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Motivated by astrophysical and geophysical applications, the classical problem of rotating
Rayleigh-Bénard convection has been widely studied. Assuming a classical Fourier heat law, in
which the heat flux is directly proportional to the temperature gradient, the evolution of tempera-
ture is governed by a parabolic advection-diffusion equation; this, in turn, implies an infinite speed
of propagation of information. In reality, the system is rendered hyperbolic by extending the Fourier
law to include an advective derivative of the flux — the Maxwell-Cattaneo (M-C) effect. Although
the correction (measured by the parameter Γ, a non-dimensional representation of the relaxation
time) is nominally small, it represents a singular perturbation and hence can lead to significant
effects when the rotation rate (measured by the Taylor number T ) is sufficiently high. In this paper,
we investigate the linear stability of rotating convection, incorporating the M-C effect, concentrating
on the regime of T ≫ 1, Γ ≪ 1. On increasing Γ for a fixed T ≫ 1, M-C effects first come into play
when Γ = O(T−1/3). Here, as in the classical problem, the preferred mode can be either steady or

oscillatory, depending on the value of the Prandtl number σ. For Γ > O(T−1/3), the influence of
the M-C effect is sufficiently strong that the onset of instability is always oscillatory, regardless of
the value of σ. Within this regime, the dependence on σ of the critical Rayleigh number and of the
scale of the preferred mode are explored through the analysis of specific distinguished limits.

I. INTRODUCTION

It has been noted by a number of authors that the classical Fourier law connecting heat flux and the gradient of
temperature — leading to a parabolic equation for the spatiotemporal evolution of the temperature field — should be
corrected to allow both for relativistic effects and to accommodate the processes in real materials that are responsible
for heat transfer. Maxwell [1] proposed a modified equation for gases incorporating a finite relaxation time. Cattaneo
[2] proposed a similar relation for solids. This was developed further by Oldroyd [3], and later contributions were
made by Fox [4] and Carrassi and Morro [5]. These extensions are collectively referred to as the Maxwell-Cattaneo
(M-C) effect. The M-C heat transport effect has been studied in a wide variety of different physical contexts: for
example, in solids [6], in fluids [7–14], in porous media [15, 16], in nanofluids and nanomaterials [17–20], in liquid
helium [21, 22], and in the physics of phase changes [23, 24]. The M-C effect has been shown to be of particular
importance in a variety of biological systems [25–32]. It has also been modelled theoretically in various astrophysical
contexts [33–35], as well as in the dynamics of traffic flow [36].
While the Fourier law can be written as q = −K∇T , where q is the heat flux, T is the temperature and K is the

thermal conductivity, the M-C effect introduces a relaxation time τ , leading to the equation

τ
Dq

Dt
+ q = −K∇T, (1)

where D represents a generalised material derivative, chosen to give expressions that do not depend on the frame of
observation. In the present paper, which discusses only linear stability considerations, almost all such choices give
the same result. Further discussion of the choice of derivative can be found in refs. [37, 38].

The importance of the new time derivative term can be assessed by considering the dimensionless M-C coefficient
C, defined as

C ≡ τK

2ρcpd2
≡ τκ

2d2
=

Γ

2
, say, (2)

where ρ is the density, cp is the specific heat at constant pressure and d is a typical length scale. The factor of two
in the definition of C, although standard, leads to redundant powers of two in the subsequent analysis, but with no
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off-setting benefits; we therefore, instead, choose to work in terms of Γ. It is hard to determine the magnitude of Γ in
general, but it is typically very small in many astrophysical situations. Does this mean that the effect on, for example,
the stability of a convective layer is similarly small? Several remarks are in order here. There is plainly no effect on
the threshold for the onset of direct instability, as this occurs when the time derivatives are zero. For ordinary thermal
convection, where growth rates are real near onset, the new term has negligible effect for Γ ≪ 1, although oscillatory
instability is favoured once Γ becomes O

(
10−2

)
[9, 10, 13]. Nonetheless, the new term increases the order of the

equations describing the linear stability, and so the limit of small Γ is singular; high frequency oscillatory instabilities
can then bring the new term into play at very small Γ in certain circumstances, for example in magnetoconvection
and double-diffusive convection. These problems have been treated in refs. [34, 35, 38]. In the magnetoconvection
problem, in which convection occurs in the presence of an imposed vertical magnetic field, new effects appear when
the Chandrasekhar number Q, measuring the square of the imposed field strength, satisfies QΓ2 ≳ 1 for small Γ.
Similarly, in the double diffusive case, M-C effects become significant, leading to enhanced instability or oscillations,
when the gradients of salinity and temperature are both large; specifically, when the salt Rayleigh number Rs is
sufficiently large that RsΓ ≳ 1 for small Γ.

Motivated by these results, in the present paper we consider the other well-known convective instability in the
presence of a constraint, namely rotating Rayleigh-Bénard convection. The stability problems for magnetoconvection
and rotating convection have a number of similarities but differ in some important details. The classical version of the
problem of rotating convection, with applications to planetary and stellar interiors, has a long history, beginning with
Chandrasekhar [39, 40] and Veronis [41]. The problem is described by three dimensionless parameters: the Rayleigh
number Ra, a measure of the thermal driving; the Taylor number T , proportional to the square of the rotation rate
Ω of the layer; and the Prandtl number σ, the ratio of kinematic viscosity to thermal diffusivity — precise definitions
of the parameters are given in the following section. In astrophysical and planetary settings, T is typically very large
(T ∼ 1030 in the Earth’s outer core, for example) and so here we concentrate on this case of rapid rotation (T ≫ 1).
As we shall show below, M-C effects are significant when TΓ3 ≳ 1; thus, for T ≫ 1, M-C effects come into play even
for very small values of Γ. We shall also describe how the onset of instability depends in quite a complex manner on
σ. A general point of particular note is that, while in the absence of M-C effects (Γ = 0), oscillatory convection is
possible only when the Prandtl number σ < 1, in the case Γ > 0 oscillatory instability can be found for a wide range
of σ, with a significant reduction in the critical Rayleigh number for the onset of instability.
The mathematical formulation for the linear stability problem is set out in Sec. II. The stability boundary is then

investigated separately for the cases TΓ3 = O(1) (Sec. III) and TΓ3 ≫ 1 (Sec. IV); in each case the scalings for the
critical wavenumber, the associated frequency, and the critical Rayleigh number depend strongly on σ when σ ≪ 1,
leading to several different scaling regimes. If σ > 1, on the other hand, the M-C effect permits oscillations that would
otherwise not occur. The significance of the results is discussed in the concluding Sec. V.

II. MATHEMATICAL FORMULATION

A. Governing equations

We consider a horizontal layer of an incompressible (Boussinesq) Maxwell-Cattaneo fluid, contained between two
planes at z = 0 (bottom) and z = dπ (top), and rotating about the vertical (z) axis with angular velocity Ω. The
scaling here with π is helpful in that all factors of π are eliminated from the equations governing the linear stability of
the system. The fluid has constant kinematic viscosity ν and thermal diffusivity κ. In the basic state, which is static,
the temperature profile is linear in z, with the lower boundary at temperature T0 + ∆T and the upper boundary
at temperature T0. The crucial difference in the governing equations for the M-C system, in comparison with those
of classical rotating Boussinesq convection (with no M-C effects) is the replacement of the classical Fourier law by
a modified equation for the heat flux; here we adopt the frame-invariant formulation of Christov [37] (see Ref. [38]
for further details). On adopting the standard scalings of length with d, time with d2/κ, temperature with ∆T and
pressure with ρ0νκ/d

2, where ρ0 is a representative density, the non-dimensional equations governing perturbations
from the basic state may be written as

1

σ

Du

Dt
+ T 1/2

ẑ × u = −∇p+Rθẑ +∇2
u, (3)

∇ · u = 0, (4)

Dθ

Dt
= w −Q, (5)
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Γ
DQ

Dt
= −Q−∇2θ. (6)

Here u = (u, v, w) denotes the fluid velocity, θ the perturbation of the temperature from the basic state, Q the
divergence of the heat flux and p the pressure. The parameter Γ is as defined in Eq. (2). The Rayleigh number R,
Taylor number T , and Prandtl number σ are defined by

R =
gα∆Td3

κν
, T =

4Ω2d4

ν2
, σ =

ν

κ
, (7)

where α is the coefficient of thermal expansion.

