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ABSTRACT

Context. Coronal loop oscillations can be triggered by solar eruptions, for example, and are observed frequently by the Atmospheric
Imaging Assembly (AIA) on board Solar Dynamics Observatory (SDO). The Helioseismic and Magnetic Imager (HMI) on board
SDO offers us the opportunity to measure the photospheric vector magnetic field and carry out solar magneto-seismology (SMS).
Aims. By applying SMS, we aim to verify the consistency between the observed period and the one derived from the information of
coronal density, magnetic field, and loop geometry, that is, the shape of the loop axis.
Methods. We analysed the data of three coronal loop oscillation events detected by SDO/AIA and SDO/HMI. First, we obtained
oscillation parameters by fitting the observational data. Second, we used a differential emission measure (DEM) analysis to diagnose
the temperature and density distribution along the coronal loop. Subsequently, we applied magnetic field extrapolation to reconstruct
the three-dimensional magnetic field and then, finally, used the shooting method to compute the oscillation periods from the governing
equation.
Results. The average magnetic field determined by magnetic field extrapolation is consistent with that derived by SMS. A new
analytical solution is found under the assumption of exponential density profile and uniform magnetic field. The periods estimated by
combining the coronal density and magnetic field distribution and the associated loop geometry are closest to the observed ones, and
are more realistic than when the loop geometry is regarded as being semi-circular or having a linear shape.
Conclusions. The period of a coronal loop is sensitive to not only the density and magnetic field distribution but also the loop
geometry.
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1. Introduction

Coronal loop oscillations, which are frequently triggered by
occasional explosions, such as coronal mass ejections (CMEs)
or magnetic flux rope eruptions, can be used to diag-
nose the physical parameters of the local plasma environ-
ment, which are difficult to measure directly (Roberts et al.
1984). In particular, the well-characterised transversal kink
oscillation is a typical mode of coronal loop oscillations,
which was first detected by Transition Region And Coronal
Explorer (TRACE) in 1999 (Aschwanden et al. 1999, 2002;
Schrijver et al. 1999, 2002; Nakariakov et al. 1999). Approxi-
mating a coronal loop as a magnetic flux tube with uniform
magnetic field strength and density distribution, the Alfvén
speed can be estimated by measuring the period of the kink
oscillations (Roberts et al. 1984; Ruderman & Erdélyi 2009;
Aschwanden & Schrijver 2011; Aschwanden et al. 2013). With
an empirical ratio of external to internal density, namely ε =
ne/ni ∼ 0.1 (Nakariakov et al. 1999; Nakariakov & Ofman
2001), the magnitude of the average magnetic field strength can
then be estimated (Roberts et al. 1984).

Early observations revealed the fundamental mode of kink
oscillations. The first overtone of coronal loop kink oscillations

was detected for the first time by analysing the high temporal and
spatial resolution data from TRACE (Verwichte et al. 2004). The
ratio between the period of fundamental mode and the first over-
tone was found to deviate from 2, a canonical value of a straight
loop with uniform magnetic field and density distribution, imply-
ing non-uniformity of the coronal loops. Since then, with
the commissioning of the Solar Dynamics Observatory (SDO,
Pesnell et al. 2012), finer coronal loop oscillation events with the
first overtone have been observed (Guo et al. 2015; Pascoe et al.
2016; Li et al. 2017; Duckenfield et al. 2018). Moreover, using
wavelet analysis, Duckenfield et al. (2019) found a coronal loop
oscillation event with a second overtone but without an obvious
first overtone. The detection of these high-order overtones has
become an effective means to analyse the dynamics of coronal
loops and to derive their physical parameters.

From a theoretical perspective, Andries et al. (2005),
Goossens et al. (2006), and Van Doorsselaere et al. (2007)
worked out the relationship between the period ratio P1/P2
and the density stratification, where P1 and P2 correspond to
the periods of the fundamental and the first overtone modes,
respectively. Dymova & Ruderman (2005) derived the govern-
ing equation for the kink mode oscillation of magnetic flux tube
by linearising the magnetohydrodynamics (MHD) equations.
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Their work provides a valuable basis for investigating the eigen-
function of the kink oscillations. For instance, Erdélyi & Verth
(2007) derived three analytic solutions of the governing equa-
tions, with assumptions of a step function, a linear function,
and a hyperbolic cosine density profile, in conjunction with con-
stant magnetic field, respectively. These authors also obtained a
numerical solution to the case with an exponentially stratified
density profile. Additionally, Scott & Ruderman (2012) consid-
ered the effect of a non-planar loop, and Ruderman et al. (2017)
discussed the influence of cross-section expansion. Many of the
above aspects were discussed by Andries et al. (2009).

While oscillation-based solar magneto-seismology (SMS)
can be applied to estimate the local magnetic field of a coro-
nal loop, one can also use a magnetic field model to obtain
the three-dimensional (3D) magnetic field in the corona, includ-
ing the local magnetic field of a coronal loop. These magnetic
field models include potential field, linear force-free field, and
non-linear force-free field (NLFFF) models. For example, in
the Cartesian coordinate system, a linear force-free field equa-
tion can be solved with the Green’s function method and a
Fourier transform method (Schmidt 1964; Chiu & Hilton 1977;
Seehafer 1978). For a potential field in the spherical coordi-
nate system, the governing equation is reduced to the Laplace
equation, ∇2Φ = 0, and B = −∇Φ, where the spherical har-
monic transformation technique can be used (Schatten et al.
1969; Newkirk & Altschuler 1969; Schrijver & De Rosa 2003).
The results of Guo et al. (2015) showed that the magnetic field of
a coronal loop obtained with a potential field model is consistent
with that derived with the oscillation-based SMS. In addition, the
3D morphology can be reconstructed from the extrapolated mag-
netic field, or can alternatively be obtained using stereoscopic
observations and the triangulation method.

