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Abstract

Diagnosing the solar atmospheric plasma remains one of the major challenges in solar physics. In recent years, new
methods have been developed to apply the powerful concept of solar magneto-seismology (SMS) to obtain
information about plasma parameters in solar structures guiding magnetohydrodynamic (MHD) waves that would
otherwise be difficult to measure. This paper uses the Cartesian model of a magnetic slab placed in an asymmetric
magnetic environment to generalize recently discovered SMS techniques. Utilizing the fact that the asymmetric
environment changes the character of the classical kink and sausage eigenmodes, we describe two spatial
seismology methods built upon this mixed character of quasi-sausage and quasi-kink modes. First, we present the
amplitude ratio technique, which compares the oscillation amplitudes measured at the two boundaries of the slab,
and we provide expressions to estimate the internal Alfvén speed in the thin slab and in the incompressible plasma
approximations. The second main technique relies on the changed distribution of wave power throughout the slab
under the effect of waveguide asymmetry. This minimum perturbation shift technique is then also utilized to
provide Alfvén speed estimates that depend on the plasma and magnetic parameters of the environment, as well as
the measured slab width and oscillation frequency. Finally, we perform a brief investigation of how the amplitude
ratio and the minimum perturbation shift depend on the different sources of waveguide asymmetry, and illustrate
our findings with numerical results.

Unified Astronomy Thesaurus concepts: Solar physics (1476); The Sun (1693); Magnetohydrodynamics (1964);
Solar atmosphere (1477); Solar coronal seismology (1994); Solar coronal waves (1995)

Supporting material: animations

1. Introduction

The atmosphere of our Sun is a complex plasma environ-
ment finely structured by its ubiquitous magnetic fields. In
understanding and measuring the properties of this rich variety
of solar waveguides, the constantly evolving methods of solar
magneto-seismology provide a useful and versatile toolkit.
These methods combine theoretical descriptions of magneto-
hydrodynamic (MHD) waves with data from their observational
detections, and thus—through solving often difficult inversion
problems—allow us to draw conclusions about “missing”
parameters of the solar atmospheric plasma that would be
otherwise difficult to obtain (see also Erdélyi 2006a, 2006b;
Banerjee et al. 2007; Arregui & Goossens 2019).

Beyond their newer, diagnostic role, MHD waves have
always been thought to play an important part in solving the
puzzle of solar atmospheric heating as well. Reflecting this
significance, the theory of MHD wave propagation developed
rapidly (De Moortel & Nakariakov 2012), and soon these
theories led to the early solar magneto-seismology (SMS)

studies of the solar atmosphere (such as Rosenberg 1970;
Roberts et al. 1984). Several of these investigations employed
methods of temporal seismology, which encompasses various
methods that rely on the observed frequency (or period) of

MHD waves to be used in calculations of background
quantities. An additional quantity that is of special importance
to temporal seismology is the damping time of solar atmo-
spheric oscillations. For example, similarly to Hollweg et al.
(1990), Goossens et al. (2002) and Ruderman & Roberts (2002)

investigated growth and damping times of kink waves due to
resonant absorption and found that large-scale density inhomo-
geneities can cause oscillating loops to decay very swiftly and
prevent them from showing pronounced oscillations.
The maximum available resolution limited the range of fine-

scale results achievable by both temporal and spatial seismology.
As one of the first examples of using performing solar

atmospheric seismology based on spatial information, Uchida
(1970) gave an estimate of the magnetic field structure in the
solar corona based on observations and theoretical analyses of
Moreton waves. More recent spatial techniques rely on detecting
the wave power distribution of eigenfunctions corresponding to a
theoretical model. A popular quantity to be utilized is the anti-
node shift of standing modes in a magnetic flux tube, which
makes it possible to diagnose the inhomogeneous density
stratification of the tube (Erdélyi & Verth 2007; Verth et al.

