
This is a repository copy of Witnessing (Co)datatypes.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/191517/

Version: Accepted Version

Proceedings Paper:
Blanchette, J.C., Popescu, A. orcid.org/0000-0001-8747-0619 and Traytel, D. (2015) 
Witnessing (Co)datatypes. In: Vitek, J., (ed.) Programming Languages and Systems: 24th 
European Symposium on Programming, ESOP 2015, Held as Part of the European Joint 
Conferences on Theory and Practice of Software, ETAPS 2015, London, UK, April 11-18, 
2015, Proceedings. 24th European Symposium on Programming, ESOP 2015, Held as 
Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2015,
11-18 Apr 2015, London, UK. Lecture Notes in Computer Science, 9032 . Springer Berlin , 
pp. 359-382. ISBN 9783662466681 

https://doi.org/10.1007/978-3-662-46669-8_15

This is a post-peer-review, pre-copyedit version of an article published in Lecture Notes in 
Computer Science. The final authenticated version is available online at: 
http://dx.doi.org/10.1007/978-3-662-46669-8_15.

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 
Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless 
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by 
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of 
the full text version. This is indicated by the licence information on the White Rose Research Online record 
for the item. 

Takedown 
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



Witnessing (Co)datatypes

Jasmin Christian Blanchette Andrei Popescu Dmitriy Traytel

Technische Universität München, Germany

{blanchet,popescua,traytel}@in.tum.de

Abstract

Datatypes and codatatypes are useful for specifying and reasoning
about (possibly infinite) computational processes. The interactive
theorem prover Isabelle/HOL has recently been extended with a
definitional package that supports both. Here we describe a com-
plete procedure for deriving nonemptiness witnesses in the general
mutually recursive, nested case—nonemptiness being a proviso for
introducing new types in higher-order logic. The nonemptiness
problem also provides an illuminating case study that shows the
package in action, tracing its journey from abstract category theory
to hands-on functionality.

General Terms Algorithms, Theory, Verification
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1. Introduction

Interactive theorem provers are becoming increasingly popular as
vehicles for formalizing the theory and metatheory of programming
languages. Such developments often involve datatypes and codata-
types in various constellations. For example, Lochbihler’s formal-
ization of the Java memory model represents possibly infinite ex-
ecutions using a codatatype [22]. Codatatypes are also useful to
capture lazy data structures, such as Haskell’s lists.

Theorem provers based on higher-order logic (HOL), such as
HOL4, HOL Light, Isabelle/HOL, and ProofPower–HOL, are tra-
ditionally implemented around a trusted inference kernel through
which all theorems are generated. Various definitional packages re-
duce high-level specifications (of types or functions) to primitive
inferences; characteristic theorems are derived rather than simply
postulated. This reduces the amount of code that must be trusted.

We recently extended Isabelle/HOL with a definitional package
for mutually recursive, nested (co)datatypes. While some theorem
provers support codatatypes (e.g., Agda, Coq, and PVS), Isabelle
is the first to provide a definitional implementation. Our previous
paper [32] developed the underlying constructions, adapted from
category theory; in this follow-up, we focus on the more practical
aspects of the package.

The main such aspect that concerns us here is the genera-
tion of nonemptiness witnesses. Types in HOL are required to be
nonempty; the “finite stream” specification

datatype α fstream = FSCons α (α fstream)

must be rejected because it would lead to an empty datatype.
For nonempty types, the package discharges nonemptiness proof
obligations by exhibiting existential witnesses.

The nonemptiness problem appears deceptively simple: It is
well understood for the mutually recursive datatypes traditionally
supported by HOL provers, and for codatatypes the final coalge-

bra is never empty.1 However, nested recursion via codatatypes
and non-free types (e.g., finite sets) complicates the picture, as
shown by this attempt at defining infinitely branching trees with
finite branches by nested recursion through a codatatype of infinite
streams:

codatatype α stream = SCons α (α stream)

datatype α tree = Node α ((α tree) stream)

The second definition fails: To obtain a witness for α tree, we would
need a witness for (α tree) stream, and vice versa. Replacing infinite
streams with finite lists makes the definition acceptable, because
the empty list stops the recursion. Even though final coalgebras
are never empty, here the datatype provides a better witness (the
empty list) than the codatatype (which requires an α tree to build an
(α tree) stream).

Mutual, nested datatype specifications and their nonemptiness
witnesses can get complex, as shown by the following commands
(aimed at introducing new types with our package):

datatype (α, β) tree =
Leaf β | Branch ((α+(α, β) tree) stream)

codatatype (α, β) ltree =
LNode β ((α+(α, β) ltree) stream)

datatype t1 =
T11 (((t1, t2) ltree) stream) | T12 (t1 × (t2 + t3) stream)

and t2 = T2 ((t1 × t2) list)
and t3 = T3 ((t1, (t3, t3) tree) tree)

The definitions are legal but the last group becomes illegal if t2 is
replaced by t3 in the constructor T11.

What makes the problem even more interesting is our open-
world assumption: the type constructors handled by our package
are not syntactically predetermined, in particular, they are not re-
stricted to polynomial functors—the user is allowed to register new
type constructors in the package database after checking a few se-
mantic properties. Thus, assume that, in the above mutual definition
of the datatypes ti, the type constructors list, × and tree are replaced
by others, say, α F1, (α, β) F2, and (α, β) F3, respectively, about
which we may know nonemptiness information, e.g., that α F1 is
always nonempty, or (α, β) F2 is nonempty whenever α is. What
is the weakest property concerning nonemptiness of the Fi’s we
need to require in order to have the definition go through? While
a lightweight (perhaps syntactic) sufficient condition could in prin-
ciple prove useful, a condition that is also necessary would allow
us to proceed in a complete fashion, not rejecting any semantically
valid construction.

Our solution, presented in Sect. 4, exploits the package’s ab-
stract, functorial view of types. Each (co)datatype, and more gener-

1 We ourselves fell prey to this illusion, being led to think that nonemptiness
was a minor implementation matter. This explains why the problem is not
mentioned in our earlier paper [32], not even as future work.
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ally each functor (type constructor) that participates in a definition,
carries its own witnesses together with soundness proofs. Opera-
tions such as functorial composition, initial algebra, and final coal-
gebra derive their witnesses from those of their components. Each
computational step performed by the package is certified in HOL,
and the solution is also shown to be complete.

The other main practical aspect on which we focus is the user in-
terface provided by the package. With the implementation in place
(witnesses included), we can complete the journey from abstract
category theory to hands-on functionality. This is best illustrated
through a case study: a variation of context-free grammars acting
on finite sets and their associated possibly infinite derivation trees.
The example was carefully chosen to display the support for co-
datatypes and for nested recursion through non-free types; it also
supplies, almost clandestinely, precious building blocks to the non-
emptiness proofs of Sect. 4, hence its early placement at Sect. 2.

Finally, Sect. 3 recalls the underlying categorical constructions
and connects them to the concrete properties exposed to the user.
This section plays a double role, simultaneously acting as an epi-
logue to Sect. 2 and a prologue to Sect. 4. It also describes the
process of deriving customized coinduction principles for codata-
types; this engineering aspect is usually ignored by the category
theorist, but it is crucial for the mechanized proof developer. In-
deed, the raw categorical structure carried over by the package to
perform its type constructions is practically unusable, from both
a cultural and a technical point of view: the average Isabelle user
should not be expected or required to know category theory; more-
over, the outputted theorems should be easy to integrate with the
other formal developments, typically not centered around notions
such as functoriality or natural transformations, main pillars of our
constructions. We show how we have addressed these problems by
a compositional approach to customization, taking advantage of the
overall compositionality and open-endedness of the collection of
types targeted by the package.

The formalization and implementation described in this pa-
per are publicly available [8] and are also part of the latest Isa-
belle/HOL release [19], where the successful and failing (co)datatype
definitions exemplified throughout the paper can now be tested.

Conventions

We work informally in a mathematical universe S of sets but adopt
many conventions from higher-order logic and functional program-
ming. Function application is normally written in prefix form with-
out parentheses (e.g., f x y). Sets are ranged over by capital Roman
letters (A, B, . . .) and Greek letters (α, β, . . .). For n-ary functions,
we usually prefer the curried form f : α1 → ·· · → αn → β to the
traditional tuple form f : α1 × ·· ·×αn → β but occasionally pass
tuples to curried functions. Polymorphic operators are regarded as
families of higher-order constants indexed by sets; thus, the iden-
tity function id : α→ α is defined for any set α and corresponds
to a family (idα)α∈S . Another example is function composition,
◦ : (β→ γ)→ (α→ β)→ α→ γ.

Operators on sets are normally written in postfix form: α set is
the powerset of α, consisting of sets of elements of α; α fset is the
set of finite sets over α. The sum α1 +α2 consists of a copy Inl a1

of each element a1 : α1 and a copy Inr a2 of each element a2 : α2.
Given f1 : α1 → β1 and f2 : α2 → β2, let f1⊕ f2 : α1+α2 → β1+β2

be the function sending Inl a1 to Inl ( f1 a1) and Inr a2 to Inr ( f2 a2).
Given f : α→ β, A ⊆ α, and B⊆ β, image f A, or f • A, is the image
of A through f , and f− B is the inverse image of B through f . The
set unit contains a single element (), and [n] = {1, . . . , n}. Prefix and
postfix operators bind more tightly than infixes, so that α×β set is
read as α× (β set) and f • g x as f • (g x).

The notation an, or simply a, denotes (a1, . . . , an). Given am

and bn, (a, b) denotes (a1, . . . , am, b1, . . . , bn). Given n m-ary func-

tions f1, . . . , fn, f a denotes ( f1 a, . . . , fn a), and similarly α F =
(α F1, . . . , α Fn). Depending on the context, αn F either denotes the
application of F to α or merely indicates that F is an n-ary set oper-
ator.

