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Improving Multi-Site Autism Classification via
Site-Dependence Minimization and

Second-Order Functional Connectivity
Mwiza Kunda, Shuo Zhou, Gaolang Gong, and Haiping Lu, Senior Member, IEEE

Abstract— Machine learning has been widely used to
develop classification models for autism spectrum dis-
order (ASD) using neuroimaging data. Recently, studies
have shifted towards using large multi-site neuroimaging
datasets to boost the clinical applicability and statistical
power of results. However, the classification performance
is hindered by the heterogeneous nature of agglomerative
datasets. In this paper, we propose new methods for multi-
site autism classification using the Autism Brain Imag-
ing Data Exchange (ABIDE) dataset. We firstly propose a
new second-order measure of functional connectivity (FC)
named as Tangent Pearson embedding to extract better
features for classification. Then we assess the statistical
dependence between acquisition sites and FC features, and
take a domain adaptation approach to minimize the site
dependence of FC features to improve classification. Our
analysis shows that 1) statistical dependence between site
and FC features is statistically significant at the 5% level,
and 2) extracting second-order features from neuroimaging
data and minimizing their site dependence can improve
over state-of-the-art classification results, achieving a clas-
sification accuracy of 73%. The code is available at https:
//github.com/kundaMwiza/fMRI-site-adaptation.

Index Terms— Data heterogeneity, domain adaptation,
fMRI, autism spectrum disorders, functional connectivity.

I. INTRODUCTION

Autism spectrum disorder (ASD) refers to a lifelong neu-

rodevelopmental disorder characterised by a wide range of

symptoms, skills and levels of disability, such as deficits

in social communication, interaction and the presentation of

repetitive patterns of behaviour or restricted interests [1].

Autism diagnosis is challenged by the significant behavioural

heterogeneity and wide array of neuroanatomical abnormali-

ties exhibited between patients with autism [2], [3].

Non-invasive brain imaging techniques such as magnetic

resonance imaging (MRI) have been used to discover structural

or functional differences between ASD and typical control
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(TC) subjects. In particular, resting-state functional MRI (rs-

fMRI) has achieved promising results when utilized with

machine learning (ML) models for classifying ASD and TC

subjects [4]. However, the clinical generalizability of most

studies using rs-fMRI data for autism classification is debat-

able since the sample sizes used are small, unlikely to cover a

wide spectrum of autism and its heterogeneity [5]. These small

sample sizes are due to the time and cost constraint imposed

upon single-site studies acquiring rs-fMRI using a single fMRI

scanner and subject acquisition protocol.

To improve the statistical power and generalizability of neu-

roimaging studies, the Autism Brain Imaging Data Exchange

(ABIDE) initiative has aggregated data from multiple sites

across the world, creating datasets much larger than those used

in single-site studies [6]. The ABIDE dataset is composed of

rs-fMRI and phenotypic data from 20 different international

sites, leading to a heterogeneous sample of over 1000 ASD

and TC subjects. While it presents a great potential for the

extraction of functional biomarkers for autism classification,

its multi-site and multi-protocol aspects bring along significant

patient heterogeneity, statistical noise and experimental differ-

ences in the rs-fMRI data, making the classification task much

more challenging [7]. Recent works have employed different

ML methods, such as recurrent neural networks (RNN), graph

convolutional neural networks (GCN) and autoencoders [8]–

[12]. However, despite the complexity in patterns that these

methods can generally capture, the difference in their top

classification results on ABIDE fall less than 1%, with the

highest achieved accuracy being 70.4% [11].

This paper investigates two research questions that can

potentially improve multi-site autism classification.

• Between-site heterogeneity: how can we effectively ac-

count for the experimental differences in the ABIDE rs-

fMRI data? Previous studies have reported that between-

site heterogeneity arising from the use of different fMRI

scanner types and experimental settings has an impact

on the image properties of rs-fMRI data, and that this

consequently impacts any rs-fMRI analysis [14], [15].

• Discriminative features: can we design new rs-fMRI

features for better autism classification? As pointed out

above, powerful and complex ML methods such as RNN,

GCN, and denoising autoencoders give similar top classi-

fication performance of less than 1% difference, whether

directly using the time series or employing functional

connectivity (FC) features.
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Fig. 1. The pipeline for domain adaptation on FC features, covering all models studied in this paper. Steps 1, 2 and 5 are compulsory, whilst 3 and
4 are optional. Step 3 performs maximum independence domain adaptation (MIDA) [13] on FC features and step 4 supplements subject feature
vectors with phenotypic information. The phenotype ‘eye status at scan’ is site-specific so it is excluded when MIDA is used.

Domain adaptation methods operate on datasets from differ-

ent sources with mismatched distributions to find a new latent

space where the data is homogeneous, or source invariant

[16], [17]. In the context of this study, this corresponds

to aligning the rs-fMRI data so that there is independence

between the data and acquisition sites. Recently, Moradi et

al. [18] proposed a domain adaptation approach to correct

site heterogeneity for the estimation of symptom severity in

autism using ABIDE. Their severity score predictions were

markedly better than those from models without domain

adaptation. However, their study was limited to only 156

subjects from 4 of the 20 sites and they did not tackle the

classification problem. Another recent work [19] takes a low-

rank representation approach for multi-site domain adaption

but their study was limited to 468 subjects from 5 of the 20

sites. In contrast, our study focuses on the technical challenge

of assessing and targeting the site heterogeneity in all 20 sites

to improve autism classification.

Functional connectivity (FC) measures are important fea-

tures in ASD classification [20]. Two popular FC measures are:

1) the Pearson correlation measures the coupling between pairs

of regions of interest (ROIs), and 2) the more recent tangent

embedding parameterization of the covariance matrix captures

the FC differences between a single subject and a group [21].

In this paper, we explore a new perspective: for any two ROIs,

are they functionally connected to other brain regions in the

same way? This inspires us to propose a new second-order FC

measure that jointly considers the FC of individual ROIs.

In this study, we analyzed the rs-fMRI data of 1035 sub-

jects from all 20 ABIDE sites to improve multi-site autism

classification. We focused on constructing a new second-order

FC measure and evaluating the impact of minimizing their

dependence on the acquisition sites for autism classification.

The main contributions are threefold:

• We proposed a new second-order FC measure, Tangent

Pearson (TP) embedding to extract more discriminative

features for multi-site autism classification, outperform-

ing two popular FC measures on the whole.

• We assessed the statistical significance of the dependence

between FC features and acquisition sites, showing sig-

nificance at the 5% level and motivating us to design

models that correct for between-site heterogeneity.

• We took a domain adaptation approach to minimize the

dependence between acquisition sites and FC features.

Combining with the TP measure and phenotypic infor-

mation, this approach improved autism classification on

ABIDE, yielding state of the art results.

II. MATERIAL AND METHODS

Figure 1 gives an overview of the pipeline for studying

domain adaptation on FC features. It shows the steps involved

in specifying various models. Step 3 is the proposed domain

adaptation step optional in the pipeline and it is used to extract

site-independent features from the FC data of step 2 in an

unsupervised way. The impact of using such features can then

be compared with models that do not use step 3. Likewise,

the including of phenotypic information is optional.

A. ABIDE database: rs-fMRI and phenotypic data

This study focuses on the ABIDE database, which is com-

posed of MRI and phenotypic data collected from 20 sites

around the world. We included rs-fMRI and phenotypic data

from 505 ASD and 530 TC individuals, yielding a sample of

1035 subjects. This sample of subjects is the same as that used

in [9], which differs from the 871 subjects used in [7], [11]

due to their use of image quality control measures upon the

full database. We opted for such a large sample to increase

the likelihood of detecting site effects from individual sites,

even though a larger sample presents the challenge of a greater

level of heterogeneity expressed in subjects.

ABIDE provides a range of phenotypic information, includ-

ing factors such as sex, age, full IQ (FIQ) test scores and

handedness (left, right or ambidextrous). In particular, the type

of fMRI scanner and length of individual fMRI scans varied

across sites, giving rise to the apparent heterogeneity. Table I
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TABLE I

Phenotypic and experimental variation across ABIDE sites. FOR QUANTITATIVE VARIABLES, THE STANDALONE VALUES REPRESENT THE

OBSERVED MEANS, SD REPRESENTS THE STANDARD DEVIATION. M: MALE, F: FEMALE, L/R: LEFT/RIGHT HANDINESS.