2007; Erdélyi et al. 2014).
The field of SMS gained new impetus with the first imaging

detection of transversal waves in coronal loops using the space-
based TRACE [Transition Region and Coronal Explorer] observa-
tory in 1998. The detected oscillations were classified as kink
modes, although identifying them as fast magnetoacoustic waves
was debated (Aschwanden et al. 1999; Nakariakov et al. 1999;
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Goossens et al. 2009). The recent golden age of SMS since
TRACE has been characterized by steady improvements in both
temporal and spatial resolution, as well as in the variety and
availability of both space-based observatories, e.g., SOHO [Solar

and Heliospheric Observatory], SDO [Solar Dynamics Observa-
tory], and STEREO [Solar-TErrestrial RElations Observatory], as
well as ground-based telescopes, e.g., DST [Richard B. Dunn Solar
Telescope] and SST [Swedish Solar Telescope] (detailed further in
comprehensive reviews such as Nakariakov & Verwichte 2005;

Banerjee et al. 2007; Ruderman & Erdélyi 2009; Wang 2011;
Arregui et al. 2012; De Moortel & Nakariakov 2012; Mathioudakis
et al. 2013). The constantly improving observational capabilities
have led to discovering wave-like perturbations in a plethora of
solar atmospheric features, from large-scale structures like coronal

loops or plumes to more localized phenomena such as spicules or
regions within sunspots (Aschwanden 2005; Banerjee et al. 2007;
Zaqarashvili, T. V., & Erdélyi, R 2009; Arregui 2015).

The two fundamental types of analytical models of solar

magnetic structures used in SMS investigations are cylindrical
flux tubes and Cartesian slabs. The construction and basics of
slab models are summarized in a series of seminal articles written
by Edwin & Roberts (1982) about an interface (Roberts 1981a)
and a magnetic slab in a field-free environment (Roberts 1981b).

This was further developed by Edwin & Roberts (1982), when
they placed the slab in a magnetic environment. While all of
these classical studies used symmetric environmental regions,
their results were generalized by Allcock & Erdélyi (2017) when
they introduced asymmetry into the nonmagnetic environment of

a magnetic slab. Wave propagation in a slab in an asymmetric
magnetic environment, as a new addition, was described by
Zsámberger et al. (2018) and Zsámberger & Erdélyi (2020,
2021). Oxley et al. (2020a) and Oxley et al. (2020b) then
investigated standing waves in asymmetric nonmagnetic and

magnetic environments of magnetic slabs, respectively.
In the current paper, we provide a reminder of and further

develop the SMS methods described in Allcock & Erdélyi
(2018), applying them to the problem of wave propagation in

an asymmetric magnetic slab. In Section 2, we focus on the
distributions of the transverse velocity amplitudes of eigen-
modes across the slab and provide an analytical description of
the amplitude ratios of quasi-sausage and quasi-kink modes in
the general case, as well as various limits of slab width and

plasma-β values. We also compare these approximations with
results obtained from numerical solutions of the general
dispersion relation. In Section 3, the same examination is then
extended to the techniques based on the shifting of the
minimally perturbed layer within the slab.

2. Amplitude Ratios

By generalizing the amplitude ratio method described in
Allcock & Erdélyi (2018), this section aims to derive an
expression describing the ratio of the transverse displacement
or velocity amplitudes on the two boundaries of an asymmetric
magnetic slab. In the following, we show how this ratio
depends on the parameters of an observed oscillation in the slab
waveguide, as well as on the physical and geometric attributes
of the waveguide itself. The expression for the amplitude ratio
is then utilized to estimate background parameters of the
system. Figure 1 demonstrates the principle of the amplitude
ratio method for a quasi-kink mode of a perturbed asymmetric
magnetic slab waveguide.
The process through which we derive the amplitude ratio is

formally similar to the method described in Allcock & Erdélyi
(2018) and Allcock et al. (2019); however, due to the existence
of asymmetric external magnetic fields in the model approx-
imation studied here, both density and magnetic asymmetry are
incorporated into the quantities we define (such as mj, Λj, for
j= 0, 1, 2, for their definition see below), which will become
clear in the final result.
Zsámberger et al. (2018) as well as Zsámberger & Erdélyi

(2020, 2021) investigated propagating waves in a magnetic slab
enclosed in an asymmetric magnetic environment. This three-
dimensional slab system is filled with inviscid, static, ideal
plasma and permeated by equilibrium magnetic fields with a
nonzero component only in the z-direction (along the slab). The
equilibrium state of this slab model is described by

N x

N x x

N x x

N x x

,

,

,

1

1 0

0 0

2 0

⎧
⎨⎩

=
< -
<
<

( ) ∣ ∣ ( )

where Nj stands for any of the following physical parameters:

densities, ρ, pressures, p, temperatures, T, and magnetic field

strengths, , within a given region of the slab. Furthermore,

N constantj = (for j= 0, 1, 2), where quantities describing

the inside of the slab are denoted by the subscript j= 0, while

the parameters of the left- and right-hand-side regions carry the

subscripts j= 1,2, respectively.
During the derivation of the dispersion relation detailed in