2. The Definitional Package in Action

We introduce the (co)datatype definitional package through a con-
crete example: derivation trees for a context-free grammar, where
we perform the following changes to the usual setting:

• trees are possibly infinite;

• the generated words are not lists, but finite sets.

The formalization of this particular codatatype [8] is the central
hub of this paper. First, it is a case study aimed at illustrating
some unique characteristics of our package’s expressiveness, in-
cluding the allowance of permutative types such as finite sets in-
side (co)datatype definitions. Second, it is used to describe the cus-
tomization process performed by the package. Last but not least, it
is employed in the metatheory of arbitrary (co)datatypes needed by
the package, namely, in the derivation of nonemptiness witnesses
and a proof of soundness and completeness of our algorithm.

We take a few liberties with Isabelle notations to lighten the
presentation; in particular, until Sect. 4, we ignore the distinction
between types and sets.

2.1 Definition of Derivation Trees

We fix a set T of terminals and a set N of nonterminals. The
command

codatatype dtree = Node (root: N) (cont: (T+ dtree) fset)

introduces a constructor Node : N → (T + dtree) fset → dtree and
two selectors root : dtree → N, cont : dtree → (T+ dtree) fset. A tree
has the form Node n as, where n is a nonterminal (the tree’s root)
and as is a finite set of terminals and trees (its continuation). The
codatatype keyword indicates that this tree formation rule may
be applied an infinite number of times. For both datatypes and co-
datatypes, the package provides basic properties about construc-
tors and selectors, such as injectivity (Node n as = Node n′ as′ ⇐⇒
n = n′ ∧ as = as′) and exhaustiveness (∀t. ∃n as. t = Node n as).

Coiterator

For dtree, the package also defines the coiterator unfold : (β→ N)→
(β→ (T+β) fset)→ β→ dtree characterized as follows: For all sets
β, functions r : β→ N, c : β→ (T+β) fset, and elements b ∈ β,

root (unfold r c b) = r b

cont (unfold r c b) = (id⊕ unfold r c) • c b

Intuitively, the coiteration contract reads as follows: Given a set β,
to define a function f : β→ dtree we must indicate how to build a
tree for each b ∈ β. The root is specified by r, and its continuation
is specified corecursively by c. Formally, f = unfold r c.

Structural coinduction

Proofs by coinduction are supported by the structural rule

∀t1 t2. θ t1 t2 ⇒ root t1 = root t2 ∧
fset_rel (sum_rel (=) θ) (cont t1) (cont t2)

θ t1 t2 ⇒ t1 = t2

The rule is parameterized by a predicate θ : dtree→ dtree→ bool that
is required to be a bisimulation by the antecedent. The predicate
fset_rel (sum_rel (=) θ) is the componentwise extension of θ to
(T+ dtree) fset. Unfolding the characteristic theorems for fset_rel
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and sum_rel yields the antecedent

∀t1 t2. θ t1 t2 ⇒ root t1 = root t2 ∧

Inl
−(cont t1) = Inl

−(cont t2) ∧

∀t′1 ∈ Inr
−(cont t1). ∃t′2 ∈ Inr

−(cont t2). θ t′1 t′2 ∧

∀t′2 ∈ Inr
−(cont t2). ∃t′1 ∈ Inr

−(cont t1). θ t′1 t′2

where Inl−(cont t) is the set of t’s successor leaves and Inr−(cont t)
is the set of its immediate subtrees. Informally:

If two trees are in relation θ, then they have the same root
and the same successor leaves and for each immediate sub-
tree of one, there exists an immediate subtree of the other in
relation θ with it.

The principle effectively states that the equality relation is the
largest bisimulation.

2.2 Corecursion and Coinduction on Derivation Trees

We start with a simple example of corecursive definition. Let + :
N×N → N be a commutative binary operation. We define a parallel
composition of trees ‖ : dtree× dtree → dtree (written infix), which
combines nonterminal-labeled nodes using + and terminal-labeled
leaves using ∪, corecursively as ‖ = unfold r c, where r : dtree ×
dtree → N and c : dtree× dtree → (T+ dtree× dtree) fset are

r (t1, t2) = root t1 + root t2

c (t1, t2) = Inl • (Inl
−(cont t1) ∪ Inl

−(cont t2)) ∪

Inr • (Inr
−(cont t1)× Inr

−(cont t2))

In accordance with the characteristic coiterator equations, ‖ is de-
termined by the corecursive equations

root (t1 ‖ t2) = r (t1, t2)

cont (t1 ‖ t2) = (id ⊕‖) • c (t1, t2)

By expanding r and c and massaging the second equation, we
obtain these characterizations:

root (t1 ‖ t2) = root t1 + root t2

Inl
−(cont (t1 ‖ t2)) = Inl

−(cont t1) ∪ Inl
−(cont t2)

Inr
−(cont (t1 ‖ t2)) = ‖ • (Inr

−(cont t1) × Inr
−(cont t2))

= {t′1 ‖ t′2 | t′1 ∈ Inr
−(cont t1) ∧

t′2 ∈ Inr
−(cont t2)}

The equations specify the root, the successor leaves, and the im-
mediate subtrees of the tree t1 ‖ t2, in that order. To prove that ‖
is commutative, we first formulate the goal in the format expected
by the structural coinduction rule, θ t t′ ⇒ t = t′, with θ t t′ ⇐⇒
∃t1 t2. t = t1 ‖ t2 ∧ t′ = t2 ‖ t1. Structural coinduction yields the fol-
lowing subgoals, which are easy to discharge using the equations
for ‖ and commutativity of + and ∪:

root (t1 ‖ t2) = root (t2 ‖ t1)

Inl
−(cont (t1 ‖ t2)) = Inl

−(cont (t2 ‖ t1))

∀t∈ Inr
−(cont (t1 ‖ t2)). ∃t′∈ Inr

−(cont (t2 ‖ t1)). θ t t′

∀t′∈ Inr
−(cont (t2 ‖ t1)). ∃t∈ Inr

−(cont (t1 ‖ t2)). θ t t′

2.3 A Variation of Context-Free Grammars

We continue with a larger example that illustrates the coinductive
infrastructure offered by the package. The example is a variation
of the notion of context-free grammar, acting on finite sets instead
of sequences. We assume that the previously fixed sets T and N, of
terminals and nonterminals, are finite and that we are given a set
of productions P ⊆ N×(T+N) fset. The triple Gr = (T,N, P) forms
a (set) grammar, which is fixed for the rest of this section. Both
finite and infinite derivation trees are of interest. The codatatype

dtree provides the right universe for defining well-formed trees as a
coinductive predicate.

Fixpoint (or Knaster–Tarski) (co)induction is provided in Isa-
belle/HOL by a separate package [26]. Fixpoint induction relies on
the minimality of a predicate (the least fixpoint); dually, fixpoint
coinduction relies on maximality (the greatest fixpoint). It is well-
known that datatypes interact well with definitions by fixpoint in-
duction. For codatatypes, both fixpoint induction and coinduction
play an important role—the former to express safety properties, the
latter to express liveness.

We illustrate fixpoint (co)induction on dtree. Well-formed deriva-
tion trees for Gr are defined coinductively as the greatest predicate
wf : dtree → bool such that, for all t ∈ dtree,

wf t ⇐⇒ (root t, (id⊕ root) • cont t) ∈ P ∧

root is injective on Inr
−(cont t) ∧

∀t′∈ Inr
−(cont t). wf t′

Intuitively, each nonterminal node of a well-formed derivation tree
t represents a production. This is achieved formally by three con-
ditions: (1) the root of t forms a production together with the ter-
minals constituting its successor leaves and the roots of its imme-
diate subtrees; (2) no two immediate subtrees of t have the same
root; (3) properties 1 and 2 also hold for the immediate subtrees of
t. The definition’s coinductive nature ensures that these properties
hold for arbitrarily deep subtrees of t, even if t has infinite depth.

In contrast to wellformedness, the notions of subtree, frontier
(the set of terminals appearing in a tree), and interior (the set of
nonterminals appearing in a tree) require inductive definitions. The
subtree relation is defined as the least predicate subtr : dtree →
dtree → bool such that subtr t t′ ⇐⇒ t = t′ ∨ (∃t′′. subtr t t′′ ∧ Inr t′′ ∈
cont t′) holds for all t, t′ ∈ dtree.2 A coinductive definition would be
unsuitable here: subtr t t′ would be true for any infinite tree t′ by
virtue of the second disjunct (the step). We write Subtr t for the
set of subtrees of t. The frontier Fr : dtree → T set and interior Itr :
dtree→N set of a tree are defined similarly. The language generated
by the grammar Gr from a nonterminal n∈N (using possibly infinite
derivation trees) is defined as LGr(n) = {Fr t | wf t ∧ root t = n}.

The choice of the permutative structure of finite sets instead
of lists to represent words has important consequences for the
computation of the generated language, where regular trees suffice.
We we elaborate on this next, taking the opportunity to illustrate
corecursion.

A derivation tree is regular if each subtree is uniquely deter-
mined by its root. Formally, we define regular t as the existence of
a function f : N → Subtr t such that ∀t′ ∈ Subtr t. f (root t′) = t′.
The regularly generated language of a nonterminal is defined as
L r

Gr(n) = {Fr t | wf t ∧ root t = n ∧ regular t}.
Given a possibly nonregular derivation tree t0, a regular cut of

t0 is a regular tree rcut t0 such that Fr (rcut t0) ⊆ Fr t0. Here is one
way to perform the cut:

1. Choose a subtree of t0 for each interior node n ∈ Itr t0 via a
function pick : Itr t0 → Subtr t0 with ∀n∈ Itr t0. root (pick n) = n.

2. Traverse t0 and replace each subtree with root n with pick n.
The replacement should be performed hereditarily, i.e., also in
the emerging subtree pick n.

