · E(T+

j+1)

1− (1− j/n)
=

n+ (n− j) · p · E(T+
j+1)

j
= O(n+ E(Tu))

as p = O(1/n). Hence,

E(T4) = E

(
d−r−1∑

j=1

T+
j

)
=

d−r−1∑

j=1

E(T+
j) ≤ (d− r − 1) ·O(n+ E(Tu)).

Thus, MAHHOI finds the global optimum of CLIFFJUMPd,r,s after at most O((d− r)(n log n+
((1 + ε)rn2r+2)/(r + 1)2(r + 1)!)) = O((d − r)((1 + ε)rn2r+2)/((r + 1)2(r + 1)!)) iterations in

expectation.

We can provide a tighter upper bound for MAHHOI on CLIFFJUMPd,r,s when the negative slope

is far away from the global optimum.

Theorem 17. The expected runtime of MAHHOI, with p = 1
(1+ε)n

for any constant ε > 0, for

CLIFFJUMPd,r,s with d = Θ(n), r = o(n) and any s > 0 is at most O(nr+3).

Proof. For d = Θ(n) and r = o(n), the probability of mutating to a solution with a higher number

of 1-bits on the negative slope section of CLIFFJUMPd,r,s is at least (n− d+ r)/n = Θ(1).
A mutation which increases the number of 1-bits while on the negative slope is accepted with

probability p = 1
(1+ε)n

(since the move acceptance probability of MAHHOI is fixed, and not af-

fected by the fitness decrease s). Hence, from the local optimum, the probability of accepting r
consecutive decreasing moves to reach the local minimum and then move one step up the next

slope is at least (
1

(1 + ε)cn

)r+1

,

for some constant c > 0.

Let p+n−d ≥
(

1
(1+ε)cn

)r+1

be the probability that a solution with i = n − d + r + 1 1-bits is

reached in r + 1 consecutive steps from a solution with i = n − d 1-bits. We can bound the time

to reach a bit-string with i = n− d 1-bits after random initialsation by O(n) (see Theorem 7), and

hence we can bound the time to reach a solution with i = n− d+ r+1 1-bits (using Lemma 9) by

O(n) ·O
(
nr+1

)
= O

(
nr+2

)
.

Similarly, reusing arguments from the proof of Theorem 16, the expected time required to

climb the second positive slope (of length d−r = O(n)) and reach the global optimum is bounded

by

O(n log n) +O(n) ·O(nr+2) = O(nr+3)

using Lemma 9. Hence, the overall expected runtime can be bounded by O(nr+3).

25

Theorem 16 and Theorem 17 respectively give upper bounds for MAHHOI on CLIFFJUMPd,r,s

for the general case and the case where the local optimum is far away from the global optimum.

The following corollary shows that the non-elitist MAHHOI can outperform the well-known elitist

(µ+λ) EAs with standard bit mutation for CLIFFJUMPd,r,s in both cases, provided that s is at least

a sufficiently large constant. The result generalises to any µ and λ since the populations do not

provide any advantage over the (1+1) EA on the JUMPm slope [20].

Corollary 18. MAHHOI is faster than the (1+1) EA in expectation for CLIFFJUMPd,r,s when s >
1 + 3/r. If d = Θ(n), then MAHHOI is faster than the (1+1) EA in expectation when s > 3/r.

Proof. The (1+1) EA with standard bit mutation is an elitist algorithm, and will only accept mu-

tations which increase the fitness of the solution. From the local optimum of CLIFFJUMPd,r,s (i.e.,

when the solution has i = n − d 1-bits), the nearest solution with a higher fitness consists of

i = ⌈n − d + r + rs⌉ 1-bits. Hence, the expected time to perform such a mutation from the local

optimum is Ω(nr(s+1)), which is an overall lower bound for the expected runtime of the (1+1) EA.

Theorem 16 gives a general upper bound for MAHHOI on CLIFFJUMPd,r,s of O((d − r)/r ·
n2r+2) = O(n2r+3). Hence, we can state that MAHHOI outperforms the (1+1) EA (in expectation)

when 2r + 3 < r(s+ 1). That is, when s > 1 + 3/r.

When d = Θ(n), Theorem 17 gives a tighter upper bound for MAHHOI on CLIFFJUMPd,r,s of

O(nr+3). Hence, we can state than MAHHOI outperforms the (1+1) EA in this case (in expectation)

when r + 3 < r(s+ 1). That is, when s > 3/r.

In particular, for minimal basins of attraction when r = 1, MAHHOI is faster than the (1+1)

EA for any s > 4 in the general case, and for s > 3 when d = Θ(n). Furthermore, for any basin of

attraction of size r ≥ 3, then MAHHOI is faster when s > 2 and s > 1 respectively. We further note

that if CLIFFJUMPd,r,s was modified such that only the global optimum point had a fitness value

exceeding that of the local optimum, then the expected runtime of the (1+1) EA would be Ω(nd).
If d = Θ(n), then the expected runtime would be exponential in all cases, whereas MAHHOI can

be polynomially bounded in such a case when r is a constant. Thus, the function illustrates how

non-elitism may allow to efficiently escape from a wide range of local optima where elitist EAs

are inefficient.