B. Linearised equations and dispersion relation

In this paper, we address the linear stability of the basic state, subject to the standard boundary conditions in
which the horizontal boundaries are impermeable and stress-free, and on which the temperature is fixed. Thus

∂u

∂z
=

∂v

∂z
= w = θ = 0 on z = 0, π, (8)

noting that z is now dimensionless. We assume periodicity in the horizontal directions. In general, we may assume a
poloidal-toroidal decomposition for the solenoidal velocity in the form

u = ∇× (∇× Pẑ) +∇× T ẑ. (9)

After linearisation, the z-component of the curl of the momentum equation (3) (the vorticity equation) gives

1

σ

∂T
∂t

− T 1/2 ∂P
∂z

= ∇2T . (10)

The z-component of a further curl of (3) gives

1

σ

∂
(
∇2P

)

∂t
+ T 1/2 ∂T

∂z
= −Rθ +∇4P. (11)

The linearised forms of (5) and (6) become, respectively,

∂θ

∂t
= −∇2

HP −Q, (12)

Γ
∂Q

∂t
= −Q−∇2θ, (13)

where ∇2
H is the horizontal Laplacian.

Following the usual approach to the classical rotating convection problem, we seek solutions to the linearised
equations of the form

P ∝ θ ∝ Q ∝ f(x, y) sinmz est, T ∝ f(x, y) cosmz est, (14)

where the planform function f(x, y) satisfies

∇2
Hf = −k2f. (15)

The boundary conditions (8) are thus automatically satisfied. For the classical problem, with no M-C effects, it is
easily shown that the fundamental mode (i.e. m = 1) is the most readily destabilised. Here we shall also restrict
attention to the m = 1 mode, but will discuss this assumption in Sec. V, in the light of the results.

Combining equations (10)–(13) gives the following quartic dispersion relation for the growth rate s:

a4s
4 + a3s

3 + a2s
2 + a1s+ a0 = 0, (16)
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where

a4 = Γβ2, (17a)

a3 =
(
1 + 2Γσβ2

)
β2, (17b)

a2 = (1 + 2σ)β4 + Γσ2(β6 + T )− ΓσRk2, (17c)

a1 =
(
2σ + σ2

)
β6 + σ2T − σRk2 − Γσ2Rk2β2, (17d)

a0 = σ2(β6 + T −Rk2)β2, (17e)

with β2 = k2 + 1. If Γ = 0, we recover the usual third order system of rotating convection [40].

C. Stability boundaries

The onset of instability may occur either via a steady bifurcation, in which the eigenvalue s passes through zero,
or an oscillatory (Hopf) bifurcation, in which s = ±iω (ω ∈ R+). At the onset of steady convection (s = 0), the
coefficient a0, given by (17e), must be zero; thus the value of R is given by

R = R(s) =
β6

k2
+

T

k2
. (18)

We shall denote the minimum value of R(s) — the critical value for the onset of steady convection — by R
(s)
c , and the

value of k2 that gives this minimum — the preferred or favoured mode — by k2sc. The criterion for the onset of direct
instability (18) is unaffected by any M-C considerations, as is to be expected from the form of the flux equation (6).
Thus, any new (i.e. M-C-induced) instability must set in as an oscillatory mode.

At the onset of oscillatory instability, setting s = iω in (16) and taking the real and imaginary parts leads to the
expressions:

a4ω
4 − a2ω

2 + a0 = 0, ω2 = a1/a3. (19)

For determining the stability boundary, it is helpful to eliminate ω2 to obtain the following quadratic expression for
R on the oscillatory boundary, which we denote by R = R(o):

c2

(
R(o)

)2
+ c1R

(o) + c0 = 0, (20)

where

c2 = Γ2σ2(1 + Γσβ2), (21a)

c1 = −
[
2Γ3σ4 β

2

k2
(
β6 + T

)
+ Γ2σ2

(
2
β6

k2
+ 3

σ

k2
(
β6 + T

))
+

Γσ(1 + 2σ)
β4

k2
+ (1 + σ)

β2

k2

]
, (21b)

c0 = 2Γ2σ4 (β
6 + T )2

k4
+ 4Γσ2(σ − 1)T

β4

k4
+

4Γσ2(1 + σ)
β10

k4
+ 2σ2T

β2

k4
+ 2(1 + σ)2

β8

k4
. (21c)

It is important to note that Eq. (20) defines the oscillatory stability boundary only if the additional condition ω2 > 0
is satisfied; we denote solutions of (20) with ω2 > 0 as admissible solutions. We shall denote the minimal value of

R(o) — the critical value for the onset of oscillatory convection — by R
(o)
c , the value of k2 that gives this minimum

by k2oc, and the corresponding value of ω2 by ω2
c . The overall critical Rayleigh number Rc is then the minimum of

R
(s)
c and R

(o)
c .

As we shall see later, to understand whether the steady or oscillatory mode is preferred at the onset of instability,
it is helpful to consider the Takens-Bogdanov (T-B) points, defined as those points where the coefficients a0 and a1
in (16) are both equal to zero, and which mark the coincidence of the steady and oscillatory stability boundaries. We
may regard a0 = 0 and a1 = 0 as two simultaneous equations for Rk2, leading to the following quartic equation for
β2:

Γσβ8 − (1 + σ)β6 + ΓσTβ2 + (1− σ)T = 0. (22)



5

D. The classical problem

For comparison with later results, it is helpful to recall the conditions for the onset of instability in the classical
problem (i.e. no M-C effects). As already noted, R(s), the value of R at the onset of steady convection, is given by
expression (18). Here, as discussed in the introduction, we are concerned only with the case of rapid rotation; thus,
for T ≫ 1,

R(s)
c ∼ 3

(
T

2

)2/3

, with k2sc ∼
(
T

2

)1/3

. (23)

The oscillatory stability boundary is given by

R(o) =
2σ2

(1 + σ)

T

k2
+ 2(1 + σ)

β6

k2
, (24)

provided that

ω2 = σ2

((
1− σ

1 + σ

)
T

β2
− β4

)
> 0. (25)

Hence, the onset of instability in the classical problem can never be oscillatory if σ > 1; from (22), there is one T-B
point if σ < 1 and none otherwise.
For T ≫ 1 (or, more precisely, σ2T ≫ 1), the critical value of R for the onset of oscillatory convection is given by

R(o)
c ∼ 3

(
2σ4T 2

1 + σ

)1/3

, with k2oc ∼
(

σ2T

2(1 + σ)2

)1/3

, ω2
c =

(
σ2T

2(1 + σ)2

)2/3

(2− 3σ2), (26)

provided σ <
√
2/3 ≃ 0.8164. From (23) and (26), it can be seen that for σ2T ≫ 1, oscillatory convection is preferred

for σ < σc, where σc = 0.6766 is the (T -independent) positive root of 8σ4 = σ + 1 [40].
For σ2T = O(1) (with T ≫ 1, σ ≪ 1), k2oc becomes O(1), given by the positive root of the equation (cubic in k2oc):

(
2k2oc − 1

) (
1 + 2k2oc + k4oc

)
= σ2T. (27)