Zsámberger et al. (2018), it was shown that the x-component of the
velocity perturbation of trapped magnetoacoustic modes propagat-
ing along the slab has the form of v x t v x e,j x x

i kz t
, = w-( ) ˆ ( ) ( ) ,

where v xx̂ ( ) is the transverse velocity amplitude given by a
combination of the hyperbolic functions in each region of the slab

Figure 1. Illustration of the principle of the amplitude ratio method: the ratio of transverse displacement (or velocity) amplitudes at the two boundaries of the slab, A1

and A2, is calculated and measured.

2

The Astrophysical Journal, 934:155 (10pp), 2022 August 1 Zsámberger & Erdélyi



system, namely as

v x
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with A, B, C, and D being arbitrary constants. These constants

can be determined (within one degree of freedom) by satisfying

the four boundary conditions imposing the continuity of total

pressure and velocity perturbations at the two interfaces

separating the slab from its asymmetric environment. From

the application of these boundary conditions, Zsámberger et al.

(2018) obtained a system of four coupled, linear, homogeneous

algebraic equations, which can be summarized as
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From this, Zsámberger et al. (2018) obtained the dispersion

relation for the asymmetric magnetic slab system by ensuring

that the determinant of this matrix was zero. Satisfying the

dispersion relation then allows one degree of freedom to be

gained in the system of equations derived from the boundary

conditions. This means that we may choose one of the

constants, B or C, as arbitrary. Depending on this choice, we

will deal with either the quasi-sausage or the quasi-kink

eigenmodes of the system, as detailed in Allcock & Erdélyi

(2018) and briefly explained in the following sections.

2.1. Quasi-sausage Modes

For quasi-sausage modes, we let the constant C be arbitrary,
which allows us to determine the other three coefficients as

A
C S

BC CS
1

, 4
1 1

0 0=
-

-( ) ( )

D
C S

BC CS
1

, 5
2 2

0 0=
-

+( ) ( )

B
C S

S C
C

C S

S C
C. 6

0 0 1 0

0 0 1 0

0 0 2 0

0 0 2 0

=
L + L
L + L

= -
L + L
L + L

( )

The second expression for B in Equation (6) can be found by

using the first expression in the same equation and the

dispersion relation, which we restate here for ease of under-

standing:

2
1

0, 70
2

1 2 0 1 2 0

0

⎡
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⎤
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t
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m xtanh . 80 0 0t = ( ) ( )

If we substitute the first expression in Equation (6) into

Equation (2) describing the transverse velocity amplitudes and

take the values at the two interfaces, we obtain

v x BC CS
S
C

1

1
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0
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L
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Similarly, we can freely choose to substitute the second

expression from Equation (6) instead, and then the result is

v x BC CS

C C
1 2

1
, and 11
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0 0 0 2

0 2 0

0

t t
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The two forms of the velocity perturbation amplitudes at the

slab boundaries are equivalent. They express the magnitude as

well as the direction of the transverse velocity perturbation,

therefore they can be considered a signed amplitude, with

positive values expressing perturbations in the positive x-

direction, and vice versa.
For the ease of comparing the two configurations, we adopt

the following definition of the amplitude ratio from Allcock &
Erdélyi (2018):

R
x

x
, 13A
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x
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which compares the displacement perturbation amplitude

(defined as x iv xx xx w=ˆ ( ) ˆ ( ) ) at the right-hand-side interface

to the amplitude at the left-hand-side interface. An equivalent

definition can be given using the velocity perturbation

amplitudes as

R
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. 14A
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We substitute the simpler expressions for the velocity

amplitudes at the boundaries, in which the denominators

contain properties of the slab and one of the environmental

regions (namely, Λ0 and Λ1, or Λ0 and Λ2, respectively), but

the numerators only depend on the properties of the slab

interior (Λ0). Therefore, in the case of quasi-sausage modes, we

substitute Equations (9) and (12) into the definition of the

amplitude ratio (Equation (14)), which yields
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t
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The amplitude ratio is negative, as in quasi-sausage modes, the

displacement perturbations at the two boundaries of the slab

happen in opposite directions. If the configuration is symmetric

(and so the characteristic speeds and densities on the two sides

are equal), this ratio reduces to RA=−1, as expected, meaning

that in the sausage modes of the symmetric slab system, the two

boundaries oscillate exactly in anti-phase.

