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Abstract. This paper describes progress with our agenda of formal verification

of information-flow security for realistic systems. We present CoSMed, a social

media platform with verified document confidentiality. The system’s kernel is im-

plemented and verified in the proof assistant Isabelle/HOL. For verification, we

employ the framework of Bounded-Deducibility (BD) Security, previously intro-

duced for the conference system CoCon. CoSMed is a second major case study in

this framework. For CoSMed, the static topology of declassification bounds and

triggers that characterized previous instances of BD security has to give way to a

dynamic integration of the triggers as part of the bounds.

1 Introduction

Web-based systems are pervasive in our daily activities. Examples include enterprise

systems, social networks, e-commerce sites and cloud services. Such systems pose no-

table challenges regarding confidentiality [1].

Recently, we have started a line of work aimed at addressing information flow se-

curity problems of realistic web-based systems by interactive theorem proving—using

our favorite proof assistant, Isabelle/HOL [26, 27]. We have introduced a security no-

tion that allows a very fine-grained specification of what an attacker can observe about

the system, and what information is to be kept confidential and in which situations. In

our case studies, we assume the observers to be users of the system, and our goal is

to verify that, by interacting with the system, the observers cannot learn more about

confidential information than what we have specified. As a first case study, we have

developed CoCon [18], a conference system (à la EasyChair) verified for confidential-

ity. We have verified a comprehensive list of confidentiality properties, systematically

covering the relevant sources of information from CoCon’s application logic [18, §4.5].

For example, besides authors, only PC members are allowed to learn about the content

of submitted papers, and nothing beyond the last submitted version before the deadline.

This paper introduces a second major end product of this line of work: CoSMed, a

confidentiality-verified social media platform. CoSMed allows users to register and post

information, and to restrict access to this information based on friendship relationships

established between users. Architecturally, CoSMed is an I/O automaton formalized in

Isabelle, exported as Scala code, and wrapped in a web application (§2).

⋆ This is a preprint of a paper presented at ITP 2016. The final publication is available at Springer

via http://dx.doi.org/10.1007/978-3-319-43144-4_6



For CoCon, we had proved that information only flows from the stored documents

to the users in a suitably role-triggered and bounded fashion. In CoSMed’s case, the

“documents” of interest are friendship requests, friendship statuses, and posts by the

users. The latter consist of title, text, and an optional image. The roles in CoSMed in-

clude admin, owner and friend. Modeling the restrictions on CoSMed’s information

flow poses additional challenges (§3), since here the roles vary dynamically. For exam-

ple, assume we prove a property analogous to those for CoCon: A user U1 learns noth-

ing about the friend-only posts posted by a user U2 unless U1 becomes a friend of U2.

Although this property makes sense, it is too weak—given that U1 may be “friended”

and “unfriended” by U2 multiple times. A stronger confidentiality property would be:

U1 learns nothing about U2’s friend-only posts beyond the updates performed while U1

and U2 were friends. For the verification of both CoCon and CoSMed, we have em-

ployed Bounded-Deducibility (BD) Security (§3.2), a general framework for the ver-

ification of rich information flow properties of input/output automata. BD security is

parameterized by declassification bounds and triggers . While for CoCon a fixed topol-

ogy of bounds and triggers was sufficient, CoSMed requires a more dynamic approach,

where the bounds incorporate trigger information on a dynamic basis (§3.3). The verifi-

cation proceeds by providing suitable unwinding relations, closely matching the bounds

(§4).

CoSMed has been developed to fulfill the functionality and security needs of a char-

ity organization [4]. The current version is a prototype, not yet deployed for the charity

usage. Both the formalization and the running website are publicly available [5].

Notation. Given f : A→ B, a : A and b : B, we write f (a := b) for the function that

returns b for a and otherwise acts like f . [] denotes the empty list and @ denotes list

concatenation. Given a list xs, we write last xs for its last element. Given a predicate

P, we write filter P xs for the sublist of xs consisting of those elements satisfying P.

Given a function f , we write map f xs for the list resulting from applying the function

f to each element of xs. Given a record σ, field labels l1, . . . , ln and values v1, . . . , vn

respecting the types of the labels, we write σ(l1 := v1, . . . , ln := vn) for σ with the

values of the fields li updated to vi. We let li σ be the value of field li stored in σ.

2 System Description

In this section we describe the system functionality as formalized in Isabelle (§2.1)—we

provide enough detail so that the reader can have a good grasp of the formal confiden-

tiality properties discussed later. Then we sketch CoSMed’s overall architecture (§2.2).

2.1 Isabelle Specification

Abstractly, the system can be viewed as an I/O automaton, having a state and offering

some actions through which the user can affect the state and retrieve outputs. The state

stores information about users, posts and the relationships between them, namely:

– user information: pending new-user requests, the current user IDs and the associ-

ated user info, the system’s administrator, the user passwords;

– post information: the current post IDs and the posts associated to them, including

content and visibility information;
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– post-user relationships: the post owners;

– user-user relationships: the pending friend requests and the friend relationships.

