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Simulation-based engineering design: solving parameter inference and

multi-objective optimization problems on a shared simulation budget*

Oliver P. H. Jones1, Jeremy E. Oakley2 and Robin C. Purshouse1

Abstract— In recent years, the use of virtual engineering
design processes has become more prevalent within industry.
This increase has been facilitated by the availability of cost-
effective computational machinery on which to run complex
simulations of alternative candidate designs. Nevertheless it is
frequently the case that, when working with complex problems,
the number of simulation-based design evaluations available
is limited. Within both industry and academia, it is usual
for the stages of simulation model calibration and model-
based optimization to be considered as separate consecutive
steps rather than as a combined process. However, there is
no guarantee that this approach makes the most efficient use
of the available function evaluations. This work presents a
new alternating methodology that aims to make more efficient
use of the evaluation budget, through switching back and
forth between the stages of calibration and optimization. To
assess the effectiveness of the method, a new benchmark
problem is introduced that contains both model parameters
to be estimated and design variables to be selected. The new
alternating method is found to possess improved calibration
and comparable optimization performance in comparison to
the sequential method on a budget of 5000 evaluations.

I. INTRODUCTION

A. Motivation

Engineering design problems are becoming increasingly

complex [1], with simulations playing a prominent role in

the design process, for both the analysis and optimization

of architectures, hardware components and software compo-

nents [2], [3]. Simulations typically have many parameter

assumptions which must be calibrated to data in order for

the simulation to produce trustworthy results that can inform

analysis and optimization [4]. These parameter inference

processes for simulations require multiple evaluations of the

simulation for different parameter settings, in the same way

that optimization processes require multiple evaluations for

different decision variables. Such evaluations can be very

expensive in terms of computational resource for many high-

fidelity simulations, requiring core hours and clock time

of several hours or days. Sometimes in engineering design

problems, a simulation may not have been fully calibrated

prior to its use for optimization, which can lead to significant

additional computational resources when issues are identi-

fied. Parameter inference and optimization problems share
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a need for computational resources to run simulations as

part of a single overall design problem (see Fig. 1), but

are rarely considered as a joint problem. In this paper, we

explore the potential benefits of considering the problems in a

unified way. Specifically, we address the question of whether

inference should precede optimization, or whether improved

multi-objective outcomes can be achieved by alternating

between these activities.

B. Related works

The body of literature that simultaneously considers meth-

ods for simulation inference and methods for simulation-

based optimization is very small. Numerical methods for

inference [4] are similar to those used in multi-objective

optimization [5], including the use of emulators or surrogate

models to improve the efficiency of both processes [6],

[7]. Indeed, multi-objective optimization methods have been

explicitly used as the basis for simulation calibration [8],

[9]. In the rarer cases when a published work considers

both the calibration and optimization stages together, they are

usually looking at specific case studies. For example, Gibbs

and colleagues present a study of a water supply system

design problem in which both stages are discussed, but

treated separately [10]. Villarreal-Marroquı́n and colleagues

also consider both stages in the context of injection mould-

ing [11]; while a model is constructed and calibrated, the

calibration is not revisited after the optimization is started.

The problem is multi-objective, but the techniques being

used for optimization are based on iterative grid search

rather than evolutionary methods. In a study on rail diesel

engine calibration and optimization, Qiang et al. consider a

combined method of neural networks and adaptive network-

based fussy inference system [12]. They found the approach

effective, but did not frame the problem mathematically.

More generally, it is fruitful to consider methodologies

used within both calibration and optimization that have the

same structure or some linking element. The most obvious

of these are cases in which surrogate models are used, as

they should allow for direct information sharing. Kennedy

& O’Hagan’s calibration method uses a Gaussian process

model as a surrogate [6]. This model could potentially be

used a link to a surrogate-based optimization method such

as ParEGO [7]. Another linking factor between these two

methods is algorithm initialization. In both cases a form of

Latin hypercube sampling was used. If this initial population

were shared it could cut down on the number of evaluations

used for initialization, releasing these for more beneficial

uses. To facilitate these interactions, Jones et al. developed a
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Fig. 1: The roles of simulation parameter inference and optimization in virtual engineering design workflows

unified mathematical framework for laying out the combined

problem of model calibration and optimization [13], but did

not fully realise methods for solving the combined problem.

