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ABSTRACT 

In a business-to-business setting, social networks comprise direct and indirect connections 

between firms that provide access to new information, knowledge, and resources that otherwise 

may not be available to the firms. Social network analysis (SNA), which refers to studying and 

mapping social structures through graph theory, has been widely used in many social science 

fields, including management. The interest in SNA is also growing among marketing scholars. 

This editorial discusses the main aspects of SNA and provides a step-by-step guide to researchers 

on how to conduct SNA in marketing, with a particular focus on the interorganizational context. 

The purpose of this editorial is to encourage social network research within marketing. We 

introduce key theoretical constructs in SNA, discuss their operationalization, and offer detailed 

instructions on constructing them using UCINET 6 (a common software package to implement 

SNA). The practical application of SNA is made on strategic alliance data collected from the 

Securities Data Company (SDC) Platinum database. 
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1. Introduction  

Social networks in businesses comprise direct and indirect connections between firms that 

provide access to new information, knowledge, and resources. In business-to-business (B2B) 

marketing research, social network analysis is often used to study interorganizational 

relationships. Examples of such relationships typically include buyer-supplier interactions (e.g., 

Dekker, Donada, Mothe, & Nogatchewsky, 2019; Ekici, 2013), strategic marketing alliances 

(e.g., Chakravarty, Zhou, & Sharma, 2020; Swaminathan & Moorman, 2009), or board interlocks 

(e.g., Srinivasan, Wuyts, & Mallapragada, 2018; Wuyts & Dutta, 2008). Social network analysis 

(SNA) helps explore the pattern or structure of connections among firms, such as their centrality 

in the network (Swaminathan & Moorman, 2009) or the density of connections between their 

partners (Thomaz & Swaminathan, 2015), that has a significant bearing on firm strategic 

decisions and outcomes. In particular, B2B scholars have utilized SNA to explore how 

interorganizational connections affect information exchange, collaboration, and competition 

among firms (e.g., Schilling & Phelps, 2007; Shipilov & Gawer, 2020; Zaheer, Gozubuyuk, & 

Milanov, 2010).  

Over time, the interest in SNA within marketing, especially in the B2B context, has grown. 

Grewal and Sridhar (2021) have emphasized the importance of relying on SNA to explain social 

network structures and dynamics, specifically in B2B markets. The main appeal of social network 

analysis in marketing research is that SNA allows researchers to account for the relationships 

among firms and the patterns and implications of these relationships. As dominant marketing 

thinking primarily deals with finding sources of firms’ competitive advantage (Anderson, 1982; 

Day, 2011), SNA is becoming particularly important for marketing researchers. As almost all the 

firms operate within an ecosystem of their peers and often interact, compete, and collaborate with 

them, studying firms as separate individual entities will provide an incomplete perspective 
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(Shipilov & Gawer, 2020). SNA fills this void by allowing the researchers to model the 

complexity and dynamism of these interactions leading to novel and managerially relevant 

insights. For example, Chakravarty et al. (2020), Swaminathan and Moorman (2009), and 

Thomaz and Swaminathan (2015) utilized SNA to examine the role of interorganizational 

networks in explaining firm financial performance in marketing alliances. Fang, Lee, Palmatier, 

and Han (2016) relied on SNA to study how a firm’s position in an alliance network represents a 

double-edged sword when launching new products: it improves incremental new product 

launches but harms breakthrough new product launches. In their recent editorial in the Journal of 

Marketing, Deighton, Mela, and Moorman (2021) urge scholars and practitioners to use the social 

network perspective as one of the new lenses to view marketing problems. 

In Industrial Marketing Management, there has also been a growing interest in applying 

SNA. B2B scholars utilized SNA when studying diverse topics and applying multiple methods, 

ranging from case studies (e.g., Sepulveda & Gabrielsson, 2013) to quantitative methods, 

including complex models (e.g., small-world graphs) (e.g., Choi, Kim, & Lee, 2010). Figure 1 

shows the increasing number of empirical studies utilizing SNA over time as B2B scholars are 

becoming more familiar with the methodology and more interorganizational network data 

becomes available. For example, Yaqub, Srećković, Cliquet, Hendrikse, and Windsperger (2020) 

have edited a special issue on “Network innovation versus innovation through networks,” which 

includes studies looking at interorganizational networks in their various forms (strategic 

alliances, franchising, cooperatives, retail, and service chains) and their impact on innovation. A 

separate stream of research has looked at a specific type of social network called guanxi that 

exists in China (e.g., Badi, Wang, & Pryke, 2017; Berger, Herstein, Silbiger, & Barnes, 2015; 

Wang, 2007) and Et-Moone in Saudi Arabia (e.g., Abosag & Naudé, 2014). Other studies have 

examined the role of social networks in a firm’s international activities (e.g., Fletcher, 2008; 
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Sepulveda & Gabrielsson, 2013) or small and medium enterprise performance (e.g., Naudé, 

Zaefarian, Tavani, Neghabi, & Zaefarian, 2014).  

-----INSERT FIGURE 1 ABOUT HERE----- 

Informed by the growing recognition of SNA research in B2B marketing, this editorial aims 

to promote SNA in B2B marketing and encourage B2B scholars to leverage the methodology to 

draw unique and novel insights. The editorial attempts to be a systematic guide about the key 

constructs in SNA and to provide the B2B reader B2B a step-by-step manual to apply SNA to 

research problems. In the editorial, we discuss commonly used social network variables at two 

levels of analysis: actor-level (i.e., firm- or individual-level) and network community-level (Sytch 

& Tatarynowicz, 2014). At the actor level, we distinguish between the ego-network perspective 

and the whole-network perspective that B2B scholars have often relied on (e.g., Chakravarty et 

al., 2020; Srinivasan et al., 2018). While the ego-network perspective considers only a firm’s 

direct connections with its partners and connections between these direct partners, the whole-

network perspective also considers all possible connections of a firm’s partners and connections 

of these partners’ partners (Borgatti, Everett, & Johnson, 2018). We further discuss the small-

world properties of a network (Watts & Strogatz, 1998) and the network community perspective.1 

It is worth acknowledging that the network community-level has not received much attention in 

B2B marketing, even though firm outcomes have been shown to vary with the characteristics of 

network communities (Sytch & Tatarynowicz, 2014). Relying on strategic alliance data collected 

from the SDC Platinum database (the most frequently used database to analyze alliance 

networks) (e.g., Gulati, Sytch, & Tatarynowicz, 2012; Lavie, Lunnan, & Truong, 2022; Schilling, 

                                                 
1 Please see Section 2 for the detailed discussion of social network variables.  
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2009), we provide a step-by-step guide for constructing an interorganizational network and 

deriving social network variables. 