All in all, the state is represented as an Isabelle record:

RECORD state=
(* User info: *)

pendingUReqs : userID list userReq : userID→ request userIDs : userID list

user : userID→ user pass : userID→ password admin : userID

(* Friend info: *)

pendingFReqs : userID→ userID list friendReq : userID→ userID→ request

friendIDs : userID→ userID list

(* Post info: *)

postIDs : postID list post : postID→ post owner : postID→ userID

Above, the types userID, postID, password, and request are essentially strings (more

precisely, datatypes with one single constructor embedding strings). Each pending re-

quest (be it for user or for friend relationship) stores a request info (of type request),

which contains a message of the requester for the recipient (the system admin or a given

user). The type user contains user names and information. The type post of posts con-

tains tuples (title, txt, img, vis), where the title and the text are essentially strings, img is

an (optional) image file, and vis ∈ {Friend, Public} is a visibility status that can be as-

signed to posts: Friend means visibility to friends only, whereas Public means visibility

to all users.

The initial state of the system is completely empty: there are empty lists of regis-

tered users, posts, etc. Users can interact with the system via six categories of actions:

start-up, creation, deletion, update, reading and listing.

The actions take varying numbers of parameters, indicating the user involved and

optionally some data to be loaded into the system. Each action’s behavior is specified

by two functions:

– An effect function, actually performing the action, possibly changing the state and

returning an output

– An enabledness predicate (marked by the prefix “e”), checking the conditions under

which the action should be allowed

When a user issues an action, the system first checks if it is enabled, in which case its

effect function is applied and the output is returned to the user. If it is not enabled, then

an error message is returned and the state remains unchanged.

The start-up action, startSys : state→ userID→ password→ state, initializes the

system with a first user, who becomes the admin:

startSys σ uid p ≡
σ(admin := uid, userIDs := [uid], user := (user σ)(uid := emptyUser),
pass := (pass σ)(uid := p))

The start-up action is enabled only if the system has no users:

e_startSys σ uid p ≡ userIDs σ= []

Creation actions perform registration of new items in the system. They include:

placing a new user registration request; the admin approving such a request, leading to
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registration of a new user; a user creating a post; a user placing a friendship request for

another user; a user accepting a pending friendship request, thus creating a friendship

connection.

The three main kinds of items that can be created/registered in the system are users,

friends and posts. Post creation can be immediately performed by any user. By con-

trast, user and friend registration proceed in two stages: first a request is created by the

interested party, which can later be approved by the authorized party. For example, a

friendship request from uid to uid′ is first placed in the pending friendship request queue

for uid′. Then, upon approval by uid′, the request turns into a friendship relationship.

Since friendship is symmetric, both the list of uid′’s friends and that of uid’s friends are

updated, with uid and uid′ respectively.

There is only one deletion action in the system, namely friendship deletion (“un-

friending” an existing friend).

Update actions allow users with proper permissions to modify content in the sys-

tem: user info, post content, visibility status, etc. For example, the following action is

updating, on behalf of the user uid, the text of a post with ID pid to the value txt.

updateTextPost σ uid p pid txt ≡
σ (post := (post σ)(pid := setTextPost (post σ pid) txt))

It is enabled if both the user ID and the post ID are registered, the given password

matches the one stored in the state and the user is the post’s owner. Besides the text, one

can also update the title and the image of a post.

Reading actions allow users to retrieve content from the system. One can read

user and post info, friendship requests and status, etc. Finally, the listing actions allow

organizing and listing content by IDs. These include the listing of: all the pending user

registration requests (for the admin); all users of the system; all posts; one’s friendship

requests, one’s own friends, and the friends of them.

Action syntax and dispatch. So far we have discussed the action behavior, consist-

ing of effect and enabledness. In order to keep the interface homogeneous, we distin-

guish between an action’s behavior and its syntax. The latter is simply the input expected

by the I/O automaton. The different kinds of actions (start-up, creation, deletion, update,

reading and listing) are wrapped in a single datatype through specific constructors:

DATATYPE act= Sact sAct |Cact cAct |Dact dAct |Uact uAct |Ract rAct | Lact lAct

In turn, each kind of action forms a datatype with constructors having varying num-
bers of parameters, mirroring those of the action behavior functions. For example, the
following datatypes gather (the syntax of) all the update and reading actions:

DATATYPE uAct=
uUser userID password password name info

| uTitlePost userID password postID title

| uTextPost userID password postID text

| uImgPost userID password postID img

| uVisPost userID password postID vis

DATATYPE rAct=
rUser userID password userID

| rNUReq userID password userID

| rNAReq userID password appID

| rAmIAdmin userID password

| rTitlePost userID password postID

| rTextPost userID password postID

| rImgPost userID password postID

| rVisPost userID password postID

| rOwnerPost userID password postID

| rFriendReqToMe userID password userID

| rFriendReqFromMe userID password userID
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We have more reading actions than update actions. Some items, such as new-user

and new-friend request info, are readable but not updatable.

The naming convention we follow is that a constructor representing the syntax of an

action is named by abbreviating the name of that action. For example, the constructor

uTextPost corresponds to the effect function updateTextPost.

The overall step function, step : state→ act→ out× state, proceeds as follows.

