
This is a repository copy of GripNet: Graph information propagation on supergraph for
heterogeneous graphs.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/191959/

Version: Published Version

Article:

Xu, H., Sang, S., Bai, P. et al. (3 more authors) (2023) GripNet: Graph information
propagation on supergraph for heterogeneous graphs. Pattern Recognition, 133. 108973.
ISSN 0031-3203

https://doi.org/10.1016/j.patcog.2022.108973

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse

This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence
allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the
authors for the original work. More information and the full terms of the licence here:
https://creativecommons.org/licenses/

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

Pattern Recognition 133 (2023) 108973

Contents lists available at ScienceDirect

Pattern Recognition

journal homepage: www.elsevier.com/locate/patcog

GripNet: Graph information propagation on supergraph for
heterogeneous graphs

Hao Xu
a , Shengqi Sang

b , c , Peizhen Bai d , Ruike Li d , Laurence Yang
a , Haiping Lu

d , ∗

a Department of Chemical Engineering, Queen’s University, Kingston, Ontario, Canada
b Department of Physics and Astronomy, University of Waterloo, Ontario, Canada
c Perimeter Institute for Theoretical Physics, Waterloo, Ontario, Canada
d Department of Computer Science, The University of Sheffield, United Kingdom

a r t i c l e i n f o

Article history:

Received 18 May 2021

Revised 26 July 2022

Accepted 10 August 2022

Available online 12 August 2022

Keywords:

Graph representation learning

Heterogeneous graph

Data integration

Multi-relational link prediction

Node classification

a b s t r a c t

Heterogeneous graph representation learning aims to learn low-dimensional vector representations of

different types of entities and relations to empower downstream tasks. Existing popular methods either

capture semantic relationships but indirectly leverage node/edge attributes in a complex way, or leverage

node/edge attributes directly without taking semantic relationships into account. When involving multi-

ple convolution operations, they also have poor scalability. To overcome these limitations, this paper pro-

poses a flexible and efficient Gr aph i nformation p ropagation Net work (GripNet) framework. Specifically,

we introduce a new supergraph data structure consisting of supervertices and superedges. A supervertex

is a semantically-coherent subgraph. A superedge defines an information propagation path between two

supervertices. GripNet learns new representations for the supervertex of interest by propagating informa-

tion along the defined path using multiple layers. We construct multiple large-scale graphs and evaluate

GripNet against competing methods to show its superiority in link prediction, node classification, and

data integration. The code and data are available at https://github.com/nyxflower/GripNet .

© 2022 The Author(s). Published by Elsevier Ltd.

This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)

1. Introduction

A heterogeneous graph/network contains multiple types of

nodes and relations to represent a wide range of real-world data

such as information [1–3] , social [4,5] , biomedical [6] and chemical

[7] networks. Modeling its node/relation properties is important in

various machine learning (ML) tasks, e.g., node classification [2,8] ,

clustering/community detection [9] , knowledge graph completion

[1,10] , link prediction [6] , and recommendation [4,11] . Graph rep-

resentation learning (GRL), a.k.a. graph embedding, is a popular

solution that embeds entities and/or relations into a low dimen-

sional vector space with the topological information and structure

of graph preserved and uses the learned representations for down-

stream tasks [12] . Heterogeneous GRL (HGRL) algorithms can be

categorized into three approaches, based on meta path (MPath),

message passing (MPass), and relational learning (RL).

Meta-paths are paths connected by heterogeneous edges, with

flexible length and edge types [13] , e.g., Author-Paper-Conference-

Paper-Author (APCPA) in citation networks. MPath-based ap-

∗ Corresponding author.

E-mail address: h.lu@sheffield.ac.uk (H. Lu) .

proaches transform the given heterogeneous graph into other

data structures, e.g., multiple homogeneous graphs [2,14,15] or se-

quences of entities [16,17] , according to the meta-paths to simplify

downstream tasks. However, the number of meta-paths and their

specific choices are determined manually, which can significantly

affect the accuracy and memory cost of downstream tasks, partic-

ularly when node heterogeneity is high. Therefore, it is challeng-

ing to determine the optimal meta-path set that balances perfor-

mance and complexity. Besides, to leverage edge attributes, e.g.,

labels, a (much) larger graph needs to be created by converting at-

tributes into additional nodes, making the problem more complex

and challenging [18] .

In contrast, MPass- (e.g., RGCN [10]) and RL-based approaches

(e.g., DistMult [1]) can leverage node/edge attributes naturally. In

MPass-based HGRL [6,10,14] , node attributes are passed as mes-

sages along edges, with the edge information determining how

messages are aggregated via graph convolution operations [19] .

RL-based HGRL views a heterogeneous graph as a set of triples

(i.e., labeled edges) composed of two nodes and their relation

(i.e., edge label) and learns a prediction function for such triples

and associated attributes. However, both approaches embed all

types of nodes/edges into the same vector space, without modeling

https://doi.org/10.1016/j.patcog.2022.108973

0031-3203/© 2022 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)

H. Xu, S. Sang, P. Bai et al. Pattern Recognition 133 (2023) 108973

Fig. 1. A motivating example for GripNet: A is a biomedical graph containing gene and drug nodes as well as their relations. We are interested in discovering new drug-drug

relations within this graph. Previous methods consider genes and drugs holistically and learn their embeddings in the same embedding space, as shown in B . In contrast,

GripNet aims to learn embeddings of genes and drugs sequentially and in separate embedding spaces, as shown in C , leading to more efficient models and better prediction

performance.

Fig. 2. GripNet illustration (best viewed in color). A : A heterogeneous graph H with four types of nodes (seven nodes in total), which belong to three semantic categories

(one color for each category), i.e., two types (location and organization, both in green) are of the same category due to their frequent links. B : We segregate the graph in A

into three supervertices connected by two directed superedges , forming a directed acyclic supergraph G S (H) . The directions of superedges are determined by the target of the

downstream task, e.g., here we consider the task of book classification, so information flows towards the book supervertex. Each supervertex is a subgraph containing nodes

of the same category (color) and edges between them. Each superedge is a bipartite subgraph with nodes from two categories (colors) forming two node sets, connected by

edges between them. C : GripNet architecture for learning new book representation on the supergraph in B . Information is propagated from the location&organization (green)

and business (orange) supervertices to the book supervertex (blue) via up to three layers. The internal feature layer (purple) reduces the dimension of the original node

features. The internal aggregation layer (yellow) aggregates neighborhood information within the supervertex. The external aggregation feature layer (magenta) aggregates

information from all parent supervertices. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

the semantics of these entities/relations. Some RL-based methods

[20,21] design hand-crafted rule-based features to take the seman-

tic information into account, such as designing a binary relational

feature based on the logical rule of (drug1,hasTarget,protein1) AND

(drug2,hasTarget,protein1) . However, these methods not only face

similar challenges as determining meta-paths, but also have lim-

ited applicability to large-scale, complex HGRL problems due to

the need for strong prior knowledge. Besides, because of the ex-

pensive graph convolution operations [19,22] , scalability is also a

major challenge for MPass-based methods.

The above challenges are mainly due to the rich node attributes,

relations, and semantic information in heterogeneous graphs. Our

main idea is to segregate the whole graph into semantically-coherent

parts, learn embedding within each part, and pass messages between

parts following a task-specific propagation path (Section 3.1).

Figure 1 is a motivating example in a polypharmacy side effect

prediction task. This task aims to predict undiscovered drug inter-

actions on a given heterogeneous biomedical graph that contains

drug and gene nodes and their relations (Fig. 1 A). Existing ap-

proaches [1,6,21] assume the embeddings of all nodes are in the

same embedding space and model all relations in the graph holisti-

cally (Fig. 1 B). This leads to both high information redundancy and

high memory and time costs because the number of gene nodes

is typically much larger than that of drug nodes and a side ef-

fect edge only links drug nodes. As shown in Fig. 1 C, a better way

to accomplish the task of side effect prediction is to learn gene

and drug embeddings in their respective segregated subgraphs and

then propagate gene embeddings to drug embeddings as supple-

mental information.