Coronal loop oscillations are described by a number of cou-
pled physical and geometric parameters. In previous investiga-
tions, the density and magnetic field, which dominate the dynam-
ics of a coronal loop, were the research focus. In the present
paper, the loop geometry is taken into account, in addition to
the density and magnetic field, using a comprehensive approach.
Specifically, oscillation periods are obtained from the oscilla-
tion evolution time–distance diagram; the density distribution
is detected using a DEM analysis; and the geometry and mag-
netic field are reconstructed by magnetic field extrapolation. The
obtained physical and geometric parameters are substituted into
the governing equation to determine the computed periods. We
show that, in the case of linearised MHD equations, a coronal
loop oscillation can be treated as a single string oscillation. Also,
we consider three typical configurations for the coronal loop
geometry, as follows: (1) Under the assumption of a linear loop
geometry, an ingenious variable substitution is used to obtain
an analytical solution; (2) with approximation of a semi-circular
loop geometry, the shooting method is implemented to find a
numerical solution; and (3) regarding the height distribution of
the extrapolated magnetic field as the loop height, a numerical
solution with the shooting method can be derived as well.

Eventually, the computed periods are compared with the
observed ones to investigate the impact of the different loop
geometries on the nature of the oscillation. The ultimate aim
is to explore whether the computed periods derived from the
actual physical and geometrical parameters are consistent with
the observed ones. This work indeed takes advantage of the for-
ward modelling research method instead of the routine inver-
sion method, which aims to obtain the average magnetic field
by oscillation period and density. We do not consider an inver-
sion because we wish to investigate the distribution of the mag-

netic field and not simply its average strength, but it is difficult to
invert the magnetic field distribution using only the fundamental
tone.

The paper is organised as follows: The oscillation, density,
and magnetic fields are diagnosed in Sect. 2. The string model,
corresponding to the governing equation, an analytical solution,
and numerical solutions to the governing equation, is introduced
in Sect. 3. A discussion and conclusions are provided in Sect. 4.

2. Observations and analysis

2.1. Analysis of oscillation parameters

Explosive events in the solar atmosphere may disturb coronal
loops and trigger coronal loop kink oscillations. The kink oscil-
lation can be used to estimate the Alfvén speed and then to deter-
mine the average strength of the magnetic field (Tomczyk et al.
2007; Erdélyi & Taroyan 2008; Verwichte et al. 2013). An effi-
cient approach to studying coronal loop oscillations is to plot
a time–distance diagram of the coronal loop evolution. By fit-
ting an oscillation profile, a series of oscillation parameters can
be obtained, including the period (Guo et al. 2015; Pascoe et al.
2016; Li et al. 2017; Duckenfield et al. 2018, 2019). In the
present paper, we also take advantage of the oscillation profile
fitting to determine the oscillation parameters, where the fitting
formula is

A(t) = A00 + A01(t − t0) + A1 cos
[

2π
P1

(t − t0) − φ01

]

e−
t−t0
τ1 . (1)

Here, A00, A01, A1, t0, τ1, and φ01 represent the displacement, lin-
ear drift velocity, oscillation amplitude, reference time, damping
timescale, and initial phase, respectively. P1 is the fundamen-
tal period. We can also use a combined damped cosine model
to fit the profile (Guo et al. 2015; Pascoe et al. 2016; Li et al.
2017; Duckenfield et al. 2018) in order to obtain additional
parameters such as the first overtone period (Andries et al. 2009;
Morton & Erdélyi 2010). Although Duckenfield et al. (2019)
detected the second overtone using a wavelet analysis, it is
generally very difficult to detect higher order harmonic signals
because an extremely low level of noise is required. For con-
venience, we plan to verify the consistency of the fundamental
mode between the observed and calculated results. Therefore,
it is enough to use the damped cosine model (Eq. (1)) to fit
the profile (see, e.g., Morton & Erdélyi 2010). We select several
slices perpendicular to the loop axis using the tools provided by
Solar SoftWare (SSW) and choose the oscillation profiles along
the slices whose time–distance evolution can be identified eas-
ily from the background. For each time–distance diagram, we
visually determine the oscillation profile of the coronal loop. By
repeating the sampling ten times, we fit Eq. (1) to the mean data
and the statistical standard deviations are used to represent the
error bar. The final fitting results are shown in Figs. 1g–i and the
oscillation parameters are listed in Table 1.

Here, Loop #1 represents the loop oscillation event that
occurred at 19:05–19:35 UT on 2010 October 16 and was trig-
gered by a GOES M2.9-class flare (Aschwanden & Schrijver
2011; Kumar et al. 2013); Loop #2 represents the loop oscilla-
tion event that occurred at 22:20–22:35 UT on 2011 September
6 and was triggered by a GOES X2.1-class flare (Verwichte et al.
2013); and Loop #3 represents the loop oscillation event that
occurred at 1:10–1:50 UT on 2012 March 7 and was triggered
by a GOES X5.4-class flare. The 171 Å images of these loops
observed by the Atmospheric Imaging Assembly (AIA) on board
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Fig. 1. Measurements and fittings of the three selected coronal loops. The columns, from left to right, represent Loop #1, Loop #2, and Loop #3,
respectively. Panels a–c: location of the coronal loop. The green solid line shows the path of the loop. Panels d–f: oscillation profiles. The green
filled dots are the sampling points of the oscillation profile. Panels g–i: fitting results. The red points with error bars are the aforementioned data
points, the blue solid line is the fitting model and the orange region is the confidence band of 95%.