This replacement task is elegantly achieved by the corecursive
function H : Itr t0 → dtree defined as unfold r c, where r : Itr t0 → T

and c : Itr t0 → T+(Itr t0) fset are specified as follows: r n = n and
c n = (id⊕ root) • cont (pick n). H is therefore characterized by the

2 Inductive predicates are often specified by their introduction rules—here,
subtr t t and subtr t t′′ ∧ Inr t′′ ∈ cont t′ ⇒ subtr t t′. The formulation as an
equivalence is convenient for its uniform treatment of the coinductive case.
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corecursive equations

root (H n) = n

cont (H n) = (id⊕ (H ◦ root)) • cont (pick n)

It is not hard to prove the following by fixpoint coinduction:

Theorem 1. For all n ∈ Itr t0, H n is regular and Fr (H n) ⊆ Fr t0.
Moreover, H n is well-formed provided t0 is well-formed.

(The proof is given in Appendix D.) Therefore we take rcut t0 to
be H (root t0).

Figure 1 illustrates a derivation tree and its simplest regular cut.
The bullet denotes a terminal, and t1 and t2 are arbitrary trees with
roots n1 and n2. The loops in the right-hand tree denote infinite
trees that are their own subtrees.

n1

n2  

n1 n2

t1 t2

n1

n2  

Fig. 1. A derivation tree (left) and its simplest regular cut (right)

3. The Journey from Category Theory

The previous section’s definitions rest on characteristic theorems
provided by Isabelle’s (co)datatype package—they are derived
from underlying constructions adapted from category theory. The
fundamental concept is that of bounded natural functors, a well-
behaved class of functors with additional structure. The theory is
an essential preliminary to the nonemptiness witness computation
of Sect. 4 and puts the case study of Sect. 2 on more solid ground.

3.1 Functors and Functor Operations

We consider various operators F on sets, such as sums, products,
etc., which we call set constructors. We are interested in set con-
structors that are functors on the category of sets and functions,
meaning that they are equipped with an action on morphisms com-
muting with identities and composition. This action is a polymor-
phic constant Fmap : (α1 → β1)→ ·· · → (αn → βn)→ α F → β F

satisfying Fmap idn = id and Fmap (g1 ◦ f1) . . . (gn ◦ fn) = Fmap g ◦
Fmap f . Formally, functors are pairs (F, Fmap). We let Funcn be the
collection of n-ary functions. Let us review basic examples.

Identity functor (ID, id)

The identity functor maps any set and any function to itself.

(n, α)-constant functor (Cn,α, Cmapn,α)

The (n, α)-constant functor (Cn,α,Cmapn,α) is the n-ary func-

tor consisting of the set constructor β Cn,α = α and the action
Cmapn,α f1 . . . fn = id. We write Cα for C1,α.

Sum functor (+,⊕)

The involved operators have already been described in Sect. 1.

Product functor (×,⊗)

Let fst : α1 × α2 → α1 and snd : α1 × α2 → α2 denote the two
projection functions. Given f1 :α→ β1 and f2 :α→ β2, let 〈 f1, f2〉 :
α→ β1×β2 be the function λa. ( f1 a, f2 a). Given f1 : α1 → β1 and
f2 : α2 → β2, let f1 ⊗ f2 : α1 ×α2 → β1 ×β2 be 〈 f1 ◦ fst, f2 ◦ snd〉.

α-Function space functor (funcα, compα)

Given a set α, let β funcα=α→ β. For all g : β→ γ, let compα g : β funcα→
γ funcα be compα g f = g◦ f .

Powerset functor (set, image)

For all f : α→ β, the function image f : α set → β set sends each
subset A of α to the image of A through the function f : α→ β.

Bounded k-powerset functor (setk, image)

Given a cardinal k, for all sets α, the set α setk carves out from
α set only those sets of cardinality less than k. The finite powerset
functor fset corresponds to setℵ0

.

Functors can be composed to form more complex functors.
Composition requires the functors F j to take the same type argu-
ments α in the same order. The auxiliary operations of permutation
and lifting, together with the identity and (n, α)-constant functors
(Sect. 3.1), make it possible to compose functors freely.

Composition

Given α F j for j ∈ [n] and βn G, the functor composition G ◦ F is

defined on objects as (α F)G and similarly on morphisms.

Permutation

Given F ∈ Funcn and i, j ∈ [n] with i < j, the (i, j)-permutation

of F, written F(i, j) ∈ Funcn, is defined on objects as α F(i, j) =
(α1, . . . , αi−1, α j, αi+1, . . . , α j−1, αi, α j+1, . . . , αn) F and similarly
on morphisms.

Lifting

Given F ∈ Funcn, the lifting of F, written F↑ ∈ Funcn+1, is defined
on objects as (αn, αn+1) F↑ = αn F and similarly on morphisms.
In other words, F↑ is obtained from F by adding a superfluous
argument.

Datatypes are defined by taking the initial algebra of a set
of functors and codatatype by taking the final coalgebra. Both
operations are partial.

Initial algebra

Given n (m+n)-ary functors (αm, βn)F j, their (mutual) initial alge-
bra consists of n m-ary functors α IF j that satisfy the isomorphism

α IF j
∼= (α, α IF)F j minimally. (The variables α are the passive pa-

rameters, and β are the fixpoint variables.) The functors IF j are char-
acterized by

• n polymorphic folding bijections (constructors) ctor j : (α, α IF)F j

→ α IF j and

• n polymorphic iterators fold j :
(

∏ k∈[n] (α, β) Fk → βk

)

→
α IF j → β j

subject to the following properties (for all j ∈ [n]):

• Iteration equations: fold j s ◦ ctor j = s j ◦ Fmap idm (fold s).

• Unique characterization of iterators: Given β and s, the only

functions f j : α IF → β j satisfying f j ◦ ctor j = s j ◦ Fmap idm f
are fold j s.

The functorial actions IFmap j for IF j are defined by iteration in a
standard way.

Final coalgebra

The final coalgebra operation is categorically dual to initial alge-
bra. Given n (m+ n)-ary functors (αm, βn) F j, their (mutual) final
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coalgebra consists of n m-ary functors α JF j that satisfy the isomor-

phism α JF j
∼= (α, α JF)F j maximally. The functors JF j are charac-

terized by

• n polymorphic unfolding bijections (destructors) dtor j : α JF j →
(α, α JF)F j and

• n polymorphic coiterators unfold j :
(

∏ k∈[n] βk → (α, β) Fk

)

→
β j → α JF j

subject to the following properties:

• Coiteration equations: dtor j ◦ unfold j s= Fmap idm (unfold s) ◦ s j.

• Unique characterization of coiterators: Given β and s, the only

functions f j : β j → α JF satisfying dtor j ◦ f j = Fmap idm f ◦ s j

are unfold j s.

The functorial actions JFmap j for JF j are defined by coiteration in
the standard way.

The (co)datatype package is based on a class B of functors,
called bounded natural functors (BNFs) [32], such that B contains
all the basic functors listed in Sect. 3.1 except for unbounded pow-
erset, and B supports, and is closed under, the above operations.

For the derivation tree example of Sect. 2.1, the input BNF to
the initial algebra operation is pre_dtree = (×) ◦ (CN, fset ◦ ((+) ◦
(CT, ID))). In the sequel, we prefer the more readable notation
α pre_dtree = N× (T+α) fset.

3.2 Open-Endedness

Unlike the (co)datatype specification mechanisms of most theorem
provers (such as the previous one of Isabelle and the current ones
of the other HOL-based provers, as well as those of PVS and Coq),
here the involved types are not syntactically predetermined by a
fixed grammar. B does include the class of polynomial functors,
but is open-ended in that users may register further functors as
members of B.

The registration process takes place as follows. The user pro-
vides a type constructor F and its associated BNF infrastructure
(in the form or polymorphic HOL constants), including the Fmap

functorial action on objects. Then the user verifies the BNF proper-
ties, e.g., that (F, Fmap) is indeed a functor. (The full list of BNF-
defining properties can be found in [32].) After this, the new BNF
is integrated and can appear nested in future (co)datatype defi-
nitions. For instance, Isabelle users have recently introduced the
BNFs α bag, of bags (i.e., bags with finite-multiplicity elements)
over α, and α list5, of lists of at most five elements. (More details
are given in Appendix E.)

3.3 Abstract Structural (Co)induction

Besides closure under functor operations, another important ques-
tion for theorem proving is how to state induction and coinduction
abstractly, irrespective of the shape of the functor. We know how
to state induction on lists, or trees, but how about on initial alge-
bras of arbitrary functors? The answer is based on enriching the
structure of functors αn F with additional data: For each i ∈ [n],
BNFs must provide a natural transformation Fseti : α F → αi set

that gives, for x ∈ α F, the set of αi-atoms that take part in x. For

example, if (α1, α2) F = α1 × α2, then Fset1 (a1, a2) = {a1} and
Fset2 (a1, a2) = {a2}; if α F = α list (the list functor, obtained as
minimal solution to β ∼= unit+α× β), then Fset applied to a list x

gives all the elements appearing in x.3 As usual, if F is unary, we

omit the superscript from Fset1.