2.1.1. Quasi-sausage Amplitude Ratio in the Thin-slab Approximation

Since the amplitude ratio is a measurable quantity, our main
aim is to use it to determine a background parameter of the
asymmetric waveguide we derived it for. This background
parameter should be one that is not easy to observe directly,
such as a magnetic field strength or Alfvén speed in the system.
In order to provide an analytical approximation for one of
these, we must restrict ourselves to various limiting cases of
either slab width or plasma-β parameters.

In the thin-slab limit, the wavelength of the oscillations is
much longer than the width of the slab, that is, kx0= 1, and
therefore m0x0= 1. Then, the coth function can be approxi-
mated by the reciprocal of its argument in Equation (16), so the
amplitude ratio can be approximated as

R
m

m

m x k v k v

m x k v k v

.

17
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This makes it possible for us to express the internal Alfvén
speed in the slab as a function of the external characteristic
speeds and the densities, as well as the amplitude ratios,
wavenumbers, and angular frequencies:

v

k

m k v R m k v

x m m R
1

1
.
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Most quantities on the right-hand side are known or can be

expressed as a function of other measurable quantities

themselves. The right-hand side, in the end, depends on two

wave parameters (wavenumber and angular frequency), the

background temperatures, and the Alfvén speeds on the two

sides of the slab. Since the Alfvén speeds themselves can be

difficult to estimate, there are additional considerations we have

to rely on. Once the temperature (and therefore, sound speed)

information is available throughout the slab system, and one of

the external Alfvén speeds (say vA1) is known, the dependence

on the second external Alfvén speed (vA2) can easily be

eliminated using the condition of total pressure balance. This

way, we can estimate the internal Alfvén speed (vA0) as a

function of an external Alfvén speed (vA1). Since Alfvén speeds

are difficult to determine, measurements of multiple oscillations

may be necessary to provide further information and allow us

to constrain the two unknown Alfvén speeds simultaneously. A

similar approach of relying on observations of multiple wave

modes has already proven to be successful in, e.g., determining

the density scale height in coronal loops (Andries et al. 2005),

investigating the damping profiles of standing kink oscillations

(Pascoe et al. 2016), and constraining parameters of flare loops

(Guo et al. 2016). Special care must be taken when applying

this method to the asymmetric magnetic slab system, as mode

identification cannot rely solely on well-known properties of

the symmetric eigenmodes (such as not displacing the center of

the slab for sausage modes, or keeping the cross-sectional slab

area constant for kink modes). A demonstration of the

identification process and Alfvén speed inversion for single

modes can be found in Allcock et al. (2019).
To complement this analysis, we also conducted a numerical

investigation of the amplitude ratios of quasi-sausage modes in
an asymmetric magnetic slab. First of all, we present numerical
solutions of the full dispersion relation for surface modes; see
Figure 2. The characteristic speeds of the three plasma regions
were chosen as vA0= 1, c0= 1.4, vA1= 0.19, c1= 1.2,
R1= 1.9, vA2= 0.18, c2= 1.09, R2= 2.28, with the density
asymmetry parameter defined in Equation (33), δ= 0.2, and the
magnetic asymmetry parameter defined in Equation (34),
ò= 0.1. Body mode solutions can exist between the internal
tube and Alfvén speeds, but here we focus only on slow surface
modes propagating with phase speeds lower than cT0. The
quasi-sausage mode is plotted in blue, while the quasi-kink
mode is displayed in red. Taking the wavenumbers and the
corresponding angular frequencies (or phase speeds) of these
solutions, we can now calculate the amplitude ratio for the
quasi-sausage waves. (Note that, in an observational example,
we could take these wave parameters from the observations,
and the amplitude ratios could be calculated without having to
find numerical solutions to the dispersion relation.)
The amplitude ratio (Equation (16)) of slow quasi-sausage

surface modes as a function of the slab width is then plotted in
Figure 3, alongside its thin-slab approximation (provided in
Equation (17)). The exact amplitude ratio is shown by the blue
curve, while the approximation is displayed with the red points.
Up to dimensionless slab width parameters of about 1, the thin-
slab approximation of the amplitude ratio works relatively well,
showing little deviation from the exact values. For wider slabs
(or longer wavelengths), however, the differences between the
estimate and the exact solution become significant. This is to be

Figure 2. Trapped solutions in an asymmetric slab.
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expected, as we applied the condition kx0= 1 to obtain our
thin-slab amplitude ratio, which may then not be valid for wide
slabs.