Table 1. Physical parameters of the selected coronal loops.

Quantity Loop #1 Loop #2 Loop #3

Oscillation parameters
Displacement A00 (Mm) 17.4± 0.1 20.6± 0.3 17.0± 0.2
Drift speed A01 (km s−1) 1.2± 0.2 −0.1± 0.5 −0.2± 0.3
Oscillation amplitude A1 (Mm) 2.5± 0.2 6.0± 0.7 3.3± 0.4
Damping timescale τ1 (s) ∞ 297.1± 36.6 1766.2± 534.7
Fundamental period P1 (s) 382.7± 2.6 148.9± 1.3 367.9± 3.8
Initial phase φ01 (◦) 171.6± 4.5 302.5± 5.7 63.8± 5.0
Local physical parameters
Av. magn. field 〈B〉 (G) 4.3± 0.1 22.9± 0.1 16.0± 0.1
Seismological Av. magn. field Bkink (G) 3.9± 0.4 24.9± 0.8 14.4± 0.5
Loop length L (Mm) 96.1± 11.0 181.7± 5.7 212.6± 6.3
Apex height ha (Mm) 29.9± 4.8 64.0± 2.3 79.8± 3.0
Density scale height H (Mm) 55.1 40.7 72.9
Footpoint density nf (108 cm−3) 6.0 17.4 12.8
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SDO are shown in Figs. 1a–c. We analyse the base differ-
ence movies, in which the first frame is subtracted from other
frames, and find that all the loops present characteristic transver-
sal oscillations, whose oscillation profiles are shown in Figs. 1d–
f. Regarding the parameter errors listed in Table 1, the Monte
Carlo method was used to randomly sow points within the
error range of each data point, and statistical standard devia-
tions through 100 times fitting were used to represent the error
bar. It should be noted here that although two of the three cho-
sen cases have been studied by other colleagues, our methods
for measuring magnetic field are not exactly the same, and the
geometry of the coronal loop is taken into account in our work.
On the other hand, we also have a new scientific target, which
is to measure the physical parameters of the coronal loops and
then use a forward modelling method to solve the oscillation
period.

Figure 1d shows that Loop #1 is a decayless oscillation
(τ1 = ∞), which was explained by Kumar et al. (2013) as being
due to successive impacts of a fast-mode wave and a slower
‘EIT wave’. Considering the uncertainties, the fitting period
382.7 ± 2.6 s is consistent with the result of 373 ± 30 s derived
by Aschwanden & Schrijver (2011). Also, for Loop #2, the fit-
ted period 148.9 ± 1.3 s is consistent with 150 ± 5 s obtained by
Verwichte et al. (2013) within the uncertainty range. In particu-
lar, to the best of our knowledge, the oscillation parameters of
Loop #3 have not yet been analysed.

These oscillation parameters, especially the oscillation
period, are sufficient to decipher average physical quantities
such as the magnetic field strength of the loop (Roberts et al.
1984; Andries et al. 2009; Morton et al. 2011). Generally, the
loop length can be obtained easily, and the density can be mea-
sured using the DEM analysis (Sect. 2.2), although the den-
sity is often simplified and considered to be constant along a
coronal loop. The average magnetic field strength can then be
derived with the assumption ε = ne/ni = 0.1. Furthermore, if
the periods of the high-order overtones are measured, we can
obtain further information in addition to the average magnetic
field strength, such as density scale height (Andries et al. 2005;
Van Doorsselaere et al. 2007), which can describe the variation
of the density rather than an average quantity.

2.2. Density diagnostics using DEM analysis

DEM analysis is used for temperature and density diag-
nostics (Aschwanden et al. 2013). Several algorithms have
been proposed and their effectiveness has been validated
(Weber et al. 2004; Hannah & Kontar 2012; Aschwanden et al.
2013; Plowman et al. 2013; Cheung et al. 2015; Su et al. 2018).
Here, we adopt the Oriented Coronal CUrved Loop Tracing
(OCCULT) code and the single Gaussian forward fitting method
proposed by Aschwanden et al. (2013) to detect the loop seg-
ment and then perform the DEM analysis for temperature and
density diagnostics. We fit the intensity profiles along the slices
in all six extreme-ultraviolet (EUV) passbands from SDO/AIA
using a Gaussian function plus a linear background profile to
obtain the background-subtracted EUV fluxes, F

Loop
λ

. With the
single-Gaussian DEM fitting, we then derive the peak emission
measure, EMi, peak temperature Ti, and the Gaussian tempera-
ture width,σT. Accordingly, the electron density, ni, is computed
as follows (Aschwanden & Schrijver 2011; Aschwanden et al.
2013; Verwichte et al. 2013; Guo et al. 2015; Dai et al. 2021)

ni =

√

EMi

w
. (2)

Here, the index i denotes the value measured inside the coronal
loop, w = 2

√
2 ln 2σw is the loop width, and σw is the Gaussian

loop width fitted along the cross-sectional profiles.
The results of DEM analysis are shown in Fig. 2.

