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Summary

We present deep learning phase-field models for brittle fracture. A variety of Physics-

Informed Neural Networks (PINNs) techniques e.g., original PINNs, Variational

PINNs (VPINNs) and Variational Energy PINNs (VE-PINNs) are utilised to solve

brittle phase-field problems. The performance of the different versions is investi-

gated in detail. Also, different ways of imposing boundary conditions are examined

and are compared with a self-adaptive PINNs approach in terms of computational

cost. Furthermore, the data-driven discovery of the phase-field length scale is exam-

ined. Finally, several numerical experiments are conducted to assess the accuracy

and the limitations of the discussed deep learning schemes for crack propagation in

two dimensions. We show that results can be highly sensitive to parameter choices

within the neural network.
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1 INTRODUCTION

Numerical approaches to the modelling of fracture initiation and propagation can be divided into two main categories, namely

discrete crack models and smeared crack models. In discrete crack models, the discontinuities are introduced into the displace-

ment field using interface elements which are inserted in the mesh a priori1,2,3,4, by means of remeshing5,6,7, or by enriching

the basis by inserting discontinuities8,9. These methods have been investigated widely and successful applications have been

reported. However, robust extensions to complex three-dimensional problems are non-trivial.

Smeared approaches are an alternative, in which the sharp discontinuity is distributed over a small, but finite width10. Early

smeared approaches appeared to be deficient in the sense that they caused a loss of well-posedness of the boundary value

problem at, or close to structural failure. The concomitant grid sensitivity then prevents physically meaningful answers. A host

of solutions have been proposed as a remedy, but gradient-enhanced damage models appear to be particularly effective and

powerful to model fracture in quasi-brittle and ductile materials11.

More recently, the variational approach has become popular as an elegant and mathematically well-founded approach to brittle

fracture12. In it, the solution to the fracture problem is found as the minimiser of a global energy functional. A phase-field

implementation of this model has been proposed by Bourdin et al.13 and has been cast in a damage-like, engineering format by

Miehe et al.14,15. Indeed, the phase-field approach to brittle fracture can be classified as a smeared approach, and bears much

similarity to gradient-enhanced damage models16.

Although mathematical and practical data-assimilation endeavours have been growing vastly, the spatiotemporal heterogeneity

of available data, along with the lack of universally reliable models, underscores the need for a transformative approach 17.

Machine learning (ML) can be used to explore massive design spaces, identify multi-dimensional correlations and manage ill-

posed problems17. Although solving ill-posed inverse problems with conventional solvers can be challenging, PINNs can be
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easily employed to solve these problems accurately and efficiently. Deep learning approaches can provide tools for naturally

extracting features from massive amounts of multi-fidelity observational data that are currently available and characterised by

unprecedented spatial and temporal coverage 18.

Deep learning allows overparameterised neural networks with multiple layers to successively extract higher-level features

from the raw input. These networks are well known to deal with supervised learning tasks, which require a large amount of

labeled training data. To avoid data collection, which is normally expensive in engineering applications, it is critical to use the

method with less data dependency and train deep learning models using primarily constraints (physical laws) rather than data.

Physics-informed neural networks (PINNs) 19,17 can be a potential solution. PINNs are capable of leveraging the underlying

laws of physics to extract patterns from high-dimensional data generated from experiments. Neverthless, Krishnapriyan et al

have reported possible issues with PINNs 20, and show that PINNs face some challenges before they can compete with tradi-

tional numerical methods in terms of accuracy and computational cost. Publications on physics-informed ML have increased

substantially across different disciplines, for example, conservative physics-informed neural networks (cPINNs)21, fractional

physics-informed neural networks (fPINNs)22, hp variational physics-informed neural networks(hp-VPINNs)23,24, extended

physics-informed neural networks (XPINNs) 25.

Recently, variational energy-based PINNs (VE-PINNs) methods have been used for solving phase-field problems26,27,28,29 . In

this paper, we formulate a brittle phase-field model based on PINNs, VPINNs and VE-PINNs and demonstrate the performance

of each PINNs version. Also, we investigate different approaches to impose boundary conditions (BC) such as weakly and

strongly applied BC. Additionally, self-adaptive PINNs (SA-PINNs)30 are studied and compared to PINNs with soft and hard

BC impositions. Finally, we investigate the speed of crack propagation for two benchmark problems of fracture.

The remainder of the paper is composed as follows. In Section 2 we succinctly summarise the phase-field model for brittle

fracture. Formulations of PINNs, VPINNs, and VE-PINNs for brittle phase-field models are explained in Section 3. In Section

4, we discuss and analyse the different PINNs versions for a 1D problem and demonstrate the performance of SA-PINNs against

PINNs approaches, and present a data-driven discovery of phase-field length scale. In section 5, based upon conclusions reached

from our extensive 1D studies, a more focused set of 2D numerical experiments are conducted to study the crack propagation

path and the propagation velocity.

2 PHASE-FIELD MODEL FOR BRITTLE FRACTURE

We consider a volume Ω with an internal discontinuity boundary Γ. The position of a material point is determined by the

coordinate x in a Cartesian reference frame. Displacement and traction components are prescribed along disjoint parts of the

external boundary of the domain, )Ωgi
and )Ωℎi

, respectively.

