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The role of governmental weapons procurements in
forecasting monthly fatalities in intrastate conflicts:
A semiparametric hierarchical hurdle model

Cornelius Fritz , Marius Mehrl , Paul W. Thurner, and G€oran Kauermann

LMU Munich

ABSTRACT
Accurate and interpretable forecasting models predicting spa-
tially and temporally fine-grained changes in the numbers of
intrastate conflict casualties are of crucial importance for policy-
makers and international non-governmental organizations
(NGOs). Using a count data approach, we propose a hierarchical
hurdle regression model to address the corresponding predic-
tion challenge at the monthly PRIO-grid level. More precisely,
we model the intensity of local armed conflict at a specific point
in time as a three-stage process. Stages one and two of our
approach estimate whether we will observe any casualties at
the country- and grid-cell-level, respectively, while stage three
applies a regression model for truncated data to predict the
number of such fatalities conditional upon the previous two
stages. Within this modeling framework, we focus on the role of
governmental arms imports as a processual factor allowing gov-
ernments to intensify or deter from fighting. We further argue
that a grid cell’s geographic remoteness is bound to moderate
the effects of these military buildups. Out-of-sample predictions
corroborate the effectiveness of our parsimonious and theory-
driven model, which enables full transparency combined with
accuracy in the forecasting process.

Los modelos de previsi�on precisos e interpretables que predicen
los cambios a nivel espacial y temporal en la cantidad de
v�ıctimas de los conflictos intraestatales son de vital importancia
para los responsables pol�ıticos y las organizaciones no guberna-
mentales (ONG) internacionales. Utilizando un enfoque de datos
de recuento, proponemos un modelo de regresi�on Hurdle jer�ar-
quico para abordar el correspondiente reto de predicci�on a nivel
mensual de PRIO-GRID. M�as concretamente, modelamos la
intensidad del conflicto armado local en un momento determi-
nado como un proceso de tres etapas. Las etapas uno y dos de
nuestro enfoque estiman si observaremos alguna v�ıctima a nivel
de pa�ıs y de celda de la red, respectivamente, mientras que la
etapa tres aplica un modelo de regresi�on para datos truncados
con el prop�osito de predecir la cantidad potencial de dichas

KEYWORDS
Conflict forecasting; conflict
intensity; Forecasting;
hurdle regression;
semiparametric regression

� 2021 The Author(s). Published with license by Taylor & Francis Group, LLC.
This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives
License (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction
in any medium, provided the original work is properly cited, and is not altered, transformed, or built upon in any way.

CONTACT Cornelius Fritz cornelius.fritz@stat.uni-muenchen.de Department of Statistics, LMU Munich
Supplemental data for this article can be accessed on the publisher's website.

This article was originally published with errors, which have now been corrected in the online version. Please
see Correction (http://dx.doi.org/10.1080/03050629.2022.2101217).

INTERNATIONAL INTERACTIONS
2022, VOL. 48, NO. 4, 778–799
https://doi.org/10.1080/03050629.2022.1993210

http://crossmark.crossref.org/dialog/?doi=10.1080/03050629.2022.1993210&domain=pdf&date_stamp=2022-10-03
http://orcid.org/0000-0002-7781-223X
http://orcid.org/0000-0002-5825-9256
https://doi.org/10.1080/03050629.2022.1993210
http://dx.doi.org/10.1080/03050629.2022.2101217
https://doi.org/10.1080/03050629.2022.1993210
http://www.tandfonline.com


v�ıctimas mortales en funci�on de las dos etapas anteriores.
Dentro de este marco de modelizaci�on, nos centramos en el rol
de las importaciones de armas por parte de los gobiernos como
un factor de proceso que permite a los gobiernos intensificar o
impedir los enfrentamientos. Adem�as, sostenemos que la lejan�ıa
geogr�afica de una c�elula de la red est�a destinada a moderar los
efectos de estas concentraciones militares. Las predicciones fuera
de la muestra corroboran la eficacia de nuestro modelo parsimo-
nioso y basado en la teor�ıa, que permite una transparencia total
combinada con precisi�on en el proceso de previsi�on.

Les mod�eles de pr�evision pr�ecis et interpr�etables, qui perme-
ttent de pr�edire spatialement et temporellement les d�etails
des changements dans les nombres de victimes de conflits
intra-�etatiques, sont d’une importance cruciale pour les
d�ecideurs politiques et les organizations non gouvernemen-
tales (ONG) internationales. Nous adoptons une approche par
donn�ees de comptage et nous proposons un mod�ele de
r�egression hi�erarchique �a obstacle (hurdle) pour relever le d�efi
de la pr�ediction correspondante au niveau de la grille men-
suelle du PRIO (Peace research institute Oslo, Institut de
recherche sur la paix d’Oslo). Plus pr�ecis�ement, nous mod�eli-
sons l’intensit�e des conflits arm�es locaux �a un moment
sp�ecifique sous la forme d’un processus en trois �etapes. Les
�etapes un et deux de notre approche consistent �a estimer si
nous observerons des pertes respectivement au niveau du
pays et de la cellule de grille, tandis que l’�etape trois consiste
�a appliquer un mod�ele de r�egression pour les donn�ees
tronqu�ees afin de pr�edire le nombre de ces pertes en fonction
des deux �etapes pr�ec�edentes. Dans ce cadre de mod�elisation,
nous nous concentrons sur le rôle des importations d’armes
gouvernementales en tant que facteur processuel permettant
aux gouvernements d’intensifier ou de dissuader les combats.
Nous soutenons �egalement que l’isolement g�eographique
d’une cellule de la grille est susceptible de mod�erer les effets
de ces renforcements militaires. Des pr�edictions hors
�echantillon corroborent l’efficacit�e de notre mod�ele parcimo-
nieux fond�e sur la th�eorie qui permet une totale transparence
associ�ee �a une pr�ecision du processus de pr�evision.