Figures 2d–l depicts the distributions of the temperature Ti, den-
sity ni, and loop width w along the three oscillating loops. It
can be seen that the maximum amplitudes of the kink oscillation
(Figs. 1g–i) are comparable to the width of the loops shown in
Figs. 2j–l, which reflects the rationality of the approximation of
minor amplitude and the linearisation of MHD equations. The
goodness of the fitting is shown in Figs. 2m–o, which indicates
that the fitting results are acceptable. It is worth noting that the
OCCULT method (Aschwanden et al. 2013) cannot identify the
loop as a whole with the complicated EUV backgrounds. There-
fore, we sample the loop coordinates interactively with an inter-
active data language (IDL) code before using the SSW program
aia_loop_autodem.pro to obtain the final results.

According to the DEM analysis results shown in Fig. 2, we
find that the average temperatures of Loops #1, #2, #3 are 1.07,
0.89, 1.66 MK, respectively. These are typical coronal temper-
atures (Aschwanden et al. 2013). The temperature distributions
of the three studied loops are nearly isothermal as shown in
Figs. 2d–f. Besides, the average electron density of the three
loops is ni = 0.43×109, 0.75×109, and 1.12×109 cm−3, respec-
tively. Although the density distribution profile is noisy due to
line-of-sight (LOS) interference, the trends that the footpoint has
higher density and the apex point has a lower density can be
seen, which indicates decreasing density with altitude. However,
the density distribution in the middle of Fig. 2i is abnormally
high, indicating the possible existence of background threads. In
Sect. 2.3, the density variation with height is fitted by a function
that decays exponentially with loop height:

ni(s) = nf exp
[

−h(s)
H

]

, (3)

where H is the density scale height, nf is the density at the foot-
point, and h(s) is the height along the loop, which represents
the loop geometry. The loop length and the height variation h(s)
along the loop are obtained by 3D reconstruction of coronal
loops with magnetic field extrapolation in Sect. 2.3.

2.3. 3D magnetic field reconstruction using magnetic field
extrapolation

In this section, we show how we processed the HMI data with
the 180◦ ambiguity being removed in the HMI pipeline. In
addition to the pipeline process, we corrected the projection
effect by a rotation matrix R(P, B, B0, L, L0) (Gary & Hagyard
1990; Guo et al. 2017), which corrects both the vector direc-
tions and the geometry. The boundary conditions for poten-
tial magnetic field extrapolation were then prepared by a
preprocess program, which makes the boundary conditions
force-free and torque-free, and extracted the radial magnetic
field from the vector magnetic field. Finally, we adopt the poten-
tial magnetic field extrapolation algorithm in the Message Pass-
ing Interface Adaptive Mesh Refinement Versatile Advection
Code (MPI-AMRVAC; Keppens et al. 2003; Porth et al. 2014;
Xia et al. 2018). The extrapolated magnetic field is shown in
Figs. 3a–c with the SDO/AIA 171 Å images as the background.
With the potential field model, the loop length, L, is calculated
by integrating the length of magnetic field lines; the height and
magnetic field strength distribution along the loop, h(s) and B(s),
are obtained (shown in Figs. 3d–f); and the apex heights of the

A48, page 4 of 11



G. Y. Chen et al.: Coronal loop kink oscillation period

Fig. 2. Loop tracing and DEM analysis of the three selected loops. The columns from left to right show the results of Loop #1, Loop #2, and
Loop #3, respectively. Panels a–c: loop geometry (dashed line) and their widths (solid line) in 171 Å images. Panels d–f: temperature distribution
along the loop geometry. Panels g–i: density distribution along the loop geometry. Panels j–l: width variation along the loop geometry. Panels
m–o: goodness of the fitting.

three loops, ha, are found by seeking the maximum of the mod-
ified height. For the definition of the modified height, we ran-
domly choose three points in each loop to determine the loop
plane and compute its normal vector, that is, the direction cosine
αi, βi, γi (the subscript i denotes the index of each loop). We then
apply a rotation matrix to convert it to the vertical direction. The
dashed lines in Figs. 3d–f represent the average magnetic field
calculated by

〈B〉 = L
∫

B(s)−1ds
. (4)

In addition, using the results of the DEM analysis employed,
the density scale height and the footpoint density are fitted with
Eq. (3) and shown in Figs. 3g–i. Accordingly, an average mag-
netic field is estimated using the solar magneto-seismological
method, which is given by (Roberts et al. 1984)

Bkink =
L

Pkink

√

8πµmpni(1 + ne/ni), (5)

where we adopt ne/ni = 0.1 as an empirical density ratio
between external and internal plasma (Nakariakov et al. 1999;
Nakariakov & Ofman 2001), Pkink is P1 as shown in Table 1,
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Fig. 3. Reconstructed coronal loops and the distribution of their physical parameters. Panels a–c: 3D structure of the magnetic field from a
potential field model with the background of the 171 Å waveband on 2010 October 16, 2011 September 6, and 2012 March 7, respectively.
Panels d–f: corresponding height (black filled dot), the distribution of the magnetic field strength (blue filled dot) along the loop length, and the
average magnetic field strength (blue dashed line). Panels g–i: corresponding electron density (black solid line) and the fitting curve (red dashed
line).

