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a b s t r a c t 

Heterogeneous graph representation learning aims to learn low-dimensional vector representations of 

different types of entities and relations to empower downstream tasks. Existing popular methods either 

capture semantic relationships but indirectly leverage node/edge attributes in a complex way, or leverage 

node/edge attributes directly without taking semantic relationships into account. When involving multi- 

ple convolution operations, they also have poor scalability. To overcome these limitations, this paper pro- 

poses a flexible and efficient Gr aph i nformation p ropagation Net work (GripNet) framework. Specifically, 

we introduce a new supergraph data structure consisting of supervertices and superedges. A supervertex 

is a semantically-coherent subgraph. A superedge defines an information propagation path between two 

supervertices. GripNet learns new representations for the supervertex of interest by propagating informa- 

tion along the defined path using multiple layers. We construct multiple large-scale graphs and evaluate 

GripNet against competing methods to show its superiority in link prediction, node classification, and 

data integration. The code and data are available at https://github.com/nyxflower/GripNet . 

© 2022 The Author(s). Published by Elsevier Ltd. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 

1. Introduction 

A heterogeneous graph/network contains multiple types of 

nodes and relations to represent a wide range of real-world data 

such as information [1–3] , social [4,5] , biomedical [6] and chemical 

[7] networks. Modeling its node/relation properties is important in 

various machine learning (ML) tasks, e.g., node classification [2,8] , 

clustering/community detection [9] , knowledge graph completion 

[1,10] , link prediction [6] , and recommendation [4,11] . Graph rep- 

resentation learning (GRL), a.k.a. graph embedding, is a popular 

solution that embeds entities and/or relations into a low dimen- 

sional vector space with the topological information and structure 

of graph preserved and uses the learned representations for down- 

stream tasks [12] . Heterogeneous GRL (HGRL) algorithms can be 

categorized into three approaches, based on meta path (MPath), 

message passing (MPass), and relational learning (RL). 

Meta-paths are paths connected by heterogeneous edges, with 

flexible length and edge types [13] , e.g., Author-Paper-Conference- 

Paper-Author (APCPA) in citation networks. MPath-based ap- 

∗ Corresponding author. 
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proaches transform the given heterogeneous graph into other 

data structures, e.g., multiple homogeneous graphs [2,14,15] or se- 

quences of entities [16,17] , according to the meta-paths to simplify 

downstream tasks. However, the number of meta-paths and their 

specific choices are determined manually, which can significantly 

affect the accuracy and memory cost of downstream tasks, partic- 

ularly when node heterogeneity is high. Therefore, it is challeng- 

ing to determine the optimal meta-path set that balances perfor- 

mance and complexity. Besides, to leverage edge attributes, e.g., 

labels, a (much) larger graph needs to be created by converting at- 

tributes into additional nodes, making the problem more complex 

and challenging [18] . 

In contrast, MPass- (e.g., RGCN [10] ) and RL-based approaches 

(e.g., DistMult [1] ) can leverage node/edge attributes naturally. In 

MPass-based HGRL [6,10,14] , node attributes are passed as mes- 

sages along edges, with the edge information determining how 

messages are aggregated via graph convolution operations [19] . 

RL-based HGRL views a heterogeneous graph as a set of triples 

(i.e., labeled edges) composed of two nodes and their relation 

(i.e., edge label) and learns a prediction function for such triples 

and associated attributes. However, both approaches embed all 

types of nodes/edges into the same vector space, without modeling 

https://doi.org/10.1016/j.patcog.2022.108973 
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Fig. 1. A motivating example for GripNet: A is a biomedical graph containing gene and drug nodes as well as their relations. We are interested in discovering new drug-drug 

relations within this graph. Previous methods consider genes and drugs holistically and learn their embeddings in the same embedding space, as shown in B . In contrast, 

GripNet aims to learn embeddings of genes and drugs sequentially and in separate embedding spaces, as shown in C , leading to more efficient models and better prediction 

performance. 

Fig. 2. GripNet illustration (best viewed in color). A : A heterogeneous graph H with four types of nodes (seven nodes in total), which belong to three semantic categories 

(one color for each category), i.e., two types (location and organization, both in green) are of the same category due to their frequent links. B : We segregate the graph in A 

into three supervertices connected by two directed superedges , forming a directed acyclic supergraph G S (H) . The directions of superedges are determined by the target of the 

downstream task, e.g., here we consider the task of book classification, so information flows towards the book supervertex. Each supervertex is a subgraph containing nodes 

of the same category (color) and edges between them. Each superedge is a bipartite subgraph with nodes from two categories (colors) forming two node sets, connected by 

edges between them. C : GripNet architecture for learning new book representation on the supergraph in B . Information is propagated from the location&organization (green) 

and business (orange) supervertices to the book supervertex (blue) via up to three layers. The internal feature layer (purple) reduces the dimension of the original node 

features. The internal aggregation layer (yellow) aggregates neighborhood information within the supervertex. The external aggregation feature layer (magenta) aggregates 

information from all parent supervertices. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

the semantics of these entities/relations. Some RL-based methods 

[20,21] design hand-crafted rule-based features to take the seman- 

tic information into account, such as designing a binary relational 

feature based on the logical rule of ( drug1,hasTarget,protein1 ) AND 

( drug2,hasTarget,protein1 ) . However, these methods not only face 

similar challenges as determining meta-paths, but also have lim- 

ited applicability to large-scale, complex HGRL problems due to 

the need for strong prior knowledge. Besides, because of the ex- 

pensive graph convolution operations [19,22] , scalability is also a 

major challenge for MPass-based methods. 

The above challenges are mainly due to the rich node attributes, 

relations, and semantic information in heterogeneous graphs. Our 

main idea is to segregate the whole graph into semantically-coherent 

parts, learn embedding within each part, and pass messages between 

parts following a task-specific propagation path ( Section 3.1 ). 

Figure 1 is a motivating example in a polypharmacy side effect 

prediction task. This task aims to predict undiscovered drug inter- 

actions on a given heterogeneous biomedical graph that contains 

drug and gene nodes and their relations ( Fig. 1 A). Existing ap- 

proaches [1,6,21] assume the embeddings of all nodes are in the 

same embedding space and model all relations in the graph holisti- 

cally ( Fig. 1 B). This leads to both high information redundancy and 

high memory and time costs because the number of gene nodes 

is typically much larger than that of drug nodes and a side ef- 

fect edge only links drug nodes. As shown in Fig. 1 C, a better way 

to accomplish the task of side effect prediction is to learn gene 

and drug embeddings in their respective segregated subgraphs and 

then propagate gene embeddings to drug embeddings as supple- 

mental information. 