Given j ∈ [n], the elements of Fset
m+k
j x (for k ∈ [n]) are the

recursive components of ctor j x. (Note that here subscripts select

functors F j in the tuple F; then, as previously agreed, superscripts
select Fset operators for different arguments of F j.) Using this
insight, the induction principle can be expressed abstractly for the
mutual initial algebra IF of functors F as follows for sets α and
predicates ϕ j : α IF j → bool:

∧n
j=1∀x∈ (α, α IF)F j. (

∧n
k=1∀b∈Fset

m+k
j x. ϕk b)⇒ ϕ j (ctor j x)

∧n
j=1∀b∈α IF j. ϕ j b

For lists, this gives the abstract principle

∀x∈ unit+α×α list. (∀b∈Fset2x. ϕ b)⇒ ϕ (ctor x)

∀b∈α list. ϕ b

which, by taking Nil = ctor (Inl ()) and Cons a b = ctor (Inr (a, b)),
can be recast into the familiar rule

ϕ Nil ∀a∈α. ∀b∈α list. ϕ b ⇒ ϕ (Cons a b)

∀b∈α list. ϕ b

Moving to coinduction, we need a further well-known assump-
tion [29]: that our functors preserve weak pullbacks, which allows
us to organize them as relators [28]. For a functor αn F, we lift its
action Fmap : (α1 → β1)→ ·· · → (αn → βn)→ α F → β F on func-
tions to an action Frel : (α1 → β1 → bool) → ·· · → (αn → βn →
bool)→ (α F → β F → bool), the relator, defined as follows:

Frel ϕ x y ⇐⇒ ∃z. Fmap fst z = x ∧ Fmap snd z = y ∧
∧n

i=1 ∀(a, b)∈Fseti z. ϕi a b

Structural coinduction can be stated abstractly as
∧n

j=1∀a b∈ (α, α JF)F j. θ j a b ⇒ Frel j (=)m θ (dtor j a) (dtor j b)
∧n

j=1 ∀a b. θ j a b ⇒ a = b

for sets αn and binary predicates θ j ∈ α JF j → α JF j → bool [28].
The antecedent ensures that θ is a bisimulation.

3.4 Completing the Journey: From Abstract to Concrete

Given the definition of dtree (Sect. 2.1), the package first composes
the intermediate BNF α pre_dtree = N× (T+α) fset from the con-
stants N and T, identity, sum, product, and finite set. Then it con-
structs the final coalgebra dtree (= JF) from pre_dtree (= F).

The unfolding bijection dtor : dtree → dtree pre_dtree is decom-
posed in two selectors: root = fst ◦ dtor and cont = snd ◦ dtor. The
constructor Node is defined as the inverse of the unfolding bijec-
tion. The basic properties of constructors and selectors are derived
from those of sums and products.

Customizing corecursion and coinduction

The abstract coiteration principle described in Sect. 3.1 relies
on a coiterator unfold : (β → β pre_dtree) → β → dtree such that
dtor ◦ unfold s= pre_dtree_map (unfold s) ◦ s. Writing s as 〈r, c〉 for r :
β→ N and c : β→ (T+α) fset and recasting the equation in pointful
form, we obtain dtor (unfold 〈r, c〉 b)= pre_dtree_map (unfold s)(rb,cb).
This can be further improved by unfolding the definition of
pre_dtree_map, expressing dtor as 〈root, cont〉, and splitting the
result into a pair of equations: root (unfold 〈r, c〉 b) = r b and

3 Our Fset has similarities with Pierce’s notion of support from his account
of (co)inductive types [27] and with Abel and Altenkirch’s urelement re-
lation from their framework for strong normalization [2]. The main distin-
guishing feature of our notion is that it additionally takes categorical struc-
ture into consideration [32].
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cont (unfold 〈r, c〉 b) = (id ⊕ unfold 〈r, c〉) • c b. The coiteration
rule of Sect. 3.1 emerges by replacing unfold with the curried
unfold′ : (β → N) → (β → (T + β) fset) → β → dtree defined as
unfold′ r c = unfold 〈r, c〉.

Customizing the abstract structural coinduction principle from
Sect. 3.3 requires more work. From the abstract, functor-agnostic
notion of bisimulation, our goal is to derive concrete coinduction
rules that avoid any references to the intermediate functor F (e.g.,
pre_dtree). Category-theoretical approaches typically appeal to ad
hoc proofs that the abstract formulation of bisimulation, in terms
of the graph of Fmap, is equivalent to the traditional bisimulation
principle for various interesting concrete cases (e.g., [29, Ex. 2.1]).
However, in a theorem prover, we prefer a uniform, automatic
customization that yields the expected concrete instances.

The key is to employ an alternative compositional characteri-
zation. To this end, each standard basic BNF provides an ad hoc
characterization. For example:

• Product: prod_rel θ1 θ2 (a1, a2) (b1, b2)⇐⇒ θ a1 b1 ∧ θ a2 b2

• Bounded k-Powerset: set_relk θ A B ⇐⇒ (∀a∈A. ∃b∈B. θ a b)∧
(∀b∈B. ∃a∈A. θ a b)

The same can be achieved for any potential user-defined BNF: The
user is prompted to provide an ad hoc characterization of the rela-
tor. (If the user provides none, then the general-purpose definition
in terms of Fmap is kept.) E.g., for bags, a convenient such charac-
terization proceeds inductively by the following clauses, where ⊎
denotes bag union (by summing the elements’ multiplicities):

bag_rel θ /0 /0
bag_rel θ A B θ a b

bag_rel θ (A⊎{a}) (B⊎{b})

Moreover, each BNF operation derives a characterization of the
resulting relator in terms of those of the components.

• Composition: Hrel θ = Grel (Frel θ)

• Initial algebra: IFrel j θ (ctor j a) (ctor j b) ⇐⇒ Frel j θ (IFrel θ) a b

• Final coalgebra: JFrel j θ a b ⇐⇒ Frel j θ (JFrel θ) (dtor j a) (dtor j b)

The last two equivalences hold in a fixpoint-(co)inductive way: For
the initial algebra, the IFrel j’s are the least predicates (mutually)
satisfying the equivalence; for the final coalgebra, the JFrel j’s are
the greatest predicates satisfying the equivalence.

For α pre_dtree = N× (T+α) fset and its final coalgebra dtree,
the relators are characterized by the following equivalences:

pre_dtree_rel θ a b ⇐⇒
prod_rel (CN_rel θ) (fset_rel (sum_rel (CT_rel θ) (ID_rel θ))) a b

dtree_rel a b ⇐⇒ pre_dtree_rel dtree_rel (dtor a) (dtor b)

The final formulation, as presented in Sect. 2.1, emerges by substi-
tuting 〈root, cont〉 for dtor and unfolding the characteristic equations
for the involved basic BNFs.

4. Computing Nonemptiness Witnesses

In the previous two sections, we referred to the codatatype dtree and
other collections of elements as sets, postponing the discussion of
an important aspect of our package. While for most purposes sets
and types can be identified in an abstract treatment of HOL, types
have the additional restriction that they may not be empty. The main
primitive way to define custom types in HOL is to specify from an
existing type α a nonempty subset A : α set that is isomorphic to the
desired type. Hence, to register a collection of elements as a HOL
type it is necessary to prove it nonempty.

Mutual datatype definitions are a particular case of the above sit-
uation, with the additional requirement that the nonemptiness proof

should be performed automatically by the package. In the con-
text of our package, we need to produce the relevant nonemptiness
proofs taking into consideration arbitrary combinations of data-
types, codatatypes and user-defined BNFs.

A first temptation to tackle the problem is to follow the tradi-
tional approach of HOL datatype packages [6, 10]: Try to unfold
all the definitions of the involved nested datatypes, inlining them
as additional components of the mutual definition, until only sums
of products remain, and then perform a reachability analysis. At a
closer inspection, this approach turns out problematic in our frame-
work for several reasons:

• Due to open-endedness, there is no fixed set of basic types.

• Delving into nested types requires reproving nonemptiness
facts, which is extremely inefficient.

• It is not clear how to unfold datatypes nested in codatatypes or
vice versa.

Note that, counting on everything being eventually reducible to the
fixed situation of sums of products, the traditional approach worries
about nonemptiness only at datatype-definition time. Here, we look
for a prophylactic solution instead, trying to prepare the BNFs in
advance for future nonemptiness checks involving them. To this
end, we ask the following: Given a mutual datatype definition
involving several n-ary BNFs, what is the relevant information we
need to know about their nonemptiness without knowing how they
look like (hence, with no option to “delve” into them)? To answer
this, we use a generalization of pointed types [17, 21], maintaining
witnesses that assert conditional nonemptiness for combinations of
arguments. We first present the solution by examples.

4.1 Examples

We start with the very simple cases of products and sums. For α×β,
the proof is as follows: Assuming α 6= /0 and β 6= /0, we construct
the witness (a, b) ∈ α× β for some a ∈ α and b ∈ β. For α+ β,
two proofs are possible: Assuming α 6= /0, we can construct Inl a for
some a ∈ α; alternatively, assuming β 6= /0, we can construct Inr b
for some b ∈ β.

To each BNF α F, we associate a set of witnesses, each of the
form Fwit : αi1 → ·· · → αik → α F for a subset {i1, . . . , ik} ⊆ [n].
From a witness, we can construct a set-theoretic proof by following
the signature of the witness (in the spirit of the Curry–Howard
correspondence). Accordingly, Inr : β→ α+ β can be read as the
following contract: Given a proof that β is nonempty, Inr yields a
proof that α+β is nonempty.

When BNFs are composed, so are their witnesses. Thus, the two
possible witnesses for the list-defining functor (α, β) pre_list = unit+
α×β are pre_list_wit1 = Inl () and pre_list_wit2 a b= Inr (a, b). The first
witness subsumes the second one, because it unconditionally shows
the collection nonempty, regardless of the potential emptiness of
α and β. From this witness, we obtain the unconditional witness
list_ctor pre_list_wit1 (i.e., Nil) for α list.

Because they can store infinite objects, codatatypes are never
empty. Compare the following:

datatype α fstream = FSCons α (α fstream)

codatatype α stream = SCons α (α stream)

The datatype definition fails because the best witness has a circular
signature: α→ α fstream → α fstream. In contrast, the codatatype
definition succeeds and produces the witness (λa. µs. SCons a s) :
α→ α stream, namely the (unique) stream s such that s = SCons a s
for a given a ∈ α. This stream is easy to define by coiteration.