Regarding METROPOLIS, we first show that it is able to exactly match the performance of

MAHHOI for CLIFFJUMPd,r,s when s = 1.

Theorem 19. On CLIFFJUMPd,r,s with s = 1 and any integers d and r, MAHHOI and METROPOLIS

can be configured to behave identically. That is, when p = α(n)−1, the two algorithms maintain

identical state probability distributions throughout their runs.

Proof. With the exception of the global optimum, the fitness difference on CLIFFJUMPd,r,1 be-

tween any two bit-strings that are at a Hamming distance of 1 is either−1 or 1. Thus, any offspring

except the global optimum differs from its parent in fitness by either 1 or −1.

If the offspring is better than its parent (either by a fitness difference of 1, or because the off-

spring is the global optimum), both MAHHOI and METROPOLIS will accept the offspring solution.

If the offspring is worse than its parent (and the parent isn’t the global optimum), MAHHOI will ac-

cept the offspring solution with probability p, and METROPOLIS will accept the offspring solution

with probability α(n)−1.

26

Thus, p = α(n)−1 ensures that, until the global optimum is found, both algorithms have the

same probability of accepting each offspring solution considered during the optimisation process.

As both algorithms are initialised with a solution chosen uniformly at random, use the same muta-

tion operator to generate offspring solutions, and consider exactly one offspring in each iteration,

they therefore maintain identical probabilities of having observed the global optimum within any

given iteration budget.

We can extend this argument to show that if the fitness differences between any two adjacent

points are equal across the entire search space, MAHHOI and METROPOLIS can be configured to

have identical performance. This holds for all fitness functions which display such a property.

Finally, because METROPOLIS is sensitive to the magnitude of the fitness differences between

neighbouring solutions, we show that there exist choices of the CLIFFJUMPd,r,s parameter s that

allow METROPOLIS to outperform MAHHOI, and choices that allow MAHHOI to outperform

METROPOLIS.

Theorem 20. On CLIFFJUMPd,r,s, if 0 < s < 1, α(n) can be chosen such that METROPOLIS

outperforms MAHHOI with any choice of 0 < p < 1. If s > 1, p can be chosen such that MAHHOI

outperforms METROPOLIS with any choice of α(n).

Proof. On CLIFFJUMPd,r,s, there are two types of mutations which can reduce the fitness value

of a solution: those that reduce the number of 1-bits while the solution is on the positive slopes

(i.e., |x|1 ≤ n − d or |x|1 > n − d + r) and hence reduce fitness by 1, and those that increase the

number of 1-bits while the solution is on the negative slope (i.e., n − d ≤ |x|1 < n − d + r) and

hence reduce fitness by s. Recall that METROPOLIS accepts mutations which decrease fitness by

∆f with probability α(n)−∆f . Thus, if s < 1, it is easier for METROPOLIS to accept mutations

increasing the number of 1-bits while on the negative slope compared to mutations decreasing the

number of 1-bits while on the positive slope, while the opposite holds if s > 1.

Suppose s < 1, and consider how the parameters of METROPOLIS can be chosen so as to

outperform MAHHOI with a fixed parameter p. Choosing α(n) = 1/p ensures that METROPO-

LIS matches MAHHOI’s probabilities of making progress while on the positive slopes, and accepts

mutations that increase the number of 1-bits in the solution while on the negative slope with prob-

ability α(n)−s = p−s > p. Thus, METROPOLIS with α(n) = p−1 is at least as fast on the positive

slopes as MAHHOI with any p, while traversing the negative slope faster than MAHHOI with that

p. Choosing α(n) = p−1/s ensures that METROPOLIS matches MAHHOI’s probabilities of making

progress while on the negative slope, while also making METROPOLIS less likely to accept detri-

mental mutations while on the positive slopes. Choosing an α(n) between these values will result

in (reduced) improvement over MAHHOI on both slope types. Combining these results yields

that METROPOLIS with p−1 ≤ α(n) ≤ p−1/s outperforms MAHHOI for CLIFFJUMPd,r,s for any

parameter p, with 0 < s < 1.

Similarly, α(n)−s ≤ p ≤ α(n)−1 ensures that MAHHOI outperforms METROPOLIS for CLIF-

FJUMPd,r,s with s > 1. Here, choosing p = α(n)−s allows MAHHOI to replicate METROPOLIS

behaviour on the negative slope while making MAHHOI less likely to accept worsenings on the

positive slopes, while p = α(n)−1 allows MAHHOI to replicate METROPOLIS behaviour on the

positive slopes while making MAHHOI more likely to accept mutations increasing the number of

1-bits while on the negative slope, with values between these two boundaries providing a mix of

both behaviours.

27

Theorem 20 implies that METROPOLIS is preferable for CLIFFJUMPd,r,s when the fitness dif-

ferences between adjacent points on the negative slope are smaller in magnitude than between

adjacent points on the positive slopes, while MAHHOI is preferable when the opposite is true.