Introduction

Within sub-Saharan Africa alone, the violent deaths of close to 8,500 peo-
ple are attributed to state-based armed conflict in 2019 (Pettersson and
€Oberg 2020). Reliable forecasts of conflict intensifications before they occur
allow policymakers to take precautionary and de-escalatory measures, thus
decreasing the human toll of organized violence. We present an approach
that extends recent advances in the forecasting of armed conflicts (e.g.,
Blair and Sambanis 2020; Chiba and Gleditsch 2017; Hegre et al. 2019;
Ward et al. 2013) toward forecasting conflict intensity, as indicated by the
number of casualties resulting from state-based conflicts. We follow this
endeavor at the geographically highly disaggregated level of the PRIO grid
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cell, which is a standardized structure introduced by Tollefsen, Strand, and
Buhaug (2012) comprising quadratic grid cells that cover the entire world
at an approximate resolution of 55 � 55 km. By doing so, we extend the
current literature in two main regards. First, we propose to forecast the
intensity of state-based fighting by employing a novel hierarchical hurdle
regression model that we develop in accordance with our theoretic consid-
erations. Second, we expand the suite of commonly used covariates to
include the role of governmental weapons procurements on the coun-
try level.
Our model rests on the idea of hurdle models (Cragg 1971) but advances

the corresponding model class in two main aspects: we incorporate three
nested stages and adopt thresholding (Sheng and Ling 2006), a technique
from cost-sensitive classification, to hurdle models. In this stage-wise
regression, the first stage indicates whether we will observe any fatalities at
the country level (country violence incidence). The second stage controls
whether conditional on having any casualties at the country level, we will
also observe a non-zero number of deaths in a given grid cell (cell violence
incidence). Given that this is the case, the third stage then uses truncated
regression to estimate the number of fatalities (cell violence intensity). To
make predictions that are consistent with the training observations, we
introduce two cutoff parameters that serve as thresholds known from cost-
sensitive classifications in the first two binary stages of our model
(Hern�andez-Orallo, Flach, and Ferri 2012). We set these parameters accord-
ing to a metric that ensures well-calibrated predictions, i.e., predicting
approximately the cumulative fatalities we observe.
In applying our three-staged approach to forecasting local conflict inten-

sity, we heed recent calls for more theory-based conflict prediction (Blair
and Sambanis 2020; Cederman and Weidmann 2017; Chiba and Gleditsch
2017) and limit the covariates in our model to a parsimonious set of theor-
etically motivated variables. In line with the suggestion to “focus on the
processes that produce violence closer to the moment of onset” (Chiba
et al. 2017, 3), we emphasize governmental major conventional weapons
imports as a driver of conflict intensity (Mehrl and Thurner 2020). These
transfers include large-scale weapons such as aircraft, artillery, or tanks,1

and also increase the risk of violence to occur (Magesan and Swee 2018;
Pamp et al. 2018). However, as we discuss below, their conflict-inducing
effect will not be homogeneous across all locations within a country. In
particular, we expect that governmental imports of major conventional
weapons increase fighting intensity but that this effect decreases with a
location’s distance from the capital. This is the case as remote localities are

1For more details, see https://www.sipri.org/databases/armstransfers/background/coverage.
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harder to reach for armies that employ major conventional weapons due to
their lower ability to traverse rough terrain, increased reliance on road
infrastructure, and more challenging logistics.
In support of our modeling approach, the out-of-sample evaluation indi-

cates that our hierarchical hurdle regression model outperforms a competi-
tive random forest benchmark model. Furthermore, our test results suggest
that the inclusion of governmental arms imports increases the predictive
accuracy of the forecasts. We will henceforth use the abbreviations PGM
and CM when referring to monthly observations at the PRIO-grid and
country level. The corresponding spatial units are shortened to PG (PRIO-
grid cell) and C (country).
This article’s remainder is structured as follows: the next section moti-

vates the hierarchical structure and use of a hurdle model in the applica-
tion case. Building on this theoretical foundation, we then formally
introduce the semiparametric hierarchical hurdle model. Subsequently, we
apply this model to predict local conflict intensity at the PRIO grid level.
This section also presents the specification of a parsimonious suite of cova-
riates, out-of-sample evaluation results, as well as forecasts until March
2021. The paper concludes with a discussion of possible future directions.

Theoretical Motivation

A principal issue in modeling armed conflict is that conflict events are
empirically rare. This is the case for all commonly used units of observa-
tion (state-dyads, country-years, etc.) but in particular at more granular lev-
els of spatiotemporal resolution such as PGs. For instance, even throughout
the Liberian civil war, most locations in Liberia did not experience any
fighting as violence instead clustered in a few areas (Hegre, Østby, and
Raleigh 2009). And while resulting in over 22,000 civilian casualties, much
of the violence in the Bosnian civil war was concentrated in a few infamous
events, most prominently the massacres in Srebrenica and Prijedor. In con-
trast, other periods passed without any reported killings of civilians
(Schneider, Bussmann, and Ruhe 2012). The main concern here is that an
excess of zero-observations exists, i.e. observations where no conflict occurs
(Bagozzi 2015; Beger, Dorff, and Ward 2016). Most obviously, some coun-
try-pairs, states, or subnational locations may be as good as immune to
armed conflict because of their particular wealth, institutional features, or
geographical attributes. For instance, it is highly improbable that Djibouti
and Lesotho would ever engage in a mutual dispute or that Liechtenstein
would experience civil war. But even in countries with an ongoing conflict,
fighting is usually geographically confined and unlikely to reach locations
such as the capital (Buhaug 2010; Hegre, Østby, and Raleigh 2009;
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Tollefsen and Buhaug 2015). Furthermore, such excess zeroes can also
occur temporally and, if left unaccounted for, threaten both inference and
our ability to forecast fighting (Bagozzi 2015).
When predicting the monthly conflict intensity at the spatially highly disag-