To this end, we propose a new HGRL framework named as 

Gr aph i nformation p ropagation Net work (GripNet) to leverage the 

strengths of three existing approaches: 

• Firstly, we introduce a novel supergraph data structure that 

segregates a heterogeneous graph into several semantically- 

coherent subgraphs, named as supervertices , interconnected by 

heterogeneous bipartite subgraphs, named as superedges . By 

semantically-coherent, we mean that each segregated subgraph 

contains nodes of the same broad category e.g., gene and 

protein nodes ( Section 3.2 ). We specify the directions of su- 

peredges to define the information propagation path between 

supervertices, in a task-specific manner according to semantic 

relations and the task of interest. Thus, a supergraph is a di- 

rected acyclic graph. Figures 2 A and B show an example. 
• Secondly, the above supergraph structure enables more effi- 

cient and effective embedding. We learn new node represen- 

tations in supervertices sequentially according to the topologi- 

cal ordering of these supervertices defined by the propagation 

path ( Section 3.3 ). This allows us to embed nodes in different 

supervertices into different embedding spaces, e.g., according 

to their importance/relevance to the task of interest. This not 

only offers great modeling flexibility, but also improves scal- 

ability by enabling efficient implementation, e.g., by choosing 

low-dimensional embedding space for less important superver- 

tices. Figure 2 C shows an example. 

GripNet also provides an efficient solution for data integration. 

We can construct a supergraph from multiple datasets by model- 

ing each dataset as a supervertex and define their relationships by 

directed superedges to allow flexible data integration. We evaluate 

2 
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GripNet on link prediction and node classification by constructing 

seven large-scale complex heterogeneous graph datasets and study 

its data integration performance. For link prediction, we propose 

a categorized negative sampling strategy to take edge heterogeneity 

into account. This strategy is generic and can improve the conver- 

gence and prediction accuracy of the MPass- and RL-based meth- 

ods. In addition, we studied the effects of supergraph construction 

on both the model performance and the memory and time costs, 

and found only the number of supervertices on the supergraphs 

has a significant impact on them. Therefore, even if the super- 

graphs need to be manually determined, GripNet is still simpler 

than hand-crafted-rules-based methods. 

2. Related works 

2.1. MPass framework 

MPass is a forward-pass phase of Message Passing Neural Net- 

works (MPNN) [7] . It consists of a message function M t (·) and a 

vertex update function U t (·) . The MPass phase runs for T time 

steps, and the hidden states h t 
i 
at the tth step for the node i in 

the graph G are updated based on its messages m 
t+1 
i 

: 

m 
t+1 
i = 

∑ 

j∈N i 

M t (h 
t 
i , h 

t 
j , e i, j ) , (1) 

h 
t+1 
i = U t (h 

t 
i , m 

t+1 
i ) , (2) 

where N i denotes the neighbors of node i , and e i, j denotes the fea- 

ture of the edge between nodes i and j. 

2.2. Encoder-decoder framework for GRL 

The Encoder-decoder [12] framework organizes various meth- 

ods for representation learning on graphs [6,10] around two map- 

ping functions: encoder and decoder. An encoder is a function that 

maps nodes to low-dimensional vector embeddings, and a decoder 

is a function that takes a set of node embeddings as input and 

decodes task-specified graph statistics for downstream machine 

learning tasks. 

2.3. Relational graph convolutional network (RGCN) 

The encoder of the RGCN model [10] considers message updates 

in a multi-relational graph, which regards relations as edge fea- 

tures. The forward propagation of RGCN can be described using the 

MPass framework with a massage function and an update function: 

M t (h 
t 
i , h 

t 
j , e i, j ) = 

∑ 

r∈R 

1 

c i,r 
A i, j,r W 

t 
r h 

t 
j , (3) 

U t (h 
t 
i , m 

t+1 
i ) = σ (m 

t+1 
i + W 

t 
0 h 

t 
i ) , (4) 

where A r is the real-valued adjacency matrix under relation r ∈ R 

for the graph, c i,r is a normalization constant that can be learned 

or chosen according to the task, and m 
t+1 
i 

is defined in Eq. (1) , 

and σ (·) is an element-wise activate function such as ReLU. RGCN 

shares weights between different relation types based on basis de- 

composition to overcome the rapid growth in the number of pa- 

rameters with the number of relation types increased in the graph. 

Given a set of basis vectors B , W r can be regarded as a layer-wise 

linear combination of basis transformation V b ∈ R d 
(l+1) ×d (l) with 

relation-associated coefficients a r,b : 

W r = 

∑ 

b∈ B 

a r,b V b . (5) 

2.4. DistMult factorization 

DistMult factorization is a simplified basic bilinear scoring func- 

tion used as the decoder of the DistMult model [1] . Given node 

embeddings z i , z j for nodes i , j in the graph G , the score on the 

edge (i, j) with the edge label l is: 

f (i, j, l) = (z i ) 
⊤ M l (z j ) , (6) 

where M l is a trainable diagonal matrix. 

3. The proposed GripNet model 

Representation learning for complex heterogeneous graphs is 

challenging. Existing approaches can not capture semantic relation- 

ships and leverage node and edge attributes at the same time, 

and those graph convolution-based methods are not scalable to 

large-scale, complex heterogeneous graphs. We need a different 

approach. 

3.1. Segregate to learn 

Our hypothesis is that because the semantics of nodes can vary 

greatly for a complex heterogeneous graph, it would be beneficial 

to learn representations of nodes with large semantic differences 

separately and then propagate the learned information to serve the 

need of a particular downstream task of interest. This can lead to 

different embedding spaces for semantically different nodes, and 

subsequently improve both predictive accuracy and scalability due 

to the more compact and effective representations. To realize this 

idea, we need a new framework to support our segregate-to-learn 

scheme (see Fig. 3 ). Therefore, we propose a novel graph structure, 

named as supergraph . Let us consider the following mathematical 

definition of a heterogeneous graph. 