MAHHOI is efficient for CLIFFJUMPd,r,s while the radius of the local optima’s basin is constant,

for any s > 0, as it is able to escape the jump and cliff sections in polynomial time. We now prove

that METROPOLIS, however, is only efficient when the negative slope is gentle, short, and far away

from the global optimum.

Theorem 21. The expected runtime of METROPOLIS for CLIFFJUMPd,r,s with r ≥ 1 is super-

polynomial if s = ω(1). Furthermore, if d < (0.5− c)n for any constant 0 < c < 0.5, the expected

runtime is polynomially bounded if and only if r = O(log n) and rs = O(1).

Proof. Recall from Theorem 8 that the expected runtime of METROPOLIS is polynomially bounded

on ONEMAX if and only if α(n) = Ω(n/ log n), and this bound on α(n) must hold in order to

guarantee polynomial expected runtime on the ONEMAX sections of CLIFFJUMPd,r,s.

METROPOLIS is initialised with a solution containing at most n/2 − 1 1-bits with probability

1/2, in which case it is required to descend the entirety of the negative slope of CLIFFJUMPd,r,s

before finding the global optimum. METROPOLIS accepts moves which increase the number of

1-bits on the negative slope with probability α(n)−s, and such a move will take at least α(n)s

expected time. Since α(n) = Ω(n/ log n) is required for polynomial expected runtime in the two

ONEMAX slopes, a bound of s = O(1) is required for polynomial expected runtime in the negative

slope (of length r ≥ 1). Therefore, s = O(1) is necessary in order to bound the overall expected

runtime by a polynomial, and the setting s = ω(1) will give a super-polynomial expected runtime.

We know from Theorem 15 that for r = ω(log n) and d < (0.5 − c)n for some constant

0 < c < 0.5, the expected runtime of METROPOLIS on CLIFFJUMPd,r,s is super-polynomial.

Therefore, we consider the case where r = O(log n).
Let E(TLM) denote the expected time required to reach the local maximum (i.e., the expected

time to find a solution with i = n− d 1-bits for the first time) after initialisation. By Lemma 9, the

expected time to take one step down the negative slope is (for constants c > 0 and c′ > 0):

c · α(n)s + c′α(n)s−1 · E(TLM) = Θ(α(n)s),

since E(TLM) = O(n). Furthermore, by reusing arguments from the proof of Theorem 14

(i.e., the repeated application of Lemma 9), we can show that the expected time to take r fitness-

decreasing steps down the negative slope is Θ(α(n)rs).
Therefore, since α(n) = Ω(n/ log n) is required for polynomial expected runtime in the two

ONEMAX slopes, rs = O(1) (and r = O(log n)) is necessary to give a polynomial expected

runtime for METROPOLIS on CLIFFJUMPd,r,s with these settings, and rs = ω(1) will give a super-

polynomial expected runtime.

7. When Metropolis Outperforms the Move Acceptance Hyper-Heuristic

In the previous sections we analysed the performance of MAHHOI and METROPOLIS for sev-

eral multimodal landscapes with typical characteristics. The analysis has showed how MAHHOI

28

is more robust than METROPOLIS at escaping local optima since it is not sensitive to the fitness-

gradients in the basins-of-attraction that have to be overcome. On the other hand METROPOLIS ex-

hibits better performance on smooth basins of attraction exhibiting slow fitness-decreasing slopes.

In this section we present an analysis on the GENTLENEGATIVESLOPE (GNS) function, which

was designed to show how METROPOLIS can take advantage of a very long, slowly decreasing

slope that is surrounded by points of considerably lower fitness. Since METROPOLIS is unlikely to

accept moves which take it away from the smooth fitness-decreasing gradient towards the optimum,

and MAHHOI has a high chance to accept such disadvantageous moves, this function allows us to

highlight landscape characteristics where METROPOLIS considerably outperforms MAHHOI. In

particular, MAHHOI is penalised by not taking fitness-differences into account when accepting

worsening solutions, the same characteristic that was crucial for the HH to either outperform or

be a preferable choice to METROPOLIS on all the fitness landscapes previously considered in this

paper.

The following theorem proves that METROPOLIS can optimise GNS in expected polynomial

time when using a parameter setting that allows it to both efficiently hill-climb the steep ONEMAX

slope and perform a random walk across the ridge linking the local optimum to the global optimum

due to a large fitness difference between the ridge and the rest of the search space.

Theorem 22. [38, Theorem 11] The expected runtime of METROPOLIS, with α(n) = n4/2n , for

GNS is O(n3).

The METROPOLIS algorithm with α(n) = n4/2n will reach the local optimum at 1n in O(n log n)
expected iterations, before a random search along the path leads the algorithm to the global opti-

mum at 0n in expected O(n3) time [38]. Jansen and Wegener also proved that the (1+1) EA has

exponential expected runtime for GNS, i.e., at least 2Ω(n) for any choice of the mutation rate [38].

The initialised solution of the (1+1) EA will have at least n/3 1-bits with probability 1 − 2−Ω(n),

and finding a path point 1i0n−i with i ≤ n/6 will take exponential time. If a path point 1i0n−i

is sampled with i > n/6, a large jump is required to find the global optimum, taking exponential

expected time.