C. Overview of the paper

The remainder of the paper is organised as follows. In

Section II, the classical and new alternating approaches to the

combined calibration–optimization problem are introduced,

together with a description of the empirical approach used to

compare the performance of the methods. A new benchmark

problem for combined calibration–optimization processes—

the first of its kind—is provided in Section III. Findings for

both calibration and optimization performance are presented

and discussed in Section IV. Conclusions and directions for

future research are offered in Section V.

II. METHODOLOGY

This paper considers two methods for combining cali-

bration and optimization, drawing on concepts from [13].

The first is the classical sequential approach of perform-

ing calibration followed by optimization; the second is an

approach that alternates between phases of calibration and

optimization.

A. Classical series approach

A high level schematic of the two processes of model

calibration and optimization is displayed in Fig. 2. For the

classical approach, the dashed connection is not present.

Within model calibration there are three main components:

calibrator, model and expert. The expert component repre-

sents an entity that knows how the system should perform

for a given set of control inputs. In this study the expert

is represented by a test function for which the predefined

‘true’ parameter set is used. The model takes both a set of

control inputs and the current estimated values of the model

parameters and returns an output. This work considers both

cases where the structure of the model exactly matches that

of the expert function and when there is a modelling error

present. The modelling error is incorporated as an alteration

in the test function. The calibrator represents the use of max-

imum likelihood estimation, in which Markov chain Monte

Carlo (MCMC) is used to explore the parameter space [14].

The calibrator produces a set of potential parameters using

an initial set of control inputs, along with corresponding

true system outputs and the model output for a previous

assumption of the parameters.

The second half of the schematic shows the optimization

process. There are two main components: (1) the model,

which performs the same function as the one present within

model calibration; and (2) the optimizer. The optimizer used

in this study is the MOEA/D multi-objective optimization

algorithm [15], which determines new estimates for the

optimal sets of inputs.

Once the evaluation budget allocated for calibration has

been exhausted, the calibrator passes the selected parameter

set to the optimization process. The parameter set is selected

based on maximum likelihood. When the optimization stage

has expended its evaluation budget, the results are passed to

the decision maker for consideration.

B. Alternating approach

The second method is the alternating approach which

considers moving back and forth between the stages of model

calibration and optimization in order to make better use of

the available function evaluation budget. The motivation for

the alternating approach is that calibrated parameter sets

that minimize the model prediction error for inputs in the

region of the global optimum may be easier to obtain than

parameter sets calibrated using non-optimal reference inputs

or global consideration of the input space (e.g. through

Latin hypercube sampling) — particularly in cases where

the calibration search space is multi-modal.

Considering again the schematic in Fig. 2, the alternating

method extends the structure of the classical approach. The

difference between the two setups is the connection which

can pass new control inputs back to the model calibration

(the dotted arrow shown). This connection enables iteration

between the stages of calibration and optimization. In the

present study, the switching condition between the two stages

is when a predefined portion of the available evaluation

budget has been used.

C. Experimental setup

The calibration and optimization algorithms used for the

alternating approach match those of the classical approach to

allow for fair comparison. Both the classical and alternating

methods use a total of 5000 function evaluations and 10

expert evaluations. The function evaluations are split, with

3000 of them being used for model calibration and 2000

being used for optimization. All the expert points are used

at the start of the classical method while they are spread

out over the run of the alternating approach. MOEA/D is
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Fig. 2: Schematic of the classical and new alternating approach for tackling model calibration and optimization. The additional

dotted connection is only present for the alternating approach

configured with 10 reference directions and a neighbourhood

size of 3. Each approach is run for 21 replications to assess

if the results are consistent. Additionally, when testing the

classical and alternating methods, a predefined set of random

seeds is used to help ensure any difference is due to the

methods rather than starting conditions. The hypervolume

indicator is used to measure the performance of the optimizer

[16], using the worst case achievable in each objective as the

reference point.

III. BENCHMARK PROBLEM: DTLZ1θ

In order to assess the performance of the combined model

calibration and optimization approaches it is necessary to

develop suitable test problems that combine both activities.

For the present study, an existing multi-objective benchmark

problem is adapted for this purpose. The main structures of

the objective functions are kept the same, while constants

are converted into model parameters that now require iden-

tification. To reproduce the notion of an imperfect model

of a real-world system, a second version of the problem is

introduced in which the equations of the objective functions

are altered to introduce structural model error.