For σ2T ≪ 1, k2oc ≈ 1/2, with R
(o)
c ≈ 27/2. In this limit, the critical Rayleigh number becomes independent of T ,

though we must have T > 27/8 to ensure that ω2 > 0.
For completeness, we note that, even without the assumption of T ≫ 1, it is possible to find the relationship

between T and σ at which there is a transition in the preference for steady or oscillatory modes. Following refs. [42]

and [43], one can determine implicit expressions for R
(s)
c and R

(o)
c ; equating R

(s)
c and R

(o)
c then leads to the following

expression for T , in terms of σ, denoting when steady and oscillatory modes are equally preferred:

T =
27

2

(1 + σ)1/2
(√

2(1 + σ)1/2 − 1
)
(1− σ)2(1 + 2σ)2

(
(1 + σ)1/2 − 2

√
2σ2
)3 . (28)

We may instead regard (28) as an implicit expression for the transitional value of σ, σt(T ); Fig. 1 plots σt as a function

of T . For T < Tc = 27(
√
2− 1)/2, steady convection is always preferred, no matter how small σ. The denominator of

expression (28) vanishes when σ = σc, where, as introduced above, σc is the positive root of 8σ4 = σ + 1; for σ > σc,
steady convection is always preferred, no matter how large T .

E. When are M-C effects first felt?

The regimes of interest are those in which T ≫ 1 and Γ ≪ 1. The first point to address therefore is to determine,
for a fixed value of T ≫ 1, how large Γ must be in order that M-C effects are felt. From inspection of the coefficients
(21) in the quadratic equation (20) for R(o), it can be seen that with k2oc = O

(
T 1/3

)
, and assuming that σ is O(1),

all of the terms involving Γ in each coefficient are of the same order of magnitude as the Γ-independent terms for
Γ = O

(
T−1/3

)
. For Γ < O

(
T−1/3

)
, the problem is, to leading order, unchanged from the purely hydrodynamic

problem. In terms of describing the competition between the influences of rapid rotation and small M-C effect, it
is helpful to consider the distinguished limit of T ≫ 1, Γ = O

(
T−λ

)
, where λ > 0 is a dimensionless parameter

that allows us to analyse different asymptotic regimes; furthermore, it turns out to be most instructive to consider
separately the cases of λ = 1/3 and λ < 1/3.
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FIG. 1: σt, determined by expression (28), as a function of T . Steady (oscillatory) convection is favoured for σ > σt

(σ < σt). The lines T = Tc = 27(
√
2− 1)/2 and σ = σc (the positive root of 8σ4 = σ + 1) are marked.

III. THE CASE OF Γ = O
(

T−1/3
)

A. General Considerations

For Γ = O
(
T−1/3

)
, with T ≫ 1, the preferred mode for both steady and oscillatory instability has k2 = O

(
T 1/3

)

(as when Γ = 0); thus, β2 ≈ k2. It is helpful to adopt the scalings

T = Γ−3T̃ , k2 = Γ−1k̃2, R = Γ−2R̃, ω2 = Γ−2ω̃2. (29)

To leading order, the onset of steady convection is therefore given simply by the T ≫ 1 limit of the classical problem,
described by expressions (23). In scaled variables,

R̃(s)
c = 3

(
T̃

2

)2/3

, with k̃2sc =

(
T̃

2

)1/3

. (30)

On substituting the scaled variables (29) into the quadratic equation (20) determining the onset of oscillatory
instability, the scaled coefficients of the resulting equation

c̃2

(
R̃(o)

)2
+ c̃1R̃

(o) + c̃0 = 0, (31)

become, at leading order,

c̃2 = σ2(1 + σk̃2), (32a)

c̃1 = −
[
2σ4

(
k̃6 + T̃

)
+ σ2

(
(2 + 3σ)k̃4 + 3σ

T̃

k̃2

)
+ σ(1 + 2σ)k̃2 + (1 + σ)

]
, (32b)

c̃0 = 2σ4 (k̃
6 + T̃ )2

k̃4
+ 4σ2(σ − 1)T̃ + 4σ2(1 + σ)k̃6 +

2σ2T̃

k̃2
+ 2(1 + σ)2k̃4. (32c)

The absence of Γ in the coefficients thus shows the consistency of the scalings (29). In the Γ = O
(
T−1/3

)
regime,

both R
(s)
c and R

(o)
c are thus of the same order, O

(
Γ−2

)
; i.e. R̃

(s)
c and R̃

(o)
c are O(1). Determining whether steady or
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FIG. 2: The number of T-B points, governed by the real positive roots for k̃2 of (33), in (T̃ , σ) space.

oscillatory modes are favoured therefore depends on the values of T̃ and σ. Insight into this question can be obtained
through consideration of the T-B points. For Γ = O

(
T−1/3

)
, with k2 ≈ β2 = O

(
T 1/3

)
= O

(
Γ−1

)
, Eq. (22), which

governs the T-B points, becomes, at leading order,

σk̃8 − (1 + σ)k̃6 + σT̃ k̃2 + (1− σ)T̃ = 0. (33)

Figure 2 shows the number of T-B points that are possible as T̃ and σ range over O(1) values. The (T̃ , σ) plane is

divided into regions of zero, one, two or three T-B points. The four regions are coincident at T̃ = 32/27, σ = 1; the

cusp on the boundary separating the ‘one’ and ‘three’ regions is located at T̃ = 128/125, σ = 5/3. Examples of the

stability boundaries for the four regions are illustrated in Fig. 3, which plots the marginal values of R̃ versus k̃2 for
both steady and oscillatory instability. In Fig. 3(a), there are two T-B points; oscillatory instability is preferred, with

k̃2oc = 0.334. Figure 3(b) has the same value of σ as in Fig. 3(a), but with an increased value of T̃ ; the two disjoint
oscillatory branches in Fig. 3(a) have merged; there are now no T-B points and oscillatory instability is preferred for
all wavenumbers. Figure 3(c) illustrates an example with three T-B points. For the case shown, oscillatory instability

is preferred, with k̃2oc = 0.476; within the zone of three T-B points it is though also possible for the steady mode to

be favoured. Figure 3(d) has the same value of T̃ as in Fig. 3(c), but with an increased value of σ. The branch of

oscillatory solutions for small k̃2 in Fig. 3(c) has collapsed and there is now one T-B point. For the example shown,

steady convection is preferred, with k̃2sc = 0.630. However, in the large σ regime — with one T-B point — it is also
possible for oscillatory convection to be preferred; this is discussed further in § III B.

Although the oscillatory stability boundary is given simply by the quadratic equation (31), for O(1) values of σ,

determining the associated critical values of R̃ and k̃2 has to be performed numerically. Analytical progress can
however be made for the limits of large and small σ.
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FIG. 3: Examples of marginal stability curves, for R̃ as a function of k̃2, corresponding to the four different regions
in Fig. 2; the red lines denote where the steady mode is marginal (s = 0), the blue lines where the oscillatory mode

is marginal (s = ±iω). In (a) (two T-B points), T̃ = 1, σ = 0.3; in (b) (no T-B points), T̃ = 10, σ = 0.3; in (c) (three

T-B points), T̃ = 0.5, σ = 1.05; in (d) (one T-B point), T̃ = 0.5, σ = 10.