gregated PRIO grid level, this discussion has relevant implications. To begin,
we can expect that as numerous countries will be at peace in either a month
under observation or even across the entirety of the period we study, none of
the grid cells contained within them will experience any fighting. And even
when violence does occur on the country-month level, the majority of its grid
cells will nonetheless see no combat. A descriptive analysis of the available
data, covering violence at the cell-month level across Africa during the period
1990–2019, supports these expectations. First, most fatalities occur in a small
subset of countries that hardly changes over time.2 This implies that hierarch-
ical structure, i.e., in which country each cell is situated, carries vital informa-
tion for the prediction task. Second, the vast majority of grid cells—even
within countries experiencing combat—(99:2%) are reporting zero cases. As
there are more than 10,000 grid cells defined in Africa for each month, the
datasets might therefore include up to 3,8 million observations. This, in turn,
can posit an obstacle when estimating flexible and realistic models in a con-
text where fast as well as precise and interpretable predictions are needed.
In predicting PGM-level fighting, we focus on the external procurement of

major conventional weapons as a critical factor that allows governments to
engage in and escalate armed conflict. Existing studies identify these imports
as drivers of conflict onset (Magesan and Swee 2018; Pamp et al. 2018) but
also emphasize their potential to intensify current fighting as they increase
governmental forces’ ability to pin down the enemy and engage in decisive
battles (Caverley and Sechser 2017; Mehrl and Thurner 2020). Hence, the pro-
curement of weapons is a driver of both the occurrence and intensity of con-
flict. That being said, governmental arms imports are a country-level factor
while we are interested in predicting grid-level fighting; this is particularly
relevant as grid cells differ in terms of their potential to experience conflict or
be exposed to government-owned heavy weaponry. Namely, the state’s
reach—and hence rebels opportunity to challenge it—varies over its territory,
with locations far away from the capital being the most difficult to govern
and thus most suitable for rebellion (Boulding 1962; Buhaug 2010; Tollefsen
and Buhaug 2015). Such remoteness may, in turn, mainly affect the power
projection ability of forces employing major conventional weapons given their
comparatively lower ability to traverse rough terrain, higher reliance on road
infrastructure, and more challenging logistics. In addition to increasing the
country-level occurrence and intensity of fighting, governmental arms imports

2To be precise, almost 70% of fighting casualties occur in only four countries, namely Eritrea, Ethiopia, Sudan,
and Somalia.
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may hence also determine combat severity at the more local level. We thus
use the external procurement of weapons to identify which countries experi-
ence fighting and, in interaction term with a PG’s distance from the capital,
to predict the local occurrence and intensity of violence within these countries.
Additionally, we differentiate between the short- and long-term effects of these
weapons as they may correspond to different theoretical mechanisms. Along
these lines, MCW may increase the risk of short-term combat incidence as
they allow a threatened incumbent to attack their challenger. But in the long-
run, such weapon buildups may instead serve to deter to challengers, thus
decreasing conflict risk (see Pamp et al. 2018). At the same time, for MCW
imports to increase an incumbent’s ability to not just strike once against a
challenger but to meaningfully intensify fighting, a period of distributing and
training on these weapons will be necessary. As such, MCW imports may be
expected to affect the intensity of combat mainly in the long run.

Hierarchical Hurdle Regression

Stemming from this discussion, we propose a forecasting model, which can
incorporate the hierarchical data structure, given by each PG allocation in a
country, as well as appropriately deal with the high rate of excess zeros. These
aims are mirrored in two model characteristics: a stage-wise formulation and
an application of cutoff values for prediction. Our model explicitly assumes that
state-based PG fatalities occur only in countries that we predict to have at least
one fatality. We make this prediction based on a binary regression model on
the country level and introduce a cutoff value to obtain binary predictions.
Given that this prediction forecasts fatalities on the country level, we progress
to a second binary decision on the PG level to determine if we will observe at
least one case in the respective cell. Similar to the first binary choice, we use an
additional cutoff value to attain binary predictions. Provided that this binary
result is again positive at the PGM level, we capture the realized count by a
truncated distribution defined over the positive natural numbers.3

Model Formulation

For a precise notation, we order each grid cell according to the country it
is situated in and, therefore, define yijt to be the observed number of state-
based fatalities in PRIO-grid i situated in country j and month t, with i ¼
1, . . . , nj, j ¼ 1, . . . , n and t 2 T ¼ fJanuary 1990, . . . ,March 2021g:

In our application we set n ¼ 55 (number of countries) and nj denotes
the number of cells located in country j ¼ 1, . . . , n: Since our model