When given a state σ and an action a, it first pattern-matches on a to discover what

kind of action it is. For example, for the update action Uact (uTextPost uid p pid txt),
the corresponding enabledness predicate is called on the current state (say, σ) with the

given parameters, e_updateTextPost σ uid p pid txt. If this returns False, the result is

(outErr, σ), meaning that the state has not changed and an error output is produced. If

it returns True, the effect function is called, updateTextPost σ uid p pid txt, yielding

a new state σ′. The result is then (outOK, σ′), containing the new state along with an

output indicating that the update was successful.

Note that start, creation, deletion and update actions change the state but do not

output non-trivial data (besides outErr or outOK). By contrast, reading actions do not

change the state, but they output data such as user info, post content and friendship

status. Likewise, listing actions output lists of IDs and other data. The datatype out, of

the overall system outputs, wraps together all these possible outputs, including outErr

and outOK.

In summary, all the heterogeneous parametrized actions and outputs are wrapped

in the datatypes act and out, and the step function dispatches any request to the corre-

sponding enabledness check and effect. The end product is a single I/O automaton.

2.2 Implementation

For CoSMed’s implementation, we follow the same approach as for CoCon [18, §2].

The I/O automaton formalized by the initial state σ0 : state and the step function

step : state→ act→ out× state represents CoSMed’s kernel—it is this kernel that we

formally verify. The kernel is automatically translated to isomorphic Scala code using

Isabelle’s code generator [15].

Around the exported code, there is a thin layer of trusted (unverified) code. It con-

sists of an API written with the Scalatra framework and a web application that commu-

nicates with the API. Although this architecture involves trusted code, there are reasons

to believe that the confidentiality guarantees of the kernel also apply to the overall sys-

tem. Indeed, the Scalatra API is a thin layer: it essentially forwards requests back and

forth between the kernel and the outside world. Moreover, the web application operates

by calling combinations of primitive API operations, without storing any data itself.

User authentication, however, is also part of this unverified code. Of course, comple-

menting our secure kernel with a verification that “nothing goes wrong” in the outer

layer (by some language-based tools) would give us stronger guarantees.

3 Stating Confidentiality

Web-based systems for managing online resources and workflows for multiple users,

such as CoCon and CoSMed, are typically programmed by distinguishing between var-

5



ious roles (e.g., author, PC member, reviewer for CoCon, and admin, owner, friend

for CoSMed). Under specified circumstances, members with specified roles are given

access to (controlled parts of) the documents.

Access control is understood and enforced locally, as a property of the system’s

reachable states: that a given action is only allowed if the agent has a certain role and

certain circumstances hold. However, the question whether access control achieves its

purpose, i.e., really restricts undesired information flow, is a global question whose

formalization simultaneously involves all the system’s execution traces. We wish to

restrict not only what an agent can access, but also what an agent can infer, or learn.

3.1 From CoCon to CoSMed

For CoCon, we verified properties with the pattern: A user can learn nothing about a

document beyond a certain amount of information unless a certain event occurs. E.g.:

– A user can learn nothing about the uploads of a paper beyond the last uploaded

version in the submission phase unless that user becomes an author.

– A user can learn nothing about the updates to a paper’s review beyond the last

updated version before notification unless that user is a non-conflicted PC member.

The “beyond” part expresses a bound on the amount of disclosed information. The “un-

less” part indicates a trigger in the presence of which the bound is not guaranteed to

hold. This bound-trigger tandem has inspired our notion of BD security—applicable to

I/O automata and instantiatable to CoCon. But let us now analyze the desired confiden-

tiality properties for CoSMed. For a post, we may wish to prove:

(P1) A user can learn nothing about the updates to a post content unless that

user is the post’s owner, or he becomes friends with the owner, or the post is

marked as public.

And indeed, the system can be proved to satisfy this property. But is this strong enough?

Note that the trigger, emphasized in (P1) above, expresses a condition in whose presence

our property stops guaranteeing anything. Therefore, since both friendship and public

visibility can be freely switched on and off by the owner at any time, relying on such

a strong trigger simply means giving up too easily. We should aim to prove a stronger

property, describing confidentiality along several iterations of issuing and disabling the

trigger. A better candidate property is the following:5

(P2) A user can learn nothing about the updates to a post content beyond those

updates that are performed while one of the following holds: either that user is

the post’s owner, or he is a friend of the owner, or the post is marked as public.

In summary, the “beyond”-“unless” bound-trigger combination we employed for Co-

Con will need to give way to a “beyond”-“while” scheme, where “while” refers to the

periods in a system run during which observers are allowed to learn about confidential

information. We will call these periods “access windows.” To formalize them, we will

incorporate (and iterate) the trigger inside the bound. As we show below, this is possi-

ble with the price of enriching the notion of secret to record changes to the “openness”

of the access window. In turn, this leads to more complex bounds having more subtle

definitions. But first let us recall BD security formally.
5 As it will turn out, this property needs to be refined in order to hold. We’ll do this in §3.3.
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3.2 BD Security Recalled

We focus on the security of systems specified as I/O automata. In such an automaton, we

call the inputs “actions.” We write state, act, and out for the types of states, actions, and

outputs, respectively, σ0 : state for the initial state, and step : state→ act→ out×state

for the one-step transition function. Transitions are tuples describing an application of

step:

DATATYPE trans= Trans state act out state

A transition trn = Trans σ a o σ′ is called valid if it corresponds to an application of

the step function, namely step σ a = (o, σ′). Traces are lists of transitions:

TYPE_SYNONYM trace= trans list

A trace tr = [trn0, . . . , trnn−1] is called valid if it starts in the initial state σ0 and all

its transitions are valid and compose well, in that, for each i < n− 1, the target state

of trni coincides with the source state of trni+1. Valid traces model the runs of the

system: at each moment in the lifetime of the system, a certain trace has been executed.