mp = 1.67 × 10−24 g is the proton mass, and µ = 1.2 is the
average molecular weight with the consideration of the coronal
abundance. We list the results of Bkink and 〈B〉 in Table 1 and
find that the magnetic field strength derived by SMS and mag-
netic field extrapolation is consistent within the range of errors.
This reflects the rationality of these two independent approaches
to compute the magnetic field. However, other studies reveal a
coronal magnetic field exceeding the results of traditional SMS
by one or two orders of magnitude, which do not match ours. For
example, Vourlidas et al. (2006) and Brosius & White (2006)
found a coronal magnetic field of several kilogauss by studying
the polarisation of radio emission. Other authors have detected a
coronal magnetic field of a few hundred to thousands of Gauss
using spectropolarimetry(Schad et al. 2016; Kuridze et al. 2019)
and microwave spectral fitting (Chen et al. 2020a,b).

The magnetic field extrapolation matches the coronal loops
well, as displayed in Figs. 3a–c, which show that the extrapolated
geometric structure and the observed results (in the 171 Å wave-
band) coincide approximately, except Loop #1 in Fig. 3a. One
reason for the misalignment in this case is that this loop is not in
an active region and its magnetic field is much weaker than that
of the other two cases, as listed in Table 1. Therefore, the precise
position of its footpoint is difficult to locate in the magnetogram,
which may cause primary errors for our measurement of L, h(s),
and B(s). In addition, our solar magneto-seismological result
is similar to that of Aschwanden & Schrijver (2011), while our
magnetic field extrapolation method is more elaborate because
we corrected the projection effect due to the solar spherical sur-
face and located the footpoint with stereoscopic information,

both of which were not considered in this latter study. As shown
in Fig. 3d, the apex magnetic field Bapex ≈ 3 G seems more
acceptable than 6 G in Aschwanden & Schrijver (2011). This is
because (1) we obtained 〈B〉 = 4.3 ± 0.1 G and Bkink = 3.9 ± 0.4
G, which are close to each other; but in Aschwanden & Schrijver
(2011), 〈B〉 = 11 G is much larger than Bkink = 4.0 ± 0.7 G; and
(2) it is reasonable that we had Bapex = 2.8 ± 1.03 G < Bkink =

3.9 ± 0.4 G while it is contradictory that Bapex = 6 G > Bkink =

4.0 ± 0.7 G in Aschwanden & Schrijver (2011).
Subsequently, we reconstructed the geometry (shape of the

loop axis and height) of the coronal loop by extrapolating a
potential-field model as shown in Figs. 3d–f. As projection cor-
rection of the magnetic field involves both vector direction cor-
rection and geometric correction, the shape of the coronal loop
reconstructed here is not affected by projection effects. For the
loop geometry, we use the interpolation function of the height
distribution along the loop, h(s), instead of its semi-circular
shape h(s) = L sin(πs/L)/π. It is worth noting that the inter-
polation function, h(s), is an irregular profile but is closer to
the real morphology of the coronal loop. In Fig. 3e, the profile
of Loop #2 deviates from a semi-circle, and therefore the tradi-
tional model with a semi-circular approximation would not work
well in computing the oscillation periods. In contrast, our model
would perform well, as discussed in Sect. 3. For the inclination,
Verth et al. (2008) mentioned that the neglected inclination leads
to a small overestimation factor of 1–2. In our cases, the incli-
nation of the three loops is different. Nevertheless, we assume
them to be vertical with the aforementioned operation, which
is equivalent to introducing a modified density scale height to
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remove the effect of inclination. We also assume a planar coro-
nal loop, which is feasible in most cases. In our research, such
an approximation is reasonable, except for in the case of Loop
#3. As revealed in Fig. 3c, Loop #3 shows an obvious pitch
of helix. However, this effect is negligible (Scott & Ruderman
2012), which can be seen in our later results.

Figures 3g–i shows the density profiles fitted by Eq. (3).
The density scale heights H of these three coronal loops are
listed in Table 1. The apex heights of the loops, ha, as shown
in Table 1 are derived by taking the maximum of the height pro-
file (Figs. 3d–f), which is approximately equal to L/π. The den-
sity stratification is characterised by ha/H, which is 0.54 ± 0.09
for Loop #1 and 1.09 ± 0.04 for Loop #3. For Loop #2, we
find ha/H = 1.57 ± 0.06, which is different from the results
of Verwichte et al. (2013), who showed ha/H = 0.985 for the
same case. The apex height of Loop #2 determined with the
STEREO-A/EUVI 171 Å images by Verwichte et al. (2013) is
almost the same as the value reconstructed by the potential field
model, demonstrating the validity of the geometry information
obtained in our 3D magnetic field model. Also, the magnetic
field strength was derived from the potential field source sur-
face (PFSS) model in Verwichte et al. (2013), which is similar
to our results from the potential field model. The discrepancy in
the density scale height between our work and this latter study
is attributed to the fitting of the footpoint density. We use a foot-
point density of nf = 17.4 × 108 cm−3 whereas Verwichte et al.
(2013) use nf = 7 × 108 cm−3. Figures 3d–i shows that the den-
sity distribution and magnetic field strength distribution have
a similar decreasing tendency. The density decrease is due to
the gravity stratification, ni(h) ∝ e−h/H , in hydrostatic equilib-
rium. The magnetic field attenuation is due to the dipole poten-
tial field, B(h) = B0(1 + h/hd)−3, which decays with height
(Erdélyi & Verth 2007). However, Schad et al. (2016) found a
case where B0 = 29380 G with spectropolarimetric inversions,
which infer a loop magnetic field with strength far beyond the
dipole field approximation.