Site ID Scanner Handedness (L/R) Eye Status Sex (M/F) Age (SD) FIQ (SD) Scan Time (SD)

CALTECH SIEMENS Trio 9/28 Closed 29/8 27.72 (10.45) 111.16 (11.53) 146.0 (0.0)
CMU SIEMENS Verio 3/24 Closed 21/6 26.59 (5.69) 114.56 (10.54) 273.26 (42.46)
KKI Philips Achieva 8/40 Open 36/12 10.01 (1.27) 106.17 (15.0) 148.5 (9.36)
LEUVEN 1 Philips INTERA 2/27 Open 29/0 22.59 (3.55) 112.21 (13.03) 246.0 (0.0)
LEUVEN 2 Philips INTERA 4/28 Closed 26/8 14.09 (1.38) 100.0 (0.0) 246.0 (0.0)
MAX MUN SIEMENS Verio 2/50 Closed 48/4 25.31 (11.88) 110.52 (11.73) 140.62 (37.28)
NYU SIEMENS Allegra 0/175 Open 139/36 15.26 (6.57) 110.51 (14.99) 176.0 (0.0)
OHSU SIEMENS Trio 1/25 Open 26/0 10.71 (1.79) 110.6 (16.81) 78.0 (0.0)
OLIN SIEMENS Allegra 6/28 Open 29/5 16.59 (3.47) 112.41 (17.01) 206.0 (0.0)
PITT SIEMENS Allegra 4/52 Closed 48/8 18.94 (6.93) 110.18 (12.24) 196.0 (0.0)
SBL Philips Intera 1/29 Closed 30/0 34.37 (8.6) 101.53 (6.15) 196.0 (0.0)
SDSU GE MR750 4/32 Open 29/7 14.41 (1.84) 109.36 (13.77) 176.0 (0.0)
STANFORD GE Signa 6/33 Closed 31/8 9.98 (1.59) 111.41 (15.56) 209.77 (30.02)
TRINITY Philips Achieva 0/47 Closed 47/0 16.96 (3.47) 109.96 (13.75) 146.0 (0.0)
UCLA 1 SIEMENS Trio 6/66 Open 62/10 13.19 (2.4) 103.46 (12.02) 116.0 (0.0)
UCLA 2 SIEMENS Trio 4/22 Open 24/2 12.49 (1.53) 102.04 (14.92) 116.0 (0.0)
UM 1 GE Signa 14/92 Open 81/25 13.4 (2.88) 104.96 (14.11) 296.0 (0.0)
UM 2 GE Signa 3/31 Open 32/2 16.01 (3.36) 112.26 (10.85) 296.0 (0.0)
USM SIEMENS Trio 0/71 Open 71/0 22.69 (8.34) 105.23 (17.65) 235.94 (0.47)
YALE SIEMENS Trio 10/46 Open 40/16 12.71 (2.88) 99.77 (20.12) 196.0 (0.0)

gives a summary of each site with respect to key experimental

protocols and phenotypic information. It shows that the type

of fMRI scanners and length of individual fMRI scans varied

across sites, giving rise to the apparent heterogeneity.

To compare against the state-of-the-art (SOTA) methods [7],

[9], [11], we used the same pre-processed fMRI data from

ABIDE (http://preprocessed-connectomes-project.org/abide/).

B. Step 1: Brain atlas features

Studies on rs-fMRI typically define brain regions of interest

(ROIs) rather than operating on individual voxels. These ROIs

represent the aggregation (e.g., averaging) of the rs-fMRI time

series data of individual voxels so that the number of ROIs is

significantly less than the number of voxels.

We chose the Craddock 200 (CC200) brain atlas [22] due to

its robust performance in previous studies on ABIDE [8], [9],

[11]. CC200 has 200 ROIs derived from the clustering of spa-

tially close voxels. We also considered two additional atlases

to assess the impact of using a different brain parcellation: 1)

Harvard Oxford (HO), a structural atlas with 110 ROIs based

on anatomical landmarks from 40 sMRI scans [23], and 2)

Craddock 400 (CC400), an atlas with 392 ROIs computed in

a similar way to the CC200 atlas. For these three atlases, the

representative time series of an ROI was derived by averaging

the rs-fMRI time series of voxels associated with the ROI.

C. Step 2: Functional connectivity features

FC features are usually extracted between pairs of ROIs

based on the raw time series data. They estimate the fluctuating

coupling of brain regions with respect to time, so that we can

train predictive models for classification based on differences

in brain region coupling. We first consider two SOTA FC

measures as baselines: 1) the Fisher transformed Pearson’s

correlation coefficient used in [11], which gives a measure of

coupling between pairs of ROIs by computing the correlation

between their time series, and 2) the tangent embedding

parameterization of the covariance matrix proposed in [21],

which captures the deviation of each subject covariance matrix

from the group mean covariance matrix and outperforms many

other FC measures in [7]. These two FC measures have

achieved SOTA autism classification performance on ABIDE.

Proposed second-order FC measure. As reviewed in Sec.

I, various ML methods including RNN and GCN have been

applied on the above FC features for multi-site autism clas-

sification. However, the resulting top classification accuracies

differ by less than 1%. This makes us question whether such

simple FC measures can capture well the complexity of brain

networks. Thus, it motivates us to go a step further than

the two standard FC measures and construct a new second-

order FC measure in the following. The Pearson correlation

coefficient gives a measure of the coupling between ROIs pairs

irrespective of any other ROIs. We propose to also quantify

the relationship that two ROIs have with respect to all other

ROIs. That is, we want to examine the following question: for

any two ROIs, are they functionally connected to other brain

regions in the same way?

Given a set of R ROIs and a corresponding FC matrix,

M (R × R), each row of M, Mi, i ∈ {1, . . . , R}, gives the

measure of FC between region i and all other regions. So given

any two regions i and j, the second-order measure of interest

can be computed by measuring the similarity between Mi

and Mj . We propose to capture this second-order measure by

firstly computing the Pearson correlation coefficient between

pairs of ROI time series, and then computing the covariance

of the resulting connectivity profiles from all regions (e.g. Mi

and Mj). The Pearson’s correlation coefficient at the first step

is powerful in capturing first-order FC measures. Denoting a

correlation matrix as R, it is given by

R = Σ(1/diag(Σ)
1

2 )(1/diag(Σ)
1

2 )⊤, (1)

where diag(·) denotes the diagonal elements of a matrix, Σ =
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n
(X−X̄)⊤(X−X̄) is a covariance matrix, n is the number of

subjects, X ∈ R
t×R denotes the input time-series of a subject,

t is the number of time points, R is the number of ROIs, and

X̄ ∈ R
t×R denotes a matrix where each column is the mean

of X over the time dimension. Tangent embedding Σ⃗ can be

obtained by mapping the covariance into tangent space via

Σ⃗ = logm(Σ
− 1

2

G ΣΣ
− 1

2

G ), (2)

where logm is matrix logarithm, ΣG is the geometric mean

(reference point) of covariance in a manifold, for example,

the mean covariance matrix in Euclidean space: ΣG =
1

n

∑n

i=1
Σi. Here we propose replacing the input to tangent

embedding Σ by a second-order correlation matrix R̆, where

R̆ = Σ̆(1/diag(Σ̆)
1

2 )(1/diag(Σ̆)
1

2 )⊤, (3)

and Σ̆ = 1

n
(R − R̄)⊤(R − R̄), then the tangent embedding

of the second-order correlation can be obtained via

Σ⃗TP = logm(R̆
− 1

2

G R̆R̆
− 1

2

G ), (4)

where the geometric reference point is R̆G = 1

n

∑n

i=1
R̆i.

We name this proposed measure in Eq. (4) as the Tangent

Pearson embedding FC measure, or simply Tangent Pearson

(TP) because it can be seen as combination of the Pearson

and tangent embedding FC measures with a simple implemen-

tation: replacing the covariance matrices used in the original

tangent embedding method with the proposed correlation-

based second-order FC matrices so that the deviation of each

subject from the group is computed from the group mean

second-order FC matrix.