To this end, we propose a new HGRL framework named as

Gr aph i nformation p ropagation Net work (GripNet) to leverage the

strengths of three existing approaches:

• Firstly, we introduce a novel supergraph data structure that

segregates a heterogeneous graph into several semantically-

coherent subgraphs, named as supervertices , interconnected by

heterogeneous bipartite subgraphs, named as superedges . By

semantically-coherent, we mean that each segregated subgraph

contains nodes of the same broad category e.g., gene and

protein nodes (Section 3.2). We specify the directions of su-

peredges to define the information propagation path between

supervertices, in a task-specific manner according to semantic

relations and the task of interest. Thus, a supergraph is a di-

rected acyclic graph. Figures 2 A and B show an example.
• Secondly, the above supergraph structure enables more effi-

cient and effective embedding. We learn new node represen-

tations in supervertices sequentially according to the topologi-

cal ordering of these supervertices defined by the propagation

path (Section 3.3). This allows us to embed nodes in different

supervertices into different embedding spaces, e.g., according

to their importance/relevance to the task of interest. This not

only offers great modeling flexibility, but also improves scal-

ability by enabling efficient implementation, e.g., by choosing

low-dimensional embedding space for less important superver-

tices. Figure 2 C shows an example.

GripNet also provides an efficient solution for data integration.

We can construct a supergraph from multiple datasets by model-

ing each dataset as a supervertex and define their relationships by

directed superedges to allow flexible data integration. We evaluate

2

H. Xu, S. Sang, P. Bai et al. Pattern Recognition 133 (2023) 108973

GripNet on link prediction and node classification by constructing

seven large-scale complex heterogeneous graph datasets and study

its data integration performance. For link prediction, we propose

a categorized negative sampling strategy to take edge heterogeneity

into account. This strategy is generic and can improve the conver-

gence and prediction accuracy of the MPass- and RL-based meth-

ods. In addition, we studied the effects of supergraph construction

on both the model performance and the memory and time costs,

and found only the number of supervertices on the supergraphs

has a significant impact on them. Therefore, even if the super-

graphs need to be manually determined, GripNet is still simpler

than hand-crafted-rules-based methods.

2. Related works

2.1. MPass framework

MPass is a forward-pass phase of Message Passing Neural Net-

works (MPNN) [7] . It consists of a message function M t (·) and a

vertex update function U t (·) . The MPass phase runs for T time

steps, and the hidden states h t
i
at the tth step for the node i in

the graph G are updated based on its messages m
t+1
i

:

m
t+1
i =

∑

j∈N i

M t (h
t
i , h

t
j , e i, j) , (1)

h
t+1
i = U t (h

t
i , m

t+1
i) , (2)

where N i denotes the neighbors of node i , and e i, j denotes the fea-

ture of the edge between nodes i and j.

2.2. Encoder-decoder framework for GRL

The Encoder-decoder [12] framework organizes various meth-

ods for representation learning on graphs [6,10] around two map-

ping functions: encoder and decoder. An encoder is a function that

maps nodes to low-dimensional vector embeddings, and a decoder

is a function that takes a set of node embeddings as input and

decodes task-specified graph statistics for downstream machine

learning tasks.

2.3. Relational graph convolutional network (RGCN)

The encoder of the RGCN model [10] considers message updates

in a multi-relational graph, which regards relations as edge fea-

tures. The forward propagation of RGCN can be described using the

MPass framework with a massage function and an update function:

M t (h
t
i , h

t
j , e i, j) =

∑

r∈R

1

c i,r
A i, j,r W

t
r h

t
j , (3)

U t (h
t
i , m

t+1
i) = σ (m

t+1
i + W

t
0 h

t
i) , (4)

where A r is the real-valued adjacency matrix under relation r ∈ R

for the graph, c i,r is a normalization constant that can be learned

or chosen according to the task, and m
t+1
i

is defined in Eq. (1) ,

and σ (·) is an element-wise activate function such as ReLU. RGCN

shares weights between different relation types based on basis de-

composition to overcome the rapid growth in the number of pa-

rameters with the number of relation types increased in the graph.

Given a set of basis vectors B , W r can be regarded as a layer-wise

linear combination of basis transformation V b ∈ R d
(l+1) ×d (l) with

relation-associated coefficients a r,b :

W r =

∑

b∈ B

a r,b V b . (5)

2.4. DistMult factorization

DistMult factorization is a simplified basic bilinear scoring func-

tion used as the decoder of the DistMult model [1] . Given node

embeddings z i , z j for nodes i , j in the graph G , the score on the

edge (i, j) with the edge label l is:

f (i, j, l) = (z i)
⊤ M l (z j) , (6)

where M l is a trainable diagonal matrix.

3. The proposed GripNet model

Representation learning for complex heterogeneous graphs is

challenging. Existing approaches can not capture semantic relation-

ships and leverage node and edge attributes at the same time,

and those graph convolution-based methods are not scalable to

large-scale, complex heterogeneous graphs. We need a different

approach.

3.1. Segregate to learn

Our hypothesis is that because the semantics of nodes can vary

greatly for a complex heterogeneous graph, it would be beneficial

to learn representations of nodes with large semantic differences

separately and then propagate the learned information to serve the

need of a particular downstream task of interest. This can lead to

different embedding spaces for semantically different nodes, and

subsequently improve both predictive accuracy and scalability due

to the more compact and effective representations. To realize this

idea, we need a new framework to support our segregate-to-learn

scheme (see Fig. 3). Therefore, we propose a novel graph structure,

named as supergraph . Let us consider the following mathematical

definition of a heterogeneous graph.

Definition 1. A heterogeneous graph H = (V, E, T , L , τ) is a graph

with multiple types of nodes and whose edges are labeled. V is

the set of nodes and T is the set of node types. E = { (i, j, l) | i, j ∈

V, l ∈ L} is the set of labeled edges, where L is the set of edge

labels. The function τ : V → T is defined as τ (i) = t ∈ T if node i

is of type t .

With this definition, we are ready to introduce the concept of

supergraph .

3.2. Supergraph structure

Firstly, we define a categorical partition of node types T =
⋃

c T c

such that types within each T c are semantically coherent , i.e., be-

longing to the same broad category c ∈ C (C is the set of all cate-

gories). This partition is user-defined and there can be a trade-off

between prediction performance and memory cost. In our studies,

larger |C| gives lower memory cost. A naive choice is to assign

each type a unique category such that |C| = |T | , but this choice
can lead to worse performance if the semantic coherence between

node types is ignored. See detailed studies in Section 4.5 .

Now, we are ready to define the supergraph for a given hetero-

geneous graph H to describe our proposed information propaga-

tion process. To learn node features of different categories in differ-

ent feature spaces, we segregate the original graph H into several

semantically-coherent subgraphs, named as supervertices , intercon-

nected by bipartite subgraphs, named as superedges . An example

of supergraph construction is given in Steps 1–3 in Fig. 3 . Formal

definition follows below.