2.1 Variational form of fracture

As the starting point for the derivation of the phase-field approximation to brittle fracture, we consider the total potential

energy12:

Ψpot = ∫
Ω

 e(")dV + ∫
Γ

cdA (1)

We assume small displacement gradients, and define the infinitesimal strain tensor, ", with components

"ij = u(i,j) =
1

2

( )ui
)xj

+
)uj

)xi

)
(2)

as the deformation measure. The displacement components are denoted by ui. We assume isotropic linear elasticity, such that

the elastic energy density is given by

 e =
1

2
�"ii"jj + �"ij"ij (3)

with � and � the Lamé constants, and using the Einstein convention. In Equation (1), the fracture energy is denoted by c . An

irreversibility condition is included which enforces that cracks can only nucleate and propagate, and not heal13.
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2.2 Phase-field formulation

The variational approach to brittle fracture12 determines the nucleation, propagation and interaction of cracks by finding a global

minimiser of the total potential energy. Solving this variational problem numerically for discrete cracks can be difficult because

the crack path, Γ, evolves with time. In order to overcome this difficulty, a volumetric approximation to the surface integral has

been proposed13:

∫
Γ

cdA ≈ ∫
Ω

c
cdV (4)

The phase-field approximation introduces a crack density, 
c , which depends on a length-scale parameter l0 and the continuous

scalar-valued phase-field, c ∈ [0, 1], to represent the crack, with c = 0 away from the crack and c = 1 at the crack13,15,14:


c =
1

4l0

[
c2 + 4l2

0
|∇c|2

]
(5)

Minimising the above functional under the constraints c(0) = 1 and c(x) → 0 as |x| → ∞ leads to the Euler equation:

c − 4l2
0
Δc = 0 (6)

The solution to this equation, c, is the solution to the minimisation problem:

argmin(I(c)), I(c) = ∫ 
cdV (7)

In 1D, the solution to (6) reads

c(x) = e−|x|∕2l0 . (8)

The definition (5) is well-posed variationally for all c ∈ H1(Ω). Note that H1 is the Sobolev space of functions with square-

integrable derivatives.

To model the loss of material stiffness in the failure zone, we follow Miehe et al.14,15 and define the elastic energy as

 e(") =

[
(1 − c)2 + �

]
 +
e
(") +  −

e
(") (9)

where � is a model parameter which in our simulations we have set � = 0.  +
e

and  −
e

are the strain energies computed from

the positive and negative components of the strain tensor, respectively, which can be defined via a spectral decomposition of the

strain tensor,

" = "+ + "− (10)

where the former describes the tensile mode and the latter the compressive mode contained in ". The split is defined based on

the spectral decomposition

"+ =

d∑
i=1

⟨"i⟩+ni ⊗ ni (11)

"− =

d∑
i=1

⟨"i⟩−ni ⊗ ni (12)

where "i (with i = 1, ..., d) are the principal strains and ni are the corresponding principal directions of the strain tensor and

⟨x⟩+ =

{
0 x < 0

x x ≥ 0
(13)

⟨x⟩− =

{
x x < 0

0 x ≥ 0 .
(14)

Now,  +
e

and  −
e

read

 +
e
(") =

1

2
�⟨tr"⟩2 + �tr[("+)2] (15)

and

 −
e
(") =

1

2
�⟨tr"⟩2 + �tr[("−)2] (16)

The Lagrange energy functional using (1), (4), (5) and (9) becomes:

(u, c) = ∫
Ω

{
(1 − c)2 +

e
(∇su) +  −

e
(∇su)

}
dV + ∫

Ω

c
4l0

[
c2 + 4l2

0
|∇c|2

]
dV (17)
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where the symmetric gradient operator is defined,∇s ∶ u → ", as a mapping from the displacement field to the strain field. In

order to obtain the strong form of the governing equations, the Euler-Lagrange equations are utilised

(S)

⎧⎪⎨⎪⎩

)�ij

)xj
= 0 x ∈ Ω(

4l0 
+
e

c + 1

)
c − 4l2

0

)2c

)x2
i

=
4l0 

+
e

c x ∈ Ω
(18)

where �ij is the Cauchy stress tensor and is defined as

�ij = (1 − c)2
) +

e

)"ij
+
) −

e

)"ij
. (19)

There is nothing in the formulation so far to prevent cracks from healing if loads are removed. For a detailed discussion on

how irreversibility can be enforced see Miehe et al.14,15. The idea is to replace the strain energy in the phase-field equation,

for example in (18)2 , by a strain-energy history, , which acts as a threshold and which satisfies the Karush-Kuhn-Tucker

loading/unloading conditions:

 +
e
− ≤ 0 ̇ ≥ 0 ̇( +

e
−) = 0. (20)

Now, by substituting  for  +
e

in (18)2 the final version of the strong form equations read

(S)

⎧⎪⎨⎪⎩

)�ij

)xj
= 0 x ∈ Ω(

4l0
c + 1

)
c − 4l2

0

)2c

)x2
i

=
4l0
c x ∈ Ω

(21)

The strong form of equations is complemented by the following boundary conditions

(S ∶ BC)

⎧
⎪⎨⎪⎩

u = gi x ∈ )Ωgi

�ijnj = ℎi x ∈ )Ωℎi
)c

)xi
ni = 0 x ∈ )Ω

(22)

with gi(x) and ℎi(x) being prescribed on )Ωgi
and )Ωℎi

, respectively and with n(x) being the outward-pointing normal vector

of the boundary. The initial crack is modelled as an induced crack in the phase-field31,32. An initial strain-history field, 0, is

utilised to defined an initial crack in the phase-field. The initial strain-history field can be defined as

0 = 
⎧⎪⎨⎪⎩

c
4l0

(
1 −

d(x,l)

l0

)
d(x, l) ≤ l0,

0 d(x, l) > l0

(23)

where d(x, l) is the closest distance from x to the line l that represents the discrete crack. Also,  is a constant and we use

 = 1000 in our work following Borden et al31.

