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ABSTRACT: An approximate analytical technique for determining the response statistics of a

nonlinear piezoelectric energy harvesting device is proposed. This is attained by resorting to a

recently developed method for determining the response of multi-degree-of-freedom dynam-

ical systems with singular matrices subject to combined deterministic and stochastic loads.

Such systems are often met in engineering applications, for instance, as a result of model-

ing the governing equations of motion of complex multi-body systems by utilizing dependent

coordinates. In this regard, the governing equations of the harvesting system dynamics are

treated separately. Specifically, the harmonic balance method is used for treating the deter-

ministic component of the response, while the corresponding stochastic response component

is treated by combining the stochastic averaging and the statistical linearization methodolo-

gies. A numerical example is used to demonstrate the validity of the proposed technique. The

obtained results are verified by using pertinent MCS data.

1 INTRODUCTION

In general, formulating the system governing

equations of motion of engineering systems

relies on the use of the minimum number of

(generalized) coordinates (Roberts & Spanos

2003). This, in turn, results system parame-

ter matrices with some appealing properties,

such as positive definiteness and symmetry.

However, for several classes of complex en-

gineering systems and/or systems subject to

constraint equations, it is often more effi-

cient to derive the governing equations based

on a dependent coordinates modeling, i.e.,

by considering additional degrees-of-freedom

(DOF) (e.g., Udwadia & Kalaba 2001, Udwa-

dia & Phohomsiri 2006, Schutte & Udwadia

2011). As a result the aforementioned appeal-

ing properties of the system parameter matri-

ces do not apply anymore, since the latter are

singular. Subsequently, this aspect necessi-

tates the development of pertinent methodolo-

gies for conducting response analyses of such

systems.

In this regard, considering the problem of

multi-DOF linear and nonlinear systems with

singular matrices, as well as with constraint

equations, has led to the development of perti-

nent solution frameworks for determining the

stochastic response of such system in time

and frequency domains, as well as for con-

ducting a joint time-frequency response anal-
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ysis; see indicatively, Fragkoulis et al. 2016a;

b, Kougioumtzoglou et al. 2017, Antoniou et

al. 2017, Fragkoulis et al. 2015, Pantelous &

Pirrotta 2017, Pirrotta et al. 2019, Pasparakis

et al. 2021, Pirrotta et al. 2021, Karageorgos

et al. 2021. This has been attained by re-

sorting to the theory of generalized matrix in-

verses (Ben-Israel & Greville 2003), and par-

ticularly, by considering the concept of the

Moore-Penrose inverse of a matrix.

In this paper, a recently proposed general-

ized matrix inverses-based framework for de-

riving the response of MDOF nonlinear sys-

tems with singular matrices subject to com-

bined periodic and stochastic excitations (Ni

et al. 2021) is used to compute in a direct

way the stochastic response of a nonlinear

piezoelectric energy harvesting device (Petro-

michelakis et al. 2018; 2021, Karageorgos et

al. 2021). This is attained by considering the

harmonic balance method for treating the pe-

riodic component of the response (e.g., Mick-

ens 2010; Spanos et al. 2019; Kong et al.

2022) in conjunction with the statistical lin-

earization methodology for systems with sin-

gular matrices for treating the corresponding

stochastic response component (Fragkoulis et

al. 2016b, Kougioumtzoglou et al. 2017).

The obtained results are compared with per-

tinent Monte Carlo simulation data.

2 MATHEMATICAL FORMULATION

2.1 Governing equations of motion

The governing equations of motion of an l-

DOF nonlinear system subjected to combined

stochastic Qx(t) and deterministic fd,x(t) ex-

citations have the form (Fragkoulis et al.