Let us look at a pair of examples involving nesting:

datatype (α, β) tree =
Leaf β | Branch ((α+(α, β) tree) stream)
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pre_ltree_wit1

α β

pre_ltree_wit2

β pre_ltree_wit1

α β

pre_ltree_wit2

β pre_ltree_wit2

β pre_ltree_wit1

α β

· · ·
pre_ltree_wit2

β

Fig. 2. Derivation trees for ltree witnesses

codatatype (α, β) ltree =
LNode β ((α+(α, β) ltree) stream)

In the tree definition, the two constructors hide a sum BNF,
giving us some flexibility. For the Leaf constructor, all we need is
a witness b ∈ β, from which we construct Leaf b. For Branch, we
can choose the left-hand side of the nested +, completely dodging
the recursive right-hand side: From a witness a ∈ α, we construct
Branch (µs. SCons (Inl a) s).

For the ltree functor, the two arguments to LNode are hiding
a product, so the ltree-defining functor is (α, β, γ) pre_ltree = β×
(α+ γ) stream with γ representing the corecursive component.
Composition yields two witnesses for pre_ltree:

• pre_ltree_wit1 a b = (b, µs. SCons (Inl a) s)

• pre_ltree_wit2 b c = (b, µs. SCons (Inr c) s)

These can serve to build infinitely many witnesses for ltree. Figure
2 enumerates the possible combinations, starting with pre_ltree_wit1.
This witness requires only the non-corecursive components α and β
being nonempty, and hence immediately yields a witness ltree_wit1 :
α → β → (α, β) ltree (by applying the constructor LNode). The
second witness pre_ltree_wit2 requires both β and the corecursive
component γ to be nonempty; it effectively “consumes” another
ltree witness through γ. The consumed witness can again be either
pre_ltree_wit1 or pre_ltree_wit2, and so on. At the limit, pre_ltree_wit2
is used infinitely often. The corresponding witness ltree_wit2 : β→
(α, β) ltree can be defined by coiteration as λb. µt. pre_ltree_wit2 b t.
It subsumes ltree_wit1 and all the other finite witnesses. Were ltree

to be defined as a datatype instead of a codatatype, ltree_wit1 would
be its best witness.

4.2 A General Solution

The nonemptiness problem for an n-ary set constructor F and a set
of indices I ⊆ [n] can be stated as follows: Does it hold that, for all
sets αn, α F 6= /0 whenever ∀i ∈ I. αi 6= /0? We call F I-witnessed if
the above question has a positive answer. E.g., set sum (+) is {1}-,
{2}-, and {1, 2}-witnessed; set product (×) is {1, 2}-witnessed;
and α list is /0-witnessed.

We are led to the following notion of soundness. Given an n-
ary functor F, a set I ⊆ [n] set is (witness-)sound for F if F is I-
witnessed for all I ∈ I .

Now, when is such a set I also complete, in that it covers
all witnesses? To answer this, first note that, if I1 ⊆ I2, then I1-
witnesshood implies I2-witnesshood. Therefore, we are interested
in retaining the witnesses completely only up to inclusion of sets of
indices. We thus call a set I ⊆ [n] set

• (witness-)complete for F if for all J ⊆ [n] such that F is J-
witnessed, there exists I ∈ I such that I ⊆ J;

• (witness-)perfect for F if it is both sound and complete.

Here are perfect sets IF for some basic BNFs:

• Identity: Iα ID = {{α}}

• Constant: ICn,α
= { /0} (α 6= /0)

• Sum: Iα+β = {{α}, {β}}

• Product: Iα×β = {{α, β}}

• Function space: Iβ funcα = {{β}} (α 6= /0)

• Bounded k-Powerset: Iα setk
= { /0}

• Bag: Iα bag = { /0}

Parameters α j are identified with their indices j to improve read-
ability.

We need to maintain perfect sets across BNF operations. Let us
start with composition, permutation, and lifting.

Theorem 2. Let H = G ◦ Fn, where G ∈ Funcn has a perfect set J
and each F j ∈ Funcm has a perfect set I j. Then {

⋃

j∈J I | J ∈ J ∧
(I j) j∈J ∈ ∏ j∈J I j} is a perfect set for H.

Theorem 3. Let I ⊆ [n] be a perfect set for F. Then I is also

perfect for F(i, j) and F↑.

Theorems 2 and 3 hold not only for functors but also for plain
set constructors (with a further cardinality-monotonicity assump-
tion needed for the completeness part of Theorem 2). The most in-
teresting cases are the genuinely functorial ones of initial algebras
and final coalgebras, which we discuss next.

Witnesses for the initial algebra and the final coalgebra will
be essentially obtained by repeated compositions of the witnesses
of the involved BNFs and the folding bijections, inductively in
one case and coinductively in the other. The derivation trees from
Sect. 2.3 turn out to be perfectly suited for recording the combina-
torics of these compositions, in such a way that not only soundness,
but also completeness yield easily.

For the rest of this subsection, we fix n (m+n)-ary functors β F j

and assume each F j has a perfect set K j.
We construct a (set) grammar Gr = (T,N, P) as in Sect. 2.3

with T = [m], N = [n], and P = {( j, cp(K)) | K ∈ K j}, where,
for each K ⊆ [m + n], cp(K) is its copy to [m] + [n] defined as
Inl • ([m]∩K) ∪ Inr • {k ∈ [n] | m+ k ∈ K}.

Here is the idea behind this construction. A mutual datatype
definition as above introduces n isomorphisms:

α IF1
∼= (α, α IF1, . . . , α IFn)F1

...

α IFn
∼= (α, α IF1, . . . , α IFn)Fn

We are searching for conditions guaranteeing nonemptiness of
the IF j’s. To this end, we walk these isomorphisms from left to right,
reducing nonemptiness of α IF j to that of (α, α IF1, . . . , α IFn) F j.
Moreover, nonemptiness of the latter can be reduced to nonempti-
ness of some αi1 , . . . , αip

and some α IF j1 , . . . , α IF jq , along a witness

for F j of the form {i1, . . . , ip} ∪ {m+ j1, . . . ,m+ jq}. This yields a
grammar production j → {Inl i1, . . . , Inl ip} ∪ {Inr j1, . . . , Inr jq},
where the ik’s are terminals and the jl’s are, like j, nontermi-
nals. The ultimate goal is to eventually obtain reductions of the
nonemptiness of α IF j to that of components of α alone, i.e., to
terminals—this precisely corresponds to derivations in the gram-
mar of terminal sets. It should be intuitively clear that by consid-
ering finite derivations we obtain sound witnesses for IF j. We shall
actually prove more:

• for initial algebras, finite derivations are also witness-complete;

• for final coalgebras (replacing IF with JF), accepting possibly
infinite derivations is still sound, and also becomes complete.
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Theorem 4. Assume that the (mutual) final coalgebra of F exists
and consists of n m-ary functors αm JF j (as in Sect. 3.1). Then
L r

Gr( j) is a perfect set for JF j for j ∈ [n].

To prove soundness, we define a nonemptiness witness to α JF j

corecursively (by abstract JF-corecursion). More interestingly: To
prove completeness, we define a function to dtree corecursively (by
concrete tree corecursion), obtaining a derivation tree, from which
we then cut a regular derivation tree via Theorem 1.

Proof sketch: Let j0 ∈ [n]. We first show that L r
Gr( j0) is sound.

Let t0 be a well-formed regular derivation tree with root j0. We
need to prove that F j0 is Fr t0-witnessed. For this, we fix αm such
that ∀i∈Fr t0. αi 6= /0, and aim to show that α JF j0 6= /0.

For each j ∈ Itr t0, let t j be the corresponding subtree of t0. (It
is well-defined, since t0 is regular.) Note that t0 = t j0 . For each K

such that ( j, cp(K)) ∈ P, since K ∈ K j and K j is sound for F j, we
obtain a K-witness for F j, i.e., a function w j,K : (γk)k∈K → γ F j

(polymorphic in γ).
Let βn be defined as β j = unit if j ∈ Itr t0 and = /0 otherwise.

We build a coalgebra structure on β, (s j : β j → (α, β) F j) j∈[n], as

follows: If j /∈ Itr t0, s j is the unique function from /0. If j∈ Itr t0, then

s j () = w j,K (ai)i∈K∩[m] ()
|K∩[m+1,m+n]|, where cp(K) is the right-

hand side of the top production of t j, i.e., (id⊕ root) • cont t j. Now,
for each j ∈ Itr t0, unfold j s : unit → α JF j ensures the nonemptiness
of α JF j. In particular, α JF j0 6= /0.

We now show that L r
Gr( j0) is complete. Let I ⊆ [m] such that

JF j0 is I-witnessed. We need to find I1 ∈ L r
Gr( j0) such that I1 ⊆ I.

Let αm be defined as αi = unit if i ∈ I and = /0 otherwise. Let
J = { j. α F j 6= /0}. We define c : J → ([m]+ J) fset by c j = cp(K j),
where K j is such that ( j, cp(K j)) ∈ P and K j ⊆ I ∪{m+ j. j ∈ J}.

Let now g : J → dtree be unfold id c. Thus, for all j ∈ J,
root (g j) = j and cont (g j) = (id⊕ g) • c j = Inl • (K j ∩ I) ∪ Inr •

{g j.m+ j ∈ K j}. Taking t0 = g j0 and using Theorem 1, we obtain
the regular well-formed tree t1 such that Fr t1 ⊆ Fr t0 ⊆ I. Hence
Fr t1 is the desired I1.

The above completeness proof provides an example of self-
application of codatatypes: A specific codatatype, of infinite deriva-
tion trees, figures in the metatheory of general codatatypes. And
this may well be unavoidable: While for soundness the regular trees
are replaceable by some equivalent (finite) inductive items, it is not
clear how completeness could be proved without first appealing to
arbitrary infinite derivation trees and then cutting them down to
regular trees.

An analogous result holds for initial algebras. For each i ∈ N,

let L rf
Gr(i) be the language generated by i by means of regular

finite Gr derivation trees. Since N is finite, these can be described
more directly as trees for which every nonterminal path has no
repetitions.