The resulting FC matrices computed for each subject using

these three FC measures are symmetric. Therefore, it is suffi-

cient to keep only the upper/lower triangular parts. We chose

to keep the upper triangular parts and also discarded the main

diagonal FC values since they represented the self connectivity

of an ROI with itself, which is redundant information. The

remaining upper triangular values were flattened into a one-

dimensional vector and used as FC features for each subject

in all subsequent analyzes.

D. Statistical test of independence

Despite the aggregation of voxels’ rs-fMRI time series and

the estimation of FC features, acquisition site effects have

been observed in the results of studies using these FC fea-

tures. For example, Plitt et al. [24] identified large univariate

differences in FC strength between three investigated sites

(NYU, UCLA 1 and USM), showing the persistence of site

effects into FC features. Parisot et al. [11] and Nielsen et

al. [14] highlighted that significantly higher accuracies can

be obtained on single-site studies in comparison to multi-site

studies, however, this is also due to the reduced heterogeneity

of both ASD and TC subjects in single-site studies. Before

dealing with the dependence between ABIDE sites and FC

features, we aim to first assess the statistical significance of

this dependence. This assessment would provide a measure of

the influence of site effects on FC features, and whether the

effect is large enough to merit being accounted for during the

modeling of ASD classifiers on ABIDE.

To conduct this statistical test, we employed the Hilbert-

Schmidt independence criterion (HSIC), an empirical kernel-

based statistical independence measure. It is superior to other

kernel-based independence measures due to being simpler,

converging faster and having a low sample bias w.r.t. the

sample size [25], [26]. We firstly used the HSIC to measure

the statistical dependence between sites and FC features. We

then evaluated the statistical significance of such dependence

using a hypothesis test derived for the HSIC [26].

1) Hilbert-Schmidt independence criterion: Given two multi-

variate random variables X and Y with associated probability

distributions PX,Y, PX and PY, the HSIC provides a non-

parametric way of measuring their statistical dependence. It

gives a measure of zero if they are independent, and a value

greater than zero otherwise. The larger its value, the stronger

the dependence between them. Empirically, given n realiza-

tions for the random variables X = {xi} and Y = {yi}, the

HSIC ρh(X,Y) between X and Y is given by [25]

ρh(X,Y) =
1

n2
tr(KHLH), (5)

where K,H,L ∈ R
n×n,Ki,j = kx (xi,xj) and Li,j =

ky (yi,yj). kx(·) and ky(·) are two kernel functions, e.g.

linear, polynomial, or radial basis function (RBF). H = I −
1

n
11⊤ is a centering matrix and tr(·) is the trace function.

We define X to be the random variable corresponding to

FC features so that xi contains a single subject’s FC features.

We define Y to be the random variable corresponding to the

acquisition site, with yi ∈ R
20 a one-hot encoding of each site

(more detail in Sec. II-E). For the kernel functions, a linear

kernel was used for ky(·) due to the theoretical results in [27],

where a correlation between HSIC and distribution divergence

measure is guaranteed by linear kernel. RBF kernel was used

for kx(·) to model non-linear dependence between FC features

and sites. We set the width parameter of the RBF kernel, σ,

with the median distance between FC features.

2) Measure of significance: Gretton et al. [26] proposed

to measure the statistical significance of an HSIC estimate

based on a hypothesis test of independence for two random

variables X and Y using the HSIC estimate ρh(X,Y) as a test

statistic. The test considers a null hypothesis of independence

H0 : PX,Y = PXPY against an alternative hypothesis HA :
PX,Y ̸= PXPY. Evidence for the acceptance of the null

hypothesis is obtained by comparing the test statistic ρh(X,Y)
against a threshold T . If ρh(X,Y) ≤ T , the null hypothesis

can be accepted. In other words, w.r.t. T , the HSIC estimate

is sufficiently close to zero for independence between X and

Y to be accepted. In [26], this threshold is set to be the 1−λ
(λ ∈ [0, 1]) quantile of the null distribution for the test statistic,

as approximated by a two-parameter Gamma distribution.

E. Step 3: Domain adaptation

To tackle the inter-site heterogeneity, we take a multi-

source domain adaptation approach called maximum inde-

pendence domain adaptation (MIDA) [13]. We hypothesize

that there exists inter-site difference in the FC features of

subjects from different sites. Thus, extracting new features

that are site-independent can potentially improve classification
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performance. MIDA obtains these site-independent features

in an unsupervised manner utilizing the empirical HSIC in

Eq. (5) as a measure of dependence. Given a multivariate

random variable S for the acquisition site, a projection map

parameterized by W, ϕW(·), and a random variable X for

the subject FC features, MIDA aims to learn W so that the

empirical HSIC between the random variables ϕW(X) and

S is close to zero. Thus, in the space ϕW(X), the data are

independent of their respective acquisition sites. Specifically,

let xi ∈ R
k be the FC features of subject i, where i ∈

{1, . . . , n}, k and n are the dimension of FC features and

total number of samples, respectively. MIDA learns a low-

dimensional feature zi ∈ R
h, where h ≤ n.

To use MIDA, we need to construct a site feature vector

di ∈ R
v for each subject to encode information about their

respective site. The simplest is the site label information (e.g.

CMU, KKI), which can be encoded with a one-hot scheme:

di,p =

{

1 if subject i is from site p

0 otherwise,
(6)

where dip is the pth entry of di and v = 20 (the number of

sites). We concatenated site and FC feature vectors to augment

subject features with site information: xi = [xi,di]. Then

we learned a mapping W ∈ R
n×h to project the augmented

features to a new subspace where the new features for all

subjects are minimally dependent on the site:

Z = W⊤K, (7)

where K ∈ R
n×n, Ki,j = kx (xi,xj) and each column

of Z ∈ R
h×n, zi, is the new feature representation of

the augmented features. Next, we formulated the objective

function by maximizing the preserved data variance while

minimizing the statistical dependence on the site, i.e.

max
W

− tr
(

WTKHLHKW
)

+ µ tr
(

WTKHKW
)

, (8)

where µ > 0 is a hyper-parameter governing the emphasis

of variance preservation against the level of independence

achieved between the projected features Z and the site features.

The solution can be found by forming W from the eigenvec-

tors of the matrix K (−HLH+ µH)K corresponding to the

h largest eigenvalues [13].

The hyper-parameters are µ, h and the kernel functions

kx(·), kd(·). We used a linear kernel for kd(·) and the RBF

kernel for kx(·) with the width parameter set to the median

distance between FC features as in Sec. II-D.1 and optimized

µ and h via a grid-search scheme detailed in Sec. II-H.

Theoretical analysis: According to the theoretical results in

[27], for a classifier f trained on source domain samples, the

upper bound of its generalization risk on target samples is:

Rt(f) ≤ R̂s(f) + ρh(X,D) + O

(
√

1

ns

ln |H|

)

+ λ∗, (9)

where Rt(f), R̂s(f) are the (empirical) risk on target and

source samples, respectively, ρh(X,D) denotes the HSIC be-

tween input FC matrix X and corresponding site feature matrix

D = [d1,d2, . . .dn], O(·) denotes computational complexity,

ns is the number of labeled source domain samples, |H|

denotes the complexity of hypothesis space, i.e., a metric to

measure the set of all possible classification solutions (|H|
equals to the total number of solutions if the solution set

is finite), and λ∗ = Rt(f
∗) + Rs(f

∗) is the risk of an

ideal hypothesis in theory, where f∗ = argminf∈H

(

Rs(f)+
Rt(f)

)

. The last two terms can be viewed as constants in a

classification task. Therefore, generalizbility can be improved

via reducing the dependence between input FC data and site

information, which is the optimization objective of MIDA.

This theory also helps explain how the use of unlabeled target

domain (test) data can improve learning performance.

F. Step 4: Incorporating phenotypic information

ABIDE has extensive phenotypic information. Including

such features when training a classifier has been shown to

be beneficial [28]. Several studies on autism have observed

sex and age-related differences between ASD and TC. Wer-

ling & Geschwind [29] identified sex-differential genetic and

hormonal factors that supported the observation that females

are typically less frequently affected by ASD than males.