All our formalized security definitions and properties quantify over valid traces and

transitions—to ease readability, we shall omit the validity assumption, and pretend that

the types trans and trace contain only valid transitions and traces.

We want to verify that there are no unintended flows of information to attackers who

can observe and influence certain aspects of the system execution. Hence, we specify

1. what the capabilities of the attacker are,

2. which information is (potentially) confidential, and

3. which flows are allowed.

The first point is captured by a function O taking a trace and returning the observable

part of that trace. Similarly, the second point is captured by a function S taking a trace

and returning the sequence of (potential) secrets occurring in that trace. For the third

point, we add a parameter B, which is a binary relation on sequences of secrets. It

specifies a lower bound on the uncertainty of the observer about the secrets, in other

words, an upper bound on these secrets’ declassification. In this context, BD security

states that O cannot learn anything about S beyond B. Formally:

For all valid system traces tr and sequence of secrets sl′ such that B (S tr) sl′

holds, there exists a valid system trace tr′ such that S tr′ = sl′ and O tr′ =O tr.

Thus, BD security requires that, if B sl sl′ holds, then observers cannot distinguish the

sequence of secrets sl from sl′—if sl is consistent with a given observation, then so

must be sl′. Classical nondeducibility [29] corresponds to B being the total relation—

the observer can then deduce nothing about the secrets. Smaller relations B mean that

an observer may deduce some information about the secrets, but nothing beyond B—for

example, if B is an equivalence relation, then the observer may deduce the equivalence

class, but not the concrete secret within the equivalence class.

The original formulation of BD security in [18] includes an additional parameter

T, a declassification trigger: The above condition is only required to hold for traces tr

where T does not occur. Hence, as soon as the trigger occurs, the security property no

longer offers any guarantees. This was convenient for CoCon, but for CoSMed this is

too coarse-grained, as discussed in §3.1. Since, in general, an instance of BD security
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with T can be transformed into one without,6 in this paper we decide to drop T and use

the above trigger-free formulation of BD security.

Regarding the parameters O and S, we assume that they are defined in terms of

functions on individual transitions:

– isSec : trans→ bool, filtering the transitions that produce secrets

– getSec : trans→ secret, producing a secret out of a transition

– isObs : trans→ bool, filtering the transitions that produce observations

– getObs : trans→ obs, producing an observation out of a transition

We then define O=map getObs ◦ filter isObs and S=map getSec ◦ filter isSec. Thus,

O uses filter to select the transitions in a trace that are (partially) observable according

to isObs, and then maps this sequence of transitions to the sequence of their induced

observations, via getObs. Similarly, S produces sequences of secrets by filtering via

isSec and mapping via getSec.

All in all, BD security is parameterized by the following data:

– an I/O automaton (state, act, out, σ0, step)
– a security model, consisting of:

• a secrecy infrastructure (secret, isSec, getSec)
• an observation infrastructure (obs, isObs, getObs)
• a declassification bound B

3.3 CoSMed Confidentiality as BD Security

Next we show how to capture CoSMed’s properties as BD security. We first look in

depth at one property, post confidentiality, expressed informally by (P2) from §3.1.

Let us attempt to choose appropriate parameters in order to formally capture a con-

fidentiality property in the style of (P2). The I/O automaton will of course be the one

described by the state, actions and outputs from §2.1.

For the security model, we first instantiate the observation infrastructure (obs, isObs,
getObs). The observers are users. Moreover, instead of assuming a single user observer,

we wish to allow coalitions of an arbitrary number of users—this will provide us with

stronger security guarantees. Finally, from a transition Trans σ a o σ′ issued by a user,

it is natural to allow that user to observe both their own action a and the output o.

Formally, we take the type obs of observations to be act×out and the observation-

producing function getObs : trans→ obs to be getObs (Trans _ a o _)≡ (a, o). We fix

a set UIDs of user IDs and define the observation filter isObs : trans→ obs by

isObs (Trans σ a o σ′) ≡ userOf a ∈ UIDs

where userOf a returns the user who performs the action. In summary, the observations

are all actions issued by members of a fixed set UIDs of users together with the outputs

that these actions are producing.

Let us now instantiate the secrecy infrastructure (secret, isSec, getSec). Since the

property (P2) talks about the text of a post, say, identified by PID : postID, a first natural

choice for secrets would be the text updates stored in PID via updateTextPost actions.