2.2. Quasi-kink Modes

First, we follow the steps of the derivation process we
performed for quasi-sausage modes in Section 2.1. We start by
stating that, for quasi-kink modes, it is the constant B that we
choose arbitrarily, and we can express the rest of the
coefficients as

A
C S

BC CS
1

, 19
1 1

0 0=
-

-( ) ( )

D
C S
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1

, 20
2 2
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The second expression for C was found using the dispersion

relation for the asymmetric magnetic slab system,

Equation (7)). If we now substitute the first part of

Equation (21) into Equation (2) describing the transverse

velocity amplitudes and take the values at the two interfaces,

we have
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Similarly, if we use the second expression from Equation (21)

instead, the result for the perturbed velocity amplitudes at the

slab boundaries becomes
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Once again, the two forms of the velocity perturbation

amplitudes at the interfaces are equivalent and can be used to

calculate the signed amplitude ratio, RA, as

R , 26A
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or expressed with the characteristic speeds,
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The amplitude ratio for quasi-kink modes is positive, since the

displacement perturbations at the two boundaries of the slab

happen in the same direction. In a symmetric slab, as expected,

this ratio reduces to RA= 1, showing that the symmetric kink

oscillations happen exactly in phase at the boundaries of

the slab.

2.2.1. Quasi-kink Amplitude Ratio in the Thin-slab Approximation

In the thin-slab limit, where the width of the slab is much
smaller than the wavelength of the oscillations (kx0= 1), the

m xtanh 0 0 function can be approximated with its argument, and
Equation (27) becomes
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This equation, too, can be rearranged to give an estimate
of the internal Alfvén speed in relation to measurable
quantities of the asymmetric slab system and the waves that
it guides:

v
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Similarly to the case of quasi-sausage modes, this expression

can be used to estimate the internal Alfvén speed of oscillating

solar structures as a function of only one of the external Alfvén

speeds, if we express the second external Alfvén speed in terms

of the other equilibrium parameters of its region using the

condition of total pressure balance.
Such a formula makes it possible not only to estimate the

Alfvén speed itself, but also to gauge how great of an effect
the assumption of symmetry versus asymmetry in the slab
model might have on the estimate. If we define Equation (29)
as the asymmetric Alfvén speed (squared), vAS

2 , then we can
also define the symmetric Alfvén speed, vS

2, in the following
manner. Let us assume that the only source of the asymmetry in
the slab system is the external density difference, δ= (ρ2/ρ1)− 1.
Then, as δ→ 0, it is also true that ρ2→ ρ1, c2→ c1, vA2→ vA1,
and m2→m1. This allows us to simplify some terms in

Figure 3. Amplitude ratios of the quasi-sausage mode as a function of kx0. The
exact amplitude ratio is plotted with blue, and the approximation with red.
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Equation (29), which gives us the Alfvén speed for the symmetric
case as

v
c

k c

k v R

m R
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1
, 30S
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where RA→ 1 but is not exactly one. If we now take the

difference of Equations (29) and (30), we obtain

which describes the relative error we can expect in the

estimation of the Alfvén speed due to the assumption that a slab

system in the solar atmosphere is symmetric, while in reality it

is asymmetric.

2.2.2. Amplitude Ratio in the Wide-slab Approximation

In the limit of a wide slab, the amplitude ratios of quasi-
sausage and quasi-kink modes can be handled together. Now,
the typical wavelength of oscillations is far shorter than the
width of the slab. Therefore, kx0? 1, and m0x0? 1. Then,
both the tanh and coth functions take a value of approximately
one, and the expression for the amplitude ratio becomes

R
m k v m k v
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, 32A
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where the negative sign corresponds to quasi-sausage modes,

while the positive one describes quasi-kink waves.