The following theorem proves that MAHHOI also exhibits poor performance for GNS regard-

less of the choice of the parameter p. Essentially, since MAHHOI does not take fitness differences

into account when choosing whether to accept fitness-decreasing offspring, it is not able to stay

on and efficiently navigate the gentle ridge between the local optimum and the global optimum of

GNS.

Theorem 23. The runtime of MAHHOI for GNS, with any 0 ≤ p ≤ 1, is at least nω(1) with

probability at least 1− n−ω(1).

Proof. As GNS has a unique global optimum at 0n, Theorem 6 applies, and the expected runtime

of MAHHOI for GNS is at least as large as the expected runtime of MAHHOI on ONEMAX for the

same p. For p = ω ((
√
n log n)/n), applying Theorem 5 thus yields that MAHHOI requires at least

nω(1) iterations with probability at least 1− n−ω(1) to optimise GNS.

Suppose p < n3/4/n, and consider the behaviour of MAHHOI in the region where the ONE-

MAX value of MAHHOI’s current solution is between 4
√
n/4 and 4

√
n/2. MAHHOI can only de-

crease the ONEMAX value of its current solution when it flips one of the remaining 1-bits and

applies the AM selection operator, which occurs with probability p · ONEMAX(x)/n ≤ 1/(2n).

29

Within this region, MAHHOI can always increase the ONEMAX value of its current solution when

it flips the first 0-bit in the solution, which occurs with probability 1/n. Thus, conditional on the

ONEMAX value of the current solution changing in an iteration of MAHHOI, it increases by 1 (as

MAHHOI applies the RLS mutation operator) with probability at least (1/n)/(1/n + 1/(2n)) ≥
2/3, and decreases by 1 with probability at most (1/(2n))/(1/n+ 1/(2n)) ≤ 1/3.

Let Xt be the ONEMAX value of MAHHOI’s current solution after its t’th change. We focus

on the region of length ℓ = 4
√
n/4 between Xt ≥ a := 4

√
n/4 and Xt ≤ b := 4

√
n/2. Then,

E(Xt+1 −Xt | 4
√
n/4 ≤ Xt ≤ 4

√
n/2) ≥ 2/3− 1/3 = 1/3.

Since MAHHOI applies RLS mutation, Pr(|Xt+1−Xt| > 1) = 0. Thus, all the conditions to apply

the Negative Drift Theorem (Theorem 2) are satisfied, and the first hitting time of Xt ≤ a is at

least 2Ω(n1/4) with probability at least 1− 2−Ω(n1/4).

It remains to note that MAHHOI is initialised with at least n/4 1-bits in the current solution

with probability at least 1 − e−Ω(n). Thus, X0 > b, and as the runtime of MAHHOI for GNS is at

least the number of iterations before a solution with Xt < a is first constructed during which the

ONEMAX value of its solution changes, it holds that the runtime of MAHHOI with p ≤ n3/4/n for

GNS is at least 2Ω(n1/4) ∈ nω(1) with probability at least 1− 2−Ω(n1/4) ∈ 1− n−ω(1).

Finally, we note that n3/4/n ∈ ω((
√
n log n)/n). Therefore, regardless of what value p is set

to, at least one of the two arguments above applies. Hence MAHHOI requires, with probability at

least 1− n−ω(1), at least nω(1) iterations to find the global optimum of GNS.

Hence, we have completed the picture by providing fitness landscape characteristics which

allow METROPOLIS to find the global optimum efficiently, while MAHHOI requires exponential

time for any parameter setting.

8. Conclusions

We have presented an analysis of the performance of the Move Acceptance Hyper-Heuristic

(MAHHOI) for multimodal optimisation. The hyper-heuristic chooses at random the ONLYIM-

PROVING (OI) acceptance operator with probability 1− p, and the ALLMOVES (AM) acceptance

operator with probability p. All the statements given in the paper for MAHHOI also hold for

MAHHIE, a variant of MAHHOI which chooses the IMPROVINGANDEQUAL acceptance operator

with probability 1−p, and the ALLMOVES acceptance operator with probability p. We summarise

our findings in Table 1.

We first identified parameter values that allow the algorithm to hillclimb up to local or global

optima. We have shown that setting the parameter value to p = O((log log n)1−ε/n), for any

constant ε > 0, allows to hillclimb the ONEMAX function in expected O(n log n) runtime as

desired. On the other hand, for too large parameter values we have shown how the runtime becomes

exponential for any function with unique optimum.

Afterwards we considered several multimodal function classes with different characteristics

which may be encountered in applications involving an optimisation process. Firstly we showed

that for local optima from which a gradient of increasing fitness is close, MAHHOI is efficient.

For the purpose we used the CLIFFd function class where MAHHOI matches the best possible

asymptotic expected runtime of any unary unbiased randomised search heuristic for any problem

30

Function MAHHOI METROPOLIS (1+1) EA

ONEMAX O(n log n) O(n log n) O(n log n)

CLIFFd O
(
n log n+ n3

d2

) (
n

logn

)d−1/2

Θ(nd)

JUMPm O
(
n log n+ (1+ε)m−1n2m

m2m!