Definition 1. A heterogeneous graph H = (V, E, T , L , τ ) is a graph 

with multiple types of nodes and whose edges are labeled. V is 

the set of nodes and T is the set of node types. E = { (i, j, l) | i, j ∈ 

V, l ∈ L} is the set of labeled edges, where L is the set of edge 

labels. The function τ : V → T is defined as τ (i ) = t ∈ T if node i 

is of type t . 

With this definition, we are ready to introduce the concept of 

supergraph . 

3.2. Supergraph structure 

Firstly, we define a categorical partition of node types T = 
⋃ 

c T c 

such that types within each T c are semantically coherent , i.e., be- 

longing to the same broad category c ∈ C ( C is the set of all cate- 

gories). This partition is user-defined and there can be a trade-off

between prediction performance and memory cost. In our studies, 

larger |C| gives lower memory cost. A naive choice is to assign 

each type a unique category such that |C| = |T | , but this choice 
can lead to worse performance if the semantic coherence between 

node types is ignored. See detailed studies in Section 4.5 . 

Now, we are ready to define the supergraph for a given hetero- 

geneous graph H to describe our proposed information propaga- 

tion process. To learn node features of different categories in differ- 

ent feature spaces, we segregate the original graph H into several 

semantically-coherent subgraphs, named as supervertices , intercon- 

nected by bipartite subgraphs, named as superedges . An example 

of supergraph construction is given in Steps 1–3 in Fig. 3 . Formal 

definition follows below. 

Definition 2. Supergraph, supervertex , and superedge . Given a het- 

erogeneous graph H = (V, E, T , L , τ ) and a categorical partition of 

its node types T = 
⋃ 

c T c , a supervertex v 
S 
c for a category c ∈ C is 

3 
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Fig. 3. Five main steps involved in the GripNet model design for a given (integrated) graph-like dataset with heterophily (best viewed in color). The symbol usages are the 

same as those in Fig. 2 . Step 1 : List all the involved node types and show whether interactions exist among them. Step 2 : Group the node types to form supervertices. Step 

3 : Determine the information propagation paths among the supervertices to form superedges. Step 4 : Decide the encoder architecture to learn the node embeddings for 

each supervertex according to the supergraph’s topological ordering. Step 5 : Input the task-related learned node embeddings to the decoder to make predictions. 

defined to be the induced subgraph of H from the set of nodes 

V c = { v ∈ V | τ (v ) ∈ c} . A superedge e S 
cc ′ 

connects two supervertices 

v S c and v S 
c ′ 
. Thus, a superedge is H’s bipartite subgraph e S 

cc ′ 
= 

(V c , V c ′ , E cc ′ ) , where E cc ′ = { (v , v ′ , l) ∈ E| v ∈ V c , v 
′ ∈ V c ′ } . We say a 

superedge e cc ′ exists if E cc ′ is non-empty. Finally, a supergragh of 

H is a directed acyclic graph G S (H) = (V S , E S ) where V S = { v S c | c ∈ 

C} and E S = { e S 
cc ′ 

| E cc ′ � = ∅; c, c ′ ∈ C} . 

Depending on whether the ML task of interest is conducted on 

a supervertex, we divide the supervertices into a task supervertex 

and non-task supervertices. In general, valid supervertices should 

meet the following requirements: 1) Each supervertex does not 

contain any isolated node or subgraph, and 2) on the task super- 

vertex, the node types are only task-related. These requirements 

suggest only grouping node types with interactions to form super- 

vertices when performing Step 2 in Fig. 3 . 

The directions of superedges are defined by users according to 

two criteria: 1) the supergraph G S must be directed acyclic (other- 

wise we will encounter loopy information propagation) and 2) the 

task supervertex should be a leaf vertex of G S and all information 

from other supervertices should finally be propagated into it. Step 

3 in Fig. 3 shows an example of superedge determination. In addi- 

tion, as long as these two criteria are satisfied, the direction of in- 

formation propagation between non-task supervertices can be cho- 

sen manually. In practice, the direction of these superedges does 

not significantly affect the model performance or the memory and 

time costs (see detailed studies in Section 4.5 ). 

This new supergraph model is generic and can be used for 

many problems in heterogeneous graphs, e.g., we can use it as an 

intuitive and flexible data integration model by constructing a su- 

pergraph from multiple datasets with each dataset as a supervertex 

and their relationships defined by the directions of superedges. In 

the following, we propose our supergraph-based GripNet for het- 

erogeneous graph representation learning. There can be many ways 

to realize GripNet. Here we present one simple, basic realization 

that can be extended to many other architectures by varying in- 

dividual components. Figure 2 C shows an example of this simple 

GripNet implementation. 

3.3. GripNet architecture 

GripNet learns the embeddings of nodes in supervertices se- 

quentially according to the topological ordering of the superver- 

tices they belong to, which is made possible by designing the su- 

pergraph to be a directed acyclic graph [23] . For each superver- 

tex v S c , GripNet has a module for learning node embeddings within 

v S c from the information given by v S c and its parent supervertices 

N S c = { v S 
c ′ 
| e S 

c ′ c 
∈ E S } . Conceptually the module is composed of three 

layers: 

The external aggregation feature layer of supervertex v S c takes 

the learned node embeddings from its parent supervertices as in- 

put, and transforms them into features for nodes within v S c , which 

are referred to as external features . This layer is realized as a set 

of mutually parallel RGCN encoder sublayers, one for each parent 

supervertex v S 
c ′ 

∈ N S c . The supervertex v 
S 
c ′ 

’s contribution to the ex- 

ternal features of node i in v S is: 

r c 
′ → c 
i, ex = 

∑ 

l∈L c ′ c 

∑ 

j∈N cc 
′ 

i,l 

1 

|N cc 
′ 

i,l 
| 
W 

( ex ) 
l 

z c 
′ 

j , (7) 

where z c 
j 
is the embedding of node j in v S 

c ′ 
, L c ′ c denotes the set of 

possible edge labels in superedge e S 
cc ′ 

(a bipartite subgraph), N cc 
′ 

i,l 

is the set of node i ’s neighbors in e S 
cc ′ 

linked by an edge of type l, 

and W ( ex ) s are learnable parameters. The total external features of 

node i in v S c is obtained by summing over all supervertices’ contri- 

butions and applying an activation function, such as ReLU: 

r c i, ex = ReLU 

( 

1 

|N S c | 

∑ 

c ′ ∈N S c 

r c 
′ → c 
i, ex 

) 

. (8) 

Note that if a supervertex doesn’t have any parent supervertex, i.e., 

if it’s a root supervertex in the supergraph, then the external fea- 

ture layer becomes degenerated and we can simply choose the ex- 

ternal feature vectors as zero vectors: r c 
i, ex 

= 0 . 