2. Overview of social network concepts, measures, and studies  

This section starts by providing an overview of different perspectives to investigate the 

effect of social networks on firm or other actor behavior and outcomes and defines key 

terminology used in SNA. We then describe the social network concepts and the correspondent 

measures that have been widely utilized in marketing and management research. We review 

selected papers on each concept and elaborate on the mechanisms and the measures used by the 

authors. The section demonstrates the importance of these concepts in building knowledge on 

various marketing and management topics and highlights their role in generating new insights for 

academic literature.  

2.1. Social network perspectives 

Prior research has acknowledged the multi-layered nature of a firm’s embeddedness in 

social networks. Firms’ or other actors’ position in the social network has traditionally been 

studied by B2B scholars from the ego network or the whole network perspective (e.g., 

Chakravarty et al., 2020; Swaminathan & Moorman, 2009). The ego network perspective posits 

that firm behavior and performance are shaped by the firm’s immediate surroundings comprising 

direct connections to its partners and the partners’ connections among themselves (e.g., Ahuja, 

2000; Frankenberger, Weiblen, & Gassmann, 2013; Kumar & Zaheer, 2019). A firm’s ego 

network is a part of the whole network (i.e., the entire network)—a broader social space (often 

limited to an industry) that includes firms' overall structure and connections. Where a firm is 

located in the whole network, such as the network’s core (i.e., center) or its periphery, matters for 

this firm’s access to information and knowledge flows (e.g., Hernandez & Shaver, 2019; 

Rosenkopf & Schilling, 2007; Swaminathan & Moorman, 2009). In-between ego and whole 
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networks are network communities, which are defined as dense, non-overlapping structural 

groups within the entire network (Fortunato, 2010) containing pockets of homogeneous 

knowledge (Sytch & Tatarynowicz, 2014). These three layers are depicted in Figure 2. 

-----INSERT FIGURE 2 ABOUT HERE----- 

2.2. Key terms in SNA 

It is important to mention that studies utilizing SNA often use specific terminology. An ego 

network involves a particular node, called an ego. A node or an actor is an entity (e.g., a firm or 

an individual) making up the network. The nodes to which the ego is connected are called alters, 

and the connections between nodes (e.g., alliances and board interlocks) are called edges. When 

an edge joins two nodes, they are said to have a tie (Borgatti et al., 2018). A tie is considered 

undirected when the relationship is mutual and reciprocal, as in strategic alliances and many other 

B2B arrangements (Kim, Howard, Cox Pahnke, & Boeker, 2016). 

On the other hand, a directed tie implies that there is no reciprocity in the relationship, with 

information flowing one way. Much social network research in marketing and management 

assumes that the ties are undirected (e.g., Chakravarty et al., 2020; Swaminathan & Moorman, 

2009; Sytch, Tatarynowicz, & Gulati, 2012). However, some recent studies have called to 

account for potential directionality in the relationships (e.g., Tóth, Naudé, Henneberg, & Ruiz, 

2021; Tóth, Peters, Pressey, & Johnston, 2018). The network in Figure 2 is undirected, as can be 

understood from the absence of directionality in the lines connecting two nodes. The 

directionality can be denoted using arrows showing the direction of information flow.  

One way to represent a matrix is through a graph, as in Figure 2. Another way to 

(mathematically) conceptualize a network is through the adjacency matrix—a matrix in which 

the columns and rows denote nodes and entries in row 𝑖 and column 𝑗 denote ties from 𝑖 to 𝑗. For 

undirected networks, the adjacency matrix is symmetric, i.e., the top right half of the matrix 
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(above the main diagonal) will mirror its bottom half. In Figure 3, we depict a simple undirected 

network and its respective adjacency matrix. 

-----INSERT FIGURE 3 ABOUT HERE----- 

2.3. Actor-level measures: an ego network perspective 

The following section discusses three key measures used in SNA from an ego network 

perspective: ego network size (degree centrality), network constraint, and ego network density.  

2.3.1. Ego network size (degree centrality) 

The most obvious and straightforward measure we can apply to an ego network is the total 

number of an ego’s direct ties to alters, also known as ego network size or degree centrality. 

Unlike other centrality measures, degree centrality is calculated without requiring information 

about the whole network in which a particular ego is embedded. Degree centrality could be 

considered a measure of prominence but, unlike other centrality measures, it does not necessarily 

indicate the importance of a node in connecting others (Borgatti et al., 2018; Wasserman & Faust, 

1994). In an undirected network, degree centrality is calculated as a row (or column) sum of the 

adjacency matrix 𝑋. Formally, degree centrality of actor 𝑖, 𝑑𝑖, is expressed as: 

(1) 𝑑𝑖 = ∑ 𝑥𝑖𝑗𝑗 , where 𝑥𝑖𝑗 is the (𝑖, 𝑗) entry of the adjacency matrix. 

Degree centrality has been utilized in much earlier and current work. For instance, Powell, 

Koput, and Smith-Doerr (1996) demonstrate that a firm’s centrality in the network of R&D 

alliances helps it enhance organizational learning, creating wider collaboration opportunities by 

becoming an attractive alliance partner in the future. In interesting research analyzing firm 

behavior, Ranganathan and Rosenkopf (2014) explore how firms’ degree centrality influences 

their voting behavior in a technological standards-setting committee. They show that firms with 

higher degree centrality in the knowledge network exhibit a lower disposition toward adopting 
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standards that will make knowledge sharing easier. In a recent paper, Chakravarty et al. (2020) 

use the context of new product alliances to study how asymmetry in degree centrality between a 

firm and its partner affects a firm financial performance. The results imply that while a moderate 

asymmetry in degree centrality benefits the focal firm, a high asymmetry creates a power 

imbalance causing mistrust between partners, ultimately lowering financial returns from 

alliances. These papers show that degree centrality is a simple yet powerful concept that can be 

applied to explore different facets of a firm’s behavior and outcomes. 