B. Large σ

The system in Sec. III A, which results from the scaling (29), describes the regime of T = O
(
Γ−3

)
, Γ ≪ 1. Here,

still within this regime, we consider the case of σ ≫ 1. At leading order in σ, Eq. (31) becomes

k̃2
(
R̃(o)

)2
− 2σ

(
k̃6 + T̃

)
R̃(o) + 2σ

(k̃6 + T̃ )2

k̃4
= 0. (34)

The smaller root of (34), which also turns out to be the only admissible solution, is given to leading order by

R̃(o) =

(
k̃2 +

T̃

k̃4

)
. (35)

The frequency corresponding to this solution is given, to leading order, by ω̃2 = k̃2 − 1 and so the solution (35) is

admissible provided that k̃2 > 1. Minimising R̃(o) over k̃2 gives the critical value as

R̃(o)
c =

3

2

(
2T̃
)1/3

, with k̃2oc ≈
(
2T̃
)1/3

and ω2
c ≈

(
2T̃
)1/3

− 1. (36)

The fact that k̃2oc is O(1) underlines the consistency of the approach. Comparison of expressions (30) and (36) shows

that steady convection is favoured for T̃ < 1, oscillatory convection for T̃ > 1. The transition of the preferred mode
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FIG. 4: Marginal stability curves, for R̃ as a function of k̃2 with σ = 102; the red and blue lines denote, respectively,

where the steady and oscillatory modes are marginal. In (a), T̃ = 0.5; in (b), T̃ = 1; in (c), T̃ = 1.5.

as T̃ is changed is illustrated in Fig. 4, which shows the plots of the stability boundaries for R̃ as a function of k̃2

for σ = 102. In Fig. 4(a), T̃ = 0.5 and steady convection is preferred (this is also the regime shown in Fig. 3(d)); in

Fig. 4(b), T̃ = 1 and the minima of R̃ for the steady and oscillatory modes are the same, with different associated values

of k̃2; in Fig. 4(c), T̃ = 1.5 and oscillatory convection is preferred. The difference between the case of Γ = O
(
T−1/3

)

and the classical case of Γ = 0 is noteworthy: with the M-C effect, oscillatory convection can be preferred even for
σ ≫ 1 (as in Fig. 4(c)), whereas for the classical problem, the oscillatory branch does not even exist for σ > 1.

C. Small σ

A naive small σ limit of (31), keeping k̃2 to be O(1), gives R̃(o) ≈ 2k̃4. Since, from this approximation, R̃(o) is

minimised at k̃2 = 0, it follows that we must consider asymptotically smaller values of k̃2 in order to capture the true
minimum. Hence, as σ is decreased from O(1) values, k̃2 must also be reduced; the reduction must be such that, for

the coefficients (32), terms with k̃2 in the denominator are brought into play. This first occurs when the penultimate

term in (32c) becomes large enough to balance the ultimate term, implying that k̃2 = O(σ2/3), with both these terms

O(σ4/3). We thus adopt the further rescalings of k̃2 = σ2/3k̂2, ω̃2 = σ4/3ω̂2, which give, at leading order in σ,

R̃(o) = 2σ4/3

(
k̂4 +

T̃

k̂2

)
. (37)

Expression (37) results from terms in the coefficients (32) (or, more explicitly, (21)) that do not involve Γ; thus, at
this level of approximation, we simply recover the expression for the onset of oscillatory convection in the classical

problem for large T , small σ. As anticipated, the minimum of R̃(o) is thus captured for O(1) values of k̂2; it is given
by

R̃(o)
c = 6

(
σ2T̃

2

)2/3

, with k̂2oc =

(
T̃

2

)1/3

and ω̂2
c =

(
2T̃ 2

)1/3
. (38)

Equivalently, on reverting to the unscaled variables, this becomes

R(o)
c = 6

(
σ2T

2

)2/3

, with k2oc =

(
σ2T

2

)1/3

and ω2
c =

(
2σ4T 2

)1/3
. (39)
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We note that since R̃
(o)
c scales with σ4/3, where σ is assumed small, then it is formally smaller than R̃

(s)
c , which is

O(1) and independent of σ; thus, for small σ, oscillatory convection is always preferred. Numerical solution shows

that expression (38) provides a better approximation for k̃2oc than it does for R̃
(o)
c (although they are both correct

to leading order). It turns out, however, that the next-order correction to R̃
(o)
c is independent of k̂2, and so we can

improve our estimate for R̃
(o)
c without having to calculate the next-order correction to k̂2oc; this gives

R̃(o)
c = 6

(
σ2T̃

2

)2/3

− 4σ2T̃ , (40)

or, in terms of the unscaled variables,

R(o)
c = 6

(
σ2T

2

)2/3

− 4σ2ΓT. (41)

The correction term in (41), which depends on Γ, is asymptotically large compared with the next-order correction

to the classical problem, which is O(σ7/3T 2/3). Table I contains the values of k2oc, ω
2
c and R

(o)
c calculated from the

full system, for three values of σ, with Γ = 10−6 and T = 1018, together with the small σ asymptotic results (39)
and (41). It can be seen that the approximation (39) for k2oc is indeed much more accurate than the corresponding

expression for R̃
(o)
c ; the improvement in the estimate (40) for R

(o)
c is also evident.

TABLE I: Values of k2oc, ω
2
c and R

(o)
c calculated from the full system and from the asymptotic expressions (39) and

(41), for three values of σ, with Γ = 10−6 and T = 1018, together with R
(o)
c from the classical (Γ = 0) problem with

T = 1018.

σ k2
oc (full) ωc (full) R

(o)
c (full) k2

oc (Eq. (39)) ω2
c (Eq. (39)) R

(o)
c (Eq. (39)) R

(o)
c (Eq. (40)) R

(o)
c (classical)

10−1 1.6656× 105 5.0014× 1010 1.3952× 1011 1.7100× 105 5.8480× 1010 1.7544× 1011 1.3544× 1011 1.6996× 1011

10−2 3.6668× 104 2.6748× 109 7.7357× 109 3.6840× 104 2.7144× 109 8.1433× 109 7.7433× 109 8.1165× 109

10−3 7.9319× 103 1.2581× 108 3.7393× 108 7.9370× 103 1.2599× 108 3.7798× 108 3.7398× 108 3.7790× 108

The scaling of k̃2oc with σ2/3 persists with decreasing σ until k̃2oc becomes sufficiently small that the approximation

β2 = k2 fails; i.e. when k2oc = O(1) or, equivalently, when k̃2oc = O(Γ). Thus expression (39), and its improvement (41),
holds for the entire range O(1) > σ > O(Γ3/2).

For σ = O(Γ3/2) (i.e. σ2T = O(1)), we must revert to the full system, where β2 is no longer approximated by k2.
From (20), with coefficients (21), we then obtain, at leading order,

R(o) = 2

(
β6

k2
+

σ2T

k2

)
. (42)

We have thus just recovered (24), the expression for oscillatory onset in the classical problem for σ2T = O(1). For
yet smaller σ, with σ2T ≪ 1, we are left with only the first term in (42); as discussed earlier, this gives k2oc = 1/2,

ω2
c = (8T − 27)σ2/12, R

(o)
c = 27/2.