The force-free field models have relatively simple solu-
tions and their magnetic tension and pressure forces balance
each other exactly. However, they are too simple to describe
the real observation with complex magnetic structures, espe-
cially for the more limited potential field models. More impor-
tantly, boundary and initial conditions are not accurate enough
for observations and more physics should be included in
dynamic cases. With all these disadvantages, the potential field
model is chosen because it agrees better with observations
than the NLFFF model, and is more affordable than dynamic
models.

3. String model and comparison to observations

3.1. String model

In order to derive a formula to relate the oscillation period to
the coronal loop parameters, we use the analogy of a string to
represent the oscillating coronal loop instead of solving the full
MHD equations. Figure 4 shows the physical approximation of
the string model; an inhomogeneous string that deviates from its
equilibrium position after being disturbed. Considering that the
coronal loop is actually a magnetic flux tube, if a plasma element
P0 deviates from its equilibrium position, it will be subjected to
a restoring force due to the elastic nature of the magnetic field
line (Fig. 4). Because of the condition of low plasma-β (the ratio
of the gas pressure to the magnetic pressure), we only take the
magnetic pressure into account and ignore the thermal pressure.

s along the loop

A
m
p
lit
u
d
e
ψ

L

P0

Fc

α
α

Fig. 4. Cartoon of the string model. The red clump P0 represents a ref-
erence plasma element deviating from its equilibrium position. The red
arrow indicates the magnetic tension force Fc acting on P0, which is
directed to the centre of curvature. The direction of Fc makes an angle
of α with the vertical direction.

Accordingly, the force applying on P0 in the magnetic field of
the coronal loop can be expressed as

j × B = −∇
(

B2

2µ0

)

+
1
µ0

(B · ∇)B, (6)

where µ0 is the permeability of vacuum, j is the current density,
and B is the magnetic induction intensity. The first term on the
right-hand side of Eq. (6) represents the magnetic pressure gra-
dient. The second term represents the magnetic tension force. It
is the magnetic tension force that makes a magnetic field line
behave like a string. We decompose the magnetic tension force
term in the orthogonal natural coordinate system, which is an
orthogonal curvilinear coordinate system with Lamé coefficients
of 1:

(B · ∇)B = B
d
db

(Bb̂) = B
dB

db
+ B2 db̂

db

=
d

db

(

B2

2

)

b̂ +
B2

Rc
r̂, (7)

where b̂ and r̂ are the unit vector along the magnetic field and the
normal unit vector, respectively. In addition, we use the relation
db̂
db
= db̂

dα
dα
db

and the formula of the analytic geometry db
dα = Rc,

where Rc is the radius of curvature of the magnetic field line.
Eventually, we find that the force exerted on the plasma P0 is

j × B =
B2

µ0Rc
r̂ + b̂

∂

∂b

(

B2

2µ0

)

− ∇
(

B2

2µ0

)

. (8)

The second term on the right-hand side of Eq. (8) exactly cancels
out the effect of magnetic pressure gradient in the direction of
the magnetic field. According to the equilibrium conditions, the
magnetic pressure in other directions should also be balanced by
the external pressure. The ultimate restoring force, accordingly,
is the first term on the right-hand side of Eq. (8), which points
to the centre of the curvature and has the effect of pulling the
plasma back to its equilibrium position.

We consider a plasma element P0 from s to s + ds; the force
along the magnetic field line is at balance, and so the restoring
force is normal to the field line. Adding an external magnetic
pressure gradient, the total restoring force becomes

Fc =
B2

µ0Rc
− ∂

∂r

(

B2

2µ0

)

+
∂

∂r













B2
0

2µ0













=
B2

µ0Rc
− ∂P

∂r
, (9)
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where we assume B = (B0 + b)b̂ (b ≪ B0) and define the pres-
sure perturbation P ≡ B2/2µ0 − B2

0/2µ0 ∼ Bb/µ0. Therefore, the
momentum equation of the plasma element is

ρ(s)ds
∂2ψ

∂t2
=

(

B2

µ0Rc
− ∂P

∂r

)

ds cosα, (10)

where ψ is the displacement from an equilibrium position, ρ(s)
is the distribution of density along the coronal loop, and Rc is the
radius of the curvature given by

Rc =
(1 + ψs)3/2

ψss

. (11)

Here ψs = ∂ψ/∂s, ψss = ∂
2ψ/∂s2, with the approximate relation

cosα ≈ 1, ψs = tanα ≈ α ≪ 1. We now come up to the equation
of coronal loop oscillations:

∂2ψ

∂t2
− v2

A
∂2ψ

∂s2
= −1

ρ

∂P

∂r
. (12)

Alternatively, using the velocity u = ∂ψ/∂t instead of ψ, we
have

∂2u

∂t2
− v2

A
∂2u

∂s2
= −1

ρ

∂2P

∂r∂t
, (13)

where vA = B(µ0ρ)−1/2 is the Alfvén speed. According to the fact
that the magnetic tension disturbance propagates at the Alvén
speed, P satisfies the following wave equation:

∇2P − 1

v2
A

∂2P

∂t2
= 0, (14)

where ∇2 is the Laplace operator. With Fourier analysis and the
tube boundary condition, the governing equation can be obtained
by the combination of Eqs. (13) and (14) (Dymova & Ruderman
2005; Erdélyi & Verth 2007):






















∂2u

∂s2
+

ω2

c2
k(s)

u = 0

u = 0, at s = 0, L,
(15)

where c2
k = 2B2[µ0(ρi + ρe)]−1 is the kink mode speed.