)
2Ω(n) Θ(nm)

CLIFFJUMPd,r,s (0 < s < 1) slower faster Θ(nd)∗

CLIFFJUMPd,r,s (1 < s) faster slower Θ(nd)∗

GNS nω(1) O(n3) Θ(nn)∗

Table 1: Comparative performance of MAHHOI, METROPOLIS and the (1+1) EA for the functions considered in this

paper. For further details, see the relevant theorems. ∗ Formal theorems are not presented but proofs are straightfor-

ward.

with up to a polynomial number of optima [3]. On the other hand, elitist search heuristics and

METROPOLIS require exponential runtime in the distance between the local and global optima.

We then considered fitness landscapes with harder to escape local optima with large basins of

attraction of decreasing fitness that have to be traversed for the global optimum to be identified.

For the purpose, we considered the standard JUMPm function class. While METROPOLIS requires

exponential runtime in the problem size with overwhelming probability independent from the size

of the basin of attraction of the local optima, MAHHOI has polynomial expected runtime for not too

large basins as its runtime is only exponential in the size of the basin of attraction with overwhelm-

ing probability. We pointed out that using higher mutation rates has been shown to be beneficial

compared to non-elitism in such settings. Obviously such advantages can also benefit MAHHOI

if it is incorporated with such a mutation operator rather than just allowing it to flip one bit per

iteration.

The reason for the better performance of MAHHOI over METROPOLIS in the considered land-

scapes is the particular sensitivity of the latter algorithm to the magnitude of the fitness difference

between the parent and offspring solutions. To shed further light on this aspect we designed a more

general function class called CLIFFJUMPd,r,s where the steepness and smoothness of the slopes of

the local optima’s basin of attraction may be tuned. The analysis for this function class reveals

that while METROPOLIS may be tuned to outperform MAHHOI on smooth basins with gently de-

creasing fitness, the opposite occurs on ragged basins where fitness values may change drastically.

In particular, depending on the magnitude of the negative slope of CLIFFJUMPd,r,s, the parameters

of METROPOLIS or MAHHOI can be set so as to outperform the other algorithm regardless of its

choice of parameters. However, if the basin is not too large MAHHOI always optimises the func-

tion in polynomial time independent from the steepness of the gradient, while METROPOLIS also

requires that the basin decreases gently to be efficient.

We conclude the paper by capitalising on this sensitivity of METROPOLIS to present a scenario

where METROPOLIS significantly outperforms MAHHOI. The GNS function, introduced origi-

nally by Jansen and Wegener [38], consists of a steep ONEMAX style fitness gradient followed

by a path of slowly decreasing fitness surrounded by points of drastically lower fitness. While

METROPOLIS is able to follow the gradient by ignoring the drastically worse solutions, MAHHOI

falls off the path with overwhelming probability by accepting the points of considerably lower

fitness.

Overall, apart from this pathological scenario, we believe the analysis presented in this paper

31

provides considerable theoretical evidence of the advantages of MAHHOI over METROPOLIS for

multimodal optimisation. Furthermore, our analysis of CLIFFJUMPd,r,s sheds light on a wide range

of basins of attraction where the non-elitist MAHHOI outperforms elitist evolutionary algorithms

even up to polynomial versus exponential runtimes. We believe that by allowing arbitrarily large

radii of attraction, the benchmark function provides a much more convincing example of the im-

portance of non-elitism for combinatorial optimisation than the commonly used CLIFFd function

class. Indeed, results ”giving a mildly general advice which of the existing approaches to cope with

local optima are preferable in which situations” have recently been deemed by Doerr as ”highly

desirable” [20]. We believe our contribution sheds much light on the topic.

The analysis points to various aspects that should be investigated to build upon the results. On

one hand, experimental and theoretical comparisons of the two non-elitist heuristics for classical

combinatorial optimisation problems should be undertaken to validate the insights presented herein

or shed further light on the differences in behaviour and performance of the two forms of non-

elitism. On the other hand, studies should be undertaken regarding equipping MAHHOI with more

sophisticated mutation operators which would give the hyper-heuristic further options for escaping

from local optima. Given that MAHHOI and METROPOLIS can outperform each other in different

scenarios, the analysis of a HH that selects which of the two algorithms should be applied at

different stages of the optimisation process may be a promising route to be explored for more

general effectiveness in multimodal optimisation.

Concerning the general fields of automated algorithm selection and hyper-heuristics the use of

more sophisticated move acceptance operators should be explored. One interesting option would

be to allow the MAHH to automatically adapt the value of the parameter p during the optimi-

sation process rather than keeping it static, similarly to the adaptation of the learning period for

heuristic selection hyper-heuristics [25, 47]. Another natural direction is to investigate when even

more sophisticated move-acceptance approaches commonly used in the hyper-heuristics literature,

such as Monte Carlo approaches [2], would lead to improved performance. Finally, more compre-

hensive hyper-heuristics that choose between multiple parameter sets (eg., mutation, selection and

population size) should be analysed.