3As we do not use the standard 25 battle death threshold for armed conflict, the first two classification stages
of our model should not be interpreted as identifying conflict and non-conflict units.
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combines both the country and grid level, let y�jt ¼
Pnj

i¼1 yijt be the corre-
sponding observation aggregated at the country level. In accordance with
the abbreviations introduced earlier, we write CM jt and PGM ijt to
shorten the corresponding observations. Further, we define a binarised ver-
sion of y�jt by ~y�jt, hence ~y�jt ¼ y�jt > 0: Within this notation, the aim of the
prediction task is to forecast Ds

ijt defined by:

log ðyijt þ 1Þ� log ðyijt�s þ 1Þwith ðt, sÞ
2 fðOctober 2020, 2Þ, . . . , ðMarch 2021, 7Þg, (1)

with data given until t � s: Since the sole stochastic component of (1) is
logðyijt þ 1Þ it suffices to model the observed counts at the point in time t: We
tackle this endeavor with six models that only differ by the assumed lag struc-
ture of s months between the measurement of all covariates and the target vari-
able (with s ¼ 2, . . . , 7). Since we have data until August 2020, the one-step-
ahead forecasts of these models yield the predictions needed in (1). Simply put,
the prediction of the time-step s months into the future translates into a lag of
s months between covariates and the target variable. Without a loss of general-
ity, we hence formulate our model for the arbitrary delay structure of s months.
In our three-stage hurdle regression model, we decompose the probability

distribution of the random variable Yijt into two binary decisions and a trun-
cated counting model. In stage 1 we start with a binary classification model on
the country level in which the target variable is the random variable Y�jt, indi-
cating whether we observed at least one fatality in CM jt: Conditional on hav-
ing observed at least one fatality in CM jt, the consecutive two stages
encompass a standard hurdle regression model (Mullahy 1986). Therefore, stage
2 constitutes another binary decision determining if we observe at least one
fatality in PGM ijt, while stage 3 models the count of deaths conditional on
having observed at least one death in the respective cell. For stage 3, we utilize
a truncated counting distribution. Mathematically, the resultant probability
model of this stage-wise approach can be stated as the joint bivariate probability
of Yijt and ~Y �jt with delay structure s by:

PðYijt ¼ yijt, ~Y �jt ¼ ~y�jtjx
ð1Þ
�jt�s, x

ð2Þ
ijt�s, x

ð3Þ
ijt�sÞ ¼

ð1�pð1Þ�jt Þ ~y�jt ¼ 0, yijt ¼ 0

pð1Þ�jt ð1�pð2Þijt Þ ~y�jt ¼ 1, yijt ¼ 0

pð1Þ�jt p
ð2Þ
ijt f

ð3Þ
tr ðyijtÞ ~y�jt ¼ 1, yijt>0

0 else

,

8>>>><
>>>>:

(2)

where pð1Þ�jt is the probability of observing at least one fatality in CM jt, pð2Þijt
the probability of observing at least one fatality in PGM ijt, and f ð3Þtr ðyijtÞ ¼
fCðyijtÞ
1�fCð0Þ the density of a zero-truncated version of a discrete random variable
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with density fCðyijtÞ: The bivariate nature of (2) is a technical necessity and
due to ~Y �jt being the target variable in the first stage. However, when using
model (2) to obtain forecasts we only consider the prediction of yijt and
view the prediction of ~y�jt as a byproduct. The required quantities are
obtained from the three sub-models, which each incorporate covariates that
are measured at time point t � s and denoted by xð1Þ�jt�s, x

ð2Þ
ijt�s, and xð3Þijt�s for

the commensurate sub-models. The corresponding dependency is implicitly
assumed to guarantee a less cluttered notation. The marginal expected
value of Yijt defined in (2) is given by

EðYijtÞ ¼
pð1Þ�jt p

ð2Þ
ijt

1� fCð0Þ
ECðYijtÞ, (3)

where ECðYijtÞ is the expected value of the counting variable with density
fCðyijtÞ and Yijt is defined in (2).4

Stage-Wise Specification

In general, the quantities defining (2), namely pð1Þ�jt , p
ð2Þ
ijt and f ð3Þtr ðyijtÞ, can be

specified separately by arbitrary regression techniques. Our specification aims
to be as flexible as needed while, at the same time, providing transparent and
interpretable forecasts and coefficients. Therefore, we suggest the usage of gen-
eralized additive mixed models (Ruppert, Wand, and Carroll 2003, 2009;
Wood 2017), which entail the following distributional assumptions:

1. The two binary targets in stage 1 and 2, y�jt > 0 and yijt > 0, follow a
Binomial distribution with the corresponding success probabilities pð1Þ�jt
and pð2Þijt :

2. The truncated counting variable in stage 3 follows a truncated Poisson dis-
ctribution with (untruncated) mean kð3Þijt :

We parameterize the means of the three corresponding distributions in
terms of stage-specific lagged covariates, xð1Þ�jt�s, x

ð2Þ
ijt�s, x

ð3Þ
ijt�s: As our model is

of a semiparametric nature, we incorporate these covariates in each stage as
having either a linear (L) or nonlinear (NL) effect. Accordingly, we decom-
pose all covariates along their effect type, e.g., in the third stage xð3Þijt�s ¼
ðxð3, LÞijt�s , x

ð3,NLÞ
ijt�s Þ for covariates with linear and non-linear effects (the same

holds for stage 1 and 2). The sum of all effects results in stage-wise linear

4This result follows from the direct calculation of the marginal density of Yijt and the application of the total
law of probability.
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predictions, which in our specification are given by:

gð1Þ
�jt ¼ ðhð1, LÞÞ>xð1, LÞ�jt�s þ

X
~x2xð1,NLÞ�jt�s

f ð~xÞ þ uj

gð2Þ
ijt ¼ ðhð2, LÞÞ>xð2, LÞijt�s þ

X
~x2xð2,NLÞijt�s

f ð~xÞ

gð3Þ
ijt ¼ ðhð3, LÞÞ>xð3, LÞijt�s þ

X
~x2xð3,NLÞijt�s

f ð~xÞ,

(4)

where hðk, LÞ with k ¼ 1, 2, 3 are linear coefficients to be estimated, f ð�Þ smooth
non-linear functions specified through basis functions, e.g., P-Splines (Eilers
and Marx 1996), and uj is a Gaussian country-specific random effect.5 Let the
stage-specific parameters defining all components in (4) be hð1Þ, hð2Þ, hð3Þ:
Besides, we accommodate possible restrictions on the means, i.e., pð1Þ�jt 2