4 
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The internal feature layer of supervertex v S c maps the original 

node features, typically one-hot vectors, into the same space that 

external features { r c 
i, ex 

} live in. This layer is constructed as a linear 

transformation W ( in ) followed by a nonlinear activation function, 

such as ReLU. Its output on node i in v S c , referred to as internal 

features , is: 

r c i, in = ReLU (W 
( in ) x c i ) , (9) 

where x c 
i 
is the original feature vector of node i . We combine the 

internal and external features to obtain the total features of node i , 

e.g., by concatenation or summation as 

r c i = (r c i, ex � r c i, in ) or (r 
c 
i, ex + r c i, in ) , (10) 

where � denotes concatenation, and + denotes summation. We set 

the default in GripNet to be concatenation �. 

The internal aggregation layer takes the total features { r c 
i 
} as 

the input u 0 
i 

= r c 
i,in 

, updates them within the supervertex v S c , and 

obtains the final embeddings for nodes in v S c . This layer is designed 

to be composed of T RGCN sublayers concatenated together, and 

the update rule between the tth and the (t + 1) th sublayer is: 

u 
t+1 
i = ReLU 

⎛ 

⎝ 
∑ 

l∈L c , j∈N c i,l 

1 

|N c 
i,l 
| 
W 

( ia ) 
l,t 

u 
t 
j + W 

( ia ) 
0 ,t u 

t 
i 

⎞ 

⎠ , (11) 

where L c is the set of possible edge labels in v 
S 
c , N c 

i,l 
denotes the 

neighbors of node i linked by edges of type l, and W s are learnable 

parameters. The output of the last RGCN layer z c 
i 

= u T 
i is the final 

learned embedding of node i in v S c . These embeddings can then be 

used for computing external features of v S c ’s child supervertices or 

downstream ML tasks. 

Algorithm 1 summarizes the steps in GripNet node embedding. 

Algorithm 1 GripNet node embedding. 

Input: Heterogeneous graph H and its corresponding user- 

defined directed acyclic supergraph G S (H) = (V S , E S ) 

Output: Embedding vectors { z i } for each node i in H. 

while V S is not empty do 

v S c ← supervertex with the highest topological order in V S 

remove v S c from V S 

for each vertex i within v S c do 

if v S c has a parent in G S then 

r c 
i,ex 

← external features calculated using Eqs. (7) and 

(8) 

else 

r c 
i,ex 

← 0 

end if 

r c 
i,in 

← internal features calculated using Eq. (9) 

r c 
i 

← total features calculated using Eq. (10) 

end for 

{ u 0 
i 
} 
i ∈ v S c 

← { r c 
i 
} 
i ∈ v S c 

{ u n 
i 
} 
i ∈ v S c 

← update { u 0 
i 
} 
i ∈ v S c 

iteratively T times using Eq. (11) 

{ z i } i ∈ v S c 
← { u n 

i 
} 
i ∈ v S c 

end while 

{ z i } ← 
⋃ 

v S c ∈ V 
S { z n i } i ∈ v S c 

Here we consider two popular tasks: link prediction and node 

classification. We follow the popular encoder-decoder framework 

in graph representation learning [12] . The GripNet representation 

learning introduced above learns a new vectorial embedding for 

each node, which is the GripNet encoder. For downstream tasks, 

the learned GripNet representation is fed into a GripNet decoder to 

infer graph properties, such as the existence probabilities of node 

attributes and edges (links). 

3.4. Link prediction 

We focus on the case where the edges (links) to be predicted 

are all located in a single supervertex v S c . The method presented 

below can be slightly modified to predict edges located in a su- 

peredge. We formulate link prediction as a binary classification of 

exist vs non-exist and adopt the DistMult factorization [1] acti- 

vated by the sigmoid function as the GripNet decoder for link pre- 

diction. Given nodes i and j in supervertex v S c and a possible edge 

label l ∈ L c , the probability that the edge (i, j, l) exists is computed 

as: 

f (i, j, l) = sigmoid ((z c i ) 
⊤ M l (z 

c 
j )) , (12) 

where M l is a trainable diagonal matrix associated with the edge 

label l, and z i and z j are the embeddings for nodes i and j. To 

train the model, we need both positive and negative instances 

of edges. Positive edges are the observed edges E c , while nega- 

tive ones require sampling. Traditional negative sampling methods 

[1,6,10,24] do not take the edge heterogeneity of graphs into ac- 

count. Thus, we propose a categorized negative sampling strategy 

below for GripNet decoder in link prediction. 

Categorized negative sampling (CNS) . To sample a negative 

edge with label l in supervertex v S c = (V c , E c ) , we propose a sam- 

pler to randomly choose a source-target node pair from the set 

{ (i, j) | i, j ∈ V c , (i, j, l) / ∈ E c } . In contrast, in previous methods neg- 

ative edges are chosen from the whole heterogeneous graph, and 

are constructed by corrupting (redirecting) one end of each posi- 

tive instance. For each edge label l, we enforce the number of neg- 

ative samples to be the same as that of positive instances in v S c . 

We use the cross-entropy loss to optimize the model, aiming to 

assign higher probabilities to positive edges and lower probabilities 

to negative ones, 

L (lp) = −
∑ 

(i, j,l) ∈ E c 

log f (i, j, l) −
∑ 

(i, j,l) ∈ N(E c ) 

log (1 − f (i, j, l)) , (13) 

where E c is the set of positive edges in v S c , and N(E c ) is the set of 

negative edges sampled by categorized negative sampler according 

to E c . 

3.5. Node classification 

In node classification, we consider the task of predicting a spe- 

cific node attribute with possible values from a set A for nodes in 

a given supervertex v S c (their types or categories are assumed to 

be known). The task can be viewed as a multiclass classification 

problem. Our GripNet decoder for node classification applies a lin- 

ear transformation W (nc) followed by a softmax activation function 

to i th node’s embedding vector z c 
i 
to obtain the probability distri- 

bution vector p i over A : 

p i = softmax (W 
(nc) z c i ) . (14) 

We minimize the following cross-entropy loss during training: 

L (nc) = −
∑ 

i ∈ V c , a ∈A 

s ia ln (p ia ) , (15) 

where s is the one hot representation of true attributes: s ia = 

1 [ node i ’s true attribute is a ] , V c is the set of nodes in superver- 

tex v S c and p ia is the a th entry of p i . 