Here, a modified version of a less rugged instance of

the DTLZ1 benchmark problem is used [7], [17]—referred

to as DTLZ1θ. A larger variety of combined calibration-

optimization problems, along with a new component for the

WFG framework of benchmark problems [18], can be found

in [19].

DTLZ1θ has 6 control inputs and 5 parameters. When no

error is present, it has an affine Pareto front between [0.5 0]

and [0 0.5] and is given by the equations:

Min f1 = θ1x1(1 + g)

Min f2 = θ2(1− x1)(1 + g)

g = 10
[

θ3 +
∑

i∈{2,...,6}

(xi + θ4)
2 − cos(2π(xi + θ5))

]

where xi ∈ [0, 1], i ∈ {1, ..., n}, n = 6.
(1)

When model error is included the second objective becomes:

Min f2 = θ2(1− x2

1
)(1 + g) (2)

To obtain the Pareto front, the inputs should be set to

xi = 0.5 for all but x1 which should be in the range of

[0, 1]. The parameters that correspond to the ‘true’ model

are θ = (+0.5,+0.5,+5.0,−0.5,−0.5). The model error

that has been incorporated causes the shape of the front to

become concave. Each of the parameters impact the model

in different ways: θ1 and θ2 work to scale the objectives, θ3
represents an amount that is required to cancel out the effects

of inputs x2 : xn. These first three parameters will not have

any effect on the inputs required to achieve the ‘true’ Pareto

front—they simply alter the output of the model. θ4 has a

varying impact which depends on the difference between

the current input and the value of θ4—when this difference

is small it has a negligible impact on what constitutes a

good input. θ5 has the largest impact on which inputs will

produce the ‘true’ Pareto front. When θ4 is a reasonable

approximation of its true value, the inputs (x2 : xn) that will
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Fig. 3: The progress of the log-likelihood obtained by the MCMC over the course of the calibration. The alternating method,

(a), and classical (series) method, (b), are depicted for both when modelling error (ME) is present and absent

realise an ‘apparent’ Pareto front are xi = −θ5.

IV. RESULTS

A. Quality of calibration

The first aspect to examine is the progression of the

calibrator over the course of a representative run. Fig. 3

shows the log-likelihood achieved at each step of MCMC.

The four cases depicted here are when the alternating and

series (classical) approach were run for both the cases when

modelling error was present and absent. When considering

these results, it is important to recognise that the expert

points used to calculate the likelihood differ between the two

methods, so performing a direct comparison of the maximum

values obtained can be misleading.

During the series runs, fast initial improvement is seen

as better parameter sets are discovered. By around 150

steps, however, the rate of improvement is greatly reduced

with little change for when model error is either present or

absent. Considering the alternating method, a similar rate of

improvement is observed during the first calibration stage.

After the 200th step—when the new expert points are gained

by the alternating method—a drop in the log-likelihood can

be seen, due to the algorithm gaining a better knowledge

of the system. Once the alternating algorithm commences

its second calibration stage, rapid improvement is again

observed. The large difference between the final obtained

log-likelihood for the alternating method when model error

is present and absent is likely due to the lack of a corrective

term in the calibrator to estimate and remove the modelling

error.

The final obtained values for the five parameters can

be seen in Fig. 4, which shows the distribution of results

achieved across all 21 replications. The first thing to notice

is that the calibration runs better when no model error is

present. The reason why both methods struggle to identify

the correct parameter values when model error is present

is that the model error changes the parameters required

for an evaluated point to match the expert value for a

given set of inputs. This results in values close to the true

parameters producing a worse likelihood than those in a

different location and so being rejected by the MCMC.

The parameters each have a different impact on the Pareto

front, with some having greater importance for optimization

than others. Parameters θ1 and θ2 both work to scale the

objective values. While incorrect selection of these parame-

ters may affect the convergence speed of the optimizer, it is

still possible to obtain the optimal values for the decision

variables. Parameters θ3, θ4 and θ5 have a more direct

interaction with the decision variables being selected. In the

case of θ3 and θ4, it is possible to find combinations that

can make it look like the problem is correctly calibrated

when it is not. It is therefore important to ensure these latter

parameters are well calibrated. For these two parameters,

the alternating method achieves a better calibration than the

series method. It should also be noted that for all five of the

parameters, the final distributions achieved by the alternating

method are tighter than those seen for the series method,

indicative of more robust performance.