½0, 1� and kð3Þijt 2 R
þ, by transforming the linear predictors defined in (4) by a

response function (Nelder and Wedderburn 1972). While we apply the inverse
logit transformation for the binary regressions, the exponential function is used
for the truncated Poisson model. The relations between the stage-wise means
and linear predictors are therefore given by:

pð1Þ�jt ¼
expfgð1Þ

�jt g
1� expfgð1Þ

�jt g
, pð2Þijt ¼

expfgð2Þ
ijt g

1� expfgð2Þ
ijt g

, and kð3Þijt ¼ expfgð3Þ
ijt g:

Under conditional independence between the model stages, we estimate
hð1Þ, hð2Þ, hð3Þ through three separate generalized additive mixed models. The
contribution of yijt to the joint likelihood of time-step s is:

Lðhð1Þ, hð2Þ, hð3Þjyijt, y�jtÞ ¼ f ð1ÞBinðy�jt > 0jhð1ÞÞ1=nj f ð2ÞBinðyijt > 0jhð2ÞÞIðy�jt>0Þ

f ð3ÞtrP ðyijtjhð3ÞÞ
Iðyijt>0Þ, (5)

where fBinðyjhÞ is the density of a Bernoulli random variable and ftrPðyjhÞ the
density of a zero-truncated Poisson distribution both parametrized as
described in the distributional assumptions of the previous paragraph. The
two levels of analysis at the CM and PGM level entail the inclusion of a scale
factor 1=nj: Heuristically this is necessitated by the fact that from any yijt > 0
it follows that y�jt > 0 must hold, hence all other observations in the respect-
ive countries y~ijt8~i 2 f1, . . . , njg and ~i 6¼ i do not include any additional
information regarding the first stage. The product of (5) over all observations
in the training set yields a complete likelihood. To achieve the best trade off
between complexity and simplicity, we penalize the roughness of all nonlinear

5For our application the definition of those sets of covariates (xðk, LÞijt�s , x
ðk,NLÞ
ijt�s with k ¼ 1, 2, 3) as well as the

specification of smooth components are given in Appendix A.
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terms and include side constraints to ensure identifiability as detailed in
Wood (2020). For details on the implementation, we refer to Annex D.

Sparse Predictions by Thresholding

To obtain sparse predictions from the estimated model, we introduce two add-
itional cutoff parameters. In classification tasks, cutoff values are commonly
used to transform the probability output of a model, here the probability of a
unit to observe at least one fatality, into a binary classification whether we pre-
dict at least one fatality for a country or not (Domingos 1999). For instance,
assuming that this value is 0.4, we would predict at least one death in a country
if the respective predicted probability is above 0.4. Theoretically, the threshold
should be 0.5, yet for applications with strongly imbalanced data such as ours
or cost-sensitive misclassification, e.g. the diagnosis of cancer, Sheng and Ling
(2006) proposed to learn this value as an additional tuning parameter.
Along these lines, we extend thresholding to our multi-stage hurdle

regression (the application to standard hurdle regression follows naturally)
and introduce two additional parameters that serve as thresholds for the
first two binary stages of our model. Building on the notion of crossing
hurdles and the corresponding model class’s name, we call these parameters
hurdles and denote them by s1 and s2: By applying those hurdles, we only
predict non-zero values on the PGM level if the corresponding country
probability from the first stage is higher than s1 and the probability to
have at least one case in the PG from the second stage is above s2: Having
specified pð1Þ�jt , p

ð2Þ
ijt , and f ð3Þtr ðyijtÞ by generalized additive mixed models, we

obtain predicted values for each stage, denoted by p̂ð1Þ
�jt , p̂

ð2Þ
ijt , and k̂

ð3Þ
ijt : With

these values, the prediction ŷijt under s1 and s2 is given by:

ŷijtðs1, s2Þ ¼
0 ðp̂ð1Þ

ijt <s1Þ�ðp̂ð2Þ
ijt <s2Þ

k̂
ð3Þ
ijt else

:

8<
: (6)

Generally, there are numerous ways to set these thresholds, and the deci-
sion highly depends on the desired forecast. For instance, if the MSE of the
predictions should be as low as possible, the thresholds can be picked so
that the misclassification rates of the two corresponding binary models are
minimized. Since this approach often leads to overly sparse predictions, we
seek well-calibrated predictions in our application. In other words, we want
to predict approximately the amount of fatalities that are observed. We
thus opt to minimize the following loss in terms of s1 and s2 :

lossðs1, s2jyÞ ¼ jlogðŷðs1, s2Þ þ 1ÞT1� logðyþ 1ÞT1j, (7)

where ŷðs1, s2Þ defines the vector stacking all predictions obtained through
applying (6), y the stacked observed counts, and 1 a vector of ones. To
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minimize (7) in a time-efficient fashion, we apply an algorithm for global
optimization, namely differential evolution (Das and Suganthan 2011).
Overall, these hurdles make our modeling framework more flexible and
adaptable to specific goals that can be set by the practitioner.