Definition 2. Supergraph, supervertex , and superedge . Given a het-

erogeneous graph H = (V, E, T , L , τ) and a categorical partition of

its node types T =
⋃

c T c , a supervertex v
S
c for a category c ∈ C is

3

H. Xu, S. Sang, P. Bai et al. Pattern Recognition 133 (2023) 108973

Fig. 3. Five main steps involved in the GripNet model design for a given (integrated) graph-like dataset with heterophily (best viewed in color). The symbol usages are the

same as those in Fig. 2 . Step 1 : List all the involved node types and show whether interactions exist among them. Step 2 : Group the node types to form supervertices. Step

3 : Determine the information propagation paths among the supervertices to form superedges. Step 4 : Decide the encoder architecture to learn the node embeddings for

each supervertex according to the supergraph’s topological ordering. Step 5 : Input the task-related learned node embeddings to the decoder to make predictions.

defined to be the induced subgraph of H from the set of nodes

V c = { v ∈ V | τ (v) ∈ c} . A superedge e S
cc ′

connects two supervertices

v S c and v S
c ′
. Thus, a superedge is H’s bipartite subgraph e S

cc ′
=

(V c , V c ′ , E cc ′) , where E cc ′ = { (v , v ′ , l) ∈ E| v ∈ V c , v
′ ∈ V c ′ } . We say a

superedge e cc ′ exists if E cc ′ is non-empty. Finally, a supergragh of

H is a directed acyclic graph G S (H) = (V S , E S) where V S = { v S c | c ∈

C} and E S = { e S
cc ′

| E cc ′ � = ∅; c, c ′ ∈ C} .

Depending on whether the ML task of interest is conducted on

a supervertex, we divide the supervertices into a task supervertex

and non-task supervertices. In general, valid supervertices should

meet the following requirements: 1) Each supervertex does not

contain any isolated node or subgraph, and 2) on the task super-

vertex, the node types are only task-related. These requirements

suggest only grouping node types with interactions to form super-

vertices when performing Step 2 in Fig. 3 .

The directions of superedges are defined by users according to

two criteria: 1) the supergraph G S must be directed acyclic (other-

wise we will encounter loopy information propagation) and 2) the

task supervertex should be a leaf vertex of G S and all information

from other supervertices should finally be propagated into it. Step

3 in Fig. 3 shows an example of superedge determination. In addi-

tion, as long as these two criteria are satisfied, the direction of in-

formation propagation between non-task supervertices can be cho-

sen manually. In practice, the direction of these superedges does

not significantly affect the model performance or the memory and

time costs (see detailed studies in Section 4.5).

This new supergraph model is generic and can be used for

many problems in heterogeneous graphs, e.g., we can use it as an

intuitive and flexible data integration model by constructing a su-

pergraph from multiple datasets with each dataset as a supervertex

and their relationships defined by the directions of superedges. In

the following, we propose our supergraph-based GripNet for het-

erogeneous graph representation learning. There can be many ways

to realize GripNet. Here we present one simple, basic realization

that can be extended to many other architectures by varying in-

dividual components. Figure 2 C shows an example of this simple

GripNet implementation.

3.3. GripNet architecture

GripNet learns the embeddings of nodes in supervertices se-

quentially according to the topological ordering of the superver-

tices they belong to, which is made possible by designing the su-

pergraph to be a directed acyclic graph [23] . For each superver-

tex v S c , GripNet has a module for learning node embeddings within

v S c from the information given by v S c and its parent supervertices

N S c = { v S
c ′
| e S

c ′ c
∈ E S } . Conceptually the module is composed of three

layers:

The external aggregation feature layer of supervertex v S c takes

the learned node embeddings from its parent supervertices as in-

put, and transforms them into features for nodes within v S c , which

are referred to as external features . This layer is realized as a set

of mutually parallel RGCN encoder sublayers, one for each parent

supervertex v S
c ′

∈ N S c . The supervertex v
S
c ′

’s contribution to the ex-

ternal features of node i in v S is:

r c
′ → c
i, ex =

∑

l∈L c ′ c

∑

j∈N cc
′

i,l

1

|N cc
′

i,l
|
W

(ex)
l

z c
′

j , (7)

where z c
j
is the embedding of node j in v S

c ′
, L c ′ c denotes the set of

possible edge labels in superedge e S
cc ′

(a bipartite subgraph), N cc
′

i,l

is the set of node i ’s neighbors in e S
cc ′

linked by an edge of type l,

and W (ex) s are learnable parameters. The total external features of

node i in v S c is obtained by summing over all supervertices’ contri-

butions and applying an activation function, such as ReLU:

r c i, ex = ReLU

(

1

|N S c |

∑

c ′ ∈N S c

r c
′ → c
i, ex

)

. (8)

Note that if a supervertex doesn’t have any parent supervertex, i.e.,

if it’s a root supervertex in the supergraph, then the external fea-

ture layer becomes degenerated and we can simply choose the ex-

ternal feature vectors as zero vectors: r c
i, ex

= 0 .

4

H. Xu, S. Sang, P. Bai et al. Pattern Recognition 133 (2023) 108973

The internal feature layer of supervertex v S c maps the original

node features, typically one-hot vectors, into the same space that

external features { r c
i, ex

} live in. This layer is constructed as a linear

transformation W (in) followed by a nonlinear activation function,

such as ReLU. Its output on node i in v S c , referred to as internal

features , is:

r c i, in = ReLU (W
(in) x c i) , (9)

where x c
i
is the original feature vector of node i . We combine the

internal and external features to obtain the total features of node i ,

e.g., by concatenation or summation as

r c i = (r c i, ex � r c i, in) or (r
c
i, ex + r c i, in) , (10)

where � denotes concatenation, and + denotes summation. We set

the default in GripNet to be concatenation �.

The internal aggregation layer takes the total features { r c
i
} as

the input u 0
i

= r c
i,in

, updates them within the supervertex v S c , and

obtains the final embeddings for nodes in v S c . This layer is designed

to be composed of T RGCN sublayers concatenated together, and

the update rule between the tth and the (t + 1) th sublayer is:

u
t+1
i = ReLU

⎛

⎝
∑

l∈L c , j∈N c i,l

1

|N c
i,l
|
W

(ia)
l,t

u
t
j + W

(ia)
0 ,t u

t
i

⎞

⎠ , (11)

where L c is the set of possible edge labels in v
S
c , N c

i,l
denotes the

neighbors of node i linked by edges of type l, and W s are learnable

parameters. The output of the last RGCN layer z c
i

= u T
i is the final

learned embedding of node i in v S c . These embeddings can then be

used for computing external features of v S c ’s child supervertices or

downstream ML tasks.

Algorithm 1 summarizes the steps in GripNet node embedding.

Algorithm 1 GripNet node embedding.

Input: Heterogeneous graph H and its corresponding user-

defined directed acyclic supergraph G S (H) = (V S , E S)

Output: Embedding vectors { z i } for each node i in H.

while V S is not empty do

v S c ← supervertex with the highest topological order in V S

remove v S c from V S

for each vertex i within v S c do

if v S c has a parent in G S then

r c
i,ex

← external features calculated using Eqs. (7) and

(8)

else

r c
i,ex

← 0

end if

r c
i,in

← internal features calculated using Eq. (9)

r c
i

← total features calculated using Eq. (10)

end for

{ u 0
i
}
i ∈ v S c

← { r c
i
}
i ∈ v S c

{ u n
i
}
i ∈ v S c

← update { u 0
i
}
i ∈ v S c

iteratively T times using Eq. (11)

{ z i } i ∈ v S c
← { u n

i
}
i ∈ v S c

end while

{ z i } ←
⋃

v S c ∈ V
S { z n i } i ∈ v S c

Here we consider two popular tasks: link prediction and node

classification. We follow the popular encoder-decoder framework

in graph representation learning [12] . The GripNet representation

learning introduced above learns a new vectorial embedding for

each node, which is the GripNet encoder. For downstream tasks,

the learned GripNet representation is fed into a GripNet decoder to

infer graph properties, such as the existence probabilities of node

attributes and edges (links).