Acknowledgements. This work was supported by the EPSRC under Grant No. EP/M004252/1.

The authors would like to thank Dirk Sudholt for suggesting how to improve the upper bound of

Theorem 13.

References

[1] Alanazi, F. and Lehre, P. K. (2014). Runtime analysis of selection hyper-heuristics with classi-

cal learning mechanisms. In Proceedings of the IEEE Congress on Evolutionary Computation,

CEC ‘14, pages 2515–2523. IEEE.

[2] Ayob, M. and Kendall, G. (2003). A monte carlo hyper-heuristic to optimise component place-

ment sequencing for multi head placement machine. In Proceedings of the International Con-

ference on Intelligent Technologies, InTech ‘03, pages 132–141. Springer.

[3] Badkobeh, G., Lehre, P. K., and Sudholt, D. (2015). Black-box complexity of parallel search

with distributed populations. In Proceedings of the Workshop on Foundations of Genetic Algo-

rithms, FOGA ‘15, pages 3–15. ACM.

32

[4] Bilgin, B., Özcan, E., and Korkmaz, E. E. (2007). An experimental study on hyper-heuristics

and exam timetabling. In Practice and Theory of Automated Timetabling, PATAT ‘07, pages

394–412. Springer.

[5] Burke, E., Kendall, G., and Soubeiga, E. (2003). A tabu-search hyperheuristic for timetabling

and rostering. Journal of Heuristics, 9(6):451–470.

[6] Burke, E. K., Gendreau, M., Hyde, M., Kendall, G., Ochoa, G., Özcan, E., and Qu, R. (2013).

Hyper-heuristics: A survey of the state of the art. Journal of the Operational Research Society,

pages 1695–1724.

[7] Burke, E. K., Hyde, M., Kendall, G., Ochoa, G., Özcan, E., and Woodward, J. R. (2010). A

classification of hyper-heuristic approaches. In Handbook of Metaheuristics, pages 449–468.

Springer.

[8] Corus, D., Oliveto, P. S., and Yazdani, D. (2017). On the runtime analysis of the opt-IA artifi-

cial immune system. In Proceedings of the Genetic and Evolutionary Computation Conference,

GECCO ‘17, pages 83–90. ACM.

[9] Corus, D., Oliveto, P. S., and Yazdani, D. (2018). Fast artificial immune systems. In Parallel

Problem Solving from Nature, PPSN ‘18, pages 67–78. Springer.

[10] Corus, D., Oliveto, P. S., and Yazdani, D. (2019a). Artificial immune systems can find ar-

bitrarily good approximations for the NP-hard number partitioning problem. Artificial Intelli-

gence, 274:180–196.

[11] Corus, D., Oliveto, P. S., and Yazdani, D. (2019b). On inversely proportional hypermuta-

tions with mutation potential. In Proceedings of the Genetic and Evolutionary Computation

Conference, GECCO ‘19, pages 215–223. ACM.

[12] Corus, D., Oliveto, P. S., and Yazdani, D. (2020). When hypermutations and ageing enable ar-

tificial immune systems to outperform evolutionary algorithms. Theoretical Computer Science,

832:166–185.

[13] Corus, D., Oliveto, P. S., and Yazdani, D. (2021a). Automatic adaptation of hypermutation

rates for multimodal optimisation. In Proceedings of the Workshop on Foundations of Genetic

Algorithms, FOGA ‘21, pages 1–12. ACM.

[14] Corus, D., Oliveto, P. S., and Yazdani, D. (2021b). Fast immune system-inspired hypermu-

tation operators for combinatorial optimization. IEEE Transactions on Evolutionary Computa-

tion, 25(5):956–970.

[15] Cowling, P., Kendall, G., and Soubeiga, E. (2001). A hyperheuristic approach to scheduling

a sales summit. In Practice and Theory of Automated Timetabling, PATAT ‘01, pages 176–190.

Springer.

[16] Cowling, P., Kendall, G., and Soubeiga, E. (2002). Hyperheuristics: A tool for rapid pro-

totyping in scheduling and optimisation. In Proceedings of the Workshop on Applications of

Evolutionary Computing, EvoWorkshops ‘02, pages 1–10. Springer.

33

[17] Dang, D., Friedrich, T., Kötzing, T., Krejca, M. S., Lehre, P. K., Oliveto, P. S., Sudholt, D.,

and Sutton, A. M. (2018). Escaping local optima using crossover with emergent diversity. IEEE

Transactions on Evolutionary Computation, 22(3):484–497.

[18] Dang, D.-C., Eremeev, A., and Lehre, P. K. (2021). Escaping local optima with non-

elitist evolutionary algorithms. Proceedings of the AAAI Conference on Artificial Intelligence,

35(14):12275–12283.

[19] Dang, D.-C., Friedrich, T., Kötzing, T., Krejca, M. S., Lehre, P. K., Oliveto, P. S., Sudholt,

D., and Sutton, A. M. (2016). Escaping local optima with diversity mechanisms and crossover.

In Proceedings of the Genetic and Evolutionary Computation Conference, GECCO ‘16, pages

645–652. ACM.