Equation (15) is the governing equation of coronal loop
oscillations. Here we use a simplified string model to derive it
instead of solving the MHD equations, which helps us to build
up a physical picture for understanding coronal loop oscillations.
Now that we have such a specific physical picture, we can dis-
cuss the damping mechanism and other issues in later follow-up
works.

3.2. Analytical solution under a linear loop geometry

Under a number of approximations and assumptions, an analyt-
ical solution to the governing equation (Eq. (15)) can be found.
Erdélyi & Verth (2007) derived three sets of analytical solutions
for a step-function density profile, a linear density profile, and a
hyperbolic cosine density profile, respectively. Here, we derive
another meaningful solution with an exponential density profile,
which corresponds to the case where the coronal loop is approx-
imated as two segments of straight lines as shown as the dash-
dotted lines in Fig. 5. Compared with other density profiles, an
exponential profile is the simplest case with physical meaning,
and so it is also of great value for our discussion.
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Fig. 5. Different geometries of the coronal loop. The purple dash-dot-
dotted line and red solid line represent the linear and semi-circular loop
geometry, respectively. The blue dash-dotted line, orange dashed line,
and green dotted line represent the real loop geometry of Loops #1, #2,
and #3, respectively. The apex positions of the real loops slightly deviate
from the midpoint (x = 0.5), and the profiles of the coronal loops match
the semi-circle loop geometry well.

For the linear loop geometry without magnetic field varia-
tion, its geometric parameters meet the relationship

|s|
L/2
+

h

ha
= 1, (16)

where ha is the apex height of the coronal loop. Let us take the
midpoint of the loop as the origin, that is, s = 0; here s is from
−L/2 ≤ s ≤ L/2. By substituting Eq. (16) into Eq. (3), the den-
sity distribution can be obtained:

ni(s) = na exp
[

|s|
H

2ha

L

]

≡ nae|s|/HL . (17)

Here na = nf exp(−ha/H) is the density at the apex. For simplic-
ity, we define a new scale height HL = HL/2ha. As expected,
a loop with a linear loop geometry would have an exponential
density distribution. Substituting the density profile into the gov-
erning Eq. (15) and considering the boundary condition u = 0 at
s = ±L/2, we have


























u′′(s) + λω2es/HL u = 0, (s > 0)
u′′(s) + λω2e−s/HL u = 0, (s < 0)

λ =
1 + ε

2
µ0ρa

B2
,

(18)

where the density ratio ε = ne/ni is a constant. Considering the
symmetry or antisymmetry, we consider the right half-segment
of the coronal loop, that is, s > 0. Here, we introduce a new
variable η = 2ωHL

√
λes/HL ; then Eq. (18) is reduced to

η2 d2u

dη2
+ η

du

dη
+ η2u = 0, (s > 0). (19)

This is the Bessel equation of order zero, and therefore the solu-
tion to it is

un(s) = CnJ0

(

2ωnHL

√
λes/HL

)

, (s > 0; n = 1, 2, 3 . . .). (20)

Considering the boundary condition u(±L/2) = 0, we derive the
eigenfrequencies

ωn =
µ

(0)
n

2HL

(

λeha/H
)−1/2

(n = 1, 2, 3, . . .), (21)

A48, page 8 of 11



G. Y. Chen et al.: Coronal loop kink oscillation period

0.4 0.2 0.0 0.2 0.4
Normalized distance along loop

1.0

0.5

0.0

0.5

1.0

No
rm
al
iz
ed
 a
mp
li
tu
de

 Numerical Solution(a) 
1=2.90, 2=5.57, 3=8.54

Fundamental tone
First overtone
Second overtone

0.4 0.2 0.0 0.2 0.4
Normalized distance along loop

 Analytical Solution(b)
1=3.37, 2=5.81, 3=8.26

Fig. 6. Numerical versus analytical solutions for the linear loop geometry, uniform magnetic field, and stratified density profile. (a) Numerical
results of Eq. (18). The blue solid line represents the solution of fundamental tone with eigenvalue ω1 = 2.90, the orange dotted line indicates
the first overtone with eigenvalue ω2 = 5.57, and the green dashed line denotes the second overtone with eigenvalue ω3 = 8.54, respectively. (b)
Analytical results. The blue solid line represents the solution of fundamental tone with eigenvalue ω1 = 3.37, the orange dotted line indicates the
first overtone with eigenvalue ω2 = 5.81, and the green dashed line denotes the second overtone with eigenvalue ω3 = 8.26. Here, we choose√
λ · L = 1 s,HL = L.

where µ(0)
n represents the nth zero of the Bessel function of order

zero. On the other hand, the solution needs to be physical, which
requires the continuity of the eigenfunction and its derivative.
There are two situations: (1) in the case of odd parity, we sup-
plement the boundary condition u(0) = 0; (2) in the case of
even parity, we have u′(0) = 0. In particular, the supplementary
boundary conditions are as follows:
{

J0(2ωnHL

√
λ) = 0

J1(2ωnHL

√
λ) = 0,

(22)

where J1 is the Bessel function of order one. The eigenvalues
satisfying the supplementary boundary conditions, Eq. (22), and
the intrinsic boundary condition, u(±L/2) = 0, will be the sub-
sets of Eq. (21), that is,

ωn =
µ

(0)
ns

2HL

(

λeha/H
)−1/2

. (23)

Here ns is the integer which meets both Eq. (22) and the intrinsic
boundary. The overtone period concerned is then

Pn =
2π
ωn

=
2π

µ
(0)
ns

√

1 + ε
2
· H

ha

L

vA,f
, (24)

where vA,f = B(µ0ρf)−1/2 is the Alfvén speed at the footpoint of
the coronal loop.