2.3.2. Network constraint 

Perhaps one of the most common measures to calculate in ego networks is Burt’s (1992) 

network constraint. Network constraint captures how ego is connected in alters who invest their 

time and energy in each other. Time investment of actor 𝑖 in actor 𝑗 can be measured by the 

proportion of 𝑖’s contacts with 𝑗 relative to the total number of 𝑖’s contacts. Formally, Burt’s 

network constraint of ego 𝑖 is expressed as: 

(2) 𝐶𝑖 = ∑ 𝑐𝑖𝑗𝑗 , where 𝑐𝑖𝑗 = (𝑝𝑖𝑗 + ∑ 𝑝𝑖𝑞𝑝𝑞𝑗𝑞 )2 for 𝑞 ≠ 𝑖, 𝑗.  𝐶𝑖 is the aggregate constraint on 𝑖 that is the sum of constraints from 𝑖’s relationship with each of 𝑁 contacts. 𝑝𝑖𝑗 is the proportion of 𝑖’s network time and energy invested in contact 𝑗.  
Network constraint normally takes values between 0 and 1 (Borgatti et al., 2018). A firm’s 

network constraint is high when it has few contacts and those contacts are strongly connected to 

one another. If we take a network in Figure 3, A1 will have the lowest value of network 

constraint (0.544), followed by A5 (0.792), A2 and A3 (0.835 for both), and A3 (1.000). 

Management and marketing scholars often use the inverse of network constraint to capture 

a firm’s brokerage advantage, which measures “access to a wider diversity of information, early 

access to that information, and control over information diffusion” (Burt, 2005, p. 16). The 
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brokerage advantage of firms has been studied from several perspectives in management 

research. For example, Koka and Prescott (2008) study brokerage advantage in alliance networks 

in the context of environmental changes in the steel industry and find that firms possessing 

brokerage advantage perform better. Their research highlights that brokerage advantage helps 

firms acquire appropriate skills and capabilities in the changing environment. In another study, 

Iurkov and Benito (2018) investigate how the positioning of firms in their domestic network of 

strategic alliances affects their geographic scope, i.e., whether they concentrate on their home 

region or expand beyond it. The authors find that the relationship between the brokerage and 

home-region orientation is nonlinear, as excessive brokerage advantage can also lock firms in 

their domestic environments by facilitating the development of location-bound firm-specific 

advantages. In the innovation literature, Wang, Rodan, Fruin, and Xu (2014) study brokerage 

advantage in a firm’s collaborators network and knowledge network. They find that the 

brokerage advantage of collaborators in the network increases exploration, as a brokerage is key 

to searching and combining disparate knowledge elements. So overall, brokerage advantage 

explains the connection and information benefits a firm may enjoy in a social network but, at the 

same time, ties it closely to the context of the study. 

It is worth acknowledging that network constraint is a function of ego network size. The 

logic is that an actor acquires social capital (e.g., through access to information) by connecting to 

each additional alter and loses capital with the extent to which the alters are connected (Burt, 

1992, 2005). This may have implications for research design. For example, Borgatti et al. (2018, 

pp. 321-322) suggest that “researchers using [brokerage] as an independent variable in a 

regression should not control for degree [centrality], as degree [centrality] is one of the two 

factors that make up the concept.”  

2.3.3. Ego network density 
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Ego network density measures limits to an ego’s behavior (e.g., potential exposure to 

opportunism and violation of social norms) since its alters are tightly interconnected. It captures 

the proportion of the ego’s alters who are interconnected. More precisely, ego network density is 

calculated as the number of actual ties between ego’s alters divided by the total number of ties 

possible (Borgatti et al., 2018). The resulting number is therefore bound between 0 and 1, where 

the latter indicates high ego network density (i.e., every possible tie is also an actual tie).  

The concept has been used in marketing and management to reveal several important 

aspects of firm behavior. For example, Swaminathan and Moorman (2009) examined marketing 

alliances and found that high partners’ interconnectedness improved information transfers 

between the network and the new alliance and reduced partner opportunism, positively affecting 

shareholder return from alliance formation announcements. On the contrary, Bae and Gargiulo 

(2004) studied alliances in the U.S. telecommunications industry and found that network density 

had a significant adverse effect on profitability, suggesting that the lack of connections among a 

firm’s partners may be a significant barrier to effective cooperation. Interestingly, Thomaz and 

Swaminathan (2015) argue that at low levels of ego-network density, the idiosyncratic risk in 

marketing alliances decreases, and at high levels, idiosyncratic risk increases. When ego-network 

density is high, firms begin to act similarly and resemble each other, diminishing the impact of 

diversification and brand equity strengthening associated with the reduced idiosyncratic risk. So 

overall, we could conclude that high ego-network density is useful to facilitate information flows 

in a firm’s immediate environment but can reduce a firm’s exposure to new opportunities. 

Importantly, scholars pointed out that the measure of ego network density is sensitive to the 

inclusion of ego network size (Phelps, 2010). Borgatti et al. (2018) mentioned that controlling for 

the latter in regressions involving ego network density is important. 

2.4. Actor-level measures: a whole network perspective 
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Beyond their ego networks, firms and other actors can also be studied as to their position in 

the entire network (see the top graph in Figure 2). Centrality is a key property of a node’s 

position in the network—it is broadly defined as “the importance of a node due to its structural 

position in the network as a whole” (Borgatti & Li, 2009, p. 15). Centrality is characterized by a 

family of concepts. The most commonly used by marketing and management scholars are degree, 

eigenvector, betweenness, and closeness centrality. We have noted that degree centrality is 

calculated without requiring information about the whole network in which a firm is embedded, 

which is not the case for other centrality measures. 

2.4.1. Eigenvector centrality 

Eigenvector centrality is a widely used measure in marketing and management research 

(Shipilov & Gawer, 2020; Zaheer et al., 2010). It is a function of the centralities of an actor’s 

connections: high eigenvector centrality implies that a firm has many connections to partners that 

have many connections to their partners (Bonacich, 1972, 1987, 2007). Formally, the eigenvector 

centrality of actor 𝑖, 𝑒𝑖, is expressed as: 

(3) 𝑒𝑖 = 𝜆∑ 𝑥𝑖𝑗𝑒𝑗𝑗 , where 𝜆 is a proportionality constant called the eigenvalue. 