2016b; Spanos et al. 2019)

Mxẍ+Cxẋ+Kxx+ΦΦΦx(x, ẋ, ẍ)

= fd,x(t)+Qx(t). (1)

In Eq. (1), x is an l dependent coordinates

vector, Mx,Cx and Kx denote the l× l system

parameter matrices, whereas ΦΦΦx(x, ẋ, ẍ) cor-

responds to the l vector of the system nonlin-

earities. Next, the system of Eq. (1) is subject

to additional constraint equations, which are

written for simplicity in the form (Schutte &

Udwadia 2011)

Aẍ+Eẋ+Lx = F, (2)

where A,E,L are m× l matrices and F is an l

vector. In this regard, Eq. (1) is equivalently

written as (Kougioumtzoglou et al. 2017)

M̄xẍ+ C̄xẋ+ K̄xx+ Φ̄ΦΦx(x, ẋ, ẍ)

= f̄d,x(t)+ Q̄x(t), (3)

where

M̄x =

[

(Il −A+A)Mx

A

]

, (4)

C̄x =

[

(Il −A+A)Cx

E

]

(5)

and

K̄x =

[

(Il −A+A)Kx

L

]

, (6)

are the (l +m)× l parameter matrices of the

system, whereas

Φ̄ΦΦx =

[

(Il −A+A)ΦΦΦx

0

]

(7)

and

Q̄x(t) =

[

(Il −A+A)Qx(t)
F

]

, (8)

f̄d,x(t) =

[

(Il −A+A)fd,x(t)
0

]

, (9)

are, respectively, the (l + m) vectors of the

system nonlinearities, as well as the stochas-

tic and deterministic excitations. Also, Il de-

notes the l× l identity matrix and “+” is used

for the Moore-Penrose (M-P) matrix inverse

operation. A detailed derivation of Eqs. (3-9)

is found in Kougioumtzoglou et al. (2017).

2.2 Determination of the system response

Considering that Q̄x(t) and f̄d,x(t) in Eq. (3)

correspond to the stochastic and deterministic

excitations of the system, where the former

is modeled as a zero-mean Gaussian process



The 13th International Conference on Structural
Safety and Reliability (ICOSSAR 2021­2022),

June 20­24, 2022, Shanghai, P.R. China
J. Li, Pol D. Spanos, J.B. Chen & Y.B. Peng (Eds)

and the latter is modeled as a monochromatic

function of period T = 2π
ωd

; i.e.,

f̄d,x(t) = f̄d1,x cos(ωdt)+ f̄d2,x sin(ωdt), (10)

where f̄d1,x and f̄d2,x are constants. It is as-

sumed that the system response has also a

stochastic and a periodic component. These

are denoted by xs(t) and xd(t), respectively.

Therefore, ensemble averaging Eq. (3), an

expression consisting of a periodic and a

stochastic component arises. This is given by

M̄xẍd + C̄xẋd + K̄xxd

+E[Φ̄ΦΦx(xs +xd, ẋs + ẋd, ẍs + ẍd)] = f̄d,x(t),
(11)

which is used next for deriving the system

response. To this end, a framework is pro-

posed which is based on the combination of

the harmonic balance method (for treating the

deterministic component), and the statistical

linearization methodology for systems with

singular matrices (for treating the stochastic

component).

2.2.1 Application of the harmonic balance
and statistical linearization treat-
ments

First, considering the system in Eq. (3), the

harmonic balance method is applied for de-

termining the periodic component of the re-

sponse. It is assumed for simplicity that

the nonlinear vector Φ̄ΦΦx(xs +xd, ẋs + ẋd, ẍs +
ẍd) in Eq. (3) contains polynomial nonlin-

ear functions. This assumption facilitates the

derivation of closed form solutions for the

system response (Spanos et al. 2019), as well

as simplifies the application of the harmonic

balance method (Mickens 2010).