Data Partitioning

To provide the forecasts in (1) with data available until August 2020, we
employ an one-step-ahead procedure on the models with s ¼ 2, . . . , 7: For
instance, we forecast the counts in November 2020 by lagging the covari-
ates by s ¼ 3 months as we are given data until August 2020. In the same
manner, we calculate expanding-window evaluation forecasts for January
2017 to December 2019 for all time-steps (s ¼ 2, . . . , 7) to measure the
out-of-sample performance of our model. This procedure adequately repli-
cates the real forecasting situation (Richardson, van Florenstein Mulder,
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and Vehbi 2020). In accordance with the real forecasts in (1), the predic-
tion task of the evaluation is thus given by:

log ðyijt þ 1Þ� log ðyijt�s þ 1Þ

8 s ¼ 2, . . . , 7, i ¼ 1, . . . , nj, j ¼ 1, . . . , n and t 2 T Evaluation, (8)

where T Evaluation ¼ fJanuary 2017, . . . , December 2020g and given data
until t � s: The entire procedure for the latter type of prediction is sum-
marized in Algorithm 1.6

For predicting the fatalities at time point t and time-step s, we use data
until t � s which we split into pre-training and calibration dataset accord-
ing to Table 1 (sub-task 1). We start by estimating the model with the data
from the pre-training data (sub-task 2). Consecutively, we optimize (7)
given the calibration data (sub-task 3) and re-estimate the model on the
training data (sub-task 4). Finally, we transform the forecasted fatalities at t
by applying (8) to Ds

ijt and save the results (sub-task 5).

Application

We next employ the hierarchical hurdle regression model formulated above
to forecast monthly changes in the intensity of fighting across the African
continent. In particular, we focus on governmental arms imports and, on
the PG level, their interaction with a location’s distance from the capital as
theoretically critical covariates. We first discuss the construction of these
and other covariates. Consecutively, we present out-of-sample evaluations
of our proposed model as well as forecasts for October 2020 until
March 2021.

Description of Covariates

The covariates, denoted by xð1Þ�jt�s, x
ð2Þ
ijt�s and xð3Þijt�s, can be specified for each stage

individually. As discussed above, each regression model we calculate has a spe-
cific delay between target and regressor s 2 f2, . . . , 7g: For clarity, we define
all covariates here before applying these model-specific lags.
For our key independent variable, governmental imports of major con-

ventional weapons, we use data from the SIPRI Arms Transfer Database
(SIPRI 2020a), covering global arms transfers from 1950 to the present. We
construct two yearly variables from this dataset as we distinguish between

6This approach is used as contemporaneous covariates to forecast a target value are usually not available. To
clarify, data until a specific point in time t describes observations where the target variable was measured at t
and the covariates at t � s: As we provide expanding-window forecasts, we run through the inner loop of
Algorithm 1 (sub-task 1 through 5) for the prediction of each month (T ¼
fJanuary 2017, . . . ,December 2019g) and time-step (s ¼ f2, . . . , 7g), where we set the periodization
according to Table 1.
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“short-term” and “long-term” imports of weapons. The former cover the
weapon imports during the present and previous year, while the latter
sums up the procurements between three and ten years before the present
year. We denote the corresponding yearly covariates by xLT�jy and xST�jy for
country j and year y to define them as:

xST�jy ¼ log xMCW Import
j, y þ xMCW Import

j, y�1

� �

xLT�jy ¼ log
Xy�2

~y¼y�10

xMCW Import
j,~y

0
@

1
A,

where xMCW Import
j, y is given by the yearly import of major conventional

weapons measured in TIVs (SIPRI 2020b). The temporal scale of the result-
ant covariates is then transformed from yearly to monthly by setting xST�jt ¼
xST�jy and xLT�jt ¼ xLT�jy for all months t within year y: In other words, short-
term imports of MCW reflect the total strategic value of the weapons pro-
cured from abroad in the two years preceding an observation while long-
term imports indicate the aggregate value of arms obtained in the eight years
before that. As discussed above, we include these variables in all three stages
of the model, but in stages 2 and 3 interact them with the location’s distance
to the capital (Weidmann, Kuse, and Gleditsch 2010), which accordingly
also enters stages 2 and 3 as a covariate. To capture the belligerents’ (poten-
tial) structural military power (Mehrl and Thurner 2020), we further include
governmental military expenditures in all three stages (SIPRI 2019).
Additionally, our model contains three further groups of selected covari-

ates. First, we account for spatial dynamics in our data by including a
country-specific Gaussian random effect in the first stage as well as a
smooth spatial effect of a location’s average longitude and latitude in all
three stages. Second, we include a smooth time trend, dummy variables for
month effects, the time since the last fatality as well as the total number of
fatalities in the previous month resulting from organized violence to take
temporal dynamics into account. Third, we incorporate a small number of
covariates that have been shown to be key structural predictors of armed
conflict onset and intensity (see Hegre et al. 2013, 2019). In Appendix A, a

Table 1. Periodisation of data for expanding window evaluation at time point t 2
fJan:2017, . . . , Dec:2019g and s 2 f2, . . . , 7g and forecasting.

Evaluation Forecast

Pre-training Jan. 1990 to ðt�s�1Þ Jan. 1990 to Jul. 2020
Calibration t – s Aug. 2020
Training Jan. 1990 to t – s Jan. 1990 to Aug. 2020
Test t Oct. 2020 to Mar. 2021
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complete list of all included covariates is given with the respective data
sources and transformations.