6 By modifying S to produce a dedicated value as soon as T occurs, and modifying B to only

consider sequences without that value.
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textl 6= []→ textl′ 6= []

B (map TSec textl) (map TSec textl′)
(1) BO (map TSec textl) (map TSec textl) (2)

BO sl sl′ textl 6= [] ←→ textl′ 6= [] textl 6= []→ last textl = last textl′

B (map TSec textl @ OSec True @ sl) (map TSec textl′ @ OSec True @ sl′)
(3)

B sl sl′

BO (map TSec textl @ OSec False @ sl) (map TSec textl @ OSec False @ sl′)
(4)

Fig. 1: The bound for post text confidentiality

That is, we could have the filter isSec a hold just in case a is such a (successfully

performed) action, say, updateTextPost σ uid p pid txt, and have the secret-producing

function getSec a return the updated secret, here txt. But later, when we state the bound,

how would we distinguish updates that should not be learned from updates that are OK

to be learned because they happen while the access is legitimate for the observers—

e.g., while a user in UIDs is the owner’s friend? We shall refer to the portions of the

trace when the observer access is legitimate as open access windows, and refer to the

others as closed access windows. The bound clearly needs to distinguish these. Indeed,

it states that nothing should be learned beyond the updates that occurred during open

access windows.

To enable this distinction, we enrich the notion of secret to include not only the post

text updates, but also marks for the shift between closed and open access windows. To

this end, we define the state predicate open to express that PID is registered and one of

the users in UIDs is entitled to access the text of PID—namely, is the owner or a friend

of the owner, or the post is public.

open σ ≡ PID ∈ postIDs σ ∧
∃uid ∈ UIDs. uid ∈ userIDs σ ∧

(uid = owner σ pid ∨ uid ∈ friendIDs σ (owner σ pid) ∨
visPost (post σ PID) = Public)

Now, the secret selector isSec : trans→ bool will record both successful post-text

updates and the changes in the truth value of open for the state of the transition:

isSec (Trans _ (Uact (uTextPost pid _ _ txt)) o _) ≡ pid = PID ∧ o = outOK

isSec (Trans σ _ _ σ′) ≡ open σ 6= open σ′

In consonance with the filter, the type of secrets will have two constructors

DATATYPE secret= TSec text | OSec bool

and the secret-producing function getSec : trans→ secret will retrieve either the up-

dated text or the updated openness status:

getSec (Trans _ (Uact (uTitlePost _ _ _ txt)) _ _) ≡ TSec txt

getSec (Trans _ _ _ σ′) ≡ OSec (open σ′)

In order to formalize the desired bound B, we first note that all sequences of secrets

produced from system traces consist of:

– a (possibly empty) block of text updates TSec txt1
1, . . . , TSec txt1

n1

– possibly followed by a shift to an open access window, OSec True
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– possibly followed by another block of text updates TSec txt2
1, . . . , TSec txt2

n2

– possibly followed by a shift to a closed access window, OSec False

– . . . and so on . . .

We wish to state that, given any such sequence of secrets sl (say, produced from a system

trace tr), any other sequence sl′ that coincides with sl on the open access windows

(while being allowed to be arbitrary on the closed access windows) is equally possible

as far as the observer is concerned—in that there exists a trace tr′ yielding the same

observations as tr and producing the secrets sl′.

The purpose of B is to capture this relationship between sl and sl′, of coincidence

on open access windows. But which part of a sequence of secrets sl represents such a

window? It should of course include all the text updates that take place during the time

when one of the observers has legitimate access to the post—namely, all blocks of sl

that are immediately preceded by an OSec True secret.

But there are other secrets in the sequence that properly belong to this window:

the last updated text before the access window is open, that is, the secret TSec txtk
nk

occurring immediately before each occurrence of OSec True. For example, when the

post becomes public, a user can see not only upcoming updates to its text, but also the

current text, i.e., the last update before the visibility upgrade.

The definition of B reflects the above discussion, using an auxiliary predicate BO

to cover the case when the window is open. The predicates are defined mutually induc-

tively as in Figure 1.

Clause (1), the base case for B, describes the situation where the original system

trace has made no shift from the original closed access window. Here, the produced

sequence of secrets sl consists of text updates only, i.e., sl =map TSec textl. It is indis-

tinguishable from any alternative sequence of updates sl′=mapTSec textl′, save for the

corner case where an observer can learn that sl is empty by inferring that the post does

not exist, e.g. because the system has not been started yet, or because no users other

than the observers exist who could have created the post. Such harmless knowledge is

factored in by asking that sl′ (i.e., textl′) be empty whenever sl (i.e., textl) is.

Clause (2), the base case for BO, handles sequences of secrets produced during

open access windows. Since here information is entirely exposed, the corresponding

sequence of secrets from the alternative trace has to be identical to the original.

Clause (3), the inductive case for B, handles sequences of secrets map TSec textl

produced during closed access windows. The difference from clause (1) is that here we

know that there will eventually be a shift to a closed access window—this is marked by

the occurrences of OSec True in the conclusion, followed by a remaining sequence sl.

As previously discussed, the only constraint on the sequence of secrets produced by the

alternative trace, map TSec textl′, is that it ends in the same secret—hence the condition

that the sequences be empty at the same time and have the same last element. Finally,

clause (4), the inductive case for BO, handles the secrets produced during open access

window on a trace known to eventually move to an open access window

With all the parameters in place, we have a formalization of post text confidentiality:

the BD-security instance for these parameters. However, we saw that the legitimate

exposure of the posts is wider than initially suggested, hence (P2) is bogus as currently

formulated. Namely, we need to factor in the last updates before open access windows
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in addition to the updates performed during open access windows. If we also factor in

the generalization from a single user to a coalition of users, we obtain:

(P3) A coalition of users can learn nothing about the updates to a post content

beyond those updates that are performed while one of the following holds or

the last update before one of the following starts to hold:

– a user in the coalition is the post’s owner or a friend of the post’s owner, or

– there is at least one user in the coalition and the post is marked as public.