In this regard, the deterministic response

becomes

xd(t) = xd1
cos(ωdt)+xd2

sin(ωdt), (12)

where xd1
,xd2

are constant l vectors. Next,

applying the harmonic balance method yields

Pu = v. (13)

In Eq. (13), P is a 2(l + m) × 2l matrix

whose elements are functions of ωd and

the augmented parameter matrices defined in

Eqs. (4)-(6). Further, v is a 2(l + m) vec-

tor containing the deterministic excitation, as

well as the ensemble average of the stochastic

excitation, whereas the 2l vector

u =

[

xd1

xd2

]

(14)

contains the deterministic response of the sys-

tem.

Then, employing the M-P inverse of the

matrix P (Ben-Israel & Greville 2003), the so-

lution to the overdetermined system of equa-

tions defined in Eq. (14) is given by

u = P+v+(I−P+P)y. (15)

In Eq. (15), y is an arbitrary 2l vector, and

thus, this expression corresponds to a fam-

ily of possible solutions for the determinis-

tic response component of the system. How-

ever, a unique solution is attained when P

has full column rank. Specifically, it such

case the M-P inverse matrix of P is given by

P+ = (P∗P)−1P∗, and substituting the latter

into Eq. (15), a simplified expression is de-

rived.

Next, the stochastic response component is

treated by resorting to the statistical lineariza-

tion methodology for systems with singular

matrices (Fragkoulis et al. 2016; Kougioumt-

zoglou et al. 2017); see also Mitseas et al.

(2016, 2018); Fragkoulis et al. (2019); Mit-

seas & Beer (2019); Pasparakis et al. (2021);

Mitseas & Beer (2021); Ni et al. (2022)

for indicative application frameworks of the

method.

In this regard, considering Eqs. (3) and (11)

leads to

M̄xẍs + C̄xẋs + K̄xxs + Φ̃ΦΦx(xs,xd) = Q̄x(t),

(16)

where

Φ̃ΦΦx(xs,xd) = Φ̄ΦΦx(xs +xd, ẋs + ẋd, ẍs + ẍd)

−E[Φ̄ΦΦx(xs +xd, ẋs + ẋd, ẍs + ẍd)] (17)
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is the zero-mean nonlinear vector of the sys-

tem, to be replaced by equivalent linear el-

ements. Specifically, applying the statistical

linearization yields the equivalent linear sys-

tem

(M̄x +M̄e)ẍs +(C̄x + C̄e)ẋs +(K̄x + K̄e)xs

= Q̄x(t), (18)

where M̄e, C̄e and K̄e denote the unknown

equivalent linear (l +m)× l matrices of the

system, which are used to account for ne-

glecting from Eq. (16) the nonlinear vector. It

is noted that closed form expressions for the

equivalent linear matrices are found in Fragk-

oulis et al. (2016b) and Kougioumtzoglou

et al. (2017). Further, it is noted that since

the nonlinear vector in Eq. (17) is written in

terms of both the stochastic and determinis-

tic response components, this will also hold

for the equivalent linear elements. However,

considering that the elements of the equiva-

lent matrices are slowly varying over a pe-

riod T of oscillation, they are approximated

by their average over T (Spanos et al. 2019).

Therefore, Eq. (18) becomes

(M̄x +M̄a
e)ẍs +(C̄x + C̄a

e)ẋs +(K̄x + K̄a
e)xs

= Q̄x(t). (19)

Eq. (19) corresponds to the equivalent lin-

ear system, whose solution is derived by fol-

lowing either a time-domain treatment, where

the system response is derived by solving a

Lyapunov equation (Fragkoulis et al. 2016a).

Alternatively, applying a frequency-domain

treatment, the system response is determined

by (Roberts & Spanos 2003)

E[xxT] =
∫ ∞

−∞
Sx(ω)dω, (20)

where E[·] denotes the expectation operator

and Sx(ω) is the response power spectrum.

The latter is determined by resorting to the

input-output expression

Sx(ω) = αααx(ω)SQ̄x
(ω)αααT∗

x (ω), (21)

where αααx(ω) is the frequency response ma-

trix and SQ̄x
(ω) the power spectrum of the ex-

citation; see Kougioumtzoglou et al. (2017)

for a detailed presentation.