For the variational form of momentum and phase-field equations, we construct the trial solution, u, for the displacements

and c , for the phase-field as

u =

{
u ∈

(
H1(Ω)

)d|ui = gi on )Ωgi

}
, (24)

c =
{
c ∈ H1(Ω)

}
. (25)

Likewise, the weighting (test) function spaces are defined as

u =

{
v ∈

(
H1(Ω)

)d|vi = 0 on )Ωgi

}
, (26)

c =
{
q ∈ H1(Ω)

}
. (27)
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The weak formulation can be obtained by multiplying equations (21) by the appropriate weighting functions and performing

integration by parts, as follows:

(W )

⎧
⎪⎪⎨⎪⎪⎩

Given g and h find u ∈ u and c ∈ c , such that for all

v ∈ u and for all q ∈ c ,(
�,∇v

)
Ω
=
(
h, v

)
)Ωℎ

,((
4l0
c + 1

)
c, q

)

Ω

+
(
4l2

0
∇c,∇q

)
Ω
=

(
4l0
c

)

Ω

,

(28)

where (., .)Ω is the L2 inner product on Ω.

3 PHYSICS INFORMED NEURAL NETWORK FOR PHASE-FIELD MODELS

In this section, we present three versions of the PINNs formulation for the phase-field model for the brittle fracture problem,

which are: standard PINNs19, variational PINNs (VPINNs)23,24 and variational energy based PINNs (VE-PINNs)26,28. Here,

we consider a monolithic scheme to solve the phase-field problem.

We consider the strong form of equations (21) and assume that  (x;W , b) is a Neural Network (NN) approximation of the

displacements, u, and the phase-field, c in (18) and (22). Particularly, a NN is comprised of l hidden layers with i neurons in

each layer and activation functions �:

NN (x;W , b) = ◦T (l)
◦T (l−1)

◦ ⋅ ⋅ ⋅ ◦T (1)(x), (29)

where  ∶ ℝ


l
×d

←→ ℝ
d is the linear mapping in the output and d is the input dimension; T i(⋅) = �

(
W i × ⋅ + bi

)
is the

nonlinear mapping in each hidden layer i = 1, 2, 3, ...,l. Note that W i, bi are the weights and biases. The strong-form residuals

rk(u) and r(c), for the momentum and phase-field equations, respectively, and the boundary residual rb
u

can be defined as

rk(û) =
)�kj

)xj
k = 1, ..., d (30)

r(ĉ) =

(
4l
c + 1

)
ĉ − 4l2 )

2ĉ

)x2
i

−
4l
c (31)

rk
b
(û) = ûk − gk (32)

where û and ĉ are neural network approximations of the displacements and the phase-field, respectively. Now, in order to

construct the variational forms of the problem, the weighted integral of the residuals can be defined by mapping them onto

properly chosen spaces of test (weighting) functions  and ̃ ; and then set them to zero. We choose the test functions vk
j
∈ 

and qj ∈ ̃ such that

k
j
(û) = ∫

Ω

rk(û)vk
j
dV = 0, (33)

k
b,j
(û) = ∫

)Ω

rk
b
(û)vk

j
dA = 0, (34)

̃j(ĉ) = ∫
Ω

r(ĉ)qjdV = 0. (35)

The following minimisation problem can be formulated in place of solving the nonlinear systems resulting from the above

equations:

min
W ,b

 (ĉ, q, û, v) (36)

 (ĉ, q, û, v) =

Nrc∑
j=1

(
̃j(ĉ)

)2

+

d∑
k=1

Nru∑
j=1

(
k
j
(û)

)2

+ �b

d∑
k=1

Nbu∑
j=1

(
k
b,j
(û)

)2

(37)
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In (37), the first and second terms represent the weighted integral of the phase-field and momentum residuals, respectively and

the last term indicates the weighted integral of the displacement boundary condition.Nrc andNru are the number of test functions

corresponding to phase-field and momentum residuals, respectively. Nbu is the number of collocation points corresponding the

displacement essential boundary conditions. Furthermore, �b is a penalty parameter that represents the weight coefficient in the

loss function and may be user-specified or tuned manually or automatically23, e.g., based on the numerical experiment in each

problem. Its optimal bound, however, is still an open problem in the literature33. It is worthwhile to mention that the weak BC

enforcement methods, as mentioned above, have several major drawbacks: (1) there is no quantitative guarantee on the accuracy

of the BC being imposed and thus the solution could be unsatisfactory; (2) the optimization performance can depend on the

relative importance of each term, but how to assign a weight for each term can be difficult. Alternatively, we can impose the BC

in a strong form, where a particular solution that solely satisfies the boundary condition is added34. To do this we can modify

the deep neural network state variables, û. The essential displacement conditions can be imposed by constructing the ũ as,