3.4. Link prediction

We focus on the case where the edges (links) to be predicted

are all located in a single supervertex v S c . The method presented

below can be slightly modified to predict edges located in a su-

peredge. We formulate link prediction as a binary classification of

exist vs non-exist and adopt the DistMult factorization [1] acti-

vated by the sigmoid function as the GripNet decoder for link pre-

diction. Given nodes i and j in supervertex v S c and a possible edge

label l ∈ L c , the probability that the edge (i, j, l) exists is computed

as:

f (i, j, l) = sigmoid ((z c i)
⊤ M l (z

c
j)) , (12)

where M l is a trainable diagonal matrix associated with the edge

label l, and z i and z j are the embeddings for nodes i and j. To

train the model, we need both positive and negative instances

of edges. Positive edges are the observed edges E c , while nega-

tive ones require sampling. Traditional negative sampling methods

[1,6,10,24] do not take the edge heterogeneity of graphs into ac-

count. Thus, we propose a categorized negative sampling strategy

below for GripNet decoder in link prediction.

Categorized negative sampling (CNS) . To sample a negative

edge with label l in supervertex v S c = (V c , E c) , we propose a sam-

pler to randomly choose a source-target node pair from the set

{ (i, j) | i, j ∈ V c , (i, j, l) / ∈ E c } . In contrast, in previous methods neg-

ative edges are chosen from the whole heterogeneous graph, and

are constructed by corrupting (redirecting) one end of each posi-

tive instance. For each edge label l, we enforce the number of neg-

ative samples to be the same as that of positive instances in v S c .

We use the cross-entropy loss to optimize the model, aiming to

assign higher probabilities to positive edges and lower probabilities

to negative ones,

L (lp) = −
∑

(i, j,l) ∈ E c

log f (i, j, l) −
∑

(i, j,l) ∈ N(E c)

log (1 − f (i, j, l)) , (13)

where E c is the set of positive edges in v S c , and N(E c) is the set of

negative edges sampled by categorized negative sampler according

to E c .

3.5. Node classification

In node classification, we consider the task of predicting a spe-

cific node attribute with possible values from a set A for nodes in

a given supervertex v S c (their types or categories are assumed to

be known). The task can be viewed as a multiclass classification

problem. Our GripNet decoder for node classification applies a lin-

ear transformation W (nc) followed by a softmax activation function

to i th node’s embedding vector z c
i
to obtain the probability distri-

bution vector p i over A :

p i = softmax (W
(nc) z c i) . (14)

We minimize the following cross-entropy loss during training:

L (nc) = −
∑

i ∈ V c , a ∈A

s ia ln (p ia) , (15)

where s is the one hot representation of true attributes: s ia =

1 [node i ’s true attribute is a] , V c is the set of nodes in superver-

tex v S c and p ia is the a th entry of p i .

4. Experiments

We evaluate GripNet on large-scale , complex heterogeneous

graphs.

5

H. Xu, S. Sang, P. Bai et al. Pattern Recognition 133 (2023) 108973

Table 1

Dataset statistics. | V | : # nodes, | E| : # edges, | V p | (| E p |): # nodes (# edges) to be predicted, |C p | : # candidate labels, |T | :

node types, |L| : # edge labels. Items : average # items to be predicted per candidate label. Node types: the types of

nodes contained in datasets, drug(d), gene(g), paper(p), author(a), book(bo), business(bu), organization(o) and location(l).

Dataset | V | |T | | E| |L| | V p | | E p | |C p | Items Node types

PoSE-0 4,285 2 4,725,690 1100 - 4,625,608 1,097 4,217 d, g

PoSE-1 19,365 2 2,621,423 864 - 1,171,603 861 1,361 d, g

PoSE-2 19,726 2 6,075,428 1100 - 4,625,608 1,097 4,217 d, g

Aminer 397,477 2 1,265,593 3 124,806 - 7 17,829 a, p

Freebase-a 14,989 1 12,556 1 14,989 - 8 1,873 bo

Freebase-b 354,961 2 848,032 3 14,989 - 8 1,873 bo, bu

Freebase-c 457,504 3 998,663 5 14,989 - 8 1,873 bo, bu, o

Freebase-d 1,100,400 4 3,354,079 8 14,989 - 8 1,873 bo, bu, o, l

4.1. Experimental design

4.1.1. Dataset

For link prediction with a large number of different relations,

we consider the BioSNAP-Decagon dataset with 6M edges and 1K

different edge labels in total [6] by constructing a series of three

sub-datasets named as PoSE-0, -1 , and -2 , with varying propor-

tions of task-related nodes. For node classification with a large

number of labeled nodes, we construct the Aminer dataset with

124K labeled nodes and the Freebase-series datasets with four sub-

datasets, Freebase-a, -b, -c and -d , with increasing scale and het-

erogeneity. Table 1 reports their statistics.

• The PoSE-series are three datasets from the BioSNAP dataset

collection [25] for Po lypharmacy S ide E ffect (POSE) prediction

[6] : PP-Decagon (PP), ChG-InterDecagon (ChG) and ChChSe-

Decagon (ChChSe) contain relations between genes, gene and

drug, and drugs respectively. We integrate the datasets by

GeneID [26] and PubChem CID [27] . The key difference among

PoSE-0, 1 and 2 is the number of gene/drug nodes that are not

directly linked with any drug/gene.
• Aminer is constructed from the public Aminer Academic Net-

work dataset [28] . Following the top venue classification in

Google Scholar 1 , we select seven popular categories in com-

puter science (CS) and 20 top venues for each category. Follow-

ing [16] , we assign each author node a CS-category label with

the most publications.
• The Freebase-series are subsets of the Freebase dataset

[18] with books classified into 8 categories. As the last column

of Table 1 shows, Freebase-a contains book nodes and their re-

lations. Business, organization, and location information are in-

tegrated cumulatively to construct the Freebase-b, -c, and -d

datasets respectively.

4.1.2. Methods compared

In the PoSE link prediction task, DECAGON [6] is a pioneer-

ing work but with high computational requirements that we were

not able to satisfy. A more recent work [21] showed DistMult

[1] has better performance and lower cost of memory and time

than DECAGON so we choose it for comparison. Three KG embed-

ding models TransE [29] , ComplEx [30] and RotatE [31] are com-

pared as they are considered as baselines for multi-relation link

prediction by Open Graph Benchmark [32] . We also compare with

RGCN [10] , which shows good performance on standard datasets

for heterogeneous graphs. In node classification, we choose one

MPass/RL-based method RGCN [10] , two popular GRL methods GCN

[19] and GAT [33] , as well as two recent methods GCNII [34] and

Cluster-GCN [35] .

1 https://scholar.google.com/citations?view _ op=top _ venues&hl=en&vq=

eng _ enggeneral .

4.1.3. Evaluation metrics

We use the area under the precision-recall curve (AUPRC), the

receiver-operating characteristic (AUROC), and average precision at

50 (AP@50) to evaluate link prediction performance, for each edge

label first and then take their average. We use the micro-averaged

F1 scores (Micro-F1) and macro-averaged F1 scores (Macro-F1) to

evaluate node classification. We also evaluate the GPU memory us-

age during model training using tools in the pytorch_memlab pack-

age 2 , and the computational time.

4.1.4. Experimental configuration

We train and test all considered methods on NVIDIA GV100GL

(Tesla V100 PCIe 32 GB VRAM). For fair comparison and to avoid

costly tuning on large-scale data, we use the following configura-

tions for all methods:

• set the learnable embeddings’ dimension for the nodes of inter-

est to 32 in node classification
• choose the embedding dimension for each model such that

training can be performed on the GPU memory budget [32] in

link prediction
• initialize weights using Xavier initialization [36]
• optimize models end-to-end by full-batch with the Adam opti-

mizer [37] with learning rates of 0.01
• train a fixed 100 epochs for all the experiments.