3 NUMERICAL EXAMPLE

In this section, the M-P generalized inverse

matrix-based framework is used to compute

the response of a piezoelectric energy har-

vesting device. An indicative piezoelectric

energy harvester, consists of a mechanical

system, such as a cantilever beam moving as a

result of applied excitation, and a correspond-

ing piezoelectric system, which is used for

transforming the mechanical energy into elec-

tric current. Such devices are used in several

applications, mostly for powering adjoining

low power level devices. Specifically, they of-

ten operate in tandem with large scale infras-

tructure, such as bridges and high-rise build-

ings (e.g., Roccia et al. 2020), which are po-

tentially subjected to combined deterministic

and stochastic excitations.

The equations governing the dynamics of

the system are given by (Daqaq et al. 2014;

Petromichelakis et al. 2018; Karageorgos et

al. 2021)

q̈+2ζ q̇+
dU(q)

dq
+κ2y = w(t)+ fd(t), (22)

ẏ+αy− q̇ = 0. (23)

In the coupled system of Eqs. (22) and (23),

q denotes the response displacement of the

mechanical part and y is either the induced

voltage or the induced current. Further, ζ
is the damping coefficient of the mechanical

system, κ denotes a coupling coefficient, α
is a constant and U(q) denotes the potential

function (He & Daqaq 2016). The system

is subjected to the stochastic excitation w(t),
which is modeled as a Gaussian white noise

stochastic process with constant spectral den-

sity S0, and also to the deterministic compo-

nent, which is given by fd = fd1
cosωdt +

fd2
sinωdt. It is assumed that the nonlinear

function of the system has the form (Petro-

michelakis et al. 2018)

dU(q)

dq
= q+λq2 +δq3

, (24)

where λ and δ denote parameters which con-

trol the intensity of the nonlinearity. The fol-

lowing set of parameter values are used: α =
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0.8, S0 = 0.05, δ = 0.1, κ = 3.25, ωd = π ,

fd1
= 0 and fd2

= 0.1.

Setting

x(t) =

[

q(t)
y(t)

]

(25)

and also considering Eq. (24), the system of

Eqs. (22) and (23) is written in the form of

Eq. (1), where the parameter matrices are

given by

Mx =

[

1 0

0 0

]

, Cx =

[

2ζ 0

−1 1

]

(26)

and

Kx =

[

1 k2

0 α

]

, (27)

whereas the deterministic and stochastic exci-

tation vectors become, respectively,

fd,x =

[

fd(t)
0

]

(28)

and

Qx =

[

w(t)
0

]

. (29)

Clearly, the matrix Mx in Eq. (26) is singular,

which hinders the direct treatment of the sys-

tem. However, considering that Eq. (23) de-

notes the constraint equation of the harvester

(see also Petromichelakis et al. 2018) facili-

tates the ensuing analysis. Specifically, differ-

entiating Eq. (23) once with respect to time,

Eq. (2) is formulated, where

A =
[

−1 1
]

, E =
[

0 α
]

, L =
[

0 0
]

(30)

and

F = 0. (31)

In this regard, the system of Eqs. (22) and

(23) is equivalently written in the form of Eq.

(3), where

M̄x =





0.5 0

0.5 0

−1 0





, C̄x =





−0.5α 0.5

−0.5α 0.5

0 α



 (32)

and

K̄x =





0.5 0.5k2 +α

0.5 0.5k2 +α

0 0





. (33)

Further, Eq. (7) becomes

Φ̄ΦΦx(x) = (λq2 +δq3)





0.5

0.5

0





, (34)

and Eqs. (8) and (9) yield, respectively,

Q̄x = w(t)





0.5

0.5

0



 (35)

and

f̄d,x = fd2
sin(ωdt)





0.5

0.5

0





. (36)