2.3. Approximation of the Amplitude Ratios in a Weakly
Asymmetric Slab

Let us now examine the dependence of the amplitude ratios
on the density and magnetic field asymmetries in detail. We can
define the following small quantities from the ratios of the
external background parameters:

1, and 332

1

d
r
r

= - ( )

B

B
1. 342

2

1
2

e = - ( )

In the following subsections, we conduct an analytical study

using these parameters, and we also show a collection of

numerical results on how the amplitude ratios of the

eigenmodes depend on these two sources of background

asymmetry.

2.3.1. Quasi-sausage Modes

If we assume that both the density and the magnetic
asymmetries are weak in the slab system, then both δ and ε are
small parameters, and we can expand the characteristic speeds
on the right-hand side of the slab in terms of δ and ε as
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Here, we also used the condition of total pressure balance, and

we only kept first-order terms. Using the expressions thus

obtained for the characteristic speeds, we can rewrite m2 as

m m S A B , 362
2

1
2 e d= + +∣ ∣ ∣ ∣ ( ) ( )

where
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Therefore, the amplitude ratio for quasi-sausage modes in the

thin-slab approximation in terms of ε and δ is
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To further extend the investigation of the different asym-
metric effects on the amplitude ratios of the eigenmodes, we
include a few illustrative numerical results as well. The top
diagrams of Figure 4 show the dependence of the quasi-sausage
(Figure 4(a)) and quasi-kink (Figure 4(b)) amplitude ratio on δ
for a fixed value of the dimensionless slab width and the
magnetic asymmetry parameter, ε. For the quasi-sausage
modes, the exact amplitude ratio is plotted with the bright
blue line, while its thin-slab approximation is shown by the
dark blue dots. The bottom half shows the difference between
the exact and approximate amplitude ratios (ΔRA). An
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animated version of this figure is also available, in which it
shows how the difference between the exact and approximate
expressions for the amplitude ratio changes as a function of δ as
the slab width is slowly increased to intermediate values. It can
be concluded from these results that the difference between the
exact amplitude ratio and its thin-slab approximation for quasi-
sausage modes is negligibly small even for slabs of
intermediate width.

From our analytical and complimentary numerical results,
we can conclude that both the slab width and the density
asymmetry have an important effect on the amplitude ratio.
Moreover, the thin-slab approximation holds up very well for
the changing values of delta, even as far up as δ= 3, which
would mean a rather high density asymmetry (ρ2 is four times
as large as ρ1). However, all of this is only true for slab width
values up to about kx0= 0.7, which is where the amplitude
ratio obtained from the thin-slab approximation visibly starts to
differ from the actual value. We also have to keep in mind that
our numerical examples only encompass a chosen set of
characteristic speed parameters, and different plasma-β values
in the three regions of the model might lead to amplitude ratios
that show larger and/or smaller deviations from their thin-slab
approximation.

2.3.2. Quasi-kink Modes

Through a similar process, we now express the amplitude
ratio for quasi-kink modes in terms of the density and magnetic
asymmetries (to first order) in the following form:
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Similarly to Figure 4(a), panel (b) of that figure displays the
dependence of the amplitude ratio of the quasi-kink modes on
the density asymmetry δ, for the same characteristic speeds as
before, and kx0= 0.2. An animated version of this figure is also
available, which illustrates how the exact and approximate
amplitude ratios change as the dimensionless slab width slowly
increases. For the chosen values of background parameters, at
least, from small up to intermediate slab widths expressed in
their dimensionless measure, the difference between the
dependence of the amplitude ratio on the density asymmetry
calculated from the exact general formula and the thin-slab
approximation is still relatively small. Along with the
difference, the density dependence itself also displays a much
stronger effect on the magnitude of the amplitude ratio for
higher values of the slab width.

3. Minimum Perturbation Shift

The second spatial magneto-seismology technique we
describe here is one that describes the shift in the position of
minimum wave power away from the center of an asymmetric
slab. The position of the minimally perturbed surface for a
symmetric sausage or kink mode lies at exactly the central axis
of the slab (x= 0). We define the minimum perturbation shift,

minD , as the offset of the minimum wave power from the center
of the slab, as illustrated for a quasi-kink mode in Figure 5. The
method of the minimum perturbation shift is exclusive to
surface modes, which, as was shown in Zsámberger & Erdélyi
(2020), are significantly more sensitive to the external plasma
parameters than body modes. Body modes show a shift in the
position of their nodes and anti-nodes under the effect of
external asymmetries; however, this is expected to be a much
smaller and therefore less easily observable quantity (see also
Allcock & Erdélyi 2018).