In addition, when implementing methods involving graph con-

volution operations, an additional embedding layer with trainable

parameters W ∈ R |V|×256 is added before convolution layers for

computational efficiency, as the datasets contain up to millions of

nodes. We do a stratified split into 90% for training and 10% for

testing for both link prediction and node classification. With the

above configuration, we set the embedding dimension of GripNet

hidden layers to either 64 or 128 according to the size of the su-

pervertices (Section 4.2), and report the best results on the test

sets in node classification. Each experiment is repeated 10 times

with different random seeds, and all test results are reported with

the mean and unbiased standard deviation.

4.1.5. Model implementation

We implement GripNet models with PyTorch [38] and PyTorch-

Geometric packages [39] . We use the model implementation of

GCN, RGCN, and GAT model provided by PyTorch-Geometric [39] .

The implementation of TransE, RotatE, ComplEx, and DistMult

model are provided by the Open Graph Benchmark [32] . We use

the model implementation of GCNII 3 and Cluster-GCN 4 provided

by the authors. Due to the large data size, we improved the RGCN

implementation to reduce its memory requirements for the link

prediction task.

2 https://github.com/Stonesjtu/pytorch _ memlab .
3 https://github.com/chennnM/GCNII .
4 https://github.com/google-research/google-research/tree/master/cluster _ gcn .

6

H. Xu, S. Sang, P. Bai et al. Pattern Recognition 133 (2023) 108973

Table 2

Model settings for supergraphs with two supervertices. Node type (NT) symbols: g, d, a, p, bo and bu are the same

as those in Table 1 .

Root Supervertex Task-related supervertex

Model NT W (in) W (ia) 1 W (ia) 2 NT W (ex) W (in) W (ia) 1 W (ia) 2

GripNet-0/1/2 g R | p|×32
R 32 ×16

R 16 ×16 d R 16 ×16
R | d|×32

R (32+16) ×16 -

GripNet-b bu R | bu |×128
R 128 ×64

R 64 ×64 bo R 64 ×64
R | bo|×128

R (128+64) ×64
R 64 ×32

GripNet-am p R | p|×128
R 128 ×64

R 64 ×64 a R 64 ×64
R | a |×128

R (128+64) ×128
R 128 ×32

4.2. GripNet supergraph construction

Supergraph construction involves Steps 2–4 in Fig. 3 .

Freebase-c and -d datasets. Figure 2 gives an example on su-

pergraph construction for book classification on Freebase-d. In the

Freebase-d supergraph, there are three supervertices : book v S 0 , lo-

cation & organization v S 1 , and business v
S
2 . The information prop-

agation paths are: location& organization → book, and business

→ book. In each supervertex, the input node features of all the

entities use one-hot encoding features, and the outputs are the

node embeddings. The location, organization and business node

embeddings are learned with 1) an internal feature layer with

W (in) ∈ R | V i |×256 , where V i are nodes in the i th supervertex, and 2)

two internal aggregation layers with W
(ia)
1 ∈ R 256 ×128 , and W

(ia)
2 ∈

R 128 ×128 . On the book supervertex, 1) the business, location and

organization embeddings are transformed into book features by

an external aggregation feature layer with W
(ex)
1 , W

(ex)
2 ∈ R 128 ×128 ,

2) the input feature is extracted in an internal feature layer with

W (in) ∈ R | V 0 |×128 , and 3) the final book embeddings are learned by

an internal aggregation layer with W
(ia)
1 ∈ R 256 ×32 , whose input is

the concatenation of the output of external and internal feature

layers. The supergraph construction for Freebase-c is similar to that

for Freebase-d. It also contains three supervertices : book v S 0 , orga-

nization v S 1 , and business v
S
2 . The information propagation paths

are: organization → book, and business → book. GripNet imple-

mentations for Freebase-c have the same layer settings and dimen-

sions of all the trainable parameters as that for Freebase-d.

PoSE-0, -1, -2, Freebase-b and Aminer datasets. For the

datasets with two node types, PoSE-series, Freebase-b, and Aminer,

their supergraphs only contain two supervertices and a superedge

directed from the root supervertex to the task-related supervertex.

See layer settings and trainable parameter dimensions in Table 2 .

GripNet-0, -1, and -2 are for the polypharmacy side-effect pre-

diction task on datasets PoSE-0, -1, and -2, respectively. Usually,

the prediction is made directly on the drug-drug interaction graph

in the ChChSe dataset. Assuming that drug-drug interactions are

caused by interactions between genes affected by them, integrat-

ing the PP, and ChG graph may improve the prediction perfor-

mance. GripNet-0,1,2 models 1) learn the gene embeddings in the

gene (root) supervertex, 2) propagate the information to the drug

(task-related) supervertex via an external aggregation feature layer,

and 3) learn the drug embeddings and predict side effects on the

drug supervertex. For GripNet-b on Freebase-b dataset, the busi-

ness node embeddings are learned on the business supervertex

and are used to learn book embeddings on the book supervertex.

For GripNet-am on Aminer dataset, the paper node embeddings

are learned on the paper supervertex, then they are propagated to

the author supervertex.

Freebase-a dataset. Freebase-a is represented as a homoge-

neous graph. Its supergraph only contains a book supervertex. On

this supervertex, the embeddings are learned without any exter-

nal aggregation feature layer. The parameter settings are W (in) ∈

R | Bo|×128 , W
(ia)
1 ∈ R (128) ×64 , and W

(ia)
2 ∈ R 64 ×32 .

4.3. Performance comparison

Tables 3 and 4 report the experimental results in terms of ac-

curacy (AUROC / Micro-F1), time (training and testing time per

epoch) for link prediction and node classification respectively, with

the best result in bold and the second-best underlined. With ef-

fective information propagation between supervertices, GripNet

achieves the best AUROC/Micro-F1 scores on all seven datasets.

4.3.1. Link prediction

For the PoSE-series supergraphs, we have two GripNet imple-

mentations, GripNet-l and GripNet-r , to emphasize capturing in-

formation on the leaf and root supervertex by using less layer on

the root and leaf supervertex respectively. Typically, the internal

aggregation layer (see Eq. (11)) on each supervertex contains two

RGCN sublayers. Here we use a one-sublayer internal aggregation

layer on the root supervertex for GripNet-l and on the leaf super-

vertex for GripNet-r. The hyperparameter settings for GripNet-r are

the same as GripNet-0/1/2 in Table 2 , while GripNet-l has slightly

different settings: it does not have W ia 2 for the root (gene) super-

vertex but set that for the leaf (drug) supervertex to R 16 ×16 . From

the link prediction results in Table 3 and Figs. 4 A and B, GripNet

has the best prediction accuracy under a maximum GPU memory

of 30GB and varying embedding dimensions, and baseline models

are more sensitive to embedding dimension than GripNet. From

Fig. 4 A, the AUROC of GripNet does not increase with increasing

embedding dimension, while at the lowest embedding dimension

8, GripNet greatly outperformed the RL-based methods (TransE,

Table 3

Multi-relational link prediction results in AUROC . The best results are in bold and the second best ones are underlined.

Analogous trends hold for AUPRC and AP@50. Dim : the embedding dimension for each model such that the training peak

GPU memory usage is around 30GB. TpE : computational time per epoch (including training and testing score computa-

tion).