[20] Doerr, B. (2020). Does comma selection help to cope with local optima? In Proceedings of

the Genetic and Evolutionary Computation Conference, GECCO ’20, page 1304–1313. ACM.

[21] Doerr, B. and Doerr, C. (2020). Theory of parameter control for discrete black-box opti-

mization: Provable performance gains through dynamic parameter choices. In Doerr, B. and

Neumann, F., editors, Theory of Evolutionary Computation - Recent Developments in Discrete

Optimization, pages 271–321. Springer.

[22] Doerr, B., Doerr, C., and Yang, J. (2016). k-bit mutation with self-adjusting k outperforms

standard bit mutation. In Proceedings of the International Conference on Parallel Problem

Solving from Nature, PPSN ’16, pages 824–834. Springer.

[23] Doerr, B., Johannsen, D., and Winzen, C. (2010). Drift analysis and linear functions revisited.

In IEEE Congress on Evolutionary Computation, CEC ‘10, pages 1–8. IEEE.

[24] Doerr, B., Le, H. P., Makhmara, R., and Nguyen, T. D. (2017). Fast genetic algorithms.

In Proceedings of the Genetic and Evolutionary Computation Conference, GECCO ‘17, pages

777–784. ACM.

[25] Doerr, B., Lissovoi, A., Oliveto, P. S., and Warwicker, J. A. (2018). On the runtime analysis

of selection hyper-heuristics with adaptive learning periods. In Proceedings of the Genetic and

Evolutionary Computation Conference, GECCO ‘18, pages 1015–1022. ACM.

[26] Doerr, B., Sudholt, D., and Witt, C. (2013). When do evolutionary algorithms optimize

separable functions in parallel? In Proceedings of the Workshop on Foundations of Genetic

Algorithms, FOGA ‘13, pages 51–64. ACM.

[27] Drake, J. H., Kheiri, A., Özcan, E., and Burke, E. K. (2020). Recent advances in selection

hyper-heuristics. European Journal of Operational Research, 285(2):405–428.

[28] Droste, S. (2004). Analysis of the (1+1) EA for a noisy OneMax. In Proceedings of the

Genetic and Evolutionary Computation Conference, GECCO ’04, pages 1088–1099. Springer.

[29] Droste, S., Jansen, T., and Wegener, I. (2001). Dynamic parameter control in simple evo-

lutionary algorithms. In Proceedings of the Workshop on Foundations of Genetic Algorithms,

FOGA ‘01, pages 275 – 294. ACM.

34

[30] Droste, S., Jansen, T., and Wegener, I. (2002). On the analysis of the (1+1) evolutionary

algorithm. Theoretical Computer Science, pages 51–81.

[31] Friedrich, T., Quinzan, F., and Wagner, M. (2018). Escaping large deceptive basins of at-

traction with heavy-tailed mutation operators. In Proceedings of the Genetic and Evolutionary

Computation Conference, GECCO ‘18, pages 293–300. ACM.

[32] Hall, G. T., Oliveto, P. S., and Sudholt, D. (2022). On the impact of the performance metric

on efficient algorithm configuration. Artificial Intelligence, 303:103629.

[33] Hasenöhrl, V. and Sutton, A. M. (2018). On the runtime dynamics of the compact genetic

algorithm on jump functions. In Proceedings of the Genetic and Evolutionary Computation

Conference, GECCO ‘18, pages 967–974. ACM.

[34] He, J. and Yao, X. (2001). Drift analysis and average time complexity of evolutionary algo-

rithms. Artificial Intelligence, 127(1):57–85.

[35] Hevia Fajardo, M. A. and Sudholt, D. (2021). Self-adjusting offspring population sizes out-

perform fixed parameters on the cliff function. In Proceedings of the Workshop on Foundations

of Genetic Algorithms, FOGA ‘21, pages 1–15. ACM.

[36] Jägersküpper, J. and Storch, T. (2007). When the plus strategy outperforms the comma strat-

egy and when not. In Proceedings of IEEE Symposium on Foundations of Computational Intel-

ligence, FOCI ’07, pages 25–32. IEEE.

[37] Jansen, T. (2011). Simulated annealing. In Auger, A. and Doerr, B., editors, Theory of

Randomized Search Heuristics, pages 171–195. World Scientific.

[38] Jansen, T. and Wegener, I. (2007). A comparison of simulated annealing with a simple evo-

lutionary algorithm on pseudo-boolean functions of unitation. Theoretical Computer Science,

pages 73 – 93.

[39] Juels, A. and Wattenberg, M. (1995). Stochastic hillclimbing as a baseline method for evalu-

ating genetic algorithms. In Proceedings of the 8th International Conference on Neural Infor-

mation Processing Systems, NIPS ’95, page 430–436. MIT Press.

[40] Kotthoff, L. (2014). Algorithm selection for combinatorial search problems: A survey. AI

Magazine, 35(3):48–60.

[41] Kötzing, T., Sudholt, D., and Theile, M. (2011). How crossover helps in pseudo-boolean op-

timization. In Proceedings of the Genetic and Evolutionary Computation Conference, GECCO

‘11, pages 989–996. ACM.