3.4 More Confidentiality Properties

So far, we have discussed confidentiality for post content (i.e., text). However, a post

also has a title and an image. For these, we want to verify the same confidentiality

properties as in §3.3, only substituting text content by titles and images, respectively.

In addition to posts, another type of information with confidentiality ramifications is

that about friendship between users: who is friends with whom, and who has requested

friendship with whom. We consider the confidentiality of the friendship information of

two arbitrary but fixed users UID1 and UID2 who are not in the coalition of observers:

(P4) A coalition of users UIDs can learn nothing about the updates to the friend-

ship status between two users UID1 and UID2 beyond those updates that are

performed while a member of the coalition is friends with UID1 or UID2, or

the last update before there is a member of the coalition who becomes friends

with UID1 or UID2.

(P5) A coalition of users UIDs can learn nothing about the friendship requests

between two users UID1 and UID2 beyond the existence of a request before

each successful friendship establishment.

Formally, we declare open access window to friendship information when either an

observer is friends with UID1 or UID2 (since the listing of friends of friends is allowed),

or the two users have not been created yet (since observers know statically that there is

no friendship if the users do not exist yet).

openF σ ≡ (∃uid ∈ UIDs. uid ∈ friendIDs σ UID1∨uid ∈ friendIDs σ UID2)
∨ UID1 /∈ userIDs σ ∨ UID2 /∈ userIDs σ

The relevant transitions for the secrecy infrastructure are the creation of users and

the creation and deletion of friends or friend requests. The creation and deletion of

friendship between UID1 and UID2 produces an FSec True or FSec False secret, re-

spectively. In the case of openness changes, OSec is produced just as for the post confi-

dentiality. Moreover, for (P5), we let the creation of a friendship request between UID1

and UID2 produce FRSec uid txt secrets, where uid indicates the user that has placed

the request, and txt is the request message.

The main inductive definition of the two phases of the declassification bounds for

friendship (P4) is given in Figure 2, where fs ranges over friendship statuses, i.e.,

Booleans. Note that it follows the same “while”-“last update before” scheme as Fig-

ure 1 for the post confidentiality, but with FSec instead of TSec. The overall bound is
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BOF (map FSec fs) (map FSec fs) (1) BCF (map FSec fs) (map FSec fs′) (2)

BOF sl sl′ fs 6= [] ←→ fs′ 6= [] fs 6= []→ last fs = last fs′

BCF (map FSec fs @ OSec True @ sl) (map FSec fs′ @ OSec True @ sl′)
(3)

BCF sl sl′

BOF (map FSec fs @ OSec False @ sl) (map FSec fs @ OSec False @ sl′)
(4)

Fig. 2: The bound on friendship status secrets

then defined as BOF sl sl′ (since we start in the open phase where UID1 and UID2 do

not exist yet) plus a predicate on the values that captures the static knowledge of the ob-

servers: that the FSec’s form an alternating sequence of “friending” and “unfriending.”

For (P5), we additionally require that at least one FRSec and at most two FRSec

secrets from different users have to occur before each FSec True secret. Beyond that,

we require nothing about the request values. Hence, the bound for friendship requests

states that observers learn nothing about the requests between UID1 and UID2 beyond

the existence of a request before each successful friendship establishment. In particular,

they learn nothing about the “orientation” of the requests (i.e., which of the two involved

users has placed a given request) and the contents of the request messages.

4 Verifying Confidentiality

Next we recall the unwinding proof technique for BD security (§4.1) and show how we

have employed it for CoSMed (§4.2).

4.1 BD Unwinding Recalled

In [18], we have presented a verification technique for BD security inspired by Goguen

and Meseguer’s unwinding technique for noninterference [13]. Classical noninterfer-

ence requires that it must be possible to purge all secret transitions from a trace, without

affecting the outputs of observable actions. The unwinding technique uses an equiva-

lence relation on states, relating states with each other that are supposed to be indistin-

guishable for the observer. The proof obligations are that 1. equivalent states produce

equal outputs for observable actions, 2. performing an observable action in two equiv-

alent states again results in two equivalent states, and 3. the successor state of a secret

transition is equivalent to the source state. This guarantees that purging secret transi-

tions preserves observations. The proof proceeds via an induction on the original trace.

For BD security, the situation is different. Instead of purging all secret transitions,

we have to construct a different trace tr′ that produces the same observations as the orig-

inal trace tr, but produces precisely a given sequence of secrets sl′ for which B (S tr) sl′

holds.

The idea is to construct tr′ incrementally, in synchronization with tr, but “keeping an

eye” on sl′ as well. The unwinding relation [18, §5.1] is therefore not a relation on states,

but a relation on (state× secret list), or equivalently, a set of tuples (σ, sl, σ′, sl′). Each

of these tuples represents a possible configuration of the unwinding “synchronization

12
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game”: σ and sl represent the current state reached by a potential original trace and the

secrets that are still to be produced by it; and similarly for σ′ and sl′ w.r.t. the alternative

trace.