Theorem 5. Assume that the (mutual) initial algebra of F exists
and consists of n m-ary functors αm IF j (as in Sect. 3.1). Then

L rf
Gr( j) is a perfect set for IF j for j ∈ [n].

Let us see how Theorems 2–5 can be combined in establishing
or refuting nonemptiness for some of our motivating examples from
Sect. 4.1 and the introduction. These (and other) examples have
been checked with our package [8]:

• I(α, β) pre_list = { /0} by Th. 2; Iα list = { /0} by Th. 5

• I(α, β) pre_fstream = {{α, β}};

Iα fstream = /0 by Th. 5 (i.e. α fstream is empty)

• I(α, β) pre_stream = {{α, β}}; Iα stream = {{α}} by Th. 4

• I(α, β) pre_x = {{β}} and I(α, β) pre_y = { /0};

Ix = { /0} and Iy = { /0} by Th. 5

• I(α, β, γ) pre_ltree = {{α, β}, {β, γ}} by Th. 2;

I(α, β) ltree = {{β}} by Th. 4

• I(α, β, γ) pre_t1
= {{β}, {α, γ}}, I(α, β, γ) pre_t2

= { /0}, and

I(α, β, γ) pre_t3
= {{α}, {γ}} by Th. 2;

Iti = { /0} by Th. 5

Since we have maintained perfect sets throughout all the BNF
operations, we obtain the following central result:

Theorem 6. Any BNF built from BNFs endowed with perfect sets
of witnesses (in particular all basic BNFs discussed in this paper)
by repeated applications of the composition, initial algebra, and
final coalgebra operations has a perfect set defined as indicated in
Theorems 2–5.

Consequently, a procedure implementing Theorems 2–5 will
preserve enough nonemptiness witnesses to ensure that all datatype
specifications describing nonempty types are accepted. The next
subsection presents such a procedure.

4.3 Computational Aspects

Theorem 4 reduces the computation of perfect sets for final coal-
gebras to that of L r

Gr(n). Our use of infinite regular trees in the
definition of L r

Gr(n) had the advantage of allowing a simple proof
of soundness, and the only natural proof of completeness we could
think of, relating the coinductive nature of arbitrary mutual codata-
types with that of infinite trees. However, from the computational
point of view, regular infinite trees are of course excessive—we
next show that L r

Gr(n) can be computed directly via recursive equa-
tions not involving derivation trees.

First, we relativize the notion of frontier to that of “frontier
through ns,” Fr ns t, consisting of the leaves of t that are accessible
through paths of terminals belonging to ns ⊆ N. We also define the
corresponding ns-restricted regularly generated language L r

Gr ns n.
Recall that our derivation trees from Sect. 2 produce not usual

words (defined as lists), but finite sets—in what follows, by “word"
we mean “finite set of terminals". We can think of a generated word
as being more precise than another provided the former is a sub-
word (subset) of the latter. This leads us to defining, for languages

(sets of words), the notions of word-inclusion subsumption4, ≤, by

L ≤ L′ iff ∀w∈L. ∃w′∈L′. w′ ⊆ w

and equivalence, ≡, by

L ≡ L′ iff L ≤ L′ and L′ ≤ L

It is easy to see that any set ≡-equivalent to a perfect set is again
perfect. Note also that Theorem 1 implies L r

Gr(n)≡LGr(n), which
qualifies regular trees as a generated-language optimization of ar-
bitrary trees.

We compute L r
Gr ns n up to word-inclusion equivalence ≡ by

recursively applying the available productions whose source non-
terminals are in ns, removing each time the expanded nonterminal
from ns. Thus, provided n is in the allowed set ns, L r

Gr ns n calls
L r

Gr ns′ n′ recursively with ns′ = ns \{n′} for each nonterminal n′

in the chosen production from n, and so on, until the current node
is no longer in the decumulator set ns. Formally:

Theorem 7. For all ns ⊆ N and n ∈ N, L r
Gr ns n ≡







{ /0} if n /∈ ns
{

Inl−ss ∪
⋃

n′∈Inr−ss Kn′
∣

∣

(n, ss)∈P ∧ K ∈∏ n′∈Inr−ss L r
Gr (ns\{n}) n′

}

otherwise

Theorem 7 provides an alternative, recursive definition of
L r

Gr ns n. The definition terminates because the argument ns is fi-

4 This is in effect the Smyth preorder extension [31] of the subword relation.

8 2013/3/28



nite and decreases strictly in the recursive case—in fact, this shows
that the height of the recursive call stack is bounded by the number
of nonterminals, which for our intended application translates to
the number of simultaneously introduced codatatypes.

Here is how this recursion operates on the ltree example.
We have T = {α, β}, N = {γ}, and P = {p1, p2}, where p1 =
(γ, {Inl α, Inl β}) and p2 = (γ, {Inl β, Inr γ}). Note that

• Inl−ss = {α, β} and Inr−ss = /0 for (n, ss) = p1

• Inl−ss = {β} and Inr−ss = {γ} for (n, ss) = p2

The computation has one single recursive call, yielding

L r
Gr γ = L r

Gr {γ} γ

≡ {{α, β} ∪ /0} ∪
{{β} ∪

⋃

n′∈{γ} Kn′ | K ∈ ∏ n′∈{γ} L r
Gr /0 n′}

= {{α, β}} ∪ {{β} ∪ Kγ | Kγ ∈ L r
Gr /0 γ}

= {{α, β}} ∪ {{β} ∪ /0}

= {{α, β}, {β}}

≡ {{β}}

For datatypes, the computation of L rf
Gr , is achieved analogously

to Theorem 7, by defining L rf
Gr ns n as a generalization of L rf

Gr n.

Theorem 8. The statement of Theorem 7 still holds if we substitute
L rf

Gr for L r
Gr and /0 for { /0}.

5. Implementation in Isabelle/ML

The package maintains nonemptiness information to be prepared
for producing nonemptiness proofs upon datatype definitions. The
equations from Theorems 7 and 8 involve only executable oper-
ations over finite sets of numbers, sums, and products. Since the
descriptions of Theorems 2 and 3 are also executable, the imple-
mentation task emerges clearly: Store a perfect set along each basic
BNF and have each BNF operation compute witnesses from those
of its operands.

However, as it stands, I-witnesshood cannot be expressed in
HOL because types are always nonempty: How can we state that
(α, β) tree 6= /0 conditionally on α 6= /0 or β 6= /0, in the context of α
and β being assumed nonempty in the first place? The solution is to
work not with operators αF on HOL types directly but rather with
their internalization to sets, expressed as a polymorphic function

Fin : α1 set → ·· · → αn set → (α F) set

defined as Fin A = {x. ∀i ∈ [n]. Fseti x ⊆ Ai}. I-witnesshood be-

comes (∀i∈ I. Ai 6= /0)⇒ Fin A 6= /0.
For each n-ary BNF F, the package stores a set of sets I of

numbers in [n] (the perfect set) and, for each set I ∈ I , a polymor-
phic constant wI : (αi)i∈I → α F and an equivalent formulation of

I-witnesshood: ∀i∈ I. Fseti (wI (a j) j∈I) 6= /0.
Due to the logic’s restricted expressiveness, we cannot prove

the theorems presented in this paper in their most general form for
arbitrary functors and have the package instantiate them for specific
functors. Instead, the package proves the theorems dynamically for
the specific functors involved in the datatype definitions. Only the
soundness part of the theorems is needed. To paraphrase Krauss
and Nipkow [20], completeness belongs to the realm of metatheory
and is not required to obtain actual nonemptiness proofs—it does
let you sleep better though, by ensuring that the employed criterion
is as precise as it can be.

A HOL definitional package has to bear the burden of both com-
puting HOL terms and certifying the computation, i.e., ensuring
that certain terms are theorems. The combinatorial computation of
witnessing sets of indices described in Theorems 7 and 8 would be
expensive if performed through Isabelle, that is, by executing the

equations stated in these theorems as term rewriting in the logic. In-
stead, we perform the computation outside the logic, employing an
ML datatype aimed at representing efficiently the finite and the reg-
ular derivation trees dwelling the Isabelle type dtree from Sect. 2:

datatype wit_tree = Wit_Leaf of int |
Wit_Node of (int * int * int list) * wit_tree list

Here, Wit_Node ((i, j, is), ts) stores the root nonterminal i, a numeric
identifier of the used production j, and the continuation consisting
of the terminals is and the further non-terminal expanded trees ts.
Moreover, Wit_Leaf i stores, for the case of regular infinite trees, the
nonterminal where a regularity loop occurs, i.e., such that it has a
previous occurrence on the path to the root.

From the ML trees, we produce witnesses represented as Isa-
belle constants of appropriate types (the wI’s described above), by
essentially mimicking the (co)recursive definitions employed in the
proofs of the soundness parts of Theorems 4 and 5 from Sect. 4.2.
Then, we certify the witnesses by producing the relevant Isabelle
proof goals and discharging them by mirroring the corresponding
(co)inductive arguments from the aforementioned proofs. In sum-
mary: The witness computation happens outside the logic, but the
witnesses are then verified through Isabelle’s kernel. After intro-
ducing any BNF, its witness set is minimized, in that redundant
witnesses are removed.

The whole development pertaining to the production and certifi-
cation of witnesses amounts to about 500 lines of Standard ML [8].

6. Related Work

Coinductive (or coalgebraic) datatypes have become popular in re-
cent years in the study of infinite behaviors and non-terminating
computation. Whereas inductive datatypes are well-studied and
widely available in most programming languages and theorem
provers, coinductive types are still not mainstream and pose great
challenges to be integrated into current systems. Much research
has appeared in the last years, in the context of theorem proving,
on how to add coinductive types or improve support of coinduc-
tive proofs, including developments in Coq [7, 25], Agda [3], and
CIRC [23]. The work of this paper is in line with this research and
is part of the larger task of extending Isabelle/HOL with a flexible
coinductive infrastructure.