ũ = g + G(x)NN (x;W , b) (38)

where G(x) = 0 on the Dirchlet boundary. The cost function,  , in (37) for strong BC enforcement reads

 (ĉ, q, ũ, v) =

Nrc∑
j=1

(
̃j(ĉ)

)2

+

d∑
k=1

Nru∑
j=1

(
k
j
(ũ)

)2

(39)

3.1 PINNs formulation

In this subsection, we derive standard PINNs19 by starting from the variational form, (36) and (37). To this end, we assume each

of the test functions to be a Dirac Delta function, vk(x) = �(x − xr) and q(x) = �(x − xr̃), so that xr and xr̃ are the collocation

points for momentum and phase-field, respectively. Basically, by means of these test functions we can project the residuals onto

a finite set of collocation points and enforce the equation to be satisfied at these points. The loss function for the PINNs reads

PINNs =
d∑
k=1

[
1

Nr

Nr∑
i=1

||||r
k(xi

r
)
||||
2

+ �b
1

Nb

Nb∑
i=1

||||r
k
b
(xi
b
)
||||
2
]
+

1

Nr̃

Nr̃∑
i=1

||||r̃(x
i
r̃
)
||||
2

+ �b̃
1

Nb̃

Nb̃∑
i=1

||||r̃b̃(x
i

b̃
)
||||
2

(40)

where r̃b̃ =
)c̃

)xi
; and {xi

r
}
Nr

i=1
, {xi

r̃
}
Nr̃

i=1
, {xi

b
}
Nb

i=1
and {xi

b̃
}
Nb̃

i=1
are collocation points in their domains. Note that Nr and Nr̃ are the

number of collocation points for momentum and phase-field, respectively. In addition,Nb andNb̃ are the number of collocation

points corresponding the displacement essential boundary conditions and phase-field natural boundary conditions, respectively.

The last term in (40) is the Neumann boundary condition presented in (22).

3.2 VPINNs and hp-VPINNs formulations

In order to use the weak form of the governing equations, we use the variational PINNs formulation introduced in 24. We utilise

Legendre polynomials as test functions, i.e. vk
j
(x) = Pj+1(x)−Pj−1(x), j = 1, 2, ..., Ku, qj(x) = Pj+1(x)−Pj−1(x), j = 1, 2, ..., Kc

,where Pj(x) are Legendre polynomials; Ku and Kc are the number of test functions corresponding to momentum and phase-

field equations, respectively. Gauss quadrature with Ngauss quadrature points is performed to compute the integrals. The loss

function for VPINNs can be defined as

V PINNs =
d∑
k=1

[
1

Ku

Ku∑
j=1

||||
k
j

||||
2

+ �b
1

Nb

Nb∑
i=1

||||r
k
b
(xi
b
)
||||
2
]
+

1

Kc

Kc∑
j=1

||||̃j

||||
2

(41)

Another version of VPINNs is hp-VPINNS presented in23. In VPINNs the trial space and test space are both defined globally

over the entire computational domain whereas in hp-VPINNs the test space contains piecewise polynomials defined locally. The

loss function for hp-VPINNs is given as

ℎp−V PINNs =
d∑
k=1

[ Nel∑
e=1

(
1

K
(e)
u

K
(e)
u∑

j=1

||||
(e) k

j

||||
2
)
+ �b

1

Nb

Nb∑
i=1

||||r
k
b
(xi
b
)
||||
2
]
+

Nel∑
e=1

(
1

K
(e)
c

K
(e)
c∑

j=1

||||̃
(e)

j

||||
2
)

(42)

where K (e)
u

and K (e)
c

are the total number of test functions in element e.

Note that hp-VPINNs is based on sub-domain Petrov-Galerkin methods to allow for hp-refinement via domain decomposition

as h-refinement and projection onto high order polynomials as p-refinement23. Although in the current hp-VPINNs formulation
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the domain is decomposed into several sub-domains, a single deep neural network is used to approximate the solution over the

entire domain. The optimal choice of test functions is an important open question.

3.3 VE-PINNs formulation

Here, we recall (17) and rewrite it in the following form;

(u, c) = ∫
Ω

[
(1 − c)2 +

e
(∇su) +  −

e
(∇su)

]
]dV + ∫

Ω

{ c
4l0

[
c2 + 4l2

0
|∇c|2

]
+ (1 − c)2

}
dV (43)

The last term in (43) enforces the irreversibility to prevent cracks from healing if loads are removed. Next, we minimise (43) in

the NN. To do this, we can define the loss function as follows:

V E−PINNs = L(ĉ, û) +

d∑
k=1

[
�b

1

Nb

Nb∑
i=1

||||r
k
b
(xi
b
)
||||
2
]

(44)

where

L(ĉ, û) = ∫
Ω

[
(1 − ĉ)2 +

e
(∇sû) +  −

e
(∇sû)

]
dV + ∫

Ω

{ c
4l0

[
ĉ2 + 4l2

0
|∇ĉ|2

]
+(1 − ĉ)2

}
dV (45)

The loss function for VE-PINNs with strong BC can be written as:

V E−PINNs = L(ĉ, û) (46)

Note that an alternative to 43 is the hybrid formulation32. The idea in devising the hybrid model is to decrease the computational

cost. However, the evolution of phase-field , c, must be driven by the tensile elastic energy  +
e

alone to avoid cracking from

occurring in the compressed regions. The hybrid version of 43 is given as

(u, c) = ∫
Ω

[
(1 − c)2 e(∇

su)
]
dV + ∫

Ω

{ c
4l0

[
c2 + 4l2

0
|∇c|2

]
+ (1 − c)2

}
dV (47)

4 COMPARATIVE ANALYSIS AND DISCUSSION

In this section, we investigate the performace and relative accuracy of the different versions of PINNs for a one-dimensional

phase-field problem, with the goal of better understanding the relative merits of each variant. For all simulations, we initialise

the weights of the network randomly from a Gaussian distribution using Xavier initialisation approach35. We consider the one-

dimensional model problem36 of a unit cross-sectional area with a modulus of elasticity E = 1 depicted in Figure 1. It consists

of a bar with fixed ends which is loaded along its axis by a sinusoidal load. We consider a crack at the centre of the bar and the

discontinuous solution fields in the fully fractured case are given by

uexact =

⎧⎪⎨⎪⎩

1

�2
sin(�x) −

1+x

�
x < 0

1

�2
sin(�x) +

1−x

�
x ≥ 0

(48)

�exact =
1

�
cos(�x) −

1

�
. (49)

4.1 PINNs vs collocation method

For the 1D problem of Figure 1 with a crack at the centre of bar an initial history field is given by

0 =

{
1000.0 d(x, l) ≤ l0,

0 d(x, l) > l0

(50)

We consider a fully connected neural network with 4 hidden layers and 50 neurons in each hidden layer. We use a hyperbolic

tangent as the activation function while a linear activation function has been implemented for the last hidden layer. We have
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FIGURE 1 One-dimensional model of a bar with a centre crack under a sinusoidal load

(a) (b)

FIGURE 2 Comparison of displacements (a) and stresses (b) for solutions obtained with PINNs, isogeometric phase-field

collocation method and exact solution.

subdivided the domain, [−1, 1], into three subdomains which are [−1.0,−2l0], [−2l0, 2l0] and [2l0, 1]. 112 collocation points

have been generated in each subdomain by using the Gauss-Legendre rule. We have chosen the collocation points to make a

fair comparion with previous works26 as well as with the VPINNs and VE-PINNs solutions in subsequent subsections. The

network architecture of the neural network, the number of collocation points and the length-scale of phase-field are shown in

Table 1. Here, we used the weak BC approach to consider the boundary conditions in the cost function. Figure 2(a) and (b)

depict the comparison of the displacement and the stress obtained with PINNs, the exact solution and the isogeometric phase-

field collocation method on a mesh of 256 Bézier elements (note that we have selected this as a basis for comparison simply

because the isogeometric collocation approach is one of the most accurate numerical schemes currently available)36. PINNs can

accurately resolve the crack, yielding good results that do not exhibit any oscillations unlike isogeometric collocation. Thus, it

seems that PINNs are able to provide accurate results while it has been reported previously that only VE-PINNs can do this26.

Note that PINNs requires a large number of training iterations, epochs, to converge in comparison to VE-PINNs28.

Method Network Architecture No. Collocation Points l0

PINNs [1,50,50,50,50,2] 336 0.015

TABLE 1 Neural Network setting for 1D PINNs vs Collocation method
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4.2 PINNs, VPINNs & VE-PINNs

We now investigate the accuracy of PINNs, VPINNs and VE-PINNs and recall the 1D problem discussed before. The same neu-

ral network architecture of the previous subsection is utilised. We use the collocation points of subsection 4.1 as the integration

points to compute the integral in VPINNs and VE-PINNs. For VPINNs, we have adopted K (e)
u

= K (e)
c

= 60 test functions and

used three elements, with each element consisting of 112 quadrature points to compute the integrals. Furthermore, the displace-

ment Dirichlet boundary conditions have been imposed weakly as well as strongly. Note that the penalty parameter has been

assumed �b = 1. Figures 3-(a) and 4-(a) show the solutions for the displacement of PINNs, VPINNs and VE-PINNs for weakly

and strongly imposed boundary conditions, respectively. Also, Figures 3-(b) and 4-(b) plot the stresses of PINNs, VPINNs and

VE-PINNs for weakly and strongly imposed BC, respectively. Figures 5-(a) and 5-(b) show the convergence histories of PINNs,

VPINNs and VE-PINNs for weakly and strongly imposed BC, respectively. VEPINNs converge with using much less iterations

compared to VPINNs and PINNs. In order to compare the accuracy of the different methods we assess the quality of the solu-

tions by the L2 norm and the error in the stress which can be considered as an extension of the error in H1 semi-norm of the

elasticity part to the phase-field.