Results

Out-of-sample evaluation
All three steps needed to obtain predictions for the number of state-based casu-
alties in June 2018 with data until April 2018 (s ¼ 2) are illustrated in Figure 1
for a sub-sample of five countries in North-Eastern Africa (Eritrea, Ethiopia,
Uganda, Somalia, Kenya, South Sudan). The first row depicts the predicted
probability of country fighting incidence as well as whether the model expects
violence to occur after applying the calibrated threshold. The second row
presents these quantities for the cell level and shows that in this example, the
optimized threshold probabilities at which the model expects fighting to take
place differ from 0.5 (s1 ¼ 0:563, s2 ¼ 0:263). In the third row, the final out-
of-sample predicted fatalities in June 2018 are transformed to changes in con-
flict intensity. Here, we show the predictions on the right and the observed
changes on the left side. A comparison of these two final maps suggests that
our model is generally successful in identifying which countries will experience
armed conflict as well as in predicting where those fatalities will occur.
Notably, the model correctly identifies Eritrea and Uganda as not experiencing
conflict in this month. On the sub-national scale, we predict both the location
and the direction of, for instance, changes in the intensity of fighting in western
South Sudan and southern Somalia rather well. At the same time, the maps
demonstrate that our model was unable to forecast what seems like relatively
isolated flare-ups of violence in, e.g. eastern Kenya.
To evaluate the model in a more principled manner, we compare the

out-of-sample performance of 1) the fully specified hierarchical hurdle
regression model, 2) the same model without MCW imports and military
capacities, and 3) the PGM benchmark model based on a random forest
introduced by Hegre, Vesco, and Colaresi (2022) and Vesco et al. (2022).
Let ŷts be the stacked vector of all predictions at time point t with data
until t � s, while the stacked predicted changes from (8) are denoted as
Dŷts and the matching observed values are yt and Dyts: Under this notation,
the MSE and TADDA scores for s ¼ 2, . . . , 7 are given by:

MSEs ¼
1

#T Evaluation

X
t2T Evaluation

1
#yt

ðŷts�ytÞ2

TADDAe
s ¼

1
#T EvaluationX

t2T Evaluation

jDyts�Dŷtsj þ jDŷtsjIðDŷ
ð6Þ
ts 6¼ Dyð6Þ

ts ÞIðjDŷts�Dytsj>eÞ
#Dyts

,
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Stage 1

0.25 0.50 0.75

Probabity Prediction

FALSE TRUE

Thresholded Prediction

Stage 2

0.2 0.4 0.6 0.8 FALSE TRUE

Prediction
Observed Change Predicted Change

−2 0 2 4

Figure 1. Observed and predicted changes in fatalities Ds
ijt with s¼ 2 in June 2018 in a sub-

sample of countries. The predictions are separated along Stage 1 (first row), Stage 2 (second
row), and final predicted change to April 2018 (third row).
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where Ið�Þ is the indicator function, yð6Þ denotes the sign of all values in
vector y and #y the dimension of y, i.e., #y ¼ n for y 2 R

n: Finally, e is a
value set at 0.048 to roughly correspond to a change of 5% in state-based
fatalities. The resulting values are presented in Table 2. Overall, the MSE
and TADDA scores are consistently higher for the benchmark model than
for both hierarchical hurdle models. This indicates that accounting for the
hierarchical structure of and excess zeroes within our data improves the
ability to forecast conflict escalation and de-escalation. Simultaneously,
these results suggest that weapons transfers and capabilities are key covari-
ates when predicting the dynamics of state-based fighting. The out-of-sam-
ple validation hence provides clear support for our proposed model in
terms of utilized model class and model specification.

Forecasts
As already explained, we can exploit the proposed model to make monthly
predictions up to March 2021. Figure 2 graphically presents the starting
and end points of these forecasts. Similar to Figure 1, changes in conflict
intensity are predicted to geographically cluster in a few regions which are
often more distant to the corresponding country’s capital. One of these
regions is the border area between Cameroon, Chad, Niger, and Nigeria,
where Boko Haram has been particularly active. There, our model predicts
violence to both de-escalate and escalate within the forecasting period. For
October 2020, the forecast indicates that violence will decrease in most
Nigerian locations but increase in PGs very close to Nigeria’s borders with
Cameroon and Niger. In contrast, it expects violence to increase almost
across the board in March 2021 as many locations both within Nigeria and
bordering Cameroon and Niger are predicted to experience a rise in cas-
ualty numbers. The forecast concurrently expects Chad to remain
unaffected by these changes in violence.
While less publicized than the Boko Haram case, Mozambique has also

experienced the rise of a violent Islamist insurgency since its first attacks in
2017 (Morier-Genoud 2020). These insurgents have claimed numerous
attacks in the country’s northeastern Cabo Delgado province and our

Table 2. Out-of-sample MSE and TADDA scores from the hierarchical hurdle model with and
without the MCW-related covariates as well as the benchmark model.

MSE TADDA

S MCW No MCW Benchmark MCW No MCW Benchmark

2 0.033 0.034 0.045 0.016 0.016 0.151
3 0.035 0.037 0.046 0.017 0.017 0.138
4 0.037 0.040 0.050 0.018 0.017 0.140
5 0.038 0.042 0.048 0.018 0.018 0.151
6 0.036 0.043 0.050 0.018 0.018 0.142
7 0.037 0.048 0.052 0.017 0.020 0.151
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model also predicts casualty numbers to shift in this region.7 It expects vio-
lence to move southwards along the coast as it predicts casualties to
decrease in some of the northernmost areas of the province but to increase
closer to its administrative center Pemba. Violence is thus expected to
spread further within Cabo Delgado, reaching areas where the terrorist
organization has previously shown little activity, but not across the border
into Tanzania.
Finally, we present a subset of the linear estimates underlying the

October 2020 forecasts in Table 3 (hence s ¼ 2) to examine to what extent
weapons imports drive these predicted changes in violence. These results
support our general expectation that arms imports fuel conflict. As sug-
gested, at least long-term arms imports increase local conflict intensity, but
this relationship becomes weaker for locations farther away from the cap-
ital. This conclusion is displayed in the negatively signed and statistically
significant interaction terms in stage three. While there is little evidence
that recent imports of MCW affect fighting at the PG-level, the estimates
of stage 1, in contrast, allow drawing the inference that such transfers can

October 2020

−2

−1

0

1

2

Cameroon

ChadNiger

Nigeria

March 2021

−2
−1
0
1
2
3

Cameroon

ChadNiger

Nigeria

Figure 2. Forecasted log changes Ds
ijt in fatalities to October 2020 (s¼ 2) and March 2021

(s¼ 7), focused on the border region between Nigeria, Niger, Cameroon, and Chad.