3.1. Quasi-sausage Modes

For a symmetric slab system, the sausage modes leave the
surface in the center of the slab unperturbed. When density and/
or magnetic asymmetry is introduced into the environment, the

Figure 4. Dependence of the amplitude ratio on δ, for ò = 0.1 in the case of (a) quasi-sausage and (b) quasi-kink modes. Animated versions of these figures are
available, in which the slab width changes gradually while all other parameters remain fixed.

(An animation of this figure is available.)
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position of this surface is shifted away from the middle to a new
x-coordinate that can be found simply by setting the transverse
velocity perturbation amplitude,

v x B m x C m xcosh sinh 0, 42x 0 0= + =ˆ ( ) ( )

from which x can be expressed as

x
m

B

C

1
tanh , 43

0

1= -- { } ( )

where |x|� x0. Using the equations describing the continuity of

velocity and total pressure perturbations at the boundaries of

the slab, the coefficient B can be expressed in two different

forms described in Equation (6). Substituting this into

Equation (43), the x-coordinate of the minimally perturbed

surface, minD , becomes
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In the thin-slab approximation, as we have stated before,
kx0= 1, and so m0x0= 1. Then, it is also true that the
minimum perturbation shift is xmin 0D < and therefore

m 10 minD . In this case, the hyperbolic tangent can be
approximated by its argument, and Equation (44) can be
rearranged to provide another estimate for the internal Alfvén
speed as a function of the slab width, the minimum perturbation
shift, and the external parameters on one side of the slab, as
well as the internal density and sound speed:

v
k c x c

k c k x

x k v

m k x

1

1
. 45

A

A

0
2

2
0
2 2

0 min 0
2

2
0
2 2 2

0 min

2

0 min
2

1
2 2

0 1 1
2

0 min

w
w

w

w
r r

=
- D +

- D +

-
+ D -

D +

( )

( )( )

( )( )

( )
( )

The minimum perturbation shift is ill-defined in the wide-
slab limit, when kx0? 1, where the two interfaces oscillate

basically independently of one another at their own eigen-
frequency (see also Allcock & Erdélyi 2018).

3.2. Quasi-kink Modes

Symmetric kink modes are characterized by causing zero
perturbation along the central surface of the slab, too.
Asymmetric quasi-kink modes, on the other hand, only possess
a surface of minimum perturbation (where the transverse
velocity perturbation is smallest, but not necessarily zero),
which is, again, shifted from the center of the slab. The
x-coordinate of this least-perturbed surface can be determined
by finding where the derivative of the transverse velocity
perturbation is zero:

dv x

dx
m B m x C m xsinh cosh 0. 46

x
0 0 0= + =

ˆ ( )
( ) ( )

From this, the required x-coordinate can be expressed as
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Now, substituting the forms of the C coefficients from

Equation (21) into this expression gives us the x-coordinate

of the minimally perturbed surface, minD , as
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Applying the thin-slab approximation allows us to provide
an estimate for the internal Alfvén speed in the case of the
quasi-kink modes, too, following a similar reasoning as we
used to obtain Equation (45) for quasi-sausage modes. Here,
the internal Alfvén speed can be approximated as

v
B B AC

A

4

2
, 49A0

2
2

=
-  -

( )

Figure 5. The principle of the minimum perturbation shift method. Figure courtesy of Allcock & Erdélyi (2018).
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where

The dependence of the minimum perturbation shift of the
eigenmodes of an asymmetric magnetic slab system on the
density asymmetry, δ, for a given fixed value of the magnetic
asymmetry parameter, ε, is displayed in Figure 6, for the same
characteristic speeds as all other figures in this paper. An
animated version of this figure is also available as supplementary
material, showing how the δ-dependence of both modes becomes
more prominent for higher values of the dimensionless slab
width. Of course, this is only an illustrative example of the
perturbation shift method, and the solutions might behave
differently for an alternative characteristic speed ordering, which
was beyond the scope of the current investigation.