In [30], age-matched ASD and TC children were found to

have differences in FC. In fact, between ASD patients, FC

differences have also been observed with respect to age [31],

[32]. However, these findings are not yet conclusive [33].

Recent studies [8], [11] on ABIDE improved ASD classi-

fication accuracy by leveraging phenotypic information. We

proceeded in a similar way to assess the impact of including

phenotypes in ASD classifiers. We considered only sex, age,

full IQ (FIQ), handedness and eye status at scan since the

majority of subjects had such information present. For each

categorical variable (handedness, sex and eye status at scan),

a one-hot encoding scheme was used to construct phenotype

features for each subject, which are concatenated with other

features before feeding into a classifier. For subjects with

missing values for FIQ and handedness, we used the same

imputation method used in [8]. 1) Handedness: right hand

dominance was assigned since most people are right-handed;

2) FIQ: the average IQ score of 100 was assigned.

G. Step 5: Classification

The impact of removing site effects can be assessed by

comparing using the “raw” FC features (Sec. II-C) against site-

independent features from MIDA as inputs to a classifier. Here

we prefer linear (over deep) learning models to make isolating

the impact of domain adaptation less complex and allow for a

greater degree of interpretability [34], e.g. by visualizing the

model coefficients to identify functional differences between

ASD and TC. We chose three standard linear classifiers: ridge

classifier (ridge regression with binary target values), logistic

regression (LR), and support vector machine (SVM) from

Scikit-learn [35]. For all models, the hyper-parameter values

were selected via a grid-search scheme detailed in Sec. II-H.

H. Experimental setup

We designed the experiments with three objectives: 1) To

test the statistical dependence between acquisition sites and
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TABLE II

HYPER-PARAMETER SETTING FOR THE ML MODELS: h: THE NUMBER

OF EIGENVECTORS IN MIDA; µ: THE WEIGHTING OF VARIANCE

MAXIMIZATION IN MIDA; C : THE l2 REGULARIZATION COEFFICIENT FOR

THE THREE CLASSIFIERS ( 1

C
FOR LOGISTIC REGRESSION AND SVM).

ML Method Hyper-parameter 1 Hyper-parameter 2

MIDA h = 50, 150, 300 µ = 0.5, 0.75, 1.0
Ridge classifier C = 0.25, 0.5, 0.75 N.A.
Logistic regression C = 1, 5, 10 N.A.
SVM C = 1, 5, 10 N.A.

FC features. 2) To assess the impact of the proposed second-

order FC measure and site-dependence minimization on autism

classification. 3) To extract biomarkers from the trained ML

models for interpretation.

1) Algorithm setting.: We tested various models that can

be constructed from the pipeline in Fig. 1, including both

existing and proposed ones. We used CC200 as the default

atlas. Table II lists the hyper-parameters for grid search. We

evaluated all possible combinations of three values for each on

the training data via five-fold cross validation (CV) to find the

best setting. Specifically, the training data was further divided

into five folds, where four folds were used for training and one

fold was held out for validation. By repeating five times, the

combinations of hyper-parameters with the highest averaged

accuracy over the five folds were selected for final training.

2) Statistical test of independence.: We assessed the inde-

pendence between sites and FC features using the statistical

test in Sec. II-D. We set the significance level λ := 0.05 so

that the probability of rejecting the null hypothesis when it is

true is 0.01. In particular, given an observed HSIC estimate

from the data, ρh(X,Y), the null hypothesis was set to be

rejected at the 5% level if ρh(X,Y) > t1−λ with t1−λ being

the 95% quantile of the estimated Gamma distribution. The

kernel functions ky(·) and kx(·) were defined according to

the empirical HSIC estimate detailed in Sec. II-D.1.

3) Prediction and comparison: We followed the terminology

in [7] to consider the intra-site and inter-site prediction.

Intra-site prediction. This is the most commonly used

setting [7], [9], [11], where the data from all 20 sites are

mixed to form training/test sets with the same proportion

of ASD/TC for stratified 10-fold CV. We compare MIDA-

based models with those without using MIDA as baseline

raw models to assess the impact of MIDA. We report the

average accuracy and Area Under the Receiver Operating

Characteristics (AUROC) over the 10 folds for each model.

We also studied the impact of adding phenotypic features as

in [8], [11]. For MIDA-based models, ‘eye status at scan’ was

excluded as a phenotypic measure since it represents a site-

specific protocol. Additionally, we evaluated impact of brain

atlas by validating MIDA-based models on the CC200, CC400,

and Harvard-Oxford (HO) atlases.

Inter-site prediction. This setting uses data from one

individual site as testing data while training on the data from

all 19 remaining sites to study the generalization performance

to sites unseen in training. This is more challenging than

the intra-site setting. The average accuracy/AUROC over the

20 sites will be reported. However, since each site has a

different sample size, we computed the average by weighting

the contribution of each site by sample size. Specifically, we

measured the average accuracy by simply counting the total

number of correct predictions across all sites from 20 runs and

dividing by the total sample size. For AUROC, we similarly

computed an overall measure across all sites. We also assessed

the influence of phenotypic information as above.

Comparison with other studies. We compared our pro-

posed method in both intra-site and inter-site settings with

those in recent studies [7], [9], [11], and [12] (intra-site only).

For inter-site setting, apart from reporting unweighted average

accuracy only like in [7], [9], we will also report the results

weighted by site sample sizes for fair comparison. Moreover,

we studied two sample sizes, 871 and 1035, which have been

studied in previous studies. For completeness, we also applied

[11] to the larger sample size of 1035 using their implementa-

tion (available at https://github.com/parisots/population-gcn).

To account for different stratifications in 10-fold CV between

our study and [11], we used the same stratification as in [11]

but also evaluated both methods using 5×10-fold CV to reduce

the influence of the stratification. Furthermore, we conducted

two-sample Welch t-tests to assess the statistical significance

of performance improvements in intra-site evaluation and will

report the corresponding p-values. The t-tests is not applicable

to the inter-site setting, since we compute summary metrics

without averaging and thus only have single representative

values. We also conducted experiments with a recent domain

adaptation approach proposed in [19] for multi-site fMRI data.

However, its performance is not as good as MIDA, but with

much higher computational cost. Therefore we only report the

results of domain adaptation obtained by MIDA.
4) Biomarker extraction.: Linear classifiers evaluate w⊤x to

make a decision, where the model weight w is the learned

decision hyperplane and x is the feature vector. In our context,

the coefficients of x in w indicate the informativeness of each

feature in x in classifying a subject as ASD or TC. If x is the

(flattened) FC features, the values of the parameters in w will

indicate which pairs of ROIs are important to distinguish ASD

and TC. Positive and negative elements of w indicate ROI-ROI

connections that are informative for ASD and TC, respectively.

The larger the absolute value of the coefficient of a given ROI-

ROI FC, the more informative this FC. We analyzed all the ten

ws from the 10-fold CV in the intra-site setting to extract ROI-

ROI connections that are consistently the most informative for

classification. Specifically, we identified the top 50 weights in

absolute value for each fold and then ranked ROI-ROI FC

connections for consistent occurrence in the top 50 features

across all 10 folds, so that the most informative connections

would be present in the top 50 features across all 10 folds.

Where two ROIs had the same number of occurrence across

folds (e.g. 7 times), we sorted the ranking by the absolute

value of their respective coefficient averaged across folds.

III. RESULTS

A. Statistical test of independence

Table III shows the statistical test of independence between

FC features and sites. For all FC measures, the null hypothesis
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TABLE III

THE STATISTICAL TEST OF INDEPENDENCE: THE THRESHOLD VALUE

GIVES THE 95% QUANTILE OF THE ESTIMATED GAMMA DISTRIBUTION.

THE SAMPLE ESTIMATE GIVES THE SAMPLE HSIC ESTIMATE, WITH THE

CORRESPONDING p-VALUE COMPUTED. THE DIFFERENCE IN THE

THRESHOLD VALUES ARISES FROM THE DIFFERENT GAMMA

DISTRIBUTION APPROXIMATIONS FOR DIFFERENT FC MEASURES.