L2 =

(
∫
Ω

(
û − uexact

)2

dx

) 1

2

(51)

e =

(
∫
Ω

(
(1 − ĉ)2

dû

dx
−
duexact

dx

)2

dx

) 1

2

(52)

The errors in theL2 norm and theH1 semi-norm for PINNs, VPINNs and VE-PINNs by imposing the displacement boundary

conditions weakly are shown in Table 2. VE-PINNs provides the most accurate solutions in comparison with the other versions

of PINNs. Table 3 shows the errors when the Dirchlet boundary conditions are applied strongly. Although these errors are

smaller for PINNs there is a concern about the unphysical oscillations in the stress field for the variational approaches. Table

Method L2 norm H1 semi-norm

PINNs 0.02963 0.02490

VPINNs 0.02806 0.01104

VE-PINNs 0.01961 0.00803

TABLE 2 Errors in the L2 norm and the H1 semi-norm for PINNs, VPINNs and VE-PINNs with weakly applied boundary

conditions

Method L2 norm H1 semi-norm

PINNs 0.03084 0.01612

VPINNs 0.08343 0.01159

VE-PINNs 0.02245 0.01198

TABLE 3 Errors in the L2 norm and the H1 semi-norm for PINNs, VPINNs and VE-PINNs with strongly applied boundary

conditions

4 shows the accuracy of the VE-PINNs with weakly imposed BC for the differents length scales. The error in the stress is the

smallest for l0 = 0.02, whereas the most accurate solution in the L2 norm (displacements) obtained for l0 = 0.005.

Overall, VE-PINNs result in the smallest errors in terms of the displacement and the stresses compared with PINNs and

VPINNs both for weakly and for strongly imposed boundary conditions. In contrast, PINNs show the largest errors in terms of

the displacements and the stresses. Although VPINNs result in a slightly better performance than PINNs with soft boundary

conditions, it results in lower accuracy with hard imposed boundary conditions. Considering the complexity of implementation



10 Yousef Ghaffari Motlagh, Peter Jimack and René de Borst

(a) (b)

FIGURE 3 (a) Displacements and (b) stresses with a weakly imposed Dirchlet boundary condition.

(a) (b)

FIGURE 4 (a) Displacements and (b) stresses with a strongly imposed Dirchlet boundary condition.

l0 L2 semi −H1

0.001 0.25145 0.46525

0.005 0.00810 0.01299

0.010 0.01274 0.00813

0.015 0.01961 0.00803

0.020 0.02542 0.00503

TABLE 4 L2 and semi-H1 errors for VE-PINNs with different phase-field length scale, l0.

and adjustable parameters, based upon these tests, we conclude that VE-PINNs is the best option among the various PINNs

versions for phase-field problems.



Yousef Ghaffari Motlagh, Peter Jimack and René de Borst 11

(a) (b)

FIGURE 5 Convergence of the loss functions for (a) a weakly and (b) a strongly imposed Dirchlet boundary condition.

FIGURE 6 Convergence of the loss function data-driven VE-PINNs.

4.3 Data-driven discovery of Phase-field length scale

Data-driven discovery of partial differential equations using PINNs has been successfully used for a variety of problems in the

engineering and scientific domains e.g., the Navier-Stokes equations19. We present here a simple example that demonstrates

data-driven discovery with the phase-field problem for crack propagation. Using the correct length scale ,l0, is crucial to obtain

accurate solutions, since l0 is a material parameter37,38. To identify the correct value of l0 we first solve a forward problem to

find the displacements and phase-field state variables. Subsequently, we can solve an inverse problem to find l0. First, we recall

equations (44) and (45) and assume l0 to be a variable. Next, we rewrite the equation as follows and minimise the V E−PINNs
to find l0:

V E−PINNs−data−driven = L(ĉ, û) +

d∑
k=1

[
1

Nu

Nu∑
i=1

||||û
k(xi

u
) − ūk

i

||||
2
]
+

1

Nc

Nc∑
i=1

||||ĉ(x
i
c
) − c̄i

||||
2

(53)

where, L(ĉ, û) is given in (45) and {xi
u
},{xi

c
} denote the training data on u(x), the displacements, and c(x), the phase-field,

respectively. ū and c̄ are the solutions obtained from the forward problem. Note that we are minimising 53 like 46 with the same

network settings. To illustrate the performance of this approach, we consider the 1D problem used in previous subsections. We

have created a training data-set by using Nu = Nc = 500 integration points. To generate a high-resolution data set for this

problem we use an isogeometric finite element method with quadratic NURBS basis functions. In the forward problem the length
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scale, l0, has been assumed 0.015. After minimising (53) the length-scale is estimated with less than 2% error, l
pred

0
= 0.01529.

Figure 6 plots the convergence history.

4.4 Self-adaptive PINNS

Now, we apply a self-adaptive approach method to train PINNs and VE-PINNs, which utilises trainable weights as a soft mul-

tiplicative mask reminiscent of the attention mechanism applied in computer vision39,40. This method was first introduced in30

where the adaptation weights in the loss function were updated by backpropagation together with the network weights. In order

to define the self-adaptive PINNs loss function, we recall (40) and modify it as follows

PINNs =
d∑
k=1

[
1

Nr

Nr∑
i=1

[
k� rk(xi

r
)

]2
+

1

Nb

Nb∑
i=1

[
k�b r

k
b
(xi
b
)

]2]
+

1

Nr

Nr∑
i=1

[
�̃ r̃(xi

r
)

]2
+

1

Nb̃

Nb̃∑
i=1

[
�̃b̃ r̃b̃(x

i

b̃
)

]2
(54)

where k� = (k�1, ..., k�Nr), k�b = (k�1
b
, ..., k�

Nb

b
), �̃ = (�̃1, ..., �̃Nr) and �̃b̃ = (�̃1

b̃
, ..., �̃

Nb̃

b̃
) are trainable self-adaption weights

for momentum collocation points, momentum boundary, phase-field collocation points and phase-field boundary, respectively.