IV. THE CASE OF Γ > O
(

T−1/3
)

We now consider the case of Γ = O
(
T−λ

)
, with λ < 1/3. As we shall describe below, the wavenumber of the mode

of maximum growth rate, the associated frequency, and the critical Rayleigh number depend crucially on the Prandtl
number σ. A number of distinct asymptotic regimes can be identified, covering the entire range of σ; we investigate
these separately in the following subsections, tying the results together, for the entire range of σ, in Sec. IVC.
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A. σ ≳ O(1)

For σ ≳ O(1), the preferred mode for oscillatory instability has k2 = O
(
Γ−1/3λ

)
; thus, again, β2 ≈ k2. Under this

scaling, the coefficients of the quadratic equation (20) determining R(o) are, to leading order in Γ,

c2 = Γ3σ3k2 = O
(
Γ3−1/3λ

)
, (43a)

c1 = −2Γ3σ4
(
k6 + T

)
= O

(
Γ3−1/λ

)
, (43b)

c0 = 2Γ2σ4 (k
6 + T )2

k4
= O

(
Γ2−4/3λ

)
. (43c)

The relative sizes of the coefficients imply that the two roots for R(o) are O
(
Γ−1−1/3λ

)
and O

(
Γ−2/3λ

)
. It is

straightforward to show that only the former (smaller) root is admissible. On adopting the scalings

T = Γ−1/λT̃ , k2 = Γ−1/3λk̃2, ω2 = Γ−1−1/3λω̃2, R = Γ−1−1/3λR̃, (44)

we obtain

R̃(o) = k̃2 +
T̃

k̃4
; (45)

the minimum value of R̃(o) is given by

R̃(o)
c = 3

(
T̃

4

)1/3

, with k̃2oc =
(
2T̃
)1/3

and ω̃2
c =

(
2T̃
)1/3

. (46)

In unscaled variables, these expressions become

R(o)
c = 3Γ−1

(
T

4

)1/3

, with k2oc = (2T )
1/3

and ω2
c = Γ−1 (2T )

1/3
. (47)

Recalling that the onset of steady convection for T ≫ 1 is always given by (23), gives R
(s)
c = O

(
T 2/3

)
= O

(
Γ−2/3λ

)
.

Since R
(o)
c = O

(
Γ−1−1/3λ

)
, R

(s)
c is formally asymptotically larger than R

(o)
c for λ < 1/3. Hence, in this regime, we

need restrict attention only to the onset of oscillatory convection, since this is always preferred.

TABLE II: Values of k2oc, ω
2
c and R

(o)
c for the full system for five values of σ, with Γ = 10−4 and T = 1016 (λ = 1/4),

together with the σ-independent asymptotic expressions (47).

σ k2
oc (full) ω2

c (full) R
(o)
c (full) k2

oc (Eq. (47)) ω2
c (Eq. (47)) R

(o)
c (Eq. (47))

100 2.7139× 105 2.6136× 109 4.0721× 109 2.7144× 105 2.7144× 109 4.0716× 109

10 2.7085× 105 2.6052× 109 4.0763× 109 2.7144× 105 2.7144× 109 4.0716× 109

1 2.5778× 105 2.4498× 109 4.0851× 109 2.7144× 105 2.7144× 109 4.0716× 109

0.5 2.3004× 105 2.1659× 109 4.0034× 109 2.7144× 105 2.7144× 109 4.0716× 109

0.1 0.9094× 105 0.8772× 109 1.9043× 109 2.7144× 105 2.7144× 109 4.0716× 109

Table II contains the values of k2oc, ω
2
c and R

(o)
c calculated numerically from the full system, for five values of σ,

with Γ = 10−4 and T = 1016 (λ = 1/4), together with the σ-independent asymptotic results (47); the asymptotic

expression for ω2
c , given by (47), is not in such good agreement as those for k2oc and R

(o)
c , since the next order correction

is formally larger. It can be seen that the agreement between the full and approximate results is very good for σ ≥ 1,
but that for σ < 1, expressions (47) cease to be accurate. Indeed, by σ = 0.1, which is not a particularly small value
of σ, there is no resemblance between the two sets of results. It is clear, therefore, that for σ < 1, the dominant
balance in Eq. (20) will no longer be provided by the coefficients (43). As described in the following subsection, the
picture for small σ is quite intricate.
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B. Small σ

As σ is reduced below unity, the dominant balance of the coefficients ceases to be represented by equations (43),

which yield expressions for k2oc and R
(o)
c that are independent of σ. As described below, there are two broad asymptotic

regimes to consider, determined by the size of σ.

1. O
(

Γ(1−3λ)/2λ
)

≲ σ ≲ O
(

Γ(1−3λ)/6λ
)

With the scaling k2 = O
(
Γ−1/3λ

)
, valid for σ = O(1), expressions (43) first cease to be accurate when σ =

O
(
Γ(1−3λ)/6λ

)
. To leading order, the coefficients (21) then become

c2 = Γ3σ3k2 = O
(
Γ(1+9λ)/6λ

)
, (48a)

c1 = −2
(
Γ3σ4

(
k6 + T

)
+ Γ2σ2k4

)
= O

(
Γ1−1/3λ

)
, (48b)

c0 = 2Γ2σ4 (k
6 + T )2

k4
− 4Γσ2T + 4Γσ2k6 + 2k4 = O

(
Γ−2/3λ

)
. (48c)

Thus, to leading order, R is determined by R = −c0/c1. On writing

T = Γ−1/λT̃ , σ = Γ(1−3λ)/6λσ̃, k2 = Γ−1/3λk̃2, ω2 = Γ−(1+3λ)/3λω̃2, R = Γ−(1+3λ)/3λR̃, (49)

we obtain

R̃ =
σ̃4
(
k̃6 + T̃

)2
− 2σ̃2T̃ k̃4 + 2σ̃2k̃10 + k̃8

σ̃4
(
k̃6 + T̃

)
k̃4 + σ̃2k̃8

. (50)

Expression (45) is recovered through the large σ̃ limit of (50). The stationary points for R̃ (i.e. where dR̃/dk̃2 = 0)

are given by the roots of the following ninth order polynomial for k̃2:

σ̃4k̃18 + 2σ̃2k̃16 + k̃14 + 10σ̃2T̃ k̃10 + 6T̃ k̃8 − 3σ̃4T̃ 2k̃6 − 4σ̃2T̃ 2k̃4 − 2σ̃4T̃ 3 = 0. (51)

The frequency is given by the simple relation

ω̃2 = k̃2. (52)

Equation (51) has no obvious factorisation; numerical solutions for O(1) values of σ̃ and T̃ suggest that there is just

one minimum of R̃ for k̃2 > 0. For the representative case of T̃ = 1 and σ̃ = 1, the critical value of k̃2 is given, from

solution of (51), by k̃2oc = 0.7879, with ω2
c = 0.7879 and R̃

(o)
c = 1.5029, from (52) and (50) respectively. Table III

contains the values of k2oc, ω
2
c and R

(o)
c calculated from the full system, with T̃ = σ̃ = 1 and for a range of values

of Γ and λ, and compares them with the respective results obtained from (51), (52) and (50), together with the
scaling (49). As expected, the agreement improves as either Γ or λ is decreased.

As σ̃ decreases, so does k̃2. Thus, for small σ̃, retaining the leading order terms in expression (51) gives the simpler
expression,

6T̃ k̃8 − 4σ̃2T̃ 2k̃4 − 2σ̃4T̃ 3 = 0, (53)

which factorises to give the one admissible solution,

k̃2 = k̃2oc = σ̃T̃ 1/2 =⇒ k2oc = σ
√
ΓT . (54)

From (52), we thus have

ω2
c = σ

√
T/Γ. (55)
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TABLE III: Values of k2oc, ω
2
c and R

(o)
c for the full system and from the respective asymptotic expressions (51), (52)

and (50), rescaled by (49), for T̃ = σ̃ = 1 and for three values of both λ and Γ.