Other definitional packages must also prove nonemptiness of
newly defined types, but typically the proofs are easy: Homeier’s
quotient package for HOL4 [16] exploits the observation that quo-
tients of nonempty sets are nonempty, and Huffman’s (co)recursive
domain package for Isabelle/HOLCF [18] can rely on a minimal el-
ement ⊥. For the traditional datatype packages introduced by Mel-
ham [24], extended by Gunter [11], simplified by Harrison [12],
and implemented in Isabelle/HOL by Berghofer and Wenzel [6],
proving nonemptiness is nontrivial, but by reducing nested defini-
tions to mutual definitions, they could employ a standard reacha-
bility analysis [6, § 4.1]. To our knowledge, the completeness of
the analysis has not been proved (or even formulated) for previous
datatype packages.

Obviously, our overall approach to (co)datatypes is heavily in-
spired by category theory—this is discussed in detail in a previous
paper [32], with many pointers to the literature. In category the-
ory settings however, type nonemptiness is often not crucial, ei-
ther because the developments do not target any particular logic
[5,9,13, 15,29] or because the targeted logics cater for (potentially
empty) dependent types [1, 4, 14, 30]. Our nonemptiness-witness
maintenance has similarities with the preservation of enriched types
along various constructions, e.g., initial algebras and final coalge-
bras of pointed functors are also pointed [17]. On the other hand,
none of these categorical frameworks is concerned with notions of
completeness of this extra information.
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7. Conclusion

We presented a complete solution to the nonemptiness witness
problem that arises in the context of Isabelle’s new (co)datatype
package. The solution exploits the functorial view of types that lies
at the heart of the package. Despite its location at the intersection
of category theory and higher-order logic, the problem has broad
practical motivation in terms of the popularity of HOL provers.
Our solution, like the rest of the definitional package, is part of
the 2013 edition of Isabelle.

The problem and its solution also enjoy an elegant metatheory,
which itself is best expressed in terms of codatatypes. In our case
study, the package simultaneously presented itself and parts of its
own metatheory.

Although the underlying categorical constructions were intro-
duced in an earlier paper [32], we found it useful to recall them
here. We used this opportunity to connect the theoretical construc-
tions with the concrete properties made available to end users and
describe the constructions in their full generality—for n-ary func-
tors, mutual initial algebras, and mutual final coalgebras.
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APPENDIX

Here we give more details concerning the concepts discussed in the
paper, including proofs.

A. Embedding of Initial Algebras into Final

Coalgebras

It is well-known that, for n (m+n) functors (α, β)F j, their mutual
initial algebra can be embedded in their mutual final coalgebra via
emb j : α IF j → α JF j defined

• either recursively, as emb j = fold j ctor′, where ctor′j : (α, α JF)F j →
α JF j is the inverse of the final-coalgebra unfolding bijection
dtor j,

• or corecursively, as emb j = unfold dtor′, where dtor′j : α IF j →

(α, α IF)F j is the inverse of the initial-algebra folding bijection
ctor j.

Along this embedding, ctor′j is the extension of ctor j and dtor j is the

extension of dtor′j. Moreover, the image of emb j consists precisely

of the “finite” elements of α JF j, i.e., of those characterized by the

induction principle of α IF j. Therefore, we define JFfinite as the least
tuple of predicates satisfying the following specification.

∀x∈ (α, α IF)F j. (
∧n

k=1 ∀b∈Fset
m+k
j x. JFfinitek b) ⇒

JFfinite j (ctor j x)

We have that, for all j, emb j • (α IF j) = {a ∈ α JF j | JFfinite j a}.

B. More on the Coinductive Tree Case Study

Next we define the notions of interior and frontier of a tree. Itr :
dtree → N set is defined inductively as follows:

root t ∈ Itr t
Inr t1 ∈ cont t ∧ n ∈ Itr t1 ⇒ n ∈ Itr t

Fr : dtree → N set is defined inductively as follows:

Inl t ∈ cont t ⇒ t ∈ Fr t
Inr t1 ∈ cont t ∧ t ∈ Fr t1 ⇒ t ∈ Fr t

The parameterized versions of interior and frontier (as required
in Sect. 4.3), Itr : N set→ dtree→N set and Fr : N set→ dtree→N set,
are defined inductively modifying the above clauses textually as
follows:

• ‘Itr’ is replaced by ‘Itr ns’ and ‘Fr’ is replaced by ‘Fr ns’;

• the hypothesis root t ∈ ns is added.

The notion of a finite tree, ftree : dtree → bool, is also defined
inductively:

Inr • cont t = /0 ⇒ ftree t
(∀t1 ∈ Inr− t. ftree t1) ⇒ ftree t

ftree is in effect an instance of the JFfinite predicate introduced in
Appendix A.

C. Inductive Trees

The datatype definition

datatype fdtree = FNode (froot : N) (fcont : (T+ dtree) fset)

(introducing finite trees) produces the operations FNode, froot, and
fcont having constructor and selector properties corresponding pre-
cisely to the ones of Node, root and cont from the codatatype dtree

in Sect. 2.1.
The difference concerns induction and recursion.

Iteration

The general principle described in Sect. 3.1 employs in this unary
case a iterator fold of (polymorphic) type (β pre_fdtree → β) →
fdtree → β, for which it yields

∀s : β pre_fdtree → β. (fold s) ◦ ctor = s ◦ pre_fdtree_map (fold s)

that is,

∀s : β pre_fdtree → β. ∀k. fold s (ctor k) = s (pre_fdtree_map (fold s) k)

The fdtree-defining BNF is the same as the dtree-defining BNF:
β pre_fdtree=N×(T+β) fset and pre_fdtree_map f = id⊗(image (id⊕
f )).

As in the codatatype case, the above characterization needs
some customization. Using the FNode instead of ctor and unfolding
the definition of pre_fdtree_map, we obtain

∀s : N× (T+β) fset → β. ∀n as.

fold s (FNode n as) = s (pre_fdtree_map (fold s) (n, as))

By unfolding the definition of pre_fdtree_map, we obtain

∀s : N× (T+β) fset → β. ∀n as.

fold s (FNode n as) = s (n, (id⊕ fold s) • as)

Finally, replacing fold with its more convenient curried version
fold′ : (N → (T + β) fset → β) → fdtree → β defined as fold′ s =
fold (λ(n, as). s n as), we obtain the following customized iteration
principle, where we write fold instead of fold′:

For all sets β, functions s : N → (T+ β) fset → β and elements
n ∈ N and as ∈ (T+ fdtree) fset, it holds that fold s (FNode n as) =
s n ((id⊕ fold s) • as).

Induction

The induction principle from Sect. 3.3 yields for ϕ : α fdtree → bool

∀k∈α pre_fdtree. (∀t∈Fset k. ϕ t)⇒ ϕ (ctor k)

∀t∈α fdtree. ϕ t

i.e., using the curried variation FNode of dtor,

∀n as. (∀t∈Fset (n, as). ϕ t)⇒ ϕ (FNode n as)

∀t∈α fdtree. ϕ t

Unfolding the definition of Fset, namely, Fset (n, as) = Inr− as, we
obtain the end-product customized induction for finite trees:

∀n as. (∀t∈ Inr−as. ϕ t)⇒ ϕ (FNode n as)

∀t∈α fdtree. ϕ t

Embedding of fdtree in dtree

Here is what the standard embedding emb described in Appendix A looks
like for the concrete instance fdtree → dtree:

• recursively: fold Node, yielding emb (FNode n as)=Node n ((id⊕
emb) • as);

• corecursively: unfold froot fcont, yielding the equations root (emb t)=
froot t and cont (emb t) = (id⊕ emb) • fcont t.

As an instance of the situation from Appendix A, the image of emb

is the set of finite dtree’s, {t∈ dtree. ftree}.

D. Proofs

For more details on some of the proofs, we refer the reader to
our Isabelle formalization [8], which employs essentially the same
notations as this text.

Proof of Theorem 1: H n is regular by construction: if a sub-
tree of it has root n′, then it is equal to H n′. The frontier inclusion
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Fig. 3. A finite derivation tree (left), a regular cut of it (middle),
and a finite regular cut of it (right)

Fr (H n)⊆ Fr t0 follows by routine fixpoint induction on the defini-
tion of Fr (since at each node n′ ∈ Itr (H n) we only have the imme-
diate leaves of pick n′, which is a subtree of Fr t0). Finally, assume
that t0 is well-formed. Then the fact that H n is well-formed follows
by routine fixpoint coinduction on the definition of wf (since, again,
at each n′ ∈ Itr (H n) we have the production of pick n′).

Proof of Theorem 2: Let K = {
⋃

j∈J I j | J ∈ J ∧ (I j) j ∈

∏ j∈J I j}. We first prove that K is sound for H. Let K ∈ K and
αm such that ∀i ∈ K. αi 6= /0. By the definition of K , we obtain
J ∈J and (I j) j∈J such that (1) K =

⋃

j∈J I j and (2) ∀ j∈ J. I j ∈I j.

Using (1), we have ∀ j∈ J. ∀i∈ I j. αi 6= /0. Hence, since each I j is
sound for F j, ∀ j∈ J. α F j 6= /0. Finally, since J is sound for G, we

obtain α F G 6= /0, i.e., α H 6= /0, as desired.
We now prove that K is complete for H. Let K ⊆ [m] be a H-

witnessed set of indices. Let βn be defined as β j = unit if j ∈ K

and = /0 otherwise and let J = { j ∈ [n]. β F j 6= /0}. Since K is H-

witnessed, we obtain that β H 6= /0, i.e., (1) β F G 6= /0.
We show that (3) G is J-witnessed. Let γn such that ∀ j∈ J. γ j 6=

/0. Thanks to the definition of J, we have ∀ j∈ [n].F j 6= /0 ⇒ γ j 6= /0,

and therefore we obtain the functions ( f j : β F j → γ j)i∈[n]. Then,

thanks to Gmap f : β F G → γ G, by (1) we obtain that γ G 6= /0, as
desired.