Marketing and management scholars often use eigenvector centrality to capture a firm’s 

status and power in the network (Granados & Knoke, 2013; Piazza & Castellucci, 2014; Podolny, 

2001). Having higher eigenvector centrality can attract more partners as firms often choose to 

work with other firms chosen by other well-connected firms (Ahuja, Polidoro, & Mitchell, 2009; 

Gulati & Gargiulo, 1999). Srinivasan et al. (2018) used this measure to assess a firm’s 

connectivity to other well-connected firms in the board interlock network. The authors showed 

that firms with higher eigenvector centrality have a higher number of new product introductions 

due to greater access to information on the environment (i.e., market intelligence). Similarly, 
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Sauerwald, Lin, and Peng (2016) demonstrated that the board social capital measured using 

eigenvector centrality was linked to higher CEO-related returns. Boards positioned at the center 

of the network offer access to external social capital, such as strategic opportunities. 

Interestingly, Koka and Prescott (2008) found an adverse effect of a firm’s eigenvector centrality 

in an alliance network on firm performance following a radical change in the industry. Their 

analysis showed that alliance networks might not have the necessary information for quick and 

effective strategic responses in the industry.  

Most social network analysis software, such as UCINET 6 (Borgatti, Everett, & Freeman, 

2002), can compute eigenvector centrality, normalizing the score between 0 to 1 using different 

techniques. For example, because interorganizational research often involves panel data, scholars 

prefer normalization for the largest possible or observed value to allow better inter-year 

comparison (e.g., Hallen, Katila, & Rosenberger, 2014). Calculating eigenvector centrality for the 

actors in Figure 3 yields a higher value for A1, which A5 closely follows, and then A2 and A4. 

2.4.2. Betweenness centrality 

Betweenness centrality is another well-known type of centrality (Freeman, 1979) that is 

frequently utilized in marketing and management research (Shipilov & Gawer, 2020). It is often 

used to measure a firm’s access to industry-level structural holes (Iurkov & Benito, 2020; 

Shipilov, 2009). A structural hole is the lack of ties between groups (called clusters or 

communities) of tightly interconnected actors in the network (Borgatti et al., 2018). Linking these 

unconnected groups offers a firm different points of view. The firm can also play the groups off 

against each other to its benefit (Burt, 1992, 2005).  

Technically, firms have high betweenness centrality if they lie along many shortest paths 

between pairs of others in the whole network. The shortest path is the path that connects pair of 

nodes via the smallest number of edges (Borgatti et al., 2018). For example, in a supply chain 
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network, a firm has high betweenness to the extent that all of the shortest chains from 

manufacturers to end consumers pass through that firm (Borgatti & Li, 2009). Formally, 

betweenness centrality of actor 𝑖, 𝑏𝑖, is given by: 

(4) 𝑏𝑖 = ∑ 𝑔𝑗𝑖𝑘 𝑔𝑗𝑘⁄𝑗 , where 𝑔𝑗𝑖𝑘 is the number of shortest paths connecting 𝑗 and 𝑘 through 𝑖, and 𝑔𝑗𝑘 is the total number of shortest paths connecting 𝑗 and 𝑘, 𝑖 ≠ 𝑗 ≠ 𝑘.  

Scholars often used betweenness centrality to study various innovation outcomes. Gilsing, 

Nooteboom, Vanhaverbeke, Duysters, and Van Den Oord (2008) found that a firm’s betweenness 

centrality has an inverted-U relationship with the amount of its technological exploration. This 

can happen because firms have to deal with a higher volume of diverse information at high levels 

of betweenness. This consumes time and resources that cannot be allocated for absorbing and 

integrating novel insights. Similarly, Fang et al. (2016) showed that a firm’s betweenness 

centrality is useful for incremental innovations but can hurt radical innovations. The construct 

was also used to study aspects of firm behavior. Analyzing this construct in the context of foreign 

divestment decisions, Iurkov and Benito (2020) revealed a positive association between an 

increase in firm betweenness in the domestic network and foreign divestment. Increased access to 

information about new business opportunities and the resulting opportunity costs of maintaining 

foreign operations subsequently lead to their divestment.  

An actor’s betweenness centrality is equal to zero when it never lies along the shortest path 

between any two other actors. It happens when the actor is isolated or when every alter of an 

actor is connected to every other alter (Borgatti et al., 2018). Social network analysis software 

also often produces the normalized betweenness score obtained by dividing betweenness 

centrality by the maximum possible value, i.e., (𝑛 − 1)(𝑛 − 2) 2⁄ , where 𝑛 is the number of 

actors in the network. Marketing and management researchers often resort to using normalized 
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betweenness centrality scores as they ensure across-year comparability and are not sensitive to 

changes in network sizes (Allatta & Singh, 2011; Hagedoorn & Duysters, 2002; Soh, Mahmood, 

& Mitchell, 2004). In Figure 3, the highest betweenness centrality is attributed to A1. A5’s 

betweenness is low but not zero (0.5 versus A1’s value of 3.5). A2, A3, and A4 have zero 

betweenness centrality. 

2.4.3. Closeness centrality 

Closeness centrality measures an actor’s ability to reach all the other actors in the network 

quickly—actors that score high on closeness centrality are likely to receive information more 

quickly than others (Borgatti et al., 2018). Closeness centrality of actor 𝑖, 𝑐𝑙𝑜𝑠𝑒𝑖, is calculated as 

the reciprocal of the sum of the actor’s shortest path lengths, 𝑠, to all other actors (Freeman, 

1979): 

(5) 𝑐𝑙𝑜𝑠𝑒𝑖 = (∑ 𝑠𝑖𝑗𝑗 )−1, where 𝑖 ≠ 𝑗.  
Closeness centrality is perhaps the least used centrality metric in interorganizational 

research. However, it found application in B2B research, particularly on strategic alliances. In 

their study of the relationship between firm network connectivity and innovation, Powell et al. 

(1996) used closeness centrality to measure a firm’s dependence on others for access to 

information. Powell et al. (1996) found that closeness centrality was linked to sales growth as it 

provided learning opportunities to a firm. Later research pointed to dark sides of closeness 

centrality. Fang et al. (2016) observed that having higher closeness centrality increases the 

number of incremental new product launches but decreases the number of breakthrough launches. 