λ Γ T σ k2
oc (full) ω2

c (full) R
(o)
c (full) k2

oc (Eq. (51)) ω2
c (Eq. (52)) R

(o)
c (Eq. (50))

1/4 10−4 1016 10−2/3 1.5785× 105 1.5019× 109 3.2868× 109 1.6974× 105 1.6974× 109 3.2380× 109

1/4 10−5 1020 10−5/6 3.4765× 106 3.388× 1011 7.0515× 1011 3.6570× 106 3.6570× 1011 6.9760× 1011

1/4 10−6 1024 10−1 7.6078× 107 7.5023× 1013 1.5144× 1014 7.8787× 107 7.8787× 1013 1.5029× 1014

1/5 10−4 1020 10−4/3 3.5971× 106 3.5805× 1010 7.0015× 1010 3.6570× 106 3.6570× 1010 6.9760× 1010

1/5 10−5 1025 10−5/3 1.6844× 108 1.6814× 1013 3.2436× 1013 1.6974× 108 1.6974× 1013 3.2380× 1013

1/5 10−6 1030 10−2 7.8505× 109 7.8447× 1015 1.5041× 1016 7.8787× 109 7.8787× 1015 1.5029× 1016

1/6 10−4 1024 10−2 7.8505× 107 7.8447× 1011 1.5041× 1012 7.8787× 107 7.8787× 1011 1.5029× 1012

1/6 10−5 1030 10−5/2 7.8698× 109 7.8681× 1014 1.5033× 1015 7.8787× 109 7.8787× 1014 1.5029× 1015

1/6 10−6 1036 10−3 7.8759× 1011 7.8754× 1017 1.5031× 1018 7.8787× 1011 7.8787× 1017 1.5029× 1018

To determine R̃
(o)
c , it is helpful to rewrite expression (50) as

R̃ =

(
k̃4 − σ̃2T̃

)2
+ 2σ̃4T̃ k̃6 + 2σ̃2k̃10 + σ̃4k̃12

σ̃4T̃ k̃4 + σ̃2k̃8 + σ̃4k̃10
. (56)

With k̃2 = T̃ 1/2σ̃, the leading order terms in R̃ (i.e. terms of O
(
σ̃4
)
) cancel, giving R̃

(o)
c = 0 at this order. The

perfect square in the numerator in (56) does though enable us to evaluate the leading-order finite contribution to R̃
(o)
c

without needing the next-order correction to k̃2oc. Indeed, we obtain the surprisingly simple expression,

R̃(o)
c = 2σ̃T̃ 1/2 =⇒ R(o)

c = 2σ

√
T

Γ
=

2k2c
Γ

. (57)

Table IV contains the values of k2oc, ω
2
c and R

(o)
c calculated from the full system, with T̃ = 1 and σ̃ = 0.1, for

a range of values of Γ and λ, and compares them with the respective asymptotic results (54), (55) and (57). The
agreement is particularly good for the smaller values of Γ and λ.

TABLE IV: Values of k2oc, ω
2
c and R

(o)
c for the full system and from the asymptotic expressions (54), (55) and (57),

for T̃ = 1, σ̃ = 0.1 and for three values of both λ and Γ.

λ Γ T σ k2
oc (full) ω2

c (full) R
(o)
c (full) σ

√
ΓT (Eq. (54)) σ

√

T/Γ (Eq. (55)) 2σ
√

T/Γ (Eq. (57))
1/4 10−4 1016 10−5/3 2.2394× 104 2.0032× 108 4.1871× 108 2.1544× 104 2.1544× 108 4.3089× 108

1/4 10−5 1020 10−11/6 4.7114× 105 4.4677× 1010 9.1558× 1010 4.6416× 105 4.6416× 1010 9.2832× 1010

1/4 10−6 1024 10−2 1.0044× 107 0.9797× 1013 1.9866× 1013 1× 107 1× 1013 2× 1013

1/5 10−4 1020 10−7/3 4.6356× 105 4.6107× 109 9.2661× 109 4.6416× 105 4.6416× 109 9.2832× 109

1/5 10−5 1025 10−8/3 2.1511× 107 2.1486× 1012 4.3055× 1012 2.1544× 107 2.1544× 1012 4.3089× 1012

1/5 10−6 1030 10−3 9.9888× 108 9.9863× 1014 1.9989× 1015 1× 109 1× 1015 2× 1015

1/6 10−4 1024 10−3 9.9888× 106 9.9863× 1010 1.9989× 1011 1× 107 1× 1011 2× 1011

1/6 10−5 1030 10−7/2 9.9928× 108 9.9925× 1013 1.9990× 1014 1× 109 1× 1014 2× 1014

1/6 10−6 1036 10−4 9.9943× 1010 9.9942× 1016 1.9990× 1017 1× 1011 1× 1017 2× 1017

2. σ ≲ O
(

Γ(1−3λ)/2λ
)

There is a further change in the dominant balance of the coefficients of Eq. (20) when σ = O
(
Γ(1−3λ)/2λ

)
, k2 =

O
(
Γ−1

)
. The coefficient c1 can then be approximated by c1 = −1, giving, to leading order,

R(o) =
2Γ2σ4T 2

k4
− 4ΓTσ2 +

2σ2T

k2
+ 2k4. (58)
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On writing

T = Γ−1/λT̃ , σ = Γ(1−3λ)/2λσ̃, k2 = Γ−1k̃2, ω2 = Γ−2ω̃2, R(o) = Γ−2R̃(o), (59)

we obtain

R̃(o) =
2σ̃4T̃ 2

k̃4
− 4T̃ σ̃2 +

2σ̃2T̃

k̃2
+ 2k̃4, (60)

with R̃(o) minimised when

2k̃8 − σ̃2T̃ k̃2 − 2σ̃4T̃ 2 = 0. (61)

The frequency is then given by

ω̃2 =
σ̃2T̃

k̃2
. (62)

The large σ̃ limit of (61) gives k̃2 = k̃2oc ≈ σ̃
√

T̃ ; in dimensional units, this translates to k2oc = σ
√
ΓT , thus recovering

expression (54). Table V contains the values of k2oc, ω
2
c and R

(o)
c calculated from the full system, with T̃ = 1 and

σ̃ = 1 (with σ̃ defined by (59)), for a range of values of Γ and λ, and compares them with the respective asymptotic
results (61), (62) and (60), rescaled via (59). Once again, the agreement is particularly good for the smaller values of
Γ and λ.

TABLE V: Values of k2oc, ω
2
c and R

(o)
c for the full system and from the respective asymptotic expressions (61), (62)

and (60), rescaled by (59), for T̃ = 1, σ̃ = 1 and for three values of both λ and Γ.

λ Γ T σ k2
oc (full) ω2

c (full) R
(o)
c (full) k2

oc (Eq. (61)) ω2
c (Eq. (62)) R

(o)
c (Eq. (60))

1/4 10−4 1016 10−2 1.1093× 104 8.8734× 107 1.8882× 108 1.1173× 104 8.9498× 107 1.8889× 108

1/4 10−5 1020 10−5/2 1.1148× 105 8.9258× 109 1.8886× 1010 1.1173× 105 8.9498× 109 1.8889× 1010

1/4 10−6 1024 10−3 1.1166× 106 8.9422× 1011 1.8888× 1012 1.1173× 106 8.9498× 1011 1.8889× 1012

1/5 10−4 1020 10−4 1.1172× 104 8.9489× 107 1.8890× 108 1.1173× 104 8.9498× 107 1.8889× 108

1/5 10−5 1025 10−5 1.1173× 105 8.9497× 109 1.8889× 1010 1.1173× 105 8.9498× 109 1.8889× 1010

1/5 10−6 1030 10−6 1.1173× 106 8.9497× 1011 1.8889× 1012 1.1173× 106 8.9498× 1011 1.8889× 1012

1/6 10−4 1024 10−6 1.1173× 104 8.9497× 107 1.8890× 108 1.1173× 104 8.9498× 107 1.8889× 108

1/6 10−5 1030 10−15/2 1.1173× 105 8.9497× 109 1.8889× 1010 1.1173× 105 8.9498× 109 1.8889× 1010

1/6 10−6 1036 10−9 1.1173× 106 8.9498× 1011 1.8889× 1012 1.1173× 106 8.9498× 1011 1.8889× 1012

In the small σ̃ limit, the relevant root for k̃2 is determined, at leading order, by balancing the first and second terms
in (61), giving

k̃2 = k̃2oc =

(
σ̃2T̃

2

)1/3

. (63)