Next, considering that the voltage process

y(t) has zero mean (e.g., Grigoriu 2021), the

herein generalized harmonic balance method

for systems with singular matrices is em-

ployed. Considering further that the system

response in Eq. (25) has a stochastic and a

deterministic component, i.e.,

xs(t) =

[

qs(t)
ys(t)

]

, xd(t) =

[

qd(t)
yd(t)

]

(37)

and ensemble averaging Eq. (34), leads to

E[Φ̄ΦΦx] =
(

λσ2
qs
+λq2

d +3δσ2
qs

qd +δq3
d

)

×





0.5

0.5

0





. (38)

Then, the 6×4 matrix P in Eq. (13) is formed

and since it has full rank, a unique solution

for the periodic response vector is found by

solving Eq. (15). Further, applying the gen-

eralized statistical linearization method, the

equivalent matrices M̄a
e , C̄

a
e and K̄a

e are de-

rived and the equivalent linear system in Eq.

(19) is formed. Indicatively, the matrix K̄a
e is
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given by

K̄a
e =1.5δσ2

qs





H(1,1) H(2,1)
H(1,1) H(2,1)

0 0





+1.5δ









q2
d1
+q2

d2
2

0
q2

d1
+q2

d2
2

0

0 0









. (39)

In Eq. (39), H(i, j), i, j = 1,2, denote the

(i, j) element of the matrix E[x̂x̂T]+E[x̂x̂T],
where x̂T =

[

x ẋ
]

and x is defined in Eq.

(25); see Fragkoulis et al. (2016b) for a de-

tailed discussion.

(a)

(b)

Figure 1. Response variance of the energy harvest-

ing system of Eqs. Eqs. (22) and (23) subjected

to combined stochastic and deterministic excitations

(S0 = 0.05, fd2
= 0.4, ωd = π). Analytical solu-

tion vis-à-vis MCS estimate (500 realizations): (a)

response displacement variance; (b) response voltage

variance.

Finally, the variance of the stochastic re-

sponse is computed by solving the coupled

set of Eqs. (15), (20) and (21). In addition,

considering Eqs. (12), (25) and (37), and suc-

cessively ensemble and temporal averaging to

treat, respectively, the stochastic and deter-

ministic components of the response, yields

⟨

E[x2
i ]
⟩

= σ2
xs,1

+
ωd(x

2
d1,i

+ x2
d2,i

)

2
, (40)

i = 1,2, where ⟨·⟩ denotes the temporal aver-

aging operation.

The response displacement variance and

the variance of the response voltage of the

nonlinear harvester of Eqs. (22) and (23) sub-

jected to combined stochastic and determin-

istic excitations are shown, respectively, in

Figs. 1(a) and 1(b). The validity of the re-

sults obtained by the proposed method is ver-

ified by also considering pertinent MCS data.

Specifically, 500 realizations are generated

by the spectral representation method (Shi-

nozuka & Deodatis 1991) for duration T0 =
50 s and cut-off frequency equal to 2π . Then,

the system response variance is derived by

utilizing a standard 4th order Runge-Kutta nu-

merical integration scheme to solve the gov-

erning equations of the system.

4 CONCLUSIONS

In this paper, the problem of determining

the response statistics of a nonlinear piezo-

electric energy harvesting device subjected to

combined stochastic and deterministic exci-

tation has been considered. The system re-

sponse has been computed in a direct way

by utilizing a recently developed method for

determining the response of multi-degree-of-

freedom nonlinear systems with singular pa-

rameter matrices (Ni et al. 2021). The

method relies on the combination of the gen-

eralized statistical linearization treatment for

systems with singular matrices and the har-

monic balance method. Specifically, since the

system excitation consists of a periodic and

a stochastic component, the system response

has been decomposed into two corresponding
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components. Then, the statistical lineariza-

tion and harmonic balance methods have been

utilized to treat, respectively, the former and

latter. The validity of the obtained results has

been verified by considering pertinent MCS

data.
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