To keep proof size manageable, the framework supports the decomposition of ∆

into smaller unwinding relations ∆0, . . . , ∆n focusing on different phases of the synchro-

nization game. The unwinding conditions require that, from any such configuration for

which one of the relations hold, say, ∆i σ sl σ′ sl′, the alternative trace can “stay in the

game” by choosing to (1) either act independently or (2) wait for the original trace to

act and then choose how to react to it: (1.a) either ignore that transition or (1.b) match it

with an own transition. For the resulting configuration, one of the unwinding relations

has to hold again. More precisely, the allowed steps in the synchronization game are the

following:

INDEPENDENT ACTION: There exists a transition trn′ =Transσ′ _ _σ′1 that is unob-

servable (i.e., ¬ isObs trn′), produces the first secret in sl′, and leads to a configura-

tion that is again in one of the relations, ∆ j σ sl σ′1 sl′1 for j ∈ {1, . . . , n}
REACTION: For all possible transitions trn = Trans σ _ _ σ1 one of the following

holds:

IGNORE: trn is unobservable and again leads to a related configuration

∆k σ1 sl1 σ
′ sl′ for k ∈ {1, . . . , n}

MATCH: There exists an observationally equivalent transition trn′=Transσ′ _ _σ′1
(i.e., isObs trn ←→ isObs trn′ and isObs trn→ getObs trn = getObs trn′) that

together with trn leads to a related configuration ∆l σ1 sl1 σ
′
1 sl′1 for l∈{1, . . . , n}

If one of these conditions is satisfied for any configuration, then the unwinding relations

can be seen as forming a graph: For each i, ∆i is connected to all the relations into which

it “unwinds,” i.e., the relations ∆ j, ∆k or ∆l appearing in the above conditions. We use

these conditions in the inductive step of the proof of the soundness theorem below.

Finally, we require that the initial relation ∆0 is a proper generalization of the bound

for the initial state, ∀sl sl′. B sl sl′→ ∆0 σ0 sl σ0 sl′. This corresponds to initializing the

game with a configuration that loads any two sequences of secrets satisfying the bound.

Theorem 1 [18] If ∆0, . . . , ∆n form a graph of unwinding relations, and B sl sl′ implies

∆0 σ0 sl σ0 sl′ for all sl and sl′, then (the given instance of) BD security holds.

4.2 Unwinding Relations for CoSMed

In a graph ∆0, . . . , ∆n of unwinding relations, ∆0 generalizes the bound B. In turn, ∆0

may unwind into other relations, and in general any relation in the graph may unwind
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into its successors. Hence, we can think of ∆0 as “taking over the bound,” and of all

the relations as “maintaining the bound” together with state information. It is therefore

natural to design the graph to reflect the definition of B.

We have applied this strategy to all our unwinding proofs. The graph in Figure 3

shows the unwindings of the post-text confidentiality property (P3). In addition to the

initial relation ∆0, there are 4 relations ∆1–∆4 with ∆i corresponding to clause (i) for the

definition of B from Fig. 1. The edges correspond to the possible causalities between

the clauses. For example, if B sl sl′ has been obtained applying clause (3), then, due

to the occurrence of BO in the assumptions, we know the previous clauses must have

been either (2) or (4)—hence the edges from ∆3 to ∆2 and ∆4. Each ∆i also provides

a relationship between the states σ and σ′ that fits the situation. Since we deal with

repeated opening and closing of the access window, we naturally require:

– that σ= σ′ when the window is open

– that σ=PID σ
′, i.e., σ and σ′ are equal everywhere save for the value of PID’s text,

when the window is closed

Indeed, only when the window is open the observer would have the power to distin-

guish different values for PID’s text; hence, when the window is closed the secrets

are allowed to diverge. Open windows are maintained by the clauses for BO, (2) and

(4), and hence by ∆2 and ∆4. Closed windows are maintained by the clauses for B, (1)

and (3), with the following exception for clause (3): When the open-window marker

OSec True is reached, the PID text updates would have synchronized (last textl =
last textl′), and therefore the relaxed equality =PID between states would have shrunk

to plain equality—this is crucial for the switch between open and closed windows.

To address this exception, we refine our graph as in Fig. 4, distinguishing between

clause (3) applied to nonempty update prefixes where we only need σ =PID σ
′, cov-

ered by ∆1
3, and clause (3) with empty update prefixes where we need σ = σ′, covered

by ∆2
3. Fig. 5 gives the formal definitions of the relations. ∆0 covers the prehistory of

PID—from before it was created. In ∆1–∆4, the conditions on sl and sl′ essentially in-

corporate the inversion rules corresponding to clauses (1)-(4) in B’s definition, while

the conditions on σ and σ′ reflect the access conditions, as discussed.

Proposition 2 The relations in Fig. 5 form a graph of unwinding relations, and there-

fore (by Thm. 1) the post-text confidentiality property (P3) holds.

For unwinding the friendship confidentiality properties, we proceed analogously.