PoSE-0 PoSE-1 PoSE-2

Model AUROC Dim TpE(s) AUROC Dim TpE(s) AUROC Dim TpE(s)

TransE 0 . 718 ± 0 . 006 134 30.0 0 . 826 ± 0 . 007 170 21.5 0 . 751 ± 0 . 006 106 30.8

RotatE 0 . 891 ± 0 . 003 32 29.7 0 . 857 ± 0 . 006 38 20.7 0 . 851 ± 0 . 004 24 30.6

ComplEx 0 . 595 ± 0 . 004 34 29 . 2 0 . 844 ± 0 . 003 48 20 . 3 0 . 560 ± 0 . 004 26 30 . 4

DistMult 0 . 843 ± 0 . 008 84 29 . 0 0 . 859 ± 0 . 008 108 20 . 4 0 . 877 ± 0 . 009 66 29 . 7

RGCN 0 . 905 ± 0 . 006 76 47.5 0 . 909 ± 0 . 005 94 37.1 0 . 850 ± 0 . 003 58 60.3

GripNet-l 0 . 920 ± 0 . 003 32 39.9 0 . 914 ± 0 . 006 120 24.2 0 . 918 ± 0 . 004 32 40.3

GripNet-r 0 . 920 ± 0 . 003 16 41.1 0 . 912 ± 0 . 003 58 25.0 0 . 920 ± 0 . 050 16 41.4

7

H. Xu, S. Sang, P. Bai et al. Pattern Recognition 133 (2023) 108973

Fig. 4. A : AUROC over training time and at different embedding dimensions for different models on PoSE-2. B : AUROC over training time for different models on PoSE-0.

C : Micro-F1 on the four Freebase datasets plotted with respect to the number of node types (graph heterogeneity) and the number of nodes, with standard deviations as

shades (only visible for GCN).

RotatE, ComplEx, and DistMult). Although RL-based methods have

a shorter per-epoch running time than GripNet (from Table 3),

GripNet converges much faster (from Figs. 4 A and B) and fewer

epochs are needed in practice.

4.3.2. Node classification

In node classification (Table 4), the F1 scores for different mod-

els have small differences on Aminer but more variance for the

Freebase series. This indicates that the information between su-

pervertices of Aminer is less complementary and GripNet leads

to more improvement when the dataset heterogeneity increases.

The GripNet-cat and GripNet-add implementations correspond to

two operations combining the internal and external features (see

Eq. (10)). We will discuss them more in Section 4.6 on ablation

studies.

From Fig. 4 C, we can see that GripNet has the biggest im-

provement in book classification accuracy by 99% on Freebase-d

over on Freebase-a, while GCN, GCNII, RGCN, GAT, and Cluster-GCN

have a smaller improvement of 86%, 78%, 69%, 65%, and 54%, re-

spectively. In addition, compared with other MPass-based methods

(GCN, RGCN, and GAT), GripNet is much faster (from Table 4) and

consumes much less GPU memory because of its segregated archi-

tecture that reduces unnecessary expensive graph convolution op-

erations.

4.4. Data integration studies

Heterogeneous graphs are useful for integrating multiple

datasets. Thus, GripNet can be used for data integration, where

each supervertex represents a dataset and superedges define the

relationships between datasets as information propagation paths.

For example, Freebase-b has two supervertices (book and busi-

ness). To add/integrate an “organization dataset” into Freebase-b,

we add a supervertex of organization first, and then create a su-

peredge from the organization supervertex to the book supervertex

because of the close association between organization and book

(based on existing knowledge).

In Fig. 4 C, Freebase-a contains only one node type (book) while

Freebase-d contains four node types because it has integrated

three additional types of data (business, organization, and loca-

tion). Figure 4 C also shows that the improvement by GripNet in-

creases as the heterogeneity of the graph increases. We visualize

book embedding learned by GripNet in the four Freebase-series

datasets in Fig. 5 to show that as we integrate data of different

types, the boundaries between book categories become clearer. For

the polypharmacy side effect prediction task, we get decent pre-

diction accuracy with 0.743 in AUROC when using the PP & ChG

dataset, while the AUROC trained with the ChChSe dataset is 0.908.

The integration of these datasets leads to an AUROC with 0.922,

which improves the performance by 24.1% and 1.5% respectively.

4.5. Studies on supergraph construction

In supergraph construction, the number of supervertices |C| and
the directions of superedges are manually determined. Knowing

their impact on both the model performance and the memory and

time costs are critical to designing GripNet models.

Table 4

Node classification results in Micro-F1 . The best results are in bold , the second best ones are underlined. Analogous trends

hold for Macro-F1. Note that the time cost of Cluster-GCN is not comparable against other models because it is implemented in

TensorFlow while other models are implemented in PyTorch.

Aminer Freebase-b Freebase-c Freebase-d

Model Micro-F1 TpE(s) Micro-F1 TpE(s) Micro-F1 TpE(s) Micro-F1 TpE(s)

Cluster-GCN 0 . 915 ± 0 . 008 - 0 . 451 ± 0 . 008 - 0 . 541 ± 0 . 007 - 0 . 571 ± 0 . 009 -

GAT 0 . 899 ± 0 . 003 0.36 0 . 454 ± 0 . 005 0.43 0 . 498 ± 0 . 004 0.50 0 . 564 ± 0 . 004 0.94

GCN 0 . 907 ± 0 . 010 0 . 26 0 . 433 ± 0 . 010 0.17 0 . 508 ± 0 . 011 0.22 0 . 563 ± 0 . 009 0 . 51

GCNII 0 . 827 ± 0 . 004 2.15 0 . 437 ± 0 . 002 2.07 0 . 554 ± 0 . 004 2.58 0 . 577 ± 0 . 004 3.92

RGCN 0 . 882 ± 0 . 005 2.62 0 . 365 ± 0 . 005 1.09 0 . 464 ± 0 . 006 1.31 0 . 506 ± 0 . 006 2.67

GripNet-cat 0 . 920 ± 0 . 002 0 . 25 0 . 464 ± 0 . 002 0 . 08 0 . 567 ± 0 . 002 0 . 16 0 . 591 ± 0 . 002 0 . 36

GripNet-add 0 . 921 ± 0 . 002 0 . 25 0 . 476 ± 0 . 001 0 . 13 0 . 556 ± 0 . 002 0 . 17 0 . 594 ± 0 . 002 0 . 36

8

H. Xu, S. Sang, P. Bai et al. Pattern Recognition 133 (2023) 108973

Fig. 5. Visualization of GripNet embedding for eight book categories in Freebase-series datasets using t-SNE [40] to study the data integration performance. Colors represent

different book categories.

We study supergraph construction on Freebase-d dataset, which

has four types of nodes. According to the criteria of supergraph

construction in Section 3.2 , there is one supergraph with three

supervertices and two supergraphs with four supervertices, and

we build GripNet models, called GripNet-cat 3 , GripNet-cat 4 a , and

GripNet-cat 4 b , on these supergraphs respectively (see Table 5).

Please note that GripNet-cat 3 is the same as GripNet-cat in Table 3 .

There is no valid supergraph with two supervertices in this case,

because any such supergraph either violates the first require-

ment or the second requirement of supervertices (Section 3.2). Be-

cause GripNet is equivalent to RGCN when |C| = 1 , we also com-

pare them with RGCN. We use the same experimental settings as

GripNet-cat, and set the dimensions of all the hidden layers and

final embeddings for each node type to be the same.

Firstly, the results in Table 5 show that a large |C| gives lower

memory and time costs, which is consistent with our expectation

that GripNet will reduce the memory and time costs by reducing

the amount of information propagation operations as the num-

ber of supervertices increases. Generally, when |C| = |T | , we ex-

pect the memory and time costs to be the lowest. For Freebase-d,

|T | = 4 . As expected, the GripNet models with |C| = 4 show the

lowest memory and time costs in Table 5 .

Secondly, comparing the results of two GripNet models with

four supervertices, we can see that the direction of the superedge

between non-task supervertices does not significantly affect the

model performance and the memory and time costs. One possi-

ble reason why GripNet-cat 4 a is better than GripNet-cat 4 b is that

there are more location-book edges (∼ 58 k) than organization-

Table 5

Results of supergraph construction studies on Freebase-d dataset in Micro-F1 . Analogous

trends hold for Macro-F1. |C| : #supervertices, GMem : averaged peak GPU memory usage

(in GB), TpE : the same as in Table 3 . Supergraphs use the same legends as in Fig. 2 . The

best results are in bold.

|C| 1 3 4

Supergraph

Model RGCN GripNet-cat 3 GripNet-cat 4 a GripNet-cat 4 b
Micro-F1 0 . 506 ± 0 . 006 0 . 591 ± 0 . 002 0 . 582 ± 0 . 002 0 . 576 ± 0 . 002

GMem 23.46 13.82 11.64 11.65

TpE(s) 2.67 0.34 0.23 0.23

9

H. Xu, S. Sang, P. Bai et al. Pattern Recognition 133 (2023) 108973

Table 6

Averaged peak GPU memory usages (in GB) for feature integration op-

eration comparison on node classification. The better results are in

bold.

Model Aminer Freebase-b Freebase-c Freebase-d

GripNet-cat 5.89 2.29 4.24 13.82

GripNet-add 5.74 4.63 4.87 15.74

book edges (∼ 22 k) and information tends to propagate better

from less-connected supervertex to more-connected supervertex

(than vice versa).

Thirdly, choosing the number of supervertices as three gives

the best prediction performance but slightly higher computing cost

than the two GripNet models with four supervertices. This also in-

dicates that considering the semantic coherence between location

and organization nodes and assigning them to the same superver-

tex leads to better prediction results. In addition, learning on valid

supergraphs with GripNet is better than learning with RGCN.

4.6. Ablation studies

We perform ablation studies to understand the effects of differ-

ent design choices to our results.

Feature Integration Operation . GripNet provides two opera-

tions to obtain the total features of node in the internal feature

layer within a supervertex: concatenation and sum, and we set the

concatenation to be the default setting. As shown in the last two

rows of Table 4 and in Table 6 , these two operations lead to sim-

ilar prediction accuracy and have similar memory and time costs

except on Freebase-b. The reason why the memory and time costs

for GripNet-add are higher than GripNet-cat on Freebase-b is that

in GripNet-cat, the external aggregation feature layer has an output

dimension of 64 and the internal feature layer has an output di-

mension of 128 but in GripNet-add, these two layers need to have

the same output dimension 128. Therefore, the difference in peak

GPU memory usages suggests that the concatenation operation is

a more flexible choice that allows latent features to have different

dimensions for more efficient information propagation.

Categorized Negative Sampling (CNS) . GripNet only needs CNS

when modeling relations within the drug supervertex. When we

replaced it with the popular negative sampling used in compara-

tive methods for link prediction (RGCN, DistMult, and DECAGON),

the accuracy on the PoSE-series datasets was decreased by no

more than 1%, but the convergence speed slowed down by 9.2%.

5. Conclusion

This paper proposed a new supergraph data structure and

a new Graph Information Propagation (GripNet) framework for

learning node representations on heterogeneous graphs. We evalu-

ated GripNet on seven large-scale datasets in link prediction, node

classification, and data integration. GripNet achieved the best over-

all performance on these datasets.

The idea of supergraph gives GripNet the ability to efficiently

learn embeddings on highly heterogeneous graphs and allows

GripNet to be deep (4–8 graph convolutional layers in our ex-

periments). Here, we demonstrated GripNet using semantically-

coherent segregation as an intuitive approach for assigning dif-

ferent types of nodes to different supervertices; however, this is

not the only way. Thus, future work is needed 1) to test GripNet

performance for graphs with higher heterogeneity, 2) to explore

different node type segregation strategies, and 3) to discover the

trade-off between the number of node types and supervertices. In

addition, while the tasks covered in this paper only occur in one

supervertex, GripNet can be adapted for tasks spanning multiple

supervertices in the future.

Declaration of Competing Interest

The authors declare that they have no known competing finan-

cial interests or personal relationships that could have appeared to

influence the work reported in this paper.

Acknowledgement

This work was partially supported by The University of

Sheffield, Queen’s University (at Kingston, Canada), and Natural

Sciences and Engineering Research Council of Canada (NSERC)

grant RGPIN-2020-06325 . This research was enabled in part by

support provided by Compute Canada (www.computecanada.ca).

References

[1] B. Yang, W.-t. Yih, X. He, J. Gao, L. Deng, Embedding entities and relations for
learning and inference in knowledge bases, in: The International Conference
on Learning Representations, 2015 .

[2] S. Yun, M. Jeong, R. Kim, J. Kang, H.J. Kim, Graph transformer networks, in:
Advances in Neural Information Processing Systems, 2019, pp. 11960–11970 .

[3] S. Xue, J. Lu, G. Zhang, Cross-domain network representations, Pattern Recog-
nit. 94 (2019) 135–148 .

[4] Y. Wu, D. Lian, S. Jin, E. Chen, Graph convolutional networks on user mobility
heterogeneous graphs for social relationship inference, in: Proceedings of the
Twenty-Eighth International Joint Conference on Artificial Intelligence, 2019 .

[5] J.-D. Zhang, C.-Y. Chow, GeoSoCa: exploiting geographical, social and categori-
cal correlations for point-of-interest recommendations, in: Proceedings of the
38th International ACM SIGIR Conference on Research and Development in In-
formation Retrieval, 2015, pp. 443–452 .

[6] M. Zitnik, M. Agrawal, J. Leskovec, Modeling polypharmacy side effects with
graph convolutional networks, Bioinformatics 34 (13) (2018) i457–i466 .

[7] J. Gilmer, S.S. Schoenholz, P.F. Riley, O. Vinyals, G.E. Dahl, Neural message pass-
ing for quantum chemistry, in: Proceedings of the 34th International Confer-
ence on Machine Learning, vol. 70, JMLR. org, 2017, pp. 1263–1272 .

[8] L. Zhang, H. Song, N. Aletras, H. Lu, Node-feature convolution for graph convo-
lutional networks, Pattern Recognit. 128 (2022) 108661 .

[9] F.-Y. Sun, M. Qu, J. Hoffmann, C.-W. Huang, J. Tang, vGraph: a generative model
for joint community detection and node representation learning, in: Advances
in Neural Information Processing Systems, 2019, pp. 512–522 .

[10] M. Schlichtkrull, T.N. Kipf, P. Bloem, R. Van Den Berg, I. Titov, M. Welling, Mod-
eling relational data with graph convolutional networks, in: European Seman-
tic Web Conference, Springer, 2018, pp. 593–607 .

[11] S. Feng, C. Xu, Y. Zuo, G. Chen, F. Lin, J. XiaHou, Relation-aware dynamic at-
tributed graph attention network for stocks recommendation, Pattern Recognit.
121 (2022) 108119 .

[12] W.L. Hamilton, R. Ying, J. Leskovec, Representation learning on graphs: meth-
ods and applications, Bull. Inst. Electr.Electron. Eng. Comput. Soc. Tech. Com-
mittee Data Eng. (2017) .

[13] Y. Sun, J. Han, X. Yan, P.S. Yu, T. Wu, PathSim: meta path-based top-k similarity
search in heterogeneous information networks, Proc. VLDB Endowment 4 (11)
(2011) 992–1003 .

[14] X. Wang, H. Ji, C. Shi, B. Wang, Y. Ye, P. Cui, P.S. Yu, Heterogeneous graph at-
tention network, in: The World Wide Web Conference, 2019, pp. 2022–2032 .

[15] Y. Zhang, Y. Xiong, X. Kong, S. Li, J. Mi, Y. Zhu, Deep collective classification in
heterogeneous information networks, in: Proceedings of the 2018 World Wide
Web Conference, 2018, pp. 399–408 .

[16] Y. Dong, N.V. Chawla, A. Swami, metapath2vec: scalable representation learn-
ing for heterogeneous networks, in: Proceedings of the 23rd ACM SIGKDD
international conference on knowledge discovery and data mining, 2017,
pp. 135–144 .

[17] B. Yu, J. Hu, Y. Xie, C. Zhang, Z. Tang, Rich heterogeneous information preserv-
ing network representation learning, Pattern Recognit. 108 (2020) 107564 .

[18] C. Yang, Y. Xiao, Y. Zhang, Y. Sun, J. Han, Heterogeneous network representation
learning: aunified framework with survey and benchmark, IEEE Trans. Knowl.
Data Eng. (2020), doi: 10.1109/TKDE.2020.3045924 . 1–1.

[19] T.N. Kipf, M. Welling, Semi-supervised classification with graph convolutional
networks, in: International Conference on Learning Representations, 2017 .

[20] A. Garcia-Duran, M. Niepert, KBLRN: end-to-end learning of knowledge base
representations with latent, relational, and numerical features, in: The Confer-
ence on Uncertainty in Artificial Intelligence, 2018 .

[21] B. Malone, A. García-Durán, M. Niepert, Knowledge graph completion to pre-
dict polypharmacy side effects, in: International Conf erence on Data Integra-
tion in the Life Sciences, Springer, 2018, pp. 144–149 .

[22] T.N. Kipf, M. Welling, Variational graph auto-encoders, NIPS Workshop on
Bayesian Deep Learning, 2016 .

[23] K. Thulasiraman, M. Swamy, Acyclic directed graphs, in: J. Wiley, Son (Eds.),
Graphs: Theory and Algorithms, 1992, p. 118 .

10

H. Xu, S. Sang, P. Bai et al. Pattern Recognition 133 (2023) 108973

[24] T. Mikolov, I. Sutskever, K. Chen, G.S. Corrado, J. Dean, Distributed representa-
tions of words and phrases and their compositionality, in: Advances in Neural
Information Processing Systems, 2013, pp. 3111–3119 .

[25] S.M. Marinka Zitnik, R. Sosic, J. Leskovec, BioSNAP Datasets: stanford biomedi-
cal network dataset collection, 2018, (http://snap.stanford.edu/biodata).

[26] D. Maglott, J. Ostell, K.D. Pruitt, T. Tatusova, Entrez gene: gene-centered infor-
mation at NCBI, Nucleic Acids Res. 33 (suppl_1) (2005) D54–D58 .

[27] S. Kim, P.A. Thiessen, E.E. Bolton, J. Chen, G. Fu, A. Gindulyte, L. Han, J. He,
S. He, B.A. Shoemaker, et al., Pubchem substance and compound databases,
Nucleic Acids Res. 44 (D1) (2016) D1202–D1213 .

[28] J. Tang, J. Zhang, L. Yao, J. Li, L. Zhang, Z. Su, ArnetMiner: extraction and min-
ing of academic social networks, in: Proceedings of the 14th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, 2008,
pp. 990–998 .

[29] A. Bordes, N. Usunier, A. Garcia-Duran, J. Weston, O. Yakhnenko, Translating
embeddings for modeling multi-relational data, in: Advances in Neural Infor-
mation Processing Systems, 2013, pp. 2787–2795 .

[30] T. Trouillon, J. Welbl, S. Riedel, E. Gaussier, G. Bouchard, Complex embeddings
for simple link prediction, in: International Conference on Machine Learning,
2016 .

[31] Z. Sun, Z.-H. Deng, J.-Y. Nie, J. Tang, RotatE: knowledge graph embedding by
relational rotation in complex space, in: International Conference on Machine
Learning, 2019 .

[32] W. Hu, M. Fey, M. Zitnik, Y. Dong, H. Ren, B. Liu, M. Catasta, J. Leskovec, Open
graph benchmark: datasets for machine learning on graphs, Advances in Neu-
ral Information Processing Systems, 2020 .

[33] P. Veli ̌ckovi ́c, G. Cucurull, A. Casanova, A. Romero, P. Liò, Y. Bengio, Graph at-
tention networks, in: International Conference on Learning Representations,
2018 .

[34] M. Chen, Z. Wei, Z. Huang, B. Ding, Y. Li, Simple and deep graph convo-
lutional networks, in: International Conference on Machine Learning, 2020,
pp. 1725–1735 .

[35] W.-L. Chiang, X. Liu, S. Si, Y. Li, S. Bengio, C.-J. Hsieh, Cluster-GCN: an effi-
cient algorithm for training deep and large graph convolutional networks, in:
Proceedings of the 25th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining, 2019, pp. 257–266 .

[36] X. Glorot, Y. Bengio, Understanding the difficulty of training deep feedforward
neural networks, in: Proceedings of the Thirteenth International Conference on
Artificial intelligence and statistics, 2010, pp. 249–256 .

[37] D.P. Kingma, J. Ba, Adam: a method for stochastic optimization, in: Interna-
tional Conference on Learning Representations, 2015 .

[38] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin, A. Des-
maison, L. Antiga, A. Lerer, Automatic differentiation in PyTorch, NIPS Autodiff
Workshop, 2017 .

[39] M. Fey, J.E. Lenssen, Fast graph representation learning with pytorch
geometric, ICLR Workshop on Representation Learning on Graphs and Mani-
folds, 2019 .

[40] L. Van Der Maaten, Accelerating t-SNE using tree-based algorithms, J. Mach.
Learn. Res. 15 (1) (2014) 3221–3245 .

Hao Xu received the BEng degree from Central South University, China in 2016, and
MSc degree with distinction from Department of Computer Science, University of
Sheffield, UK in 2019. She is currently a Research Assistant at Queen’s University,
Canada. Her research interests include graph representation learning and explain-
able machine learning for biology.

Shengqi Sang received his BSc degree from Fudan University, China in 2017, and his
MSc degree from University of Chicago, United State in 2019. Currently, he is a PhD
student at Perimeter Institute for Theoretical Physics and University of Waterloo in
Canada. His research interests are condensed matter physics and machine learning
methods for physical science.

Peizhen Bai received the BSc degree from Sun Yat-sen University, China in 2016,
and MSc degree with distinction from Department of Computer Science, Uni-
versity of Sheffield, UK in 2017, where he is now a PhD student. His research
interests include graph machine learning, recommendation systems and drug
discovery.

Ruike Li received the BEng degree from Central China Normal University in 2018.
She is currently an MSc student at Department of Computer Science, University of
Sheffield, UK. Her research interests include graph representation learning and its
applications.

Laurence Yang is an Assistant Professor of Chemical Engineering and Queen’s
National Scholar in Systems Biology at Queen’s University. He received his
PhD degree in Chemical Engineering from the University of Toronto. His re-
search interests include computational systems biology, machine learning, and
applying them for human health, environmental sustainability, and industrial
biotechnology.

Haiping Lu received the BEng and MEng degrees in electrical and electronics en-
gineering from Nanyang Technological University, Singapore, in 2001 and 2004, re-
spectively, and the PhD degree in electrical and computer engineering from Uni-
versity of Toronto, Canada, in 2008. Currently, he is a Senior Lecturer in Ma-
chine Learning at the Department of Computer Science, University of Sheffield,
UK.

11

	GripNet: Graph information propagation on supergraph for heterogeneous graphs
	1 Introduction
	2 Related works
	2.1 MPass framework
	2.2 Encoder-decoder framework for GRL
	2.3 Relational graph convolutional network (RGCN)
	2.4 DistMult factorization

	3 The proposed GripNet model
	3.1 Segregate to learn
	3.2 Supergraph structure
	3.3 GripNet architecture
	3.4 Link prediction
	3.5 Node classification

	4 Experiments
	4.1 Experimental design
	4.1.1 Dataset
	4.1.2 Methods compared
	4.1.3 Evaluation metrics
	4.1.4 Experimental configuration
	4.1.5 Model implementation

	4.2 GripNet supergraph construction
	4.3 Performance comparison
	4.3.1 Link prediction
	4.3.2 Node classification

	4.4 Data integration studies
	4.5 Studies on supergraph construction
	4.6 Ablation studies

	5 Conclusion
	Declaration of Competing Interest
	Acknowledgement
	References