3.3. The Incompressible Limit

One last approximation that is interesting to investigate is
that of the system being filled with incompressible magnetized
plasma. In this case, the sound speeds are unbounded, so that
mj= k, for j=0, 1, 2. Then, the minimum perturbation shift for
quasi-sausage (top) and quasi-kink modes (bottom) can be
expressed as

k
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This can be rearranged to provide a relatively simple estimate

for the internal Alfvén speed in terms of an external Alfvén

speed and density ratio, as well as measurable wave and

geometric parameters of the slab system:
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While this provides a simple approximation of the internal

Alfvén speed in an asymmetric slab system, here we must remind

the reader that, e.g., the upper solar atmosphere in general is not

an incompressible plasma environment. However, kink perturba-

tions in the long wavelength can be considered incompressible in

linear order. Therefore, even this simple expression can provide a

first insight into the parameters of a magnetized plasma slab going

through kink oscillations. Then, as a next step, the Alfvén speed

estimate obtained with the incompressible approximation can be

compared to estimates resulting from other methods to validate

the employed method or explore its limitations.

4. Discussion

In this paper, we provided results we obtained for developing

further solar magneto-seismology tools for asymmetric slab

systems, which rely on the change in character occurring in the

eigenmodes supported by a waveguide that is under the effect

of its asymmetric environment. Both of the methods described

here belong under the wider umbrella of spatial magneto-

seismology, which, as opposed to temporal seismology

methods, has had a shorter history and a recent “golden age”

thanks to the rapidly increasing observational capabilities of

solar telescopes.
We have provided a derivation for two SMS techniques

introduced by Allcock & Erdélyi (2018) for an asymmetric

magnetic slab placed in a nonmagnetic environment, and we

have generalized them to the case of a magnetic slab enclosed

in an asymmetric magnetic environment. Section 2 describes

the amplitude ratio method, which relies on the fact that the

ratio of oscillation amplitudes at the two boundaries of the slab

deviates from unity for general asymmetric eigenmodes. We

provided an exact formula for the amplitude ratios of both

quasi-sausage and quasi-kink modes, and then we proceeded to

include some analytical approximations of these in order to

make inversion possible and derive estimates for the Alfvén

speed within the slab in terms of the rest of the equilibrium

background parameters, as well as the frequencies and

wavenumbers of oscillations.

Figure 6. Dependence of the minimum perturbation shift of the quasi-sausage
(blue) and quasi-kink mode (red) on δ, for ò = 0.1 and kx0 = 0.1. An animated
version of this figure is also available, in which the slab width slowly increases
frame by frame.

(An animation of this figure is available.)
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Next, in Section 3, we generalized the minimum perturbation
shift method to asymmetric slab systems including external
magnetic asymmetry next to the density asymmetry. Deriving
magnetic field information—directly, e.g., from Stokes para-
meters, or indirectly via a proxy, e.g., from the Alfvén speed—
is an important quest in solar physics. The application of the
minimum shift theorem provides a new, additional method to
further our efforts in such quests. This tool allows us to express
new estimates for the Alfvén speed within the slab model in the
analytical limit of a thin or an incompressible slab. All of the
Alfvén speed estimates the application of this method provides
show a dependence on a measurable asymmetric spatial
parameter of waves (either the amplitude ratio or the minimum
perturbation shift), the wavenumber and frequency of the
eigenmodes, the geometric extent of the slab, and at least one
external density and Alfvén speed.

It is often the case that multiple plasma or magnetic
parameters of a solar atmospheric structure are unknown.
However, if we use wave parameters measured in a solar
atmospheric structure, where the slab model is a feasible
approximation, we only have to provide an estimate for some
of the unknown external parameters in order to use the
formulae derived here. If, however, one wanted to apply them
to all possible eigenmodes supported by a given asymmetric
slab system, an implicit dependence on the remaining external
parameters would also have to be taken into account when
solving the dispersion relation to obtain the angular frequencies
and wavenumbers of trapped oscillations. Last but not least, it
needs to be remarked that asymmetry does not seem to have a
dominant effect on the wave parameters of oscillating
waveguides over all other determining factors, such as
structuring, dynamics, geometry, or nonideal effects. For
example, when investigating the frequencies of standing waves
in asymmetric slabs, Oxley et al. (2020a) found that the width
of the slab had a stronger influence on the frequencies of
harmonics than the external asymmetry. However, one cannot
know the relative magnitudes of the influences of all the effects
listed above in advance, therefore all these studies need to be
carried out. Additionally, measuring asymmetry may allow us
to confirm or refute estimates of solar atmospheric parameters
made in alternative ways, and this is a point that one may wish
to bear in mind when carrying out SMS studies.
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