From (3), since J is complete for J, we obtain J1 ∈ J such

that J1 ⊆ J. Let j ∈ J1. By the definition of J, we have β F j 6= /0,

making β F j K-witnessed (by the definition of β); hence, since
I j is F j-complete, we obtain I j ∈ I j such that I j ⊆ K. Then
K1 =

⋃

j∈J1
I j belongs to K and is included in K, as desired.

Proof of Theorem 3: Immediate from the definitions.

In some of the following proofs we exploit an embedding of
datatypes as finite codatatypes (Appendix A). Using this embed-
ding, we can transfer the recursive definition and structural induc-
tion principles from IF to finite elements of JF, and in particular
from fdtree to finite trees in dtree.

The regular cut of a tree works well with respect to the codata-
type metatheory, but for datatypes it has the disadvantage that it
may produce infinite trees out of finite ones (cf. Figure 3, left and
middle). We need a slightly different concept for datatypes: the fi-
nite regular cut. Let t0 be a finite derivation tree. We choose the
function fpick : Itr t0 → Subtr t0 similarly to pick from Sect. 2.3, but
making sure that in addition the choice of the subtrees fpick n is
minimal, in that fpick n does not have n in the interior of a proper
subtree (and hence does not have any proper subtree of root n)—
such a choice is possible thanks to the finiteness of t0. We define
the finite regular cut of t0, rfcut t0, just like rcut t0 but using fpick

instead of pick. Now we can prove:

Lemma 1. Assume t0 is a finite derivation tree. Then:

(1) The statement of Theorem 1 holds if we replace rcut by rfcut.

(2) rfcut t0 is finite.

Proof: (1) Similar to the proof of Theorem 1. (2) By routine
induction on t0.

Proof of Theorem 5: Let j0 ∈ [n]. We first show that L rf
Gr( j0)

is sound. Let t0 be a well-formed finite regular derivation tree with
root j0. We need to prove that F j0 is Fr t0-witnessed. For this, we
fix αm such that ∀i∈Fr t0. αi 6= /0, and aim to show that α IF j0 6= /0.

For each j ∈ Itr t0, let t j be the corresponding subtree of t0. (It
is well-defined, since t0 is regular.) Note that t0 = t j0 . For each K

such that ( j, cp(K)) ∈ P, since K ∈ K j and K j is sound for F j, we
obtain a K-witness for F j, i.e., a function w j,K : (αk)k∈K → α F j.

We verify the following fact by induction on the finite derivation
tree t: If ∃ j ∈ Itr t0. t = t j, then α IF j 6= /0. The induction step
goes as follows: Assume t = t j has the form Node j as, and let
J be the set of all roots of the immediate subtrees of t, namely,
root • (Inr− (cont t)). By the induction hypothesis, α IF j′ 6= /0 (say,

b j′ ∈ α IF j′ ) for all j′ ∈ J. Then w j,K (ai)i∈Inl− t (b j′) j′∈J ∈ α IF j,
making α IF j nonempty.

In particular, α JF j0 6= /0, as desired.

We now show that L rf
Gr( j0) is complete. Let I ⊆ [m] such that

IF j0 is I-witnessed. We need to find I1 ∈ L rf
Gr( j0) such that I1 ⊆ I.

Let αm be defined as αi = unit if i ∈ I and = /0 otherwise.
We verify, by structural IF-induction on b, that for all j ∈ [n] and
b ∈ α IF j, there exists a finite well-formed derivation tree t such that
root t = j and Fr t ⊆ I. For the inductive step, assume ctor j x ∈ α IF j,

where x ∈ (α, α IF) F j. By the induction hypotheses, we obtain
the finite well-formed derivation trees tn such that root t j = j and

Fr t j ⊆ I for all j ∈ [n]. Let J = { j′ ∈ [n]. α IF j′ 6= /0}. Then F j is

(I ∪ J)-witnessed, hence by the F j-completeness of K j we obtain

K ∈ K j such that K ⊆ I ∪{m+ j′. j′ ∈ J}. We take t to have j as
root, I ∩ K as leaves and (t j′) j′∈J as immediate subtrees; namely,

t = Node j ((Inl • I)∪ (Inr • {t j′ . j′ ∈ J})).
Let t0 be a tree as above corresponding to j0 (since α IF j0 6= /0).

Then, by Lemma 1, t1 = rcut t0 is a well-formed finite derivation
tree such that Fr t1 ⊆ Fr t0 ⊆ I. Thus, taking I1 = Fr t1, we obtain

I1 ∈ L rf
Gr( j0) and I1 ⊆ I, as desired.

Proof of Theorem 7: L r
Gr ns n ⊆ { /0}, since Fr ns t = /0 for all

t such that root t = n. It remains to show /0 ∈ L r
Gr ns t, i.e., to

find a derivation tree with root n. In fact, using the assumption
that there are no unused nonterminals, we can build a “default
derivation tree” deftr n for each n as follows. We pick, for each
n, a set S n ∈ (T+N) fset such that (n, S n) ∈ P. Then we define
deftr : N → dtree corecursively as deftr = unfold id S , i.e., such that
root (deftr n) = n and cont (deftr n) = (id ⊕ deftr) • S n. It is easy to
prove by KT-coinduction that deftr n is a derivation tree for each n.

Now assume n /∈ ns, and let ns′ = ns\{n}.
For the left-to-right direction, we prove more than ≤, namely,

actual inclusion between L r
Gr ns n and the righthand side. Assume

t is a well-formed regular derivation tree of root n. We need to
find ss ∈ (T + N) fset and U : Inr− ss → dtree such that, for all
n′ ∈ Inr− ss, U n′ is a well-formed regular derivation tree of root
n′ and Fr ns t = Inl−ss ∪

⋃

n′∈Inr− ss Fr ns′ (U n′).
Clearly ss should be the right-hand side of the top production of

t. As for U, of course the immediate subtrees of t provide intuitive
candidates; however, these do not work, since our goal is to have
Fr ns t covered by (Inl− ss in conjunction with) Fr ns′ (U n′), while
the immediate subtrees only guarantee this property with respect to
Fr ns (U n′), i.e., allowing paths to go through n as well. A correct
solution is again offered by a corecursive definition: We build the
tree t0 from t by substituting hereditarily each subtree with root
n by t. Formally, we take t0 = unfold r c, where r t′ = root t′ and
c t′ = cont t if root t′ = n and c t′ = cont t′ otherwise. It is easy to
prove that t0, like t, is a regular derivation tree. Thus, we can define
U to give, for any n′, the corresponding immediate subtree of t0.
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To prove the right-to-left direction, let ss ∈ (T + N) fset and
K ∈ ∏ n′∈Inr− ss L r

Gr ns′ n′ such that ts = Inl−ss ∪
⋃

n′∈Inr− ss Kn′ .

Unfolding the definition of L r
Gr, we obtain U : Inr− ss → dtree

such that, for all n′ ∈ Inr− ss, U n′ is a regular derivation tree of
root n′ such that Kn′ ∈ Fr ns′ (U n′). Then the tree of immediate
leafs Inl−ss and immediate subtrees {U n′. n′ ∈ Inr− ss}, namely,
Node n ((id⊕U) • ss), is the desired regular derivation tree whose
frontier is included ts.

In what follows, nl ranges over lists of nonterminals and ‘·’
denotes list concatenation. If n is a nonterminal, n also denotes the
n-singleton list.

The predicate path nl t, stating that nl is a path in t (starting from
the root), is defined inductively by the following rules:

path (root t) t
Inr t′ ∈ cont t ∧ path nl t′ ⇒ path ((root t) ·nl) t′

Lemma 2. Let t be a finite regular derivation tree. Then t has no
paths that contain repetitions.

Proof: Assume, by absurdity, that a path nl in t contains repeti-
tions, i.e., has the form nl1 ·n ·nl2 ·n, and let t1 and t2 be the subtrees
corresponding to the paths nl1 · n and nl, respectively. Then t2 is a
proper subtree of t1; on the other hand, by the regularity of t, we
have t1 = t2, which is impossible since t1 and t2 are finite.

Proof of Theorem 8: According to Lemma 2 and the proper-

ties of regular cuts, we have that (1) L rf
Gr ns′ n ≡ L

pf
Gr ns′ n, where

L
pf

Gr ns′ n is the language defined just like L rf
Gr ns′ n, but replacing

“regular” with “having no paths that contain repetitions.” More-
over, it is easy to see that (2) the desired facts hold if we replace

L rf
Gr ns′ n with L

pf
Gr ns′ n and ≡ with equality. From (1) and (2) the

result follows.

E. Registration of a New BNF in Isabelle

The type constructor α bag of bags (multisets) is registered through
the following command:

bnf_def

bag_map :: (’a => ’b) => ’a bag => ’b bag

[set_of :: ’a bag => ’a set]

natLeq :: (nat * nat) set

[{#} :: ’a bag]

bag_rel :: (’a => ’b => bool) =>

’a bag => ’b bag => bool

The command provides the necessary infrastructure that makes
α bag a BNF, consisting of various previously introduced constants
(whose definition is not shown here):

• the functorial action, bag_map;

• the “Fset” operation discussed in Sect. 3.3, set_of;

• a cardinal bound, here, that of natural numbers, natLeq (in
Isabelle, cardinals are represented as minimal well-order re-
lations);

• a witness term, here, the empty bag {#};

• a customized relator, as discussed in Sect. 3.4, bag_rel.

Then the user is prompted to prove a few facts, including one saying
that set_of is a natural transformation:

set_of o bag_map f = image f o set_of

Upon discharging these goals, the α bag BNF is registered.
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