The final two terms in expression (60) are then dominant, giving

R̃(o)
c =

2σ̃2T̃

k̃2oc
+ 2k̃4oc = 3

(
2σ̃4T̃ 2

)1/3
. (64)

The scaled frequency, using Eq. (62), is given by

ω̃2
c =

(
2σ̃4T̃ 2

)1/3
. (65)

Reverting to the unscaled variables, all the Γ dependence vanishes, and we simply obtain

k2oc =

(
σ2T

2

)1/3

, with ω2
c =

(
2σ4T 2

)1/3
and R(o)

c = 3
(
2σ4T 2

)1/3
. (66)
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FIG. 5: (a) Rc, (b) k
2
c and (c) ω2

c as functions of σ for the case of Γ = 10−4, T = 1016 (i.e. λ = 1/4); the onset of
instability is oscillatory for all σ. The magenta lines denote the asymptotic expressions (46); the black dashed lines
are the expressions (50) (for (a)), (51) (for (b)) and (52) (for (c)), with the respective limiting values (57), (54) and
(55) shown by the blue dotted lines with circle markers; the green lines are given by (60) (for (a)), (61) (for (b)) and
(62) (for (c)), with the respective limiting expressions (66) shown as red dashed lines. Numerical results of the full
system are shown as squares with red edges. For comparison, the red dotted lines denote Rc, k

2
c and ω2

c for the
classical problem; here the onset of instability is oscillatory for σ < σc and steady for σ > σc.

Thus, in this regime of very small σ, the M-C effect has no influence; the last vestiges of the M-C effect are contained
in the final term in (61). Expressions (66) are therefore the small σ limits of the classical expressions (26), valid for
σ2T ≫ 1. For yet smaller σ, the M-C influence, already negligible in expressions (66), is diminished further. Thus, on
descending into the regimes with σ2T = O(1) and then σ2T ≪ 1 (both with T ≫ 1, σ ≪ 1), the relevant criteria are
those discussed in Sec. IID for the classical problem. It is noteworthy that for σ2T to be O(1), σ has to be incredibly
small, with σ = O

(
Γ1/λ

)
.

C. The effect of the Prandtl number on the stability boundary

Having explored the stability boundary for σ ≳ 1 in Sec. IVA and for small σ in Sec. IVB, we can now piece
together the critical Rayleigh number and optimal wavenumber across an extended range of σ. Figure 5 depicts Rc,
k2c and ω2

c versus σ over the range 10−4 ≤ σ ≤ 102 for Γ = 10−4 and T = 1016 (λ = 1/4); thus, even the smallest
value of σ shown satisfies σ2T ≫ 1. The form of the plot is representative of all values of λ < 1/3. The asymptotic
expressions (46), (50)–(52) and (60)–(62) are plotted, together with the limiting expressions (57) and (66); the smooth
transition between the various regimes is exhibited clearly. Numerical solutions from the full system are also shown;
these are in excellent agreement with the asymptotic results. For comparison, Rc and k2c for the classical (Γ = 0)
problem at the same value of T are also shown. As discussed in Sec. IID, when there is no M-C influence, the onset
of instability is oscillatory for σ < σc = 0.6766 and steady for σ > σc. For the parameters considered here, although
M-C effects are becoming insignificant for the smallest values of σ shown (σ = O

(
10−4

)
), the M-C effect is clearly

destabilising for σ ≳ O
(
10−3

)
; moreover, as discussed above, it leads to an oscillatory onset of instability for all σ

and an increase in the wavenumber and frequency of the preferred mode.
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V. CONCLUSION

In this paper, we have considered the effects of small Maxwell-Cattaneo (M-C) corrections to the linear stability
of rapidly rotating Boussinesq convection in a plane layer heated from below. The work builds on earlier papers
(refs. [35, 38]), which consider the M-C effect in magnetoconvection and double-diffusive convection, respectively.
The principal conclusion is that when the Taylor number T is large, but the (small) M-C effect, represented by the
parameter Γ, is large enough that Γ > O(T−λ) for λ ≤ 1/3, then the stability boundary differs significantly from the
classical case (Γ = 0); in the latter, it is known that if T is sufficiently large and the Prandtl number σ < 1, then
oscillatory convection is possible, while oscillations are preferred for σ < 0.6766 [40]. The effect of the M-C terms is
negligible for λ > 1/3. For λ = 1/3, oscillations can be preferred for values of T of order Γ−3, even for large values
of σ, while the critical values of the Rayleigh number and wave number remain, at O(T 2/3) and O(T 1/6), similar to
those for the classical problem. At very small values of σ we find that the critical values of R and k2 are close to
those for the classical problem: oscillations are always preferred.
For λ < 1/3 oscillations are always preferred; indeed, the critical values of R for oscillatory onset are now asymp-

totically smaller than that for steady convection, so oscillations are strongly preferred for small Γ while the critical
wavenumbers now increase with Γ. The results exhibit the same balance of terms for values of σ ≥ O(1), but the dom-
inant balances change considerably as σ becomes small and there are several distinct small-σ regimes to be analysed.
When σ is sufficiently small, M-C effects become negligible.
The M-C effect, represented by Γ, is typically very small, as discussed in [35], though it is hard to find good data

on relaxation times for terrestrial fluids. How large does Γ have to be before there is a discernible effect on the onset
of convection? From the analysis presented here, we expect significant effects when ΓT 1/3 is of order unity or greater.
As noted in the introduction, T can be as large as 1030 in the Earth’s outer core, so it seems plausible to expect
M-C effects to occur there. In the laboratory, assuming scales of order 2 metres, angular velocity of 2000 rpm and
kinematic viscosity of 10−6m2s−1, T could be as large as 1014; it thus seems possible, depending on the nature of the
fluid, that in this case also we can find regimes where M-C effects should be taken into account .
The analysis of the paper assumes that the convection is in what one might call the fundamental vertical mode,

with, for example, the vertical velocity proportional to sin z. There are in fact an infinite number of solutions with
the vertical velocity ∝ sinmz for any integer m. Because the great majority of the modes described in the paper have
large critical horizontal wavenumbers, the value of m does not appear at leading order in the results — or, to put it
another way, the vertical structure of the convection is not determined at leading order. In the few cases where the
critical wavenumber is of order unity, it can be verified that m = 1 gives the smallest critical Rayleigh number.

The paper addresses only the case of stress-free velocity boundary conditions. Any laboratory experiments would
involve at least one rigid boundary, so it is reasonable to ask what difference in the results might be expected. In
fact, at large Taylor number, as in the case of large Chandrasekhar number in magnetoconvection [35], the primary
balance in the interior is unaffected by the velocity boundary conditions at leading order, the no-slip condition being
passively accommodated by narrow Ekman layers. We therefore expect the results obtained here to apply at leading
order irrespective of the velocity boundary conditions.
It is well known that there is a broad analogy between the rotating and magnetic convection problems, in that

the dispersion relations for a fixed wavenumber have a very similar form; however, because of different wavenumber
dependencies, the relations defining the optimal wavenumbers in the two problems (for both steady and oscillatory
convection) are rather different. The same remains true when M-C effects are included.

Finally, it should be noted that the analysis in this paper assumes the Boussinesq approximation: thus Mach
numbers are assumed small and the fluid is taken as incompressible. Equivalently, the sound speed is taken as
effectively infinite. In real fluids there will be high frequency sound waves at any given velocity scale, and while the
structure of these waves (almost irrotational) and the M-C induced oscillations (almost solenoidal) are very different,
and the modes are likely to interact only weakly, it would nonetheless be of interest to extend the analysis of the
present paper to include the effects of weak compressibility to see if there is any material change in the general
conclusions reached here.

ACKNOWLEDGMENTS

We are grateful to the referees for their helpful comments on the paper.