4. Experiments 

We evaluate GripNet on large-scale , complex heterogeneous 

graphs. 

5
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Table 1 

Dataset statistics. | V | : # nodes, | E| : # edges, | V p | ( | E p | ): # nodes ( # edges) to be predicted, |C p | : # candidate labels, |T | : 

# node types, |L| : # edge labels. Items : average # items to be predicted per candidate label. Node types: the types of 

nodes contained in datasets, drug(d), gene(g), paper(p), author(a), book(bo), business(bu), organization(o) and location(l). 

Dataset | V | |T | | E| |L| | V p | | E p | |C p | Items Node types 

PoSE-0 4,285 2 4,725,690 1100 - 4,625,608 1,097 4,217 d, g 

PoSE-1 19,365 2 2,621,423 864 - 1,171,603 861 1,361 d, g 

PoSE-2 19,726 2 6,075,428 1100 - 4,625,608 1,097 4,217 d, g 

Aminer 397,477 2 1,265,593 3 124,806 - 7 17,829 a, p 

Freebase-a 14,989 1 12,556 1 14,989 - 8 1,873 bo 

Freebase-b 354,961 2 848,032 3 14,989 - 8 1,873 bo, bu 

Freebase-c 457,504 3 998,663 5 14,989 - 8 1,873 bo, bu, o 

Freebase-d 1,100,400 4 3,354,079 8 14,989 - 8 1,873 bo, bu, o, l 

4.1. Experimental design 

4.1.1. Dataset 

For link prediction with a large number of different relations, 

we consider the BioSNAP-Decagon dataset with 6M edges and 1K 

different edge labels in total [6] by constructing a series of three 

sub-datasets named as PoSE-0, -1 , and -2 , with varying propor- 

tions of task-related nodes. For node classification with a large 

number of labeled nodes, we construct the Aminer dataset with 

124K labeled nodes and the Freebase-series datasets with four sub- 

datasets, Freebase-a, -b, -c and -d , with increasing scale and het- 

erogeneity. Table 1 reports their statistics. 

• The PoSE-series are three datasets from the BioSNAP dataset 

collection [25] for Po lypharmacy S ide E ffect (POSE) prediction 

[6] : PP-Decagon (PP), ChG-InterDecagon (ChG) and ChChSe- 

Decagon (ChChSe) contain relations between genes, gene and 

drug, and drugs respectively. We integrate the datasets by 

GeneID [26] and PubChem CID [27] . The key difference among 

PoSE-0, 1 and 2 is the number of gene/drug nodes that are not 

directly linked with any drug/gene. 
• Aminer is constructed from the public Aminer Academic Net- 

work dataset [28] . Following the top venue classification in 

Google Scholar 1 , we select seven popular categories in com- 

puter science (CS) and 20 top venues for each category. Follow- 

ing [16] , we assign each author node a CS-category label with 

the most publications. 
• The Freebase-series are subsets of the Freebase dataset 

[18] with books classified into 8 categories. As the last column 

of Table 1 shows, Freebase-a contains book nodes and their re- 

lations. Business, organization, and location information are in- 

tegrated cumulatively to construct the Freebase-b, -c, and -d 

datasets respectively. 

4.1.2. Methods compared 

In the PoSE link prediction task, DECAGON [6] is a pioneer- 

ing work but with high computational requirements that we were 

not able to satisfy. A more recent work [21] showed DistMult 

[1] has better performance and lower cost of memory and time 

than DECAGON so we choose it for comparison. Three KG embed- 

ding models TransE [29] , ComplEx [30] and RotatE [31] are com- 

pared as they are considered as baselines for multi-relation link 

prediction by Open Graph Benchmark [32] . We also compare with 

RGCN [10] , which shows good performance on standard datasets 

for heterogeneous graphs. In node classification, we choose one 

MPass/RL-based method RGCN [10] , two popular GRL methods GCN 

[19] and GAT [33] , as well as two recent methods GCNII [34] and 

Cluster-GCN [35] . 

1 https://scholar.google.com/citations?view _ op=top _ venues&hl=en&vq= 

eng _ enggeneral . 

4.1.3. Evaluation metrics 

We use the area under the precision-recall curve (AUPRC), the 

receiver-operating characteristic (AUROC), and average precision at 

50 (AP@50) to evaluate link prediction performance, for each edge 

label first and then take their average. We use the micro-averaged 

F1 scores (Micro-F1) and macro-averaged F1 scores (Macro-F1) to 

evaluate node classification. We also evaluate the GPU memory us- 

age during model training using tools in the pytorch_memlab pack- 

age 2 , and the computational time. 

4.1.4. Experimental configuration 

We train and test all considered methods on NVIDIA GV100GL 

(Tesla V100 PCIe 32 GB VRAM). For fair comparison and to avoid 

costly tuning on large-scale data, we use the following configura- 

tions for all methods: 

• set the learnable embeddings’ dimension for the nodes of inter- 

est to 32 in node classification 
• choose the embedding dimension for each model such that 

training can be performed on the GPU memory budget [32] in 

link prediction 
• initialize weights using Xavier initialization [36] 
• optimize models end-to-end by full-batch with the Adam opti- 

mizer [37] with learning rates of 0.01 
• train a fixed 100 epochs for all the experiments. 

In addition, when implementing methods involving graph con- 

volution operations, an additional embedding layer with trainable 

parameters W ∈ R |V|×256 is added before convolution layers for 

computational efficiency, as the datasets contain up to millions of 

nodes. We do a stratified split into 90% for training and 10% for 

testing for both link prediction and node classification. With the 

above configuration, we set the embedding dimension of GripNet 

hidden layers to either 64 or 128 according to the size of the su- 

pervertices ( Section 4.2 ), and report the best results on the test 

sets in node classification. Each experiment is repeated 10 times 

with different random seeds, and all test results are reported with 

the mean and unbiased standard deviation. 

4.1.5. Model implementation 

We implement GripNet models with PyTorch [38] and PyTorch- 

Geometric packages [39] . We use the model implementation of 

GCN, RGCN, and GAT model provided by PyTorch-Geometric [39] . 