These weights force the network to satisfy as much as possible the boundary or residual points. The main feature of self-adaptive

PINNs is that the loss PINNs is not only minimised with respect to the network weights, W , but also maximised with respect

to the self-adaptation weights, k�,k �b, �̃ and �̃b̃. This means the training seeks a saddle point

min
W

max
k�,k�b,�̃,�̃b̃

(W ,k �,k �b, �̃, �̃b̃). (55)

The self-adaptive VE-PINNs loss function can be defined as follows

V E−PINNs = L(ĉ, û) +

d∑
k=1

[
1

Nb

Nb∑
i=1

[
k�b r

k
b
(xi
b
)

]2]
(56)

where L(ĉ, û) is given by (45).

Method L2 semi −H1

PINNs 0.02963 0.02490

SA-PINNs 0.02951 0.02562

VE-PINNs 0.01961 0.00803

SA-VE-PINNs 0.01627 0.00760

TABLE 5 L2 and semi-H1 errors for PINNs, SA-PINNs , VE-PINNs & SA-VE-PINNs

Table 5 shows errors for theL2 norm and theH1 semi-norm for PINNs and self-adaptive PINNs where 336 and 240 collocation

points, are used for PINNs and SA-PINNs, respectively. Self-adaptive VE-PINNs provides more accurate results compared to

VE-PINNs while using less collocation points.

Figures 7-(a) and (b) show errors for the L2-error and the H1 semi-norm for soft, strong, and self-adaptive VE-PINNs. Note

that for soft VE-PINNs the Dirchlet boundary condition has been imposed weakly. Self-adaptive VE-PINNs provides the same

accuracy of soft and strong VE-PINNs while requiring less collocation points. The convergence histories of soft and strong

VE-PINNs as well as self-adaption VE-PINNs are depicted in Figure 8.

5 TWO-DIMENSIONAL CASE STUDIES

In this section, we consider two-dimensional examples. Here, we explain how the spectral decomposition is applied to compute

 +
e

and  −
e

in the neural network when we use VE-PINNs which we have selected based upon the conclusions drawn in the

previous section. First, we calculate the displacement gradients,∇u, and then we compute the eigenvalues of the strain, (�1and �2)
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(a) (b)

FIGURE 7 L2 and semi-H1 errors for soft, strong and self-adaption VE-PINNs.

FIGURE 8 Convergence of the loss functions for soft, strong and self-adaption VE-PINNs.

as well as the eigenvectors (v1and v2). Now, we can compute  +
e

and  −
e

as follows

 +
e
=
�

8

(
�t + |�t|

)2

+
�

4

2∑
i=1

(
�i + |�i|

)2

and  −
e
=
�

8

(
�t − |�t|

)2

+
�

4

2∑
i=1

(
�i − |�i|

)2

, (57)

where �t =
∑2

i=1
�i.

Activation function crack propagation speed

ReLU normal

softplus slightly high

tanh high

TABLE 6 Speed of crack propagation for the different activation functions for the single-edge-notched tension test with loapstep

of 10−6 mm.
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u

0.5

0.5

0.50.5

(a) (b)

FIGURE 9 a) Geometry and boundary conditions. b) Collocation/integration points distribution

5.1 Single-edge-notched tension test

We consider a square plate with a horizontal notch placed at mid-height from the left outer surface to the centre of the specimen.

The geometric properties and boundary conditions are depicted in Figure 9-a. In order to capture the crack pattern properly,

the collocation/integration points are more densely spaced in the area where the crack is expected to propagate, i.e., in the

centre strip of the specimen, Figure 9-b. A vertical upward displacement is imposed at the top edge. The material parameters

are E = 210.0 GPa, � = 0.3, Gc = 2.7 × 10−3 kN/mm and l0 = 0.01 mm. Displacement control is used with increments

�u = 5 × 10−4. In order to maintain the irreversibility of the crack propagation the strain-history field, , is update after each

load-step in the same approach used in the standard phase-field models15,32. A finite element method with 29896 linear triangle

elements is utilised to validate the deep learning results. In terms of the deep learning setup, VE-PINNs with 4 hidden layers

of 50 neurons each are used to carry out the simulations. First, we set tanh up as the activation function and consider 58404

collocation points to perform the computation. Furthermore, the Adam optimiser41 with a learning rate of 5×10−4 is employed.

Regarding the boundary conditions, Dirichlet boundary conditions are imposed strongly. To do this, the solutions, u, and v, are

altered as follows:

u = (x2 − 0.25)û v = (y2 − 0.25)v̂ + (y + 0.5)Δv (58)

where û and v̂ are provided by the network and Δv is the displacement increments.