B. Quality of optimization

Optimization results for the hypervolume indicator are

shown in Fig. 5. The apparent hypervolume examined within

these results is obtained by using the maximum likelihood

estimates for the parameters, rather than their true values.

In Fig. 5a there are many cases in which the achieved

hypervolume exceeds 100% of its maximum value. These

scenarios can occur due to incorrect calibration of the

model. The alternating approach appears to perform more

consistently well when compared to the series method, both

when model error is present as well as when it is not.

It should be noted that there are still outlying cases in

which the alternating method performs badly. The presence

of model error seems to have had a larger impact on the
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Fig. 4: Box plots for final parameter values achieved by alternating and series methods for the cases when modelling error

(ME) is present and absent when calibrating DTLZ1θ. True parameter values are shown by the dashed horizontal line.

series method causing the results to be much more spread

out. The alternating method tends not to overestimate the

value of the hypervolume with the 75th percentile of runs

coming in at under 100%, indicating it is likely to be a better

representation of the true performance. In comparison the

classical method regularly overestimates the hypervolume,

especially when there is model error present.

The results presented in Fig. 5b show the same points as
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were seen for the apparent hypervolume in Fig. 5a but they

are now being evaluated on the true system. The performance

of the alternating and classical methods is very similar

when modelling error is present. When no modelling error

is present, the series method has the tighter distribution—

although its performance is not statistically significantly

better than the alternating method (p=0.80). These findings

suggest that, even if the determined parameters are subop-

timal, it is still possible for the optimizer to identify good

values for the decision variables.

Comparing the absolute difference between the apparent

and true hypervolume achieved is useful as it gives an

indication of how much the user would be able to trust

the outcomes from the simulation-based design process. It

is important to remember that the decision maker would

realistically not possess the true system outputs unless some

of the expert evaluations have been set aside for this purpose,

which would reduce the amount available for calibration

and optimization. The absolute difference observed is much

smaller for the alternating methods (Fig. 6a) due to the

better calibration. For the series method, when model error

is present, the majority of results presented by the solver

would be misleading until evaluated on the true system.

To understand how these results translate to the objective

space, the final output populations achieved by the alternating

and series methods when model error was present are shown

in Fig. 6b. The results relate to the median hypervolume

outcome across the alternating runs, together with the series

run possessing the same seed. This means that, apart from

the expert population, both setups had the same initial

information. The true output populations of the methods can

be seen to perform equivalently. Considering the apparent

outputs achieved, the series method outputs are projected

further from the front than those of the alternating method.

It is interesting that the series method overestimates the front

location while the alternating method underestimates it.

V. CONCLUSION

This paper has presented a new alternating methodology

employing a budget of 5000 functions evaluations and com-

pares it to the classic approach of performing calibration

followed by subsequent optimization. The new approach em-

ploys alternating stages of model calibration and optimiza-

tion, aiming to more efficiently use the available function

evaluations. Additionally, the new approach evaluates interim

points on the true system between alternations, rather than

fully expending them in the initial calibration. The paper

also contributes a new benchmark problem that explicitly

features calibration parameters and model error—these are

key features of real-world simulation-based problems that

have been missing from the benchmarking community to

date. However, it is questionable the extent to which the

underlying benchmark problem, DTLZ1, that was adapted

for this purpose is itself representative of real-world problems

[20]. This is a general issue in the optimization bench-

marking community, but it is hoped that more realistic

benchmarks—including features such as model error—will

become more prevalent as benchmarking methodology be-

gins to better address real-world problem features [21]. The

generalisability of findings from the present study are clearly

limited in that the methods have not been demonstrated on a

real-world simulation-based engineering design case study.

Accepting this limitation, the performance of the proposed

alternating method has been evaluated within a robust test

framework based on both final parameters obtained and the

final hypervolume achieved by each run of the methods, both

when model error is present and absent. The performance of

the alternating approach is found to offer benefits over the

series approach, particularly in terms of the reliability of the

objective space estimates obtained in relation to their true

values—which is crucially important for decision making.

Looking towards future research, there are two priority

areas for investigation. Firstly, developing and assessing
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different criteria for determining when to switch between

calibration and optimization stages could aid in improving

efficiency. Secondly, further testing across a larger vari-

ety of problems—including benchmark engineering design

problems—will aid in achieving a better understanding of

how the new approach operates. Once the new approach

has been better explored on benchmark problems, it will

be vital to assess its performance on a real-world complex

engineering design problem.
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