7See Figure 7 in Appendix C.
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trigger the country-level occurrence of fighting while longer-term imports
are associated with a lower probability of lethal violence.
These results contribute to clarifying our understanding of the relation-

ship between arms imports and conflict intensity. They show that MCW
imports do not escalate fighting immediately and everywhere, but that this
effect instead takes some time to appear as troops take delivery of and get
trained on the new weapons and is strongest close to the national capital.
This points to the importance of logistical and infrastructure factors in the
deployment of MCW and emphasizes the interplay of geographical and
military endowments in determining incumbents’ ability to project power
and wage war.
Our model thus performs well in out-of-sample predictions and enables

users to understand how specific covariates affect the forecasts. This can
add nuance to existing research and lead to new policy implications. The
long-term effect of arms imports on conflict intensity uncovered here sug-
gests that arms export bans as a reaction to fighting are insufficient to stop
conflict escalation. Even peace-time exports, meant to stabilize politically
challenged governments, can lead to increased bloodshed at the core of the
state when fighting erupts. These results once more point to a need for
stricter arms export policies.

Conclusion

Predicting the escalation and de-escalation of armed conflict at fine-grained
spatio-temporal levels is a crucial concern to researchers and policymakers
alike. In this article, we develop and apply a hierarchical hurdle regression
model that explicitly accounts for two key features of conflict event data,
namely hierarchical structure and excess zeroes. Inspired by recent calls to

Table 3. The subset of the parametric estimates regarding the governmental procurement of
weapons with s¼ 2 and training data from January 1990 to August 2020.

Covariate Estimate Std. error t-Value p-Value

Stage 1 Military expenditure 0.0624 0.0511 1.2212 0.222
Long-term import of MCW �0.091 0.0453 �2.0075 0.0447
Short-term import of MCW 0.1105 0.0286 3.8669 0.0001

Stage 2 Military expenditure 0.0917 0.0173 5.3150 <0.0001
Distance to capital (CD) 0.0001 0.0001 1.2355 0.2167
Long-term import of MCW (LT) �0.0288 0.0229 �1.2530 0.2102
Short-term import of MCW (ST) �0.0642 0.0179 �3.5951 0.0003
LT� CD �0.0002 0.0000 �9.5278 <0.0001
ST� CD 0.0000 0.0000 1.4594 0.1445

Stage 3 Military expenditure 0.1870 0.0438 4.2726 <0.0001
Distance to capital (CD) 0.0020 0.0002 11.2856 <0.0001
Long-term import of MCW (LT) 0.6842 0.0519 13.1847 <0.0001
Short-term import of MCW (ST) �0.0142 0.0418 �0.3397 0.7341
LT� CD �0.0009 0.0001 �12.7753 <0.0001
ST� CD �0.0002 0.0001 �3.5264 0.0004
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develop theoretically motivated conflict forecasting models, we, in particu-
lar, emphasize the role of governmental weapons imports as a potential
driver of both country- and local-level fighting. Out-of-sample evaluations
attest that both of our methodological and substantive contributions
increase the ability to predict conflict (de-)escalations. We employ our
modeling approach to forecast changes in the log-transformed number of
casualties for October 2020 to March 2021. Showcasing the interpretability
of our model, we further examine to what extent arms imports trigger and
fuel violence. As a result, we find evidence that such transfers impact the
occurrence and intensification of fighting in nuanced, previously unob-
served ways. Overall, our model hence not only provides practitioners and
policymakers with forecasts on future conflict escalation but can further-
more inform them about the principal drivers of—and hence levers to
address—this fighting.
More generally, the hierarchical hurdle approach presented here will also

be of interest to conflict scholars and forecasters due to its adaptability. For
instance, its hurdle regression step could easily be appended to the binary
ensemble model proposed in Hegre et al. (2019) by merely adding a condi-
tional truncated layer onto the predicted posterior probabilities. Similarly,
the semi-parametric specification we utilized in all three stages can easily
be exchanged for arbitrary machine learning techniques.
Finally, this research points to the added value of including theoretically

grounded processual covariates such as arms imports when forecasting con-
flict. As such, future work on conflict forecasting should leverage increas-
ingly available fine-grained event data on other theoretically relevant
covariates such as crop production, weather events, or migration. Along
these lines, future research may also consider the influence of resources
such as foreign aid which, in contrast to weapons, do not allow incumbents
to deter or defeat challengers, but instead to buy them off, thus potentially
decreasing the risk of conflict onset and escalation (Findley 2018). To bet-
ter account for the serial dependencies and resulting self-exciting behavior,
another possible enhancement of the covariates would be to incorporate
self-exciting terms in the flavor of Porter and White (2012). Further, armed
conflict is not the only type of event which is essential to forecast and
occurs within a hierarchical data structure and with a wealth of excess
zeroes. Hence, it would be fruitful to apply and extend our model to study
any hierarchically clustered count data. Examples of such data are manifold
and include the occurrence and local intensification of different types of
conflict (e.g., one-sided or non-state), protests or infectious dis-
ease outbreaks.
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