FC measure Threshold Sample estimate p-value

Pearson correlation 0.66 2.10 < 10
−5

Tangent 0.59 1.31 < 10
−5

Tangent Pearson (proposed) 0.59 1.21 < 10
−5
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Fig. 2. The effect of domain-independent adaptation. A 2-D t-SNE
projection of CC200-generated tangent Pearson FC features with (a)
no site adaptation, (b) site adaptation by MIDA, using the scikit-learn
t-SNE implementation with perplexity 30 and learning rate 10. In (a),
key identifiable clusters are labeled while the other site labels (OHSU,
MAX MUN, and PITT) are omitted since their clusters are not well
defined. In (b), site labels are omitted because MIDA removed the
association between features and sites.

of independence between FC features and sites can be rejected

with 95% confidence because the sample HSIC estimate

exceeds the threshold. Also, the p-values are extremely small,

giving greater evidence for rejecting the null hypothesis.

Next, we show the effect of domain-independent adapation

by visualizing features in a 2-D space. We applied Principal

Component Analysis to reduce the dimensionality of FC

features to 50, and then employed t-distributed Stochastic

Neighbour Embedding (t-SNE) [36] to project them to a

2-D space. Figure 2 shows the t-SNE projections of the

proposed tangent Pearson FC features w.r.t. acquisition sites

for both with/without site adaptation. In subplot (a) without

adaptation, site-specific clusters can be identified (SDSU, SBL,

etc.) while in subplot (b) with adaptation, there is a reduction

of association between FC features and acquisition site. This

further illustrates the site specificity of the ABIDE data.

B. Intra-site prediction

Figure 3 shows the intra-site prediction results. We analyze

them with focus on the impact of (a) FC features, (b) MIDA,
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Fig. 3. Intra-site prediction with 5×10-fold CV. A comparison of the
effect of site adaptation (raw baseline vs MIDA), classifier (ridge, logistic,
SVM), FC measure (Pearson, tangent embedding, proposed tangent
Pearson), and the inclusion of phenotypic information, on the average
accuracy and AUROC.

and (c) phenotypic features, on the classification performance.

(a) Impact of FC measures. For the baseline models (raw,

without MIDA/phenotypes), the three FC measures’ perfor-

mance is stable across classifiers and CV splitting settings. For

each classifier, the highest accuracy was consistently obtained

by the proposed tangent Pearson measure. In contrast, the

Pearson correlation gave the lowest accuracy for all classifiers.

(b) Impact of MIDA. The effectiveness of MIDA seems to be

sensitive to FC measure. Applying MIDA to Pearson features

led to improvement in both accuracy and AUROC. In contrast,

applying MIDA to tangent features led to worse results.

Applying MIDA to TP embedding led to better accuracy (top

of Fig. 3) but worse AUROC (bottom of Fig. 3) across different

classifiers. A possible explanation for the performance drop is

that there could be some loss of ASD/TC-specific information

when learning site-independent features using the tangent FC

with MIDA, so that some subjects are not properly represented

for classification. In Sec. IV, we will discuss further studies

that can potentially reduce such unwanted effects.

(c) Impact of phenotypic features. In most cases, adding the

phenotypic features has improved the performance, which is

consistent with the findings in [8], [11]. The best accuracy is

72.7%, obtained using TP+MIDA with phenotypes.

C. Impact of brain atlas

Table IV compares the intra-site results of MIDA with tan-

gent Pearson FC and phenotypic features (TP MIDA) on three

brain atlases: CC200, CC400, and HO. On the whole, there

is no significant difference, except HO giving a relative lower

accuracy and AUROC for Ridge classifier. Thus, following [8],

[9], [11], we chose CC200 for our MIDA-based models.

D. Inter-site prediction

Figure 4 shows the inter-site results and we perform similar

analyses as in the intra-site setting.

(a) Impact of FC measures. As in the intra-site setting,

the tangent-based models have outperformed the Pearson
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TABLE IV

IMPACT OF BRAIN ATLAS: RESULTS OF MIDA WITH TANGENT PEARSON

AND PHENOTYPIC FEATURES USING THREE BRAIN ATLASES. THE

5×10-FOLD CV STANDARD DEVIATIONS (SD) OVER 5 DIFFERENT

RANDOM SEEDS ARE IN PARENTHESES. ACC: ACCURACY. THE BEST

RESULTS ARE IN BOLD, AND THE SECOND BEST ARE UNDERLINED.

Ridge classifier Logistic regression SVM

Atlas ACC (SD) AUROC (SD) ACC (SD) AUROC (SD) ACC (SD) AUROC (SD)

CC200 72.7 (0.3) 77.9 (0.4) 71.9 (0.6) 77.6 (0.5) 71.0 (1.0) 76.8 (0.8)

CC400 72.2 (0.3) 78.3 (0.5) 71.4 (0.4) 78.0 (0.6) 71.1 (0.9) 76.9 (1.3)

HO 71.5 (1.0) 77.0 (0.6) 71.6 (1.0) 77.1 (0.4) 71.0 (0.5) 77.5 (0.5)
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Fig. 4. Inter-site prediction (20 runs). As in Fig. 3, a comparison of
the effect of site adaptation, classifier, FC measure, and phenotypic
information on the weighted leave-one-site-out CV. Error bars are not
shown here because each run uses data from one site as the test
data so the variations across 20 runs/sites should not be interpreted
as typical variations across multiple repetitions (e.g. in k-fold CV).

correlation-based ones. For the ridge and logistic regression

classification models, the tangent Pearson measure achieves

the highest accuracies of 69.9% (AUROC: 76.6%) and 70.1%

(AUROC: 77.4%) respectively. The tangent measure achieves

the highest accuracy of 69.6% (AUROC: 76.4%) with logis-

tic regression. The Pearson correlation measure achieves its

highest accuracy of 68.1% (AUROC: 73.1%) with SVM.

(b) Impact of MIDA. MIDA has an overall positive influence,

with a reduced performance only for the tangent FC. For

Pearson correlation and tangent Pearson measures, MIDA has

increased the accuracy by 0.63% (AUROC: 0.90%) over base-

line equivalents, averaged across the three classifiers. Tangent

Pearson achieves the highest accuracy of 70.6% (AUROC:

76.4%) with MIDA and logistic regression, while its non-

MIDA equivalent achieves an accuracy of 70.1% (AUROC:

76.4%). Applying MIDA to tangent FC features leads to

no significant difference in accuracy/AUROC w.r.t. baseline

models across all classifiers.

(c) Impact of phenotypic features. Adding phenotypic fea-

tures improved the accuracy/AUROC of the baseline and

MIDA models in most cases, e.g. an increases in accuracy by

1.05% (AUROC: 0.54%) on average over the three classifiers

w.r.t. no phenotypic features. Overall, the highest inter-site

accuracy of 71.4% (AUROC: 77.4%) is obtained with the

phenotypic features, tangent Pearson FC, MIDA, and ridge

classifier. Its non-phenotype equivalent has a lower accuracy
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(b) Accuracy with respect to sample size

Fig. 5. Potential factors for site accuracy variation. The sites are
visualized w.r.t. the accuracy obtained by the tangent Pearson MIDA
ridge classifier without phenotypic features.

of 70.2% (AUROC: 77.0%).

(d) Factors for site accuracy variation. In inter-site pre-

diction, the individual classification performance on each site

varies a lot. Here, we investigate two factors that may affect

the performance on an individual site:

1) Mean length of rs-fMRI scan time. We expect that having

a longer experimental scan time increases the ability to

detect differences between ASD and TC subjects.

2) Number of samples collected. Sites with small sample

sizes may be under-represented in ABIDE and have

distributions significantly different from other sites.

Figure 5 studies the correlations between site accuracy and

site scan time or sample size from the results obtained by the

model with tangent Pearson, MIDA, and ridge classifier but

without phenotypic features. For scan time, a slight positive

correlation between the mean scan time and the site accuracy

can be identified (the left panel). Interestingly, the lowest

scoring site (OHSU) has the lowest mean scan time of 78

seconds while all other sites exceed 116 seconds. Thus, it

may be difficult to capture the ASD/TC differences effectively

in such a short duration. Longer scan time can help remove

noise from rs-fMRI and better capture differentiating signals.

For site sample size, less conclusive relationship can be found

with the observed site accuracy (the right panel).

E. Comparison with other studies

Intra-site comparison. Table V reports the intra-site results.