The implementation of TransE, RotatE, ComplEx, and DistMult 

model are provided by the Open Graph Benchmark [32] . We use 

the model implementation of GCNII 3 and Cluster-GCN 4 provided 

by the authors. Due to the large data size, we improved the RGCN 

implementation to reduce its memory requirements for the link 

prediction task. 

2 https://github.com/Stonesjtu/pytorch _ memlab . 
3 https://github.com/chennnM/GCNII . 
4 https://github.com/google-research/google-research/tree/master/cluster _ gcn . 
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Table 2 

Model settings for supergraphs with two supervertices. Node type ( NT ) symbols: g, d, a, p, bo and bu are the same 

as those in Table 1 . 

Root Supervertex Task-related supervertex 

Model NT W (in ) W (ia ) 1 W (ia ) 2 NT W (ex ) W (in ) W (ia ) 1 W (ia ) 2 

GripNet-0/1/2 g R | p|×32 
R 32 ×16 

R 16 ×16 d R 16 ×16 
R | d|×32 

R (32+16) ×16 - 

GripNet-b bu R | bu |×128 
R 128 ×64 

R 64 ×64 bo R 64 ×64 
R | bo|×128 

R (128+64) ×64 
R 64 ×32 

GripNet-am p R | p|×128 
R 128 ×64 

R 64 ×64 a R 64 ×64 
R | a |×128 

R (128+64) ×128 
R 128 ×32 

4.2. GripNet supergraph construction 

Supergraph construction involves Steps 2–4 in Fig. 3 . 

Freebase-c and -d datasets. Figure 2 gives an example on su- 

pergraph construction for book classification on Freebase-d. In the 

Freebase-d supergraph, there are three supervertices : book v S 0 , lo- 

cation & organization v S 1 , and business v 
S 
2 . The information prop- 

agation paths are: location& organization → book, and business 

→ book. In each supervertex, the input node features of all the 

entities use one-hot encoding features, and the outputs are the 

node embeddings. The location, organization and business node 

embeddings are learned with 1) an internal feature layer with 

W (in ) ∈ R | V i |×256 , where V i are nodes in the i th supervertex, and 2) 

two internal aggregation layers with W 
(ia ) 
1 ∈ R 256 ×128 , and W 

(ia ) 
2 ∈ 

R 128 ×128 . On the book supervertex, 1) the business, location and 

organization embeddings are transformed into book features by 

an external aggregation feature layer with W 
(ex ) 
1 , W 

(ex ) 
2 ∈ R 128 ×128 , 

2) the input feature is extracted in an internal feature layer with 

W (in ) ∈ R | V 0 |×128 , and 3) the final book embeddings are learned by 

an internal aggregation layer with W 
(ia ) 
1 ∈ R 256 ×32 , whose input is 

the concatenation of the output of external and internal feature 

layers. The supergraph construction for Freebase-c is similar to that 

for Freebase-d. It also contains three supervertices : book v S 0 , orga- 

nization v S 1 , and business v 
S 
2 . The information propagation paths 

are: organization → book, and business → book. GripNet imple- 

mentations for Freebase-c have the same layer settings and dimen- 

sions of all the trainable parameters as that for Freebase-d. 

PoSE-0, -1, -2, Freebase-b and Aminer datasets. For the 

datasets with two node types, PoSE-series, Freebase-b, and Aminer, 

their supergraphs only contain two supervertices and a superedge 

directed from the root supervertex to the task-related supervertex. 

See layer settings and trainable parameter dimensions in Table 2 . 

GripNet-0, -1, and -2 are for the polypharmacy side-effect pre- 

diction task on datasets PoSE-0, -1, and -2, respectively. Usually, 

the prediction is made directly on the drug-drug interaction graph 

in the ChChSe dataset. Assuming that drug-drug interactions are 

caused by interactions between genes affected by them, integrat- 

ing the PP, and ChG graph may improve the prediction perfor- 

mance. GripNet-0,1,2 models 1) learn the gene embeddings in the 

gene (root) supervertex, 2) propagate the information to the drug 

(task-related) supervertex via an external aggregation feature layer, 

and 3) learn the drug embeddings and predict side effects on the 

drug supervertex. For GripNet-b on Freebase-b dataset, the busi- 

ness node embeddings are learned on the business supervertex 

and are used to learn book embeddings on the book supervertex. 

For GripNet-am on Aminer dataset, the paper node embeddings 

are learned on the paper supervertex, then they are propagated to 

the author supervertex. 

Freebase-a dataset. Freebase-a is represented as a homoge- 

neous graph. Its supergraph only contains a book supervertex. On 

this supervertex, the embeddings are learned without any exter- 

nal aggregation feature layer. The parameter settings are W (in ) ∈ 

R | Bo|×128 , W 
(ia ) 
1 ∈ R (128) ×64 , and W 

(ia ) 
2 ∈ R 64 ×32 . 

4.3. Performance comparison 

Tables 3 and 4 report the experimental results in terms of ac- 

curacy (AUROC / Micro-F1), time (training and testing time per 

epoch) for link prediction and node classification respectively, with 

the best result in bold and the second-best underlined. With ef- 

fective information propagation between supervertices, GripNet 

achieves the best AUROC/Micro-F1 scores on all seven datasets. 

4.3.1. Link prediction 

For the PoSE-series supergraphs, we have two GripNet imple- 

mentations, GripNet-l and GripNet-r , to emphasize capturing in- 

formation on the leaf and root supervertex by using less layer on 

the root and leaf supervertex respectively. Typically, the internal 

aggregation layer (see Eq. (11) ) on each supervertex contains two 

RGCN sublayers. Here we use a one-sublayer internal aggregation 

layer on the root supervertex for GripNet-l and on the leaf super- 

vertex for GripNet-r. The hyperparameter settings for GripNet-r are 

the same as GripNet-0/1/2 in Table 2 , while GripNet-l has slightly 

different settings: it does not have W ia 2 for the root (gene) super- 

vertex but set that for the leaf (drug) supervertex to R 16 ×16 . From 

the link prediction results in Table 3 and Figs. 4 A and B, GripNet 

has the best prediction accuracy under a maximum GPU memory 

of 30GB and varying embedding dimensions, and baseline models 

are more sensitive to embedding dimension than GripNet. From 

Fig. 4 A, the AUROC of GripNet does not increase with increasing 

embedding dimension, while at the lowest embedding dimension 

8, GripNet greatly outperformed the RL-based methods (TransE, 

Table 3 

Multi-relational link prediction results in AUROC . The best results are in bold and the second best ones are underlined. 