The authors argued that closeness centrality could inhibit a firm’s ability to explore ideas outside 

the industry. Similarly, Iurkov and Benito (2018) find that excessive levels of closeness centrality 

in the domestic network of strategic alliances may constrain a firm’s propensity to venture abroad 
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through a lock-in effect. Thus, scholars found that closeness centrality can be a double-edged 

sword in influencing firms’ strategic decisions and outcomes. 

For comparison purposes, one can normalize the closeness centrality score by dividing it by 

the maximum possible value, 1 (𝑛 − 1)⁄ . In networks consisting of several disconnected parts 

(components), distances between actors in these parts have no path between them. Some ways to 

deal with this could be by taking the reciprocal of each dyadic distance and giving a zero value as 

the proximity of two actors in different parts (Borgatti et al., 2018). 

2.5. SNA at the network community-level 

2.5.1. Network communities and small-world systems 

The network community perspective has escaped the attention of scholars and requires 

further investigation. Recent research in marketing and management has pointed that social 

networks, such as networks of strategic alliance or board interlocks, are composed of network 

communities (also called network clusters)—structural groups of actors that have many ties 

internally and few ties externally (e.g., Gulati et al., 2012; Sytch & Tatarynowicz, 2014). Each 

community has its unique structure of relationships and idiosyncratic flows of information 

(Baum, Shipilov, & Rowley, 2003; Gulati et al., 2012; Reagans & Zuckerman, 2001), and only a 

few actors in the network span the boundaries of these communities. Such a structural 

configuration of a social network is known as a small-world system (Watts & Strogatz, 1998). 

Knowing whether a social network is a small-world system tells about the presence of 

entrepreneurial opportunities for recombining diverse knowledge and resources across different 

communities (Gulati et al., 2012). Schilling and Phelps (2007) found that small-world properties 

in an industry-wide network positively influenced firms’ innovation performance. Small-world 

systems are not static. In their analysis of the global computer industry, Gulati et al. (2012) 

observed certain evolutionary dynamics of the small-world system. They showed that a small-



17 

world system could be a highly dynamic structure: an increase in the small-worldliness of the 

system was followed by its later decline. Hence, the time to internalize the entrepreneurial 

opportunities in the industry network may be limited. 

To understand whether a social network functions as a small-world system in a given year, 

scholars can calculate the small-world quotient, which indicates how connected and cohesive the 

relations in the whole network are (Watts & Strogatz, 1998). If a value of the small-world 

quotient exceeds 1, the network is said to have small-world properties. As noted by Uzzi and 

Spiro (2005, p. 455): “The more links between [network communities] increase in frequency, 

which potentially enables the creative material [within network communities] to be distributed 

throughout the [whole] network.” 

2.5.2. Detecting network communities 

Therefore, it is crucial to understand what network communities compose a whole (entire) 

network (as in the top graph in Figure 2) and then study their characteristics. One widely used 

community detection algorithm in the interorganizational networks literature is the Girvan-

Newman algorithm. The algorithm involves “iterative removal of edges from the network to split 

it into communities, the edges removed being identified using one of several possible 

“betweenness” measures, and second, these measures are, crucially, recalculated after each 

removal” (Newman & Girvan, 2004, p. 1). As a result, the algorithm produces non-overlapping 

communities of actors (i.e., each actor can only be a member of a single community in a given 

network). Characteristics of communities identified by the Girvan-Newman algorithm explain 

heterogeneity in firm behavior and outcomes in various interorganizational settings (Gulati et al., 

2012; Sytch & Tatarynowicz, 2014; Tatarynowicz, Sytch, & Gulati, 2016).  

Applying the Girvan-Newman algorithm to a small undirected network can be seen in 

Figure 4, an extended version of the network in Figure 3. The algorithm generated two 
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communities (red circles and blue squares). It is important to note that the Girvan-Newman 

algorithm is best applied to smaller networks, such as networks of strategic alliances in a given 

industry. However, the computing speed of the algorithm is slow on networks with more than 

1,000 nodes. Yang, Algesheimer, and Tessone (2016) indicate that the multilevel algorithm, 

which uses modularity as the convergence criterion (Blondel, Guillaume, Lambiotte, & Lefebvre, 

2008), outperforms other algorithms taking into account both accuracy and computing time. 

-----INSERT FIGURE 4 ABOUT HERE----- 

It is important to add that networks in interorganizational research may have more than one 

component—“a maximal set of nodes in which every node can reach every other by some path” 

(Borgatti et al., 2018, p. 18). For example, if we extend the network in Figure 3 to add A6 and A7 

that are connected between themselves and are in no way connected to A1-A5, we will have two 

components. The component with the largest number of interconnected actors is called the main 

component. Some of the existing studies in interorganizational literature apply the Girvan-

Newman community detection algorithm to each alliance network’s main component while 

considering the smaller components to be stand-alone communities (e.g., Sytch & Tatarynowicz, 

2014). 

2.5.3. Within-community density 

One of the key network community-level properties is within-community density, which is 

expressed as the extent of interconnections among actors of a specific network community 

(Gnyawali & Madhavan, 2001). It influences the speed of information and knowledge diffusion 

among community members and, as a result, the efficiency of cooperation and the presence of 

common norms (Gilsing et al., 2008). The construct is calculated as the actual number of ties 

divided by the number of all possible ties within the community (Borgatti et al., 2018). 

Importantly, one should distinguish between ego-network density and within-community density 
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since the constructs are at different levels of analysis. Both constructs can interact to increase 

actor behavior and performance: high within-community density ensures rapid flows of 

information and knowledge between network community members while low ego-network 

density provides firms with opportunities to secure new information and diverse perspectives 

(Burt, 2005; Gnyawali & Madhavan, 2001). 

Dense network communities also facilitate the build-up of trust and constrain opportunism, 

making information from any community richer and more reliable. This ultimately helps firms 

assess the reliability of technologically distant sources of novelty as well as understand and 

evaluate these sources (Gilsing et al., 2008). On the other hand, firms located in highly dense 

communities are less likely to gain new or additional information from their indirect ties, 

reducing access to new novel knowledge (Gilsing et al., 2008). Iurkov and Benito (2018) argued 

that excessive within-community density inhibited the development of new knowledge, 

decreasing their competitiveness worldwide and limiting their geographic scope domestically. 