In 10-fold CV, our TP MIDA ridge (with phenotypic features)

on a sample size of 1035 outperforms the SOTA methods in

both accuracy and AUROC with scores of 73.0% and 78.0%,

respectively. This is an increase of 2.6% (p = 0.09) and 4.8%

(p < 10−2) in accuracy over to the SOTA [11] on 871 and

1035 subjects respectively. In 5×10-fold CV, TP MIDA ridge

achieves an increase of 4.8% (p < 10−2) and 4.1% (p < 10−2)

in accuracy over [11] on 871 and 1035 subjects respectively.

When including more training samples (all 1035 without

QC), TP MIDA obtained a substantial improvement while the

change is small for non-adaptation models, i.e. TP raw and

[11]. The inter-site results in Table VI has similar observations.

Section IV-C will discuss the relationship between those poor

quality samples and domain adaptation effectiveness.
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TABLE V

INTRA-SITE COMPARISON TO OTHER STUDIES. THE SAMPLE SIZE IS

871 IF QUALITY CONTROL (QC) WAS PERFORMED (DENOTED BY ✓),

AND 1035 OTHERWISE (DENOTED BY ✗). WE FIRSTLY REPORT THE

RESULTS OBTAINED USING THE SAME SPLIT SETTING OF 10-FOLD CV

IN [11]. THEN WE SHOW THE RESULTS OBTAINED UNDER 5×10-FOLD

CV WITH FOUR MORE CV SPLITTINGS GENERATED BY USING

DIFFERENT RANDOM SEEDS. STANDARD DEVIATIONS FOR 10-FOLD CV

WERE COMPUTED OVER 10 DIFFERENT PARTITIONS AND THOSE FOR

5×10-FOLD CV WERE COMPUTED OVER FIVE DIFFERENT RANDOM

SEEDS. RESULTS OF [7], [9] ARE CITED FROM THE ORIGINAL PAPERS

FOR REFERENCE, WHERE ‘-’ INDICATES METRICS NOT AVAILABLE. FOR

BOTH DATA WITH / WITHOUT QUALITY CONTROL. THE BEST RESULTS

ARE IN BOLD, AND THE SECOND BEST ARE UNDERLINED.

10-fold CV 5×10-fold CV

Model QC ACC (SD) AUROC (SD) ACC (SD) AUROC (SD)

TP MIDA ✗ 73.0 (3.9) 78.0 (4.7) 72.7 (0.3) 77.9 (0.4)

TP raw ✗ 71.6 (2.7) 78.2 (3.6) 70.9 (0.6) 78.0 (0.7)

Phenotype only ✗ 57.8 (4.7) 60.3 (4.5) 57.8 (0.7) 59.9 (0.3)
Almuqhim [12] ✗ 70.8 (-) - (-) - (-) - (-)
Parisot [11] ✗ 68.2 (3.7) 75.2 (3.8) 68.6 (0.3) 75.2 (0.5)
Heinsfeld [9] ✗ 70.0 (-) - (-) - (-) - (-)

TP MIDA ✓ 70.0 (7.6) 75.5 (7.3) 69.7 (0.5) 75.9 (0.5)

TP raw ✓ 69.2 (7.5) 75.1 (7.1) 70.1 (0.8) 76.5 (0.9)

Phenotype only ✓ 58.6 (5.0) 69.4 (5.1) 59.4 (0.6) 60.6 (2.9)
Parisot [11] ✓ 70.4 (3.9) 75.0 (4.6) 67.9 (1.3) 73.3 (0.9)
Abraham [7] ✓ 66.9 (2.7) - (-) - (-) - (-)

In the 10-fold CV, our TP raw ridge (with phenotypic fea-

tures, without domain adaptation) on 1035 subjects achieves

71.6% in accuracy and 78.2% in AUROC, outperforming

neural network based models [9], [11] by at least 1.2% in

accuracy and 3.2% in AUROC. It obtained statistically signif-

icant increases in accuracy (3.4%, p = 0.02) and AUROC (3%,

p = 0.05) at the 10% level w.r.t. to [11] on 1035 subjects. In

the 5×10-fold CV, we obtained p-values less than 1% when

comparing the accuracy/AUROC of TP raw ridge on 1035

subjects with both 871/1035-subject variants of [11]. On 871

subjects, our TP raw LR achieves 70.1% in accuracy and

76.5% in AUROC, ourperforming [11] and even TP MIDA

LR, showing the effectiveness of the proposed TP FC measure.

Inter-site comparison. Table VI shows the inter-site per-

formance. We firstly observe that the weighted site accuracy

and AUROC scores are mostly higher than the unweighted

results. This is expected because from the right panel of Fig.

5, sites with lower accuracy tends to have a smaller sample

size. Secondly, our TP MIDA ridge (with phenotypic features)

on 1035 samples achieves the highest (weighted) accuracy of

71.4%, improving the model [11] on 871 and 1035 subjects

by 2.9% and 2.8% in accuracy respectively. Without domain

adaptation, our TP raw ridge (with phenotypic features) also

achieves a higher (weighted) accuracy (and AUROC) than [11]

when the sample size is 1035, an increase in accuracy by 1.5%

and 1.4% w.r.t. [11] on 871 and 1035 subject respectively.

Across both sample sizes (871/1035), our proposed domain

adaption and baseline models improve over the models in [7],

[9] in unweighted accuracy. On 1035 subjects, our TP MIDA

ridge model has the highest accuracy of 70.5%, improving over

[9] and [7] by 5.5% and 3.7%, and our TP raw ridge model

improves over [9] and [7] by 3.5% and 1.7%, respectively.

TABLE VI

INTER-SITE COMPARISON, I.E. LEAVE ONE SITE OUT CV (LOSOCV).

THE NOTATIONS IN THIS TABLE ARE THE SAME AS IN TABLE V.

Unweighted Weighted

Model QC ACC (SD) AUROC (SD) ACC AUROC

TP MIDA ✗ 70.5 (7.6) 76.7 (8.8) 71.4 77.4

TP raw ✗ 68.5 (9.6) 76.3 (8.4) 70.0 77.1

Phenotype only ✗ 56.4 (9.8) 57.3 (12.4) 57.9 59.6
Parisot [11] ✗ 68.3 (5.6) 75.3 (7.3) 68.6 75.7
Heinsfeld [9] ✗ 65.0 (1.4) - (-) - -

TP MIDA ✓ 68.4 (8.3) 75.6 (9.2) 69.3 75.3

TP raw ✓ 68.1 (8.9) 75.9 (9.1) 70.3 75.7

Phenotype only ✓ 59.2 (11.2) 58.1 (15.9) 59.1 58.8
Parisot [11] ✓ 68.4 (6.3) 73.7 (7.0) 68.5 73.7
Abraham [7] ✓ 66.8 (5.4) - (-) - -

F. Extracting biomarkers

For the proposed FC measure, tangent Pearson, we study the

respective ROI-ROI connections that have the most significant

influence on the classification performance. These influential

ROI-ROI connectivities can act as neurological biomarkers for

researchers to investigate and further understand the difference

in brain connectivity between ASD and TC.

To extract these biomarkers, we used the CC200 atlas to

firstly define ROIs and the weights from the TP raw LR model

(without phenotypic features) to indicate which ROI-ROI

connections are most important for ASD/TC classification. The

logistic regression classifier was used because it achieved the

highest accuracy and AUROC for the tangent Pearson FC in

the intra-site setting without phenotypic features. Phenotypic

features were omitted because only ROI-ROI connections were

of interest. The top five most positive and negative weights,

for ASD and TC respectively, were extracted as in Sec. II-H.

The CC200 atlas is derived from the clustering of individual

voxel BOLD time courses so the resulting atlas has no well-

defined labels for the ROIs. To generate labels, we used the

centre of mass for each ROI to locate the closest matching

ROIs from the Harvard-Oxford brain atlas as a point of

reference. Where no label could be found for a given CC200

ROI, we set its label to “None”.

Figure 6 shows the top 10 most important ROI-ROI con-

nections for classifying subjects as ASD or TC for illustration.

Red and blue connections give the top five most important

ROI-ROI connections for classifying subjects as ASD and TC,

respectively. Increasing values of the red connections will bias

the model decision towards ASD, while increasing values of

the blue connections will bias the model decision towards

control (non-ASD). Note that we omitted 180 of 200 ROIs

from the figure to clearly show these connections.