[1] J. C. Maxwell, On the dynamical theory of gases, Phil. Trans. R. Soc. Lond. 157, 49 (1867).



17

[2] C. Cattaneo, Sulla conduzione del calore, Atti Mat. Fis. Univ. Modena 3, 83 (1948).
[3] J. G. Oldroyd, On the formulation of rheological equations of state, Proc. R. Soc. Lond. Ser. A 200, 523 (1950).
[4] N. Fox, Low temperature effects and generalized thermoelasticity, IMA J. Appl. Maths. 5, 373 (1969).
[5] M. Carrassi and A. Morro, A modified Navier-Stokes equation, and its consequences on sound dispersion, Nuovo Cimento

B Serie 9, 321 (1972).
[6] A. Barletta and E. Zanchini, Unsteady heat conduction by internal-energy waves in solids, Phys. Rev. B 55, 14208 (1997).
[7] B. Straughan and F. Franchi, Bénard convection and the cattaneo law of heat conduction, Proc. R. Soc. Edin. 96, 175

(1984).
[8] G. Lebon and A. Cloot, Bénard-Marangoni instability in a Maxwell-Cattaneo fluid, Phys. Lett. A 105, 361 (1984).
[9] B. Straughan, Oscillatory convection and the Cattaneo law of heat conduction, Ric. di Mat. 58, 157 (2009).

[10] B. Straughan, Thermal convection with the Cattaneo-Christov model, Int. J. Heat Mass Transf. 53, 95 (2010).
[11] D. F. Stranges, R. E. Khayat, and B. Albaalbaki, Thermal convection of non-Fourier fluids. Linear stability, Int. J. Therm.

Sci. 74, 14 (2013).
[12] D. F. Stranges, R. E. Khayat, and J. deBruyn, Finite thermal convection of non-Fourier fluids, Int. J. Therm. Sci. 104,

437 (2016).
[13] J. J. Bissell, On oscillatory convection with the Cattaneo-Christov hyperbolic heat-flow model, Proc. R. Soc. Lond. Ser.

A 471, 20140845 (2015).
[14] I. A. Eltayeb, Convective instabilities of Maxwell-Cattaneo fluids, Proc. R. Soc. Lond. Ser. A 473, 20160712 (2017).
[15] B. Straughan, Porous convection with local thermal non-equilibrium temperatures and with Cattaneo effects in the solid,

Proc. R. Soc. Lond. Ser. A 469, 20130187 (2013).
[16] S. Haddad, Thermal instability in Brinkman porous media with Cattaneo-Christov heat flux, Int. J. Heat Mass Transf.

68, 659 (2014).
[17] J. J. Vadasz, S. Govender, and P. Vadasz, Heat transfer enhancement in nano-fluids suspensions: Possible mechanisms and

explanations, Int. J. Heat Mass Transf. 48, 2673 (2005).
[18] P. Vadasz, Heat conduction in nanofluid suspensions, ASME J. Heat Transf. 128, 465 (2006).
[19] D. Jou, A. Sellitto, and F. X. Alvarez, Heat waves and phonon-wall collisions in nanowires, Proc. R. Soc. Lond. Ser. A

467, 2520 (2011).
[20] G. Lebon, H. Machrafi, M. Grmela, and C. Dubois, An extended thermodynamic model of transient heat conduction at

sub-continuum scales, Proc. R. Soc. Lond. Ser. A 467, 3241 (2011).
[21] H. W. Liepmann and G. A. Laguna, Nonlinear interactions in the fluid mechanics of helium II, Ann. Rev. Fluid Mech. 16,

139 (1984).
[22] R. J. Donnelly, The two-fluid theory and second sound in liquid helium, Physics Today 62, 34 (2009).
[23] H. Liu, M. Bussmann, and J. Mostaghimi, A comparison of hyperbolic and parabolic models of phase change of a pure

metal, Int. J. Heat Mass Transf. 52, 1177 (2009).
[24] A. Miranville and R. Quintanilla, A generalization of the caginalp phase-field system based on the cattaneo law., Nonlinear

Anal., Real World Appl. 71, 2278 (2009).
[25] S. Rasteaar, Hyperbolic heat conduction In pulsed laser irradiation of tissue, in Thermal and Optical Interactions with

Biological and Related Composite Materials, Vol. 1064, edited by M. J. Berry and G. M. Harpole (SPIE, 1989) pp. 114 –
117.

[26] W. Kaminski, Hyperbolic heat conduction equation for materials with a non-homogeneous inner structure, ASME J. Heat
Transf. 112, 555 (1990).

[27] K. Mitra, S. Kumar, A. Vedavarz, and M. K. Moallemi, Experimental evidence of hyperbolic heat conduction in processed
meat, ASME J. Heat Transf. 117, 568 (1995).

[28] Y. Dolak and T. Hillen, Cattaneo models for chemosensitive movement - numerical solution and pattern formation (vol
46, pg 153, 2003), J. Math. Bio. 46, 460 (2003).

[29] A. Saidane, S. Aliouat, M. Benzohra, and M. Ketata, A transmission line matrix (tlm) study of hyperbolic heat conduction
in biological materials, J. Food Eng. 68, 491 (2005).

[30] W. Dai, H. Wang, P. Jordan, R. Mickens, and A. Bejan, A mathematical model for skin burn injury induced by radiation
heating, Int. J. Heat Mass Transf. 51, 5497 (2008).

[31] E. Barbera, C. Curro, and G. Valenti, A hyperbolic reaction-diffusion model for the hantavirus infection, Math. Meth.
Appl. Sci. 31, 481 (2008).

[32] M. M. Tung, M. Trujillo, J. A. Lopez Molina, M. J. Rivera, and E. J. Berjano, Modeling the heating of biological tissue
based on the hyperbolic heat transfer equation, Math. Comp. Mod. 50, 665 (2009).

[33] L. Herrera and N. Falcón, Heat waves and thermohaline instability in a fluid, Phys. Lett. A 201, 33 (1995).
[34] J. J. Bissell, Thermal convection in a magnetized conducting fluid with the Cattaneo-Christov heat-flow model, Proc. R.

Soc. Lond. Ser. A 472, 20160649 (2016).
[35] I. A. Eltayeb, D. W. Hughes, and M. R. E. Proctor, The convective instability of a Maxwell-Cattaneo fluid in the presence

of a vertical magnetic field, Proc. R. Soc. Lond. Ser. A 476, 20200494 (2020).
[36] P. M. Jordan, Growth and decay of shock and acceleration waves in a traffic flow model with relaxation, Physica D 207,

220 (2005).
[37] C. I. Christov, On frame indifferent formulation of the Maxwell-Cattaneo model of finite-speed heat conduction, Mech.

Res. Commun. 36, 481 (2009).
[38] D. W. Hughes, M. R. E. Proctor, and I. A. Eltayeb, Maxwell–Cattaneo double-diffusive convection: limiting cases, J. Fluid

Mech. 927, A13 (2021).



18

[39] S. Chandrasekhar, The instability of a layer of fluid heated below and subject to Coriolis forces, Proc. R. Soc. Lond. Ser.
A 217, 306 (1953).

[40] S. Chandrasekhar, Hydrodynamic and Hydromagnetic Stability (Clarendon Press, Oxford, 1961).
[41] G. Veronis, Cellular convection with finite amplitude in a rotating fluid, J. Fluid Mech. 5, 401 (1959).
[42] N. O. Weiss, Convection in the presence of restraints, Phil. Trans. R. Soc. Lond. Ser. A 256, 99 (1964).
[43] R. C. Kloosterziel and G. F. Carnevale, Closed-form linear stability conditions for rotating Rayleigh-Bénard convection

with rigid stress-free upper and lower boundaries, J. Fluid Mech. 480, 25 (2003).