Density is not the only community characteristic that exerts an effect on firm behavior and 

outcomes. An interesting stream of research finds that the turnover of community members in a 

firm’s network community has an inverted U-shaped effect on the firm’s invention productivity: 

network communities characterized by moderate membership turnover can avoid the 

homogenizing tendencies without threatening the stability of these communities’ collaborative 

routines (Sytch & Tatarynowicz, 2014). However, these additional indicators are outside this 

editorial's scope as we only focus on the most popular social network constructs. 

3. Interorganizational datasets for SNA 

There are several databases used to study interorganizational networks by marketing and 

management scholars. Some are generic, while some specialize in specific sectors. SDC Platinum 

is one of the most extensively used generic databases on interorganizational relationships. It 
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provides access to information about a wide range of financial deals, including securities trading, 

venture capital investments, and mergers and acquisitions. Strategic alliance data are available 

within the “Joint Ventures/Alliances” section of the database. SDC collects these data from 

various sources, including U.S. Securities and Exchange Commission (SEC) filings, corporate 

news, and trade publications. It tracks various types of alliances, including joint ventures and 

non-equity alliances, research and development, marketing, manufacturing, licensing and 

distribution agreements, alliances with government or private organizations, and private or public 

companies (Schilling, 2009). According to SDC manuals, alliance coverage has been available 

since 1988 (Anand & Khanna, 2000). The key advantage of the SDC Platinum database is a user-

friendly interface that allows searching and extracting information related to an alliance (e.g., 

announced and effective dates, function, industry, geography) and parties involved (e.g., industry, 

country of origin, ultimate parent, public status). One can download all selected information as an 

Excel spreadsheet that can then be exported to Stata or other software for further analysis. The 

downsides of the database are occasional errors in coding (e.g., few alliances may be reported as 

belonging to incorrect industry SIC codes), requiring verification of alliance information 

(Schilling, 2009). The database also lacks alliance dissolution data, requiring an assumption 

about alliance duration. However, the reason for this is unrelated to the database itself but rather 

to the lack of companies’ reporting of alliance terminations. SDC Platinum is probably the most 

widely used database in management and marketing studies (e.g., Gulati et al., 2012; Hernandez 

& Shaver, 2019; Iurkov & Benito, 2018; Lavie et al., 2022; Lin, Yang, & Arya, 2009). 

4. Implementation of social network analysis 

This section demonstrates how to conduct SNA in an interorganization setting. Specifically, 

we have chosen to construct and analyze a network of strategic alliances in the global software 

industry (three-digit SIC code 737) as of 2018. Empirical evidence shows that software industry 
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firms frequently form strategic alliances (Schilling & Phelps, 2007). Occupying more beneficial 

network positions in this industry allows firms to access diverse knowledge related to new 

technologies and trends and discover ways to increase operational efficiency and innovation 

performance (Schilling, 2015).  

4.1. Step 1: constructing a network of strategic alliances 

Prior to deriving social network measures, one needs to construct an alliance network with 

the specified boundaries. We follow the analytical procedures developed in prior research to 

construct alliance networks, which are normally bound within the context of a specific industry 

(e.g., Gulati et al., 2012; Rosenkopf & Schilling, 2007). Commonly, an alliance network in an 

industry in a given year consists of active alliances in which at least one partner is a member of 

this industry, and the primary alliance activity also has to fall within this industry (e.g., Gulati et 

al., 2012; Rosenkopf & Schilling, 2007; Sytch & Tatarynowicz, 2014). Therefore, we adopted 

this routine to define and construct an alliance network in the software industry in 2018. 

We first extract information on firms’ strategic alliances from the SDC Platinum database, 

which is widely used in interorganizational research (Schilling, 2015). Because firms (and 

databases in this regard) rarely report precise alliance termination dates, we follow prior research 

in modeling a five-year lifespan for an alliance (Lavie, 2007). In other words, our alliance 

network as of 2018 will consist of alliances formed between 2014 and 2018.  

For the sake of simplicity, we will limit our SNA to firms located in the network’s main 

component, which consists of 652 unique edges and 576 nodes (firms). Networks of this size are 

easy and convenient to analyze in UCINET 6 (Borgatti et al., 2002)—a popular social network 

software package. We have used version 6.733 of the software. We discuss how to proceed with 

data inputting and separating the main component in UCINET 6 in the Appendix.  
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It is worth noting that other software packages exist, among which are igraph package in R 

(Csardi & Nepusz, 2006) and nwcommands package in Stata (Grund, 2014). The former can 

handle large interorganizational networks very well and provides functions for graph 

visualization, computing centrality scores, and generating random and regular graphs.  

4.2. Step 2: Deriving actor-level social network measures 

The way to derive actor-level social network measures in UCINET is rather 

straightforward. In the Appendix, we provide a set of detailed instructions on this. Tables 1 and 2 

report the results. Table 1 shows actor-based social network measures for the first 20 firms (out 

of 576 firms constituting the main component). In Table 2, we provide some descriptive statistics 

(mean and standard deviation) and bivariate correlations between the measures (now for the 

sample of 576 firms). As can be seen from the tables, firms with high degree centrality usually 

score low on network constraint (or high on network brokerage) and high on eigenvector, 

betweenness, and closeness centrality. However, sometimes firms with relatively high degree do 

not always have high eigenvector, betweenness, and closeness centrality. For example, relative to 

other high-degree firms, Alibaba Group Holding has a similar degree centrality. Yet, it has low 

status in the network as shown by low eigenvector centrality, a substantial number of redundant 

connections as demonstrated by low betweenness centrality and high network constraint. It is 

likely embedded in a community located away from the rest of the network, as demonstrated by 

low closeness centrality. 

-----INSERT TABLES 1 AND 2 ABOUT HERE----- 

4.3. Step 3: Partitioning the network into network communities and calculating within-community 

density 

Earlier, we mentioned that interorganizational networks are characterized by small-

worldliness, signaling the presence of entrepreneurial opportunities in an industry (Gulati et al., 
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2012). It is important to understand whether an interorganizational network has a small-world 

property and what communities compose it. Interorganizational research often ignores the 

network community level of analysis with few exceptions. For example, the composition of 

network communities in alliance networks has been shown to influence firm outcomes, such as 

innovation performance and geographic scope (e.g., Iurkov & Benito, 2018; Sytch & 

Tatarynowicz, 2014). A detailed discussion on how to derive the small-world quotient in 

UCINET 6 can be found in the Appendix. However, it is important to remember that within-

community density is not the only measure scholars could and should use when studying how 

community-specific factors influence firm behavior and performance. As mentioned earlier, 

Sytch and Tatarynowicz (2014) investigate how the turnover of community members in a firm’s 

network community influence firm innovation performance. These types of measures and their 

effects need to be calculated using data conversion syntaxes available in such software packages 

as R or Stata, yet that is not within the scope of this editorial. 