IV. DISCUSSION

A. Intra-site and inter-site evaluation

For intra-site setting, k-fold CV is widely used in many

studies. However, different random partitions can lead to

significant variation of results, as seen by comparing the 10-

fold CV and 5×10-fold CV results. Here we recommend n×k-

fold CV, where the effect of random split settings is reduced,

and the model evaluation is more stable.
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Fig. 6. Biomarker visualization. Extracted biomarkers using Python
package Nilearn [37]. From left to right: the frontal, axial and lateral
views of the brain are visualized. ‘L’ and ‘R’ correspond to the left and
right hemisphere respectively.

For inter-site setting, due to significant sample size differ-

ences across sites, we recommend the weighted average ac-

curacy, which represents
total correct predictions

total samples
but the unweighted

version does not. In the rest of this section, our discussion will

be based on the 5×10-CV and weighted leave-one-site-out CV

results for intra-site and inter-site settings, respectively.

B. Effectiveness of site-dependence minimization

We studied the impact of minimizing dependence between

acquisition site and subject FC features. In most cases, remov-

ing the dependence between site and FC features led to an

improved performance in both intra-site and inter-site settings

(Figs. 3 and 4). MIDA-based models using the proposed

tangent Pearson FC outperformed recent SOTA approaches

[9], [11], achieving new SOTA performance of 72.7% (73%

in the CV setting of [11]) in intra-site accuracy (AUROC:

77.9%), and 71.4% in inter-site accuracy (AUROC: 77.4%),

corresponding to increases of 4.8% and 2.9% (AUROC: 4.6%

and 3.7%) w.r.t. [11], respectively. These results highlight the

value of minimizing the dependence between FC features and

acquisition sites for improving autism classification.

C. Low-quality samples in domain adaptation

For both intra-site and inter-site settings, we observed ac-

curacy improvement by MIDA-based models when including

more low-quality samples in training. In contrast, including

them has much less effect on the classification accuracy of

other models. On one hand, these samples may be helpful in

estimating the site data distribution so that MIDA can extract

better domain-independent features. On the other hand, their

phenotypic features are not necessarily low quality and can

also contribute to the autism prediction.

D. Effectiveness of second-order functional connectivity

The proposed tangent Pearson embedding FC measure

combines two existing FC measures: Pearson correlation and

tangent embedding. Without MIDA, we observed that this

new second-order FC measure can outperform previous SOTA

methods when supplemented with phenotypic features and a

linear classifier. We achieved the highest accuracy (among

raw) of 70.9% (AUROC: 78.0%) in the intra-site experiment

(Fig. 3), and an accuracy of 70.0% (AUROC: 77.1%) in the

inter-site setting (Fig. 4), improving upon [11] by 3.0% and

1.6% in accuracy (4.7% and 3.4% in AUROC), respectively.

The proposed FC measure becomes more attractive if consider-

ing that those SOTA methods employ complex neural networks

taking a long time to train (e.g. 32 hours for [9]). The linear

classifiers investigated in this study can achieve improved

results with only several minutes of training when leveraging

the proposed TP FC features and phenotypic information.

E. Robustness of biomarkers

To study the robustness of biomarkers (model weights),

we computed the Pearson correlation and the number of

overlapped top weights between the model trained on full

ABIDE data (1035 subjects) and each of the 20 models trained

on leave-one-site-out data. All models were trained using TP +

MIDA (linear kernel) + Logistic Regression with fixed hyper-

parameters. All classifier coefficients were transformed to the

original (20,100 dimensional) feature space for comparison.

The average Pearson correlation is 0.904±0.042, and the

average number of overlapped top weights is 34.6±4.8 out

of 50. Thus adding one site will not change the learned

biomarkers dramatically, with 69% consistent on average.

F. Limitations and future directions

Two limitations are apparent when using MIDA to minimize

site dependence. Firstly, in a few cases, particularly with the

tangent FC, MIDA led to a degradation in intra/inter-site

accuracy and AUROC w.r.t. baseline models. A potential cause

is the difficulty in preserving relationships between projected

FC features and target labels (ASD/TC). Though the variance

in the original FC features can be preserved with MIDA, the

alignment between projected features and target labels may

not be (fully) preserved. This is particularly important for FC

features derived from rs-fMRI for autism classification since

the underlying signal defining autism is not well marked due

to the heterogeneity of ASD. Therefore, developing methods

that can use the training data labels to align subject FC

features without overfitting may help unlock more potential

from ABIDE in multi-site autism classification.

Secondly, since MIDA is a transductive learning method,

adding new subjects to the experimental dataset would require

a new domain-independent subspace to be learned to account

for the new data before predictions can be made. However,

such retraining is of low cost because our learning approach

is time efficient. For example, we trained the 21 models in

Sec. IV-E with CPU only (Intel i7-12700K), and the average

time consumed for the whole training process is less than six

minutes. Another research focus is developing an inductive

domain adaptation approach that alleviate this problem.

The proposed second-order FC measure and MIDA ap-

proach affect only the feature representation of each subject to

improve multi-site autism classification. The obtained perfor-

mance is mostly similar across three different classifiers (Figs.

3 and 4). Therefore, we hypothesize that to improve multi-site
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autism classification, it is important to 1) design more powerful

FC measures or other measures from raw fMRI data, and 2)

directly target and remove site agglomerative effects.

V. CONCLUSION

This paper focused on improving multi-site autism classifi-

cation. We proposed a new second-order functional connectiv-

ity measure called tangent Pearson embedding for more dis-

criminative features, and took a site-dependence-minimization

domain adaptation approach to tackle the heterogeneity in the

multi-site ABIDE database. We confirmed the significance of

this study via a statistical independence assessment between

acquisition sites and FC features. The intra- and inter-site

classification results show that models with the proposed

FC measure, site-dependence minimization, and phenotypic

features outperformed state-of-the-art methods.

REFERENCES

[1] J. Baio, “Prevalence of autism spectrum disorder among children aged
8 years - autism and developmental disabilities monitoring network,
11 sites, United States, 2010.” Morbidity and Mortality Weekly Report.

Surveillance Summaries, vol. 63, no. 2, pp. 1–21, 2014.

[2] B. A. Zielinski, M. B. Prigge, J. A. Nielsen, A. L. Froehlich et al.,
“Longitudinal changes in cortical thickness in autism and typical devel-
opment,” Brain, vol. 137, no. 6, pp. 1799–1812, 2014.

[3] L. Zwaigenbaum and M. Penner, “Autism spectrum disorder: advances
in diagnosis and evaluation,” British Medical Journal, vol. 361, 2018.

[4] Y. Du, Z. Fu, and V. D. Calhoun, “Classification and prediction of brain
disorders using functional connectivity: Promising but challenging,”
Front. Neurosci., vol. 12, p. 525, 2018.

[5] M. R. Arbabshirani, S. Plis, J. Sui, and V. D. Calhoun, “Single subject
prediction of brain disorders in neuroimaging: Promises and pitfalls,”
NeuroImage, vol. 145, pp. 137–165, 2017.

[6] A. Di Martino, C.-G. Yan, Q. Li, E. Denio, F. X. Castellanos, K. Alaerts,
J. S. Anderson et al., “The autism brain imaging data exchange: towards
a large-scale evaluation of the intrinsic brain architecture in autism,”
Molecular Psychiatry, vol. 19, no. 6, pp. 659–667, 2014.

[7] A. Abraham, M. P. Milham, A. D. Martino, R. C. Craddock, D. Samaras,
B. Thirion, and G. Varoquaux, “Deriving reproducible biomarkers from
multi-site resting-state data: An autism-based example,” NeuroImage,
vol. 147, pp. 736 – 745, 2017.

[8] N. C. Dvornek, P. Ventola, and J. S. Duncan, “Combining phenotypic
and resting-state fMRI data for autism classification with recurrent
neural networks,” in ISBI, 2018, pp. 725–728.

[9] A. S. Heinsfeld, A. R. Franco, R. C. Craddock, A. Buchweitz, and
F. Meneguzzi, “Identification of autism spectrum disorder using deep
learning and the ABIDE dataset,” NeuroImage: Clinical, vol. 17, pp. 16
– 23, 2018.