We define unwinding relations, corresponding to the different clauses in Figure 2, and

prove that they unwind into each other and that B sl sl′ implies ∆0 σ0 sl σ0 sl′. In the

open phase, we require that the two states are equal up to pending friendship requests

between UID1 and UID2. In the closed phase, the two states may additionally differ

on the friendship status of UID1 and UID2. Again, we need to converge back to the

same friendship status when changing from the closed into the open phase. Hence, we

maintain the invariant in the closed phase that if an OSec True secret follows later in the

sequence of secrets, then the last updates before OSec True must be equal, analogous to

∆1
3 for post texts, and the friendship status must be equal in the two states immediately

before an OSec True secret, analogous to ∆2
3 for post texts.
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∆0 σ sl σ′ sl′ ≡ ¬ PID ∈ postIDs σ ∧ σ= σ′

∆1 σ sl σ′ sl′ ≡ PID ∈ postIDs σ ∧ σ=PID σ
′ ∧ ¬ open σ ∧

∃textl textl′. sl =map TSec textl ∧ sl′ =map TSec textl′ ∧
textl = []→ textl′ = []

∆2 σ sl σ′ sl′ ≡ PID ∈ postIDs σ ∧ σ= σ′ ∧ open σ ∧
∃textl. sl =map TSec textl ∧ sl′ =map TSec textl

∆1
3 σ sl σ′ sl′ ≡ PID ∈ postIDs σ ∧ σ=PID σ

′ ∧ ¬ open σ ∧
∃textl textl′ sl1 sl′1. sl =map TSec textl @ OSec True # sl1 ∧

sl′ =map TSec textl′ @ OSec True # sl′1 ∧
BO sl1 sl′1 ∧ textl 6= [] ∧ textl′ 6= [] ∧ last textl = last textl′

∆2
3 σ sl σ′ sl′ ≡ PID ∈ postIDs σ ∧ σ= σ′ ∧ ¬ open σ ∧

∃sl1 sl′1. sl =OSec True # sl1 ∧ sl′ =OSec True # sl′1 ∧ BO sl1 sl′1
∆4 σ sl σ′ sl′ ≡ PID ∈ postIDs σ ∧ σ= σ′ ∧ open σ ∧

∃textl sl1 sl′1. sl =map TSec textl @ OSec False # sl1 ∧
sl′ =map TSec textl′ @ OSec False # sl′1 ∧ B sl1 sl′1

Fig. 5: The unwinding relations for post-text confidentiality

5 Verification Summary

The whole formalization consists of around 9700 Isabelle lines of code (LOC). The

(reusable) BD security framework takes 1800 LOC. CosMeD’s kernel implementa-

tion represents 700 LOC. Specifying and verifying the confidentiality properties for

CoSMeD represents the bulk, 6500 LOC. Some additional 200 LOC are dedicated to

various safety properties to support the confidentiality proofs—e.g., that two users can-

not be friends if there are pending friendship requests between them. Unlike the con-

fidentiality proofs, which required explicit construction of unwindings, safety proofs

were performed automatically (by reachable-state induction).

Yet another kind of properties were formulated in response to the following ques-

tion: We have shown that a user can only learn about updates to posts that were per-

formed during times of public visibility or friendship, and about the last updates before

these time intervals. But how can we be sure that the public visibility status or the

friendship status cannot be forged? We have proved that these statuses can indeed only

occur by the standard protocols. These properties (taking 500 LOC), complement our

proved confidentiality by a form of accountability: they show that certain statuses can

only be forged by identity theft.

6 Related Work

Proof assistants are today’s choice for precise and holistic formal verification of hard-

ware and software systems. Already legendary verification works are the AMD micro-

processor floating-point operations [24], the CompCert C compiler [21] and the seL4

operating system kernel [19]. More recent developments include a range of micropro-

cessors [16], Java and ML compilers [20, 22], and a model checker [11].

Major “holistic” verification case studies in the area of information flow security

are rather scarce, perhaps due to the more complex nature of the involved properties

compared to traditional safety and liveness [23]. They include a hardware architec-

ture with information-flow primitives [10] and a separation kernel [9], and noninter-
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ference for seL4 [25]. A substantial contribution to web client security is the Quark

verified browser [17]. We hope that our line of work, putting CoCon and CoSMed in

the spotlight but tuning a general verification framework backstage, will contribute a

firm methodology for the holistic verification of server-side confidentiality.

Policy languages for social media platforms have been proposed in the context

of Relationship-based Access Control [12], or using epistemic logic [28]. These ap-

proaches focus on specifying policies for granting or denying access to data based on

the social graph, e.g. friendship relations. While our system implementation does make

use of access control, our guarantees go beyond access control to information flow con-

trol. A formal connection between these policy languages and BD security would be

interesting future work.

Finally, there are quite a few programming languages and tools aimed at supporting

information-flow secure programming [2,3,7,30], as well as information-flow tracking

tools for the client side of web applications [6, 8, 14]. We foresee a future where such

tools will cooperate with proof assistants to offer light-weight guarantees for free and

stronger guarantees (like the ones we proved in this paper) on a need basis.

Conclusion CoSMed is the first social media platform with verified confidentiality

guarantees. Its verification is based on BD security, a framework for information-flow

security formalized in Isabelle. CoSMed’s specific confidentiality needs require a dy-

namic topology of declassification bounds and triggers.
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