Overall, it should be acknowledged that UCINET is not the only software available for 

researchers to conduct SNA; it can also be implemented in R or Stata. There are certain 

advantages and disadvantages when choosing another software for SNA. UCINET was explicitly 

designed to conduct SNA; it is intuitive and user-friendly, suitable for specialists and those new 

to SNA. UCINET is perfectly suitable to analyze interorganizational networks in terms of 

computational complexity, as such networks are often bounded to a specific industry and are not 

very large. However, the disadvantage of UCINET is its lack of ability to effectively handle the 

analysis of big data on networks containing many connections. This can happen when one aims 

to shift the level of analysis to an individual, for example, to analyze the structure of network 

connections of CEOs, executives, and directors, including several hundred thousand individuals 

(e.g., El-Khatib, Fogel, & Jandik, 2015). R would be much more suitable for analyzing large 
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social networks (e.g., using the igraph package), though it would require more specific 

knowledge on how to work with it. In turn, Stata may be more intuitive to conduct SNA with 

common software packages such as nwcommands, as most marketing and management scholars 

already use it as their default software for statistical analysis. However, it has the same 

disadvantage as UCINET as it does not efficiently handle large amounts of social network data 

and has limited functionality.  

5. Discussion and conclusion  

SNA is a powerful tool to analyze how interorganizational ties (e.g., strategic alliances and 

board interlocks, among others) are structured and how such structures influence firm-level 

strategic decisions and outcomes. This editorial has therefore aimed to discuss the main aspects 

of SNA and show how B2B scholars and practitioners can use it to study outcomes relevant to 

marketing. We describe the most common social network concepts, the theoretical mechanisms 

behind them, and their operationalization. Using the context of a strategic alliance network in the 

global software industry, we show how these key social network variables are distributed and 

relate to each other in this B2B setting. We provide detailed instructions on constructing a 

network and calculating the social network variables utilizing UCINET (Borgatti et al., 2002)—a 

user-friendly software widely used in management research.  

The editorial has important implications for B2B marketing research. It provides a 

comprehensive view of SNA that can be conducted at different levels of analysis (firm or 

network community-level) and involve the calculation of a wide range of social network 

variables (e.g., Chakravarty et al., 2020; Iurkov & Benito, 2018; Rosenkopf & Padula, 2008). The 

editorial hopes to broaden the social network research within B2B marketing that has rarely 

examined the role of social network variables beyond the ego-network perspective (e.g., 

Chakravarty et al., 2020; Thomaz & Swaminathan, 2015). We emphasize that a wide range of 



25 

other social network variables capture a firm’s position in the whole network. We additionally 

point attention to network community structures that may be critical for B2B marketing-related 

outcomes yet remain largely under-researched in the marketing field. B2B scholars could further 

examine the role of network communities and their structure for firm new product introductions. 

If the social network has small-world properties (e.g., Gulati et al., 2012), a firm’s participation in 

such a network can provide access to tacit and non-redundant knowledge that opens access to 

various entrepreneurial opportunities and stimulates innovation activities.  

Although SNA in B2B marketing has been primarily used in the context of strategic 

alliances or board interlocks (e.g., Chakravarty et al., 2020; Srinivasan et al., 2018; Swaminathan 

& Moorman, 2009), it may be applied in a variety of other contexts to solve marketing problems. 

For example, one could conduct SNA of the multiplex social networks combining 

interorganizational ties and connections formed by cross-border sales teams of the marketing 

department within a firm to study how such network structures can jointly facilitate the diffusion 

of new knowledge and technologies within the firm. Another promising area within marketing to 

apply social network analysis is to study ecosystems, such as innovation or digital or technology 

ecosystems. It could lead to B2B researchers answering many promising questions, such as how a 

firm’s presence in innovation or digital ecosystems influences its speed of innovation, technology 

adoption, or recovery from market disruptions. Finally, B2B scholars could combine SNA with 

other methodological approaches like surveys or interviews and conduct a multi-method study to 

tease out the link between social network variables and firm outcomes and the underlying 

mechanisms of such relationships. This would address the SNA’s limitation of not being able to 

capture the processes like diffusion of information or social norms in the social network directly.   
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In sum, the editorial provides a valuable guide on how to conduct SNA in marketing that 

can be helpful for B2B scholars and practitioners when examining the influence of social 

networks on relevant firm-level outcomes. 
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Figure 1. Empirical studies utilizing SNA in Industrial Marketing Management by year 

 

 

Figure 2. Understanding network perspectives  

Source: Sytch and Tatarynowicz (2014) 
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Figure 3. A simple undirected network 

 

 

Figure 4. A simple undirected network with two communities 
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Table 1. Actor-level measures for top-20 firms by degree centrality 

Firm Degree Constraint Ego 

density 

Eigenvector Betweenness Closeness 

Microsoft Corp 82 0.016 0.004 0.957 0.593 0.306 

Alphabet Inc 35 0.034 0.009 0.185 0.310 0.285 

Dell Technologies Inc 20 0.092 0.047 0.165 0.152 0.280 

Accenture PLC 17 0.066 0.008 0.042 0.203 0.263 

SAP AG 17 0.061 0.015 0.152 0.229 0.292 

Alibaba Group 

Holding 

15 0.120 0.066 0.006 0.059 0.210 

Amazon.com Inc 15 0.096 0.057 0.139 0.075 0.245 

IBM Corp 15 0.080 0.029 0.027 0.056 0.232 

Infosys Ltd 14 0.084 0.033 0.048 0.111 0.250 

Tencent Holdings Ltd 13 0.108 0.064 0.022 0.071 0.232 

Fujitsu Ltd 12 0.084 0.015 0.127 0.054 0.251 

Tech Mahindra Ltd 12 0.083 0.000 0.108 0.041 0.237 

Baidu Inc 11 0.185 0.133 0.005 0.034 0.202 

Adobe Inc 10 0.103 0.022 0.117 0.058 0.238 

Cisco Systems Inc 10 0.104 0.022 0.130 0.039 0.269 

Facebook Inc 10 0.125 0.022 0.016 0.045 0.224 

Gemalto NV 10 0.178 0.111 0.002 0.109 0.189 

Lenovo Group Ltd 10 0.129 0.067 0.016 0.019 0.205 

NEC Corp 10 0.142 0.044 0.004 0.045 0.204 

Wipro Ltd 10 0.125 0.022 0.001 0.034 0.169 

 