[10] S. I. Ktena, S. Parisot, E. Ferrante, M. Rajchl, M. Lee, B. Glocker, and
D. Rueckert, “Metric learning with spectral graph convolutions on brain
connectivity networks,” NeuroImage, vol. 169, pp. 431–442, 2018.

[11] S. Parisot, S. I. Ktena, E. Ferrante, M. Lee, R. Guerrero, B. Glocker, and
D. Rueckert, “Disease prediction using graph convolutional networks:
Application to autism spectrum disorder and alzheimer’s disease,” Med-

ical Image Analysis, vol. 48, pp. 117–130, 2018.

[12] F. Almuqhim and F. Saeed, “ASD-SAENet: a sparse autoencoder, and
deep-neural network model for detecting autism spectrum disorder
(ASD) using fMRI data,” Front. Comput. Neurosci., vol. 15, p. 654315,
2021.

[13] K. Yan, L. Kou, and D. Zhang, “Learning domain-invariant subspace us-
ing domain features and independence maximization,” IEEE T. Cybern.,
vol. 48, no. 1, pp. 288–299, 2017.

[14] J. A. Nielsen, B. A. Zielinski, P. T. Fletcher, A. L. Alexander, N. Lange,
E. D. Bigler, J. E. Lainhart, and J. S. Anderson, “Multisite functional
connectivity MRI classification of autism: ABIDE results,” Front. Hum.

Neurosci., vol. 7, p. 599, 2013.

[15] J. G. Castrillon, A. Ahmadi, N. Navab, and J. Richiardi, “Learning with
multi-site fMRI graph data,” in Asilomar Conference on Signals, Systems

and Computers, 2014, pp. 608–612.

[16] S. J. Pan and Q. Yang, “A survey on transfer learning,” IEEE Trans.

Knowl. Data Eng., vol. 22, no. 10, pp. 1345–1359, 2009.
[17] K. Weiss, T. M. Khoshgoftaar, and D. Wang, “A survey of transfer

learning,” Journal of Big Data, vol. 3, no. 1, p. 9, 2016.
[18] E. Moradi, B. Khundrakpam, J. D. Lewis, A. C. Evans, and J. Tohka,

“Predicting symptom severity in autism spectrum disorder based on
cortical thickness measures in agglomerative data,” NeuroImage, vol.
144, pp. 128–141, 2017.

[19] M. Wang, D. Zhang, J. Huang, P.-T. Yap, D. Shen, and M. Liu,
“Identifying autism spectrum disorder with multi-site fmri via low-rank
domain adaptation,” IEEE Trans. Med. Imaging, vol. 39, no. 3, pp. 644–
655, 2020.

[20] L. Rabany, S. Brocke, V. D. Calhoun, B. Pittman, S. Corbera, B. E.
Wexler, M. D. Bell, K. Pelphrey, G. D. Pearlson, and M. Assaf,
“Dynamic functional connectivity in schizophrenia and autism spec-
trum disorder: Convergence, divergence and classification,” NeuroImage:

Clinical, vol. 24, p. 101966, 2019.
[21] G. Varoquaux, F. Baronnet, A. Kleinschmidt, P. Fillard, and B. Thirion,

“Detection of brain functional-connectivity difference in post-stroke
patients using group-level covariance modeling,” in MICCAI, 2010, pp.
200–208.

[22] R. C. Craddock, G. A. James, P. E. Holtzheimer III, X. P. Hu, and H. S.
Mayberg, “A whole brain fMRI atlas generated via spatially constrained
spectral clustering,” Hum. Brain Mapp., vol. 33, no. 8, pp. 1914–1928,
2012.

[23] N. Makris, J. M. Goldstein, D. Kennedy, S. M. Hodge, V. S. Caviness,
S. V. Faraone, M. T. Tsuang, and L. J. Seidman, “Decreased volume
of left and total anterior insular lobule in schizophrenia,” Schizophrenia

Research, vol. 83, no. 2-3, pp. 155–171, 2006.
[24] M. Plitt, K. A. Barnes, and A. Martin, “Functional connectivity clas-

sification of autism identifies highly predictive brain features but falls
short of biomarker standards,” NeuroImage: Clinical, vol. 7, pp. 359–
366, 2015.

[25] A. Gretton, O. Bousquet, A. Smola, and B. Schölkopf, “Measuring
statistical dependence with Hilbert-Schmidt norms,” in ALT, 2005, pp.
63–77.

[26] A. Gretton, K. Fukumizu, C. H. Teo, L. Song, B. Schölkopf, and A. J.
Smola, “A kernel statistical test of independence,” in NeurIPS, 2008,
pp. 585–592.

[27] S. Zhou, W. Li, C. R. Cox, and H. Lu, “Side information dependence
as a regularizer for analyzing human brain conditions across cognitive
experiments,” in AAAI, 2020, pp. 6957–6964.

[28] M. N. Parikh, H. Li, and L. He, “Enhancing diagnosis of autism with
optimized machine learning models and personal characteristic data,”
Front. Comput. Neurosci., vol. 13, p. 9, 2019.

[29] D. Werling and D. Geschwind, “Sex differences in autism spectrum
disorders,” Current Opinion in Neurology, vol. 26, pp. 146–53, 04 2013.

[30] R. K. Kana, J. O. Maximo, D. L. Williams, T. A. Keller, S. E. Schipul,
V. L. Cherkassky, N. J. Minshew, and M. A. Just, “Aberrant functioning
of the theory-of-mind network in children and adolescents with autism,”
Molecular Autism, vol. 6, no. 1, p. 59, 2015.

[31] L. Uddin, K. Supekar, and V. Menon, “Reconceptualizing functional
brain connectivity in autism from a developmental perspective,” Front.

Hum. Neurosci., vol. 7, p. 458, 08 2013.
[32] K. Supekar, L. Q. Uddin, A. Khouzam, J. Phillips, W. D. Gaillard,

L. E. Kenworthy, B. E. Yerys, C. J. Vaidya, and V. Menon, “Brain
hyperconnectivity in children with autism and its links to social deficits,”
Cell Reports, vol. 5, no. 3, pp. 738–747, 2013.

[33] R.-A. Müller, P. Shih, B. Keehn, J. R. Deyoe, K. M. Leyden, and D. K.
Shukla, “Underconnected, but how? A survey of functional connectivity
MRI studies in autism spectrum disorders,” Cerebral Cortex, vol. 21,
no. 10, pp. 2233–2243, 2011.

[34] C. Molnar, Interpretable Machine Learning, 2020.
[35] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion et al.,

“Scikit-learn: Machine learning in Python,” J. Mach. Learn. Res.,
vol. 12, no. Oct, pp. 2825–2830, 2011.

[36] L. v. d. Maaten and G. Hinton, “Visualizing data using t-SNE,” J. Mach.

Learn. Res., vol. 9, no. Nov, pp. 2579–2605, 2008.
[37] A. Abraham, F. Pedregosa, M. Eickenberg, P. Gervais, A. Mueller,

J. Kossaifi, A. Gramfort, B. Thirion, and G. Varoquaux, “Machine
learning for neuroimaging with scikit-learn,” Front. Neuroinformatics,
vol. 8, p. 14, 2014.


	Introduction
	Material and methods
	ABIDE database: rs-fMRI and phenotypic data
	Step 1: Brain atlas features
	Step 2: Functional connectivity features
	Statistical test of independence
	Hilbert-Schmidt independence criterion
	Measure of significance

	Step 3: Domain adaptation
	Step 4: Incorporating phenotypic information
	Step 5: Classification
	Experimental setup
	Algorithm setting.
	Statistical test of independence.
	Prediction and comparison
	Biomarker extraction.


	Results
	Statistical test of independence
	Intra-site prediction
	Impact of brain atlas
	Inter-site prediction
	Comparison with other studies
	Extracting biomarkers

	Discussion
	Intra-site and inter-site evaluation
	Effectiveness of site-dependence minimization
	Low-quality samples in domain adaptation
	Effectiveness of second-order functional connectivity
	Robustness of biomarkers
	Limitations and future directions

	Conclusion
	References