[42] Lehre, P. K. and Oliveto, P. S. (2018). Theoretical analysis of stochastic search algorithms.

In Resende, M. G. C., Marti, R., and Pardalos, P. M., editors, Handbook of Heuristics, pages

1–36. Springer.

[43] Lehre, P. K. and Özcan, E. (2013). A runtime analysis of simple hyper-heuristics: To mix or

not to mix operators. In Proceedings of the Workshop on Foundations of Genetic Algorithms,

FOGA ‘13, pages 97–104. ACM.

35

[44] Lehre, P. K. and Witt, C. (2012). Black-box search by unbiased variation. Algorithmica,

pages 623–642.

[45] Lengler, J. (2020). Drift analysis. In Doerr, B. and Neumann, F., editors, Theory of Evolu-

tionary Computation: Recent Developments in Discrete Optimization, pages 89–131. Springer.

[46] Lissovoi, A., Oliveto, P. S., and Warwicker, J. A. (2019). On the time complexity of algorithm

selection hyper-heuristics for multimodal optimisation. In Proceedings of the AAAI Conference

on Artificial Intelligence, AAAI ‘19, pages 2322–2329.

[47] Lissovoi, A., Oliveto, P. S., and Warwicker, J. A. (2020a). How the duration of the learning

period affects the performance of random gradient selection hyper-heuristics. In Proceedings of

the AAAI Conference on Artificial Intelligence, AAAI ‘20, pages 2376–2383.

[48] Lissovoi, A., Oliveto, P. S., and Warwicker, J. A. (2020b). Simple Hyper-Heuristics Control

the Neighbourhood Size of Randomised Local Search Optimally for LeadingOnes. Evolution-

ary Computation, 28(3):437–461.

[49] Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., and Teller, E. (1953).

Equation of state calculations by fast computing machines. Journal of Chemical Physics, pages

1087–1092.

[50] Nareyek, A. (2004). Choosing search heuristics by non-stationary reinforcement learning. In

Metaheuristics: Computer Decision-Making, pages 523–544. Springer.

[51] Oliveto, P. S. (2021). Rigorous performance analysis of hyper-heuristics. In Pillay, N. and

Qu, R., editors, Automated Design of Machine Learning and Search Algorithms, pages 45–71.

Springer.

[52] Oliveto, P. S. and Witt, C. (2011). Simplified drift analysis for proving lower bounds in

evolutionary computation. Algorithmica, pages 369–386.

[53] Oliveto, P. S. and Witt, C. (2012). Erratum: Simplified drift analysis for proving lower bounds

in evolutionary computation. CoRR, abs/1211.7184.

[54] Oliveto, P. S. and Witt, C. (2015). Improved time complexity analysis of the simple genetic

algorithm. Theoretical Computer Science, 605:21–41.

[55] Özcan, E., Bilgin, B., and Korkmaz, E. E. (2006). Hill climbers and mutational heuristics in

hyperheuristics. In Parallel Problem Solving from Nature, PPSN ‘06, pages 202–211. Springer.

[56] Özcan, E., Bilgin, B., and Korkmaz, E. E. (2008). A comprehensive analysis of hyper-

heuristics. Intelligent Data Analysis, 12(1):3–23.

[57] Paixão, T., Pérez Heredia, J., Sudholt, D., and Trubenová, B. (2017). Towards a runtime

comparison of natural and artificial evolution. Algorithmica, pages 681–713.

[58] Pillay, N. and Qu, R. (2018). Hyper-heuristics: theory and applications. Springer.

36

[59] Preuss, M. (2015). Multimodal Optimization by Means of Evolutionary Algorithms. Natural

Computing Series. Springer.

[60] Qian, C., Tang, K., and Zhou, Z.-H. (2016). Selection hyper-heuristics can provably be

helpful in evolutionary multi-objective optimization. In Parallel Problem Solving from Nature,

PPSN ‘16, pages 835–846. Springer.

[61] Rajabi, A. and Witt, C. (2020). Self-adjusting evolutionary algorithms for multimodal op-

timization. In Proceedings of the 2020 Genetic and Evolutionary Computation Conference,

GECCO‘20, pages 1314–1322. ACM.

[62] Rajabi, A. and Witt, C. (2021a). Self-adjusting evolutionary algorithms for multimodal

optimization. In Proceedings of the Genetic and Evolutionary Computation Conference,

GECCO‘21, pages 1178–1186. ACM.

[63] Rajabi, A. and Witt, C. (2021b). Stagnation detection with randomized local search. In Eu-

ropean Conference on Evolutionary Computation in Combinatorial Optimization, EvoCOP‘21,

pages 152–168.

[64] Stützle, T. and López-Ibáñez, M. (2019). Automated design of metaheuristic algorithms. In

Gendreau, M. and Potvin, J.-Y., editors, Handbook of Metaheuristics, pages 541–579. Springer.

[65] Sudholt, D. (2013). A new method for lower bounds on the running time of evolutionary

algorithms. IEEE Transactions on Evolutionary Computation, 17(3):418–435.

37