Table 2. Descriptive statistics and bivariate correlations 

  Mean SD Degree Constraint Ego density Eigenvector Betweenness 

Degree 2.306 4.355 
     

Constraint 0.790 0.307 -0.544 
    

Ego density 0.085 0.273 0.040 -0.087 
   

Eigenvector 0.022 0.055 0.696 -0.234 0.031 
  

Betweenness 0.008 0.034 0.939 -0.477 -0.043 0.666 
 

Closeness 0.185 0.038 0.316 -0.268 0.097 0.576 0.319 
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Appendix 

Step 1: constructing a network of strategic alliances  

In UCINET, data can be imputed in the edgelist format (Data – Data editors – DL Editor 

and then select Edgelist1 (ego alter [value]) as data format).2 As interorganizational ties are 

normally treated undirected, one has to select the Undirected (force symmetry) output option in 

the right panel of the DL Editor window (see Figure A1). One alternative way to input data 

would be in the Piles (1-mode) format (if the edgelist has not been already created), which can be 

particularly relevant to the interorganizational data. For example, while most strategic alliances 

are bilateral (i.e., have only two partners), some involve more than two collaborating parties 

(Lavie, Lechner, & Singh, 2007). The Piles format handles multiparty alliances by entering the 

names or identification numbers of alliance participants in one row. UCINET then creates all 

possible dyadic combinations of the participants of the alliance (Borgatti et al., 2002). The main 

component can then be identified by opening the following tab in UCINET: Network – Regions – 

Components – Binary graphs, where one can choose to extract the main component vector (see 

Figure A2). One can proceed to separate the sub-network in the main components by going at 

Data – Subgraphs from partitions, where the Input Partition field should contain the file with the 

main component vector, where the main component is assigned a value of 1 (see Figure A3). 

-----INSERT FIGURES A1-A3 ABOUT HERE----- 

Visualizing a network can be done through NetDraw—a package that is automatically 

installed with UCINET. Our network graph is depicted in Figure A4.  

-----INSERT FIGURE A4 ABOUT HERE----- 

Step 2: Deriving actor-level social network measures 

                                                 
2 Alternative formats of data inputting in UCINET 6 can be found at: 

https://sites.google.com/site/ucinetsoftware/how-to-use/faqs-tips/entering-data-using-the-dl-editor  

https://sites.google.com/site/ucinetsoftware/how-to-use/faqs-tips/entering-data-using-the-dl-editor
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UCINET 6 has separate tabs for ego-network (Network – Ego Network) and centrality 

(Network – Centrality) measures (see Figures A5 and A6).  

-----INSERT FIGURES A5 and A6 ABOUT HERE----- 

Network constraint is located under Network – Ego Network – Structural Holes. As can be 

seen in UCINET, there are two methods to compute the constraint variable. The first one assumes 

that ties beyond alters have no effect, as originally suggested by Burt (1992). The second method 

is to look at all of the alters’ connections in the network, whether they are tied to ego or not. If the 

data on the whole network is available, the second method would involve more realistic inputs of 

alters’ investment of time and energy in each other. Ego network density can be found under 

Network – Ego Network – Egonet Density. 

Degree centrality is located under the centrality tab (Network – Centrality – Degree) since 

it is traditionally considered a centrality metric (Borgatti et al., 2018). Other centrality measures 

are also located under the same tab. Eigenvector centrality is found under Network – Centrality – 

Eigenvector centrality. There are different ways to normalize the measure we discussed earlier 

(in further analysis, we will use normalization to the maximum possible value). To obtain the 

usual betweenness centrality metric and its normalization (Freeman, 1979), we must select 

Network – Centrality – Freeman Betweenness – Node Betweenness. Finally, the tab to compute 

several closeness centrality metrics is found at Network – Centrality – Closeness measures. The 

routine produces Freeman’s closeness centrality and normalization (Freeman, 1979), which we 

discussed earlier. 

Step 3: Partitioning the network into network communities and calculating within-community 

density 

In UCINET 6, we need to go to Network – Whole networks & cohesion – Clustering 

Coefficient. Among the reported statistics is the small world index, which is equal to 10.426 for 
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the network in Figure A4. Recall that the network exhibits the small-world property when this 

index is greater than 1. We can then derive network communities through one of the community 

detection algorithms. The Girvan-Newman algorithm can be reached at Network – Subgroups – 

Girvan-Newman, while the multilevel algorithm (also known as the Louvain method of 

clustering) is available at Network – Subgroups – Louvain method (see Figure A7). The former 

algorithm has produced the community structure in Figure A8. Previously, we have mentioned 

that interorganizational research normally applies the Girvan-Newman community detection 

algorithm to a network’s main component while considering the smaller components to be stand-

alone communities (e.g., Sytch & Tatarynowicz, 2014).  

-----INSERT FIGURES A7 and A8 ABOUT HERE----- 

Within-community density can be obtained at Network – Whole networks & cohesion – 

Density – Density by Groups. Here, one needs to impute the original network dataset in the first 

row and the new file containing firm-community affiliations in the second row. The resulting 

output file will calculate the within-community density that can be used for further analysis. 
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Figure A1. UCINET: Data inputting in the edgelist format 

 

Figure A2. UCINET: Identifying network components 
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Figure A3. UCINET: Separating the network in the main component 

 

 

Figure A4. Structure of the main component in the global software industry in 2018 
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Figure A5. UCINET: Ego-network measures 

 

Figure A6. UCINET: Centrality measures 
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Figure A7. UCINET: Community detection algorithms 

 

Figure A8. Community structure (names of top-20 firms by degree centrality are visible) 

 