Analogous trends hold for AUPRC and AP@50. Dim : the embedding dimension for each model such that the training peak 

GPU memory usage is around 30GB. TpE : computational time per epoch (including training and testing score computa- 

tion). 

PoSE-0 PoSE-1 PoSE-2 

Model AUROC Dim TpE(s) AUROC Dim TpE(s) AUROC Dim TpE(s) 

TransE 0 . 718 ± 0 . 006 134 30.0 0 . 826 ± 0 . 007 170 21.5 0 . 751 ± 0 . 006 106 30.8 

RotatE 0 . 891 ± 0 . 003 32 29.7 0 . 857 ± 0 . 006 38 20.7 0 . 851 ± 0 . 004 24 30.6 

ComplEx 0 . 595 ± 0 . 004 34 29 . 2 0 . 844 ± 0 . 003 48 20 . 3 0 . 560 ± 0 . 004 26 30 . 4 

DistMult 0 . 843 ± 0 . 008 84 29 . 0 0 . 859 ± 0 . 008 108 20 . 4 0 . 877 ± 0 . 009 66 29 . 7 

RGCN 0 . 905 ± 0 . 006 76 47.5 0 . 909 ± 0 . 005 94 37.1 0 . 850 ± 0 . 003 58 60.3 

GripNet-l 0 . 920 ± 0 . 003 32 39.9 0 . 914 ± 0 . 006 120 24.2 0 . 918 ± 0 . 004 32 40.3 

GripNet-r 0 . 920 ± 0 . 003 16 41.1 0 . 912 ± 0 . 003 58 25.0 0 . 920 ± 0 . 050 16 41.4 
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Fig. 4. A : AUROC over training time and at different embedding dimensions for different models on PoSE-2. B : AUROC over training time for different models on PoSE-0. 

C : Micro-F1 on the four Freebase datasets plotted with respect to the number of node types (graph heterogeneity) and the number of nodes, with standard deviations as 

shades (only visible for GCN). 

RotatE, ComplEx, and DistMult). Although RL-based methods have 

a shorter per-epoch running time than GripNet (from Table 3 ), 

GripNet converges much faster (from Figs. 4 A and B) and fewer 

epochs are needed in practice. 

4.3.2. Node classification 

In node classification ( Table 4 ), the F1 scores for different mod- 

els have small differences on Aminer but more variance for the 

Freebase series. This indicates that the information between su- 

pervertices of Aminer is less complementary and GripNet leads 

to more improvement when the dataset heterogeneity increases. 

The GripNet-cat and GripNet-add implementations correspond to 

two operations combining the internal and external features (see 

Eq. (10) ). We will discuss them more in Section 4.6 on ablation 

studies. 

From Fig. 4 C, we can see that GripNet has the biggest im- 

provement in book classification accuracy by 99% on Freebase-d 

over on Freebase-a, while GCN, GCNII, RGCN, GAT, and Cluster-GCN 

have a smaller improvement of 86%, 78%, 69%, 65%, and 54%, re- 

spectively. In addition, compared with other MPass-based methods 

(GCN, RGCN, and GAT), GripNet is much faster (from Table 4 ) and 

consumes much less GPU memory because of its segregated archi- 

tecture that reduces unnecessary expensive graph convolution op- 

erations. 

4.4. Data integration studies 

Heterogeneous graphs are useful for integrating multiple 

datasets. Thus, GripNet can be used for data integration, where 

each supervertex represents a dataset and superedges define the 

relationships between datasets as information propagation paths. 

For example, Freebase-b has two supervertices (book and busi- 

ness). To add/integrate an “organization dataset” into Freebase-b, 

we add a supervertex of organization first, and then create a su- 

peredge from the organization supervertex to the book supervertex 

because of the close association between organization and book 

(based on existing knowledge). 

In Fig. 4 C, Freebase-a contains only one node type (book) while 

Freebase-d contains four node types because it has integrated 

three additional types of data (business, organization, and loca- 

tion). Figure 4 C also shows that the improvement by GripNet in- 

creases as the heterogeneity of the graph increases. We visualize 

book embedding learned by GripNet in the four Freebase-series 

datasets in Fig. 5 to show that as we integrate data of different 

types, the boundaries between book categories become clearer. For 

the polypharmacy side effect prediction task, we get decent pre- 

diction accuracy with 0.743 in AUROC when using the PP & ChG 

dataset, while the AUROC trained with the ChChSe dataset is 0.908. 

The integration of these datasets leads to an AUROC with 0.922, 

which improves the performance by 24.1% and 1.5% respectively. 

4.5. Studies on supergraph construction 

In supergraph construction, the number of supervertices |C| and 
the directions of superedges are manually determined. Knowing 

their impact on both the model performance and the memory and 

time costs are critical to designing GripNet models. 

Table 4 

Node classification results in Micro-F1 . The best results are in bold , the second best ones are underlined. Analogous trends 

hold for Macro-F1. Note that the time cost of Cluster-GCN is not comparable against other models because it is implemented in 

TensorFlow while other models are implemented in PyTorch. 

Aminer Freebase-b Freebase-c Freebase-d 

Model Micro-F1 TpE(s) Micro-F1 TpE(s) Micro-F1 TpE(s) Micro-F1 TpE(s) 

Cluster-GCN 0 . 915 ± 0 . 008 - 0 . 451 ± 0 . 008 - 0 . 541 ± 0 . 007 - 0 . 571 ± 0 . 009 - 

GAT 0 . 899 ± 0 . 003 0.36 0 . 454 ± 0 . 005 0.43 0 . 498 ± 0 . 004 0.50 0 . 564 ± 0 . 004 0.94 

GCN 0 . 907 ± 0 . 010 0 . 26 0 . 433 ± 0 . 010 0.17 0 . 508 ± 0 . 011 0.22 0 . 563 ± 0 . 009 0 . 51 

GCNII 0 . 827 ± 0 . 004 2.15 0 . 437 ± 0 . 002 2.07 0 . 554 ± 0 . 004 2.58 0 . 577 ± 0 . 004 3.92 

RGCN 0 . 882 ± 0 . 005 2.62 0 . 365 ± 0 . 005 1.09 0 . 464 ± 0 . 006 1.31 0 . 506 ± 0 . 006 2.67 

GripNet-cat 0 . 920 ± 0 . 002 0 . 25 0 . 464 ± 0 . 002 0 . 08 0 . 567 ± 0 . 002 0 . 16 0 . 591 ± 0 . 002 0 . 36 

GripNet-add 0 . 921 ± 0 . 002 0 . 25 0 . 476 ± 0 . 001 0 . 13 0 . 556 ± 0 . 002 0 . 17 0 . 594 ± 0 . 002 0 . 36 
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Fig. 5. Visualization of GripNet embedding for eight book categories in Freebase-series datasets using t-SNE [40] to study the data integration performance. Colors represent 

different book categories. 