It is clear from the Figure10-a for VE-PINNs, the crack propagation is much faster than in the finite element simulations. As

is shown in the Figure10-b for a displacement of 5×10−3, crack growth is completed by the deep learning approach whereas the

finite element solution of phase-field is still at the early stage of the propagation, Figure10-a. This suggests that the VE-PINNs

approach is not able to predict the correct crack propagation speed. This drawback of VE-PINNs methods (with tanh activation

function) was not reported in the previous research for modelling phase-field with using VE-PINNs,26,27,28. This problem can

be resolved by using different activation functions namely, ReLU (x) = max(0, x) and softplus(x) = ln(1 + ex) by means of a

suitable loadstep, 10−6mm. As it is listed in Table 6, ReLU is the best prediction in terms of crack propagation speed and also,

sofplus provides a slightly high crack speed and tanh has very high crack growth speed. Figure11 shows the propagated crack

for the different activation functions as well as the finite element solution for the prescribed displacement.

As linear finite element basis functions are represented by ReLU 42, this results in the promising crack growth speed in com-

parison to tanh. Furthermore, sofplus can produce acceptable crack speed as it has the same tendency of ReLU as depicted in

Figure12. Note that sofplus has continuous derivatives as well.
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(a) (b)

FIGURE 10 a) Finite element ground truth b) Deep learning prediction with tanh activation function; for the prescribed

displacement of 5 × 10−3 mm

5.2 Single-edge-notched shear test

As a second benchmark we consider the same specimen, but now subjected to a pure shear loading. The corresponding boundary

conditions are illustrated in Figure13-a. A horizontal displacement increment, Δu = 1 × 10−6 mm, is utilised throughout the

loading history. The material parameters are considered asE = 210.0 GPa, � = 0.3,Gc = 2.7×10−3 kN/mm and l0 = 0.01mm.

A finite element method with 60572 linear triangle elements is used to compare with the deep learning predictions. For the

deep learning part, the same setup as the previous subsection is implemented. We use ReLU, softplus and tanh as the activation

functions and consider 95686 collocation points to conduct the computational experiment. Regarding boundary conditions, we

utilise the same network settings used for the previous 2D example. The strongly imposed boundary conditions read:

v = (x2 − 0.25)v̂ u = (y2 − 0.25)û + (y + 0.5)Δu (59)

As illustrated in Figure14-d the VE-PINNs can show a faster crack growth than finite element solution. Nevertheless, by selecting

different activation functions such as ReLU and softplus the crack rate propagation can be kept under control, as shown in

Figure14-b and Figure14-c .
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(a) (b)

(c) (d)

FIGURE 11 a) Finite element ground truth b) Deep learning prediction with ReLU activation function c) Deep learning predic-

tion with softplus activation function d) Deep learning prediction with tanh activation function; for the prescribed displacement

of 6 × 10−3 mm.

6 CONCLUDING REMARKS

We have examined a variety of PINNs formulations, namely standard PINNs, variational PINNs (VPINNs), variational energy

based PINNs (VE-PINNs) and self-adaptive PINNs (SA-PINNs) to solve a 1D phase-field problem. The standard PINNs or

collocation PINNs require extra treatment in terms of boundary conditions, as they inherit the features of the collocation methods.
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FIGURE 12 ReLU, softplus and tanh activation functions

u

0.5

0.5

0.50.5

(a) (b)

FIGURE 13 a) Geometry and boundary conditions. b) Collocation/integration points distribution

This leads to the inclusion of the phase-field Neuman boundary condition in the cost function whereas this boundary condition

for VPINNs and VE-PINNs can be treated as a natural boundary condition. Apart from this issue, we can obtain more accurate

solutions by means of VPINNs and VE-PINNs in comparison with PINNs. Although VPINNs have almost the same features

of finite element methods such as test functions, defining the suitable kind of test functions as well as the enough number of

weighting functions is not so straightforward. Moreover, implementation of VPINNs is not as easy as PINNs or VE-PINNs.

We found that VE-PINNs are quite simple to implement and can produce more accurate results in comparison to VPINNs and

PINNs. VE-PINNs are capable of generating precise results, but are limited to problems which can be formulated in the energy

form or in a functional format. In addition, we have shown that SA-PINNs can produce the results with the same accuracy as

the other versions of PINNs by means of a much smaller number of collocation points. Finally, for the 1D phase-field problem,

we have investigated data-driven discovery to find the correct phase-field length scale.
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(a) (b)

(c) (d)

FIGURE 14 a) Finite element ground truth b) Deep learning prediction with ReLU activation function c) Deep learning predic-

tion with softplus activation function d) Deep learning prediction with tanh activation function; for the prescribed displacement

of 1.2 × 10−3 mm.

Regarding two-dimensional numerical examples, we have assessed two benchmark problems namely, single-edge-notched

tension and shear tests. We have observed that VE-PINNs do not seem to yield a robust predictive approach. While the shape of

the crack path is predicted properly, which is especially critical in the shear test, the speed of crack propagation is dependent on

the chosen activation function and on the load step. A judicious choice of the activation function is mandatory in order to obtain

a correct speed of the crack propagation, with the ReLU activation function being the only one among the activation functions
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applied which correctly reproduced the finite element results. Finally, we have found that the number of the hidden layers and the

number of neurons in each layer does not affect the speed of crack propagation. Nevertheless, it is clear from the sensitivity of

the two-dimensional results that further research will need to be undertaken by the community before methods from the PINNs

family, including variational or self-adaptive approaches inter alia, can be used reliably for this class of problem in 2D or higher.
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