In general, it is difficult to satisfy both Eq. (22) and
u(−L/2) = u(L/2) = 0 simultaneously. This means that there
is usually no physical solution satisfying the intrinsic boundary
conditions. Despite this, we can use the solution that best meets
the odd or even parity condition as the approximation of the
eigenfunctions. The supplementary boundary condition serves
as a filter. This approximation means that different L and H will
pick out different µns

. For instance, Fig. 6 reveals the numerical
and analytical solution in the case

√
λL = 1 s, HL = L. Ignoring

the discontinuity of the analytical solution and its first derivative,
the eigenvalues and their profiles are close to the numerical one.
The period ratio P1/P2 = ω2/ω1 = 1.72 < 2 for the analyti-
cal solution and P1/P2 = 1.92 < 2 for the numerical solution

both show that the density stratification results in a period ratio
of less than 2, implying that the analytical solution is reasonable
to a certain extent.

Equation (24) offers the overtone period of a coronal loop
with linear loop geometry and uniform magnetic field. This
result shows the following properties qualitatively. First, Pn ∝
L/vA,f

√
(1 + ε)/2, which corresponds to Eq. (5), and Pkink =

2L/vA
√

(1 + ε)/2, which is derived under the approximation
of uniform density distribution (Roberts et al. 1984). In addi-
tion, Eq. (24) also shows the influence of the density variation,
namely, Pn ∝ H/ha, which is the density stratification of the
coronal loop (a loop with a semi-circle profile has the density
stratification πH/L). It is reasonable that for two coronal loops,
where the magnetic field, the shape of the loop axes, and the
density of the footpoint are the same except for the density scale
height, the loop with the larger density scale height will have a
longer period, because less density variation means more iner-
tia. If Eq. (24) gives the same result as Eq. (5) in the exam-
ple of Fig. 6, then H/ha = 2.75, which means a weak stratifi-
cation and a nearly uniform density distribution. However, the
analytic solution is unreasonable in some sense. This is proba-
bly because the simplified model takes many assumptions. One
possible unreasonable result is that the period ratio P1/P2 is dis-
crete, which contradicts the previous works where P1/P2 was
found to be a continuous function of the density stratification
L/πH (Andries et al. 2005; Goossens et al. 2006). Nevertheless,
as the results given by Eqs. (24) and (5) differ by only a fac-
tor related to density stratification πH/µ1s

ha, Eq. (24) is valuable
when we want to quickly estimate the period of the fundamental
tone with the density stratification taken into account.

3.3. Calculating the fundamental period with shooting
method

For actual cases, the coronal loop geometry deviates from the lin-
ear loop geometry assumed by the analytical solution above. If
the real path is considered, the density distribution (Eq. (3)) is so
complicated that an analytical solution is unattainable. We need
to adopt a numerical method to calculate the period in actual
situations. In this section, combining the density, height, and

A48, page 9 of 11



A&A 664, A48 (2022)

Table 2. Period of the fundamental tone.

Loop #1 Loop #2 Loop #3

Pobs (s) 382.7 ± 2.7 147.8 ± 1.2 367.9±3.8
Panl (s) 272.2 (28.9%) 205.3 (38.9%) 183.7 (50.0%)
Psc (s) 304.4 (20.5%) 119.5 (19.1%) 311.3 (15.4%)
Preal (s) 406.1 (6.1%) 168.4 (13.9%) 324.0 (11.9%)

magnetic field distribution obtained from the DEM analysis and
magnetic model, we use the shooting method to solve the gov-
erning equation to derive the period, and compare it with the
period obtained from previous observations and fitting.

For convenience in the numerical solution, we introduce
the characteristic length L, time L/vA,f , and magnetic field
strength Bav in order to define the dimensionless quantities y =
u(s)/vA,f , x = s/L, b = B/Bav, and τ = (2π/ω)/(L/vA,f). The
governing equation is non-dimensionalised, which reads


















y′′(x) + 2π2 1 + ε
τ2b2(x)

e−h(x)/Hy(x) = 0

Boundary Condition : y(0) = y(1) = 0,
(25)

where h(x) is the profile of the coronal loop. Let us take the left
footpoint of the loop as the origin where x = 0 and the range
of x is from x = 0 to x = 1. If we use a semi-circle profile to
approximate a coronal loop, h(x) is expressed as

h(x) =
L

πH
sin (πx). (26)

More precisely, we can describe the real loop geometry using
the interpolation function h(x) of the height distribution of the
extrapolated magnetic field. The normalized loop geometries are
shown in Fig. 5. We can see that in the three coronal loop oscil-
lation events, the actual loop geometries of those loops do not
deviate very much from the semi-circular shape.