We study supergraph construction on Freebase-d dataset, which 

has four types of nodes. According to the criteria of supergraph 

construction in Section 3.2 , there is one supergraph with three 

supervertices and two supergraphs with four supervertices, and 

we build GripNet models, called GripNet-cat 3 , GripNet-cat 4 a , and 

GripNet-cat 4 b , on these supergraphs respectively (see Table 5 ). 

Please note that GripNet-cat 3 is the same as GripNet-cat in Table 3 . 

There is no valid supergraph with two supervertices in this case, 

because any such supergraph either violates the first require- 

ment or the second requirement of supervertices ( Section 3.2 ). Be- 

cause GripNet is equivalent to RGCN when |C| = 1 , we also com- 

pare them with RGCN. We use the same experimental settings as 

GripNet-cat, and set the dimensions of all the hidden layers and 

final embeddings for each node type to be the same. 

Firstly, the results in Table 5 show that a large |C| gives lower 

memory and time costs, which is consistent with our expectation 

that GripNet will reduce the memory and time costs by reducing 

the amount of information propagation operations as the num- 

ber of supervertices increases. Generally, when |C| = |T | , we ex- 

pect the memory and time costs to be the lowest. For Freebase-d, 

|T | = 4 . As expected, the GripNet models with |C| = 4 show the 

lowest memory and time costs in Table 5 . 

Secondly, comparing the results of two GripNet models with 

four supervertices, we can see that the direction of the superedge 

between non-task supervertices does not significantly affect the 

model performance and the memory and time costs. One possi- 

ble reason why GripNet-cat 4 a is better than GripNet-cat 4 b is that 

there are more location-book edges ( ∼ 58 k ) than organization- 

Table 5 

Results of supergraph construction studies on Freebase-d dataset in Micro-F1 . Analogous 

trends hold for Macro-F1. |C| : #supervertices, GMem : averaged peak GPU memory usage 

(in GB), TpE : the same as in Table 3 . Supergraphs use the same legends as in Fig. 2 . The 

best results are in bold. 

|C| 1 3 4 

Supergraph 

Model RGCN GripNet-cat 3 GripNet-cat 4 a GripNet-cat 4 b 
Micro-F1 0 . 506 ± 0 . 006 0 . 591 ± 0 . 002 0 . 582 ± 0 . 002 0 . 576 ± 0 . 002 

GMem 23.46 13.82 11.64 11.65 

TpE(s) 2.67 0.34 0.23 0.23 
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Table 6 

Averaged peak GPU memory usages (in GB) for feature integration op- 

eration comparison on node classification. The better results are in 

bold. 

Model Aminer Freebase-b Freebase-c Freebase-d 

GripNet-cat 5.89 2.29 4.24 13.82 

GripNet-add 5.74 4.63 4.87 15.74 

book edges ( ∼ 22 k ) and information tends to propagate better 

from less-connected supervertex to more-connected supervertex 

(than vice versa). 

Thirdly, choosing the number of supervertices as three gives 

the best prediction performance but slightly higher computing cost 

than the two GripNet models with four supervertices. This also in- 

dicates that considering the semantic coherence between location 

and organization nodes and assigning them to the same superver- 

tex leads to better prediction results. In addition, learning on valid 

supergraphs with GripNet is better than learning with RGCN. 

4.6. Ablation studies 

We perform ablation studies to understand the effects of differ- 

ent design choices to our results. 

Feature Integration Operation . GripNet provides two opera- 

tions to obtain the total features of node in the internal feature 

layer within a supervertex: concatenation and sum, and we set the 

concatenation to be the default setting. As shown in the last two 

rows of Table 4 and in Table 6 , these two operations lead to sim- 

ilar prediction accuracy and have similar memory and time costs 

except on Freebase-b. The reason why the memory and time costs 

for GripNet-add are higher than GripNet-cat on Freebase-b is that 

in GripNet-cat, the external aggregation feature layer has an output 

dimension of 64 and the internal feature layer has an output di- 

mension of 128 but in GripNet-add, these two layers need to have 

the same output dimension 128. Therefore, the difference in peak 

GPU memory usages suggests that the concatenation operation is 

a more flexible choice that allows latent features to have different 

dimensions for more efficient information propagation. 

Categorized Negative Sampling (CNS) . GripNet only needs CNS 

when modeling relations within the drug supervertex. When we 

replaced it with the popular negative sampling used in compara- 

tive methods for link prediction (RGCN, DistMult, and DECAGON), 

the accuracy on the PoSE-series datasets was decreased by no 

more than 1%, but the convergence speed slowed down by 9.2%. 

5. Conclusion 

This paper proposed a new supergraph data structure and 

a new Graph Information Propagation (GripNet) framework for 

learning node representations on heterogeneous graphs. We evalu- 

ated GripNet on seven large-scale datasets in link prediction, node 

classification, and data integration. GripNet achieved the best over- 

all performance on these datasets. 

The idea of supergraph gives GripNet the ability to efficiently 

learn embeddings on highly heterogeneous graphs and allows 

GripNet to be deep (4–8 graph convolutional layers in our ex- 

periments). Here, we demonstrated GripNet using semantically- 

coherent segregation as an intuitive approach for assigning dif- 

ferent types of nodes to different supervertices; however, this is 

not the only way. Thus, future work is needed 1) to test GripNet 

performance for graphs with higher heterogeneity, 2) to explore 

different node type segregation strategies, and 3) to discover the 

trade-off between the number of node types and supervertices. In 

addition, while the tasks covered in this paper only occur in one 

supervertex, GripNet can be adapted for tasks spanning multiple 

supervertices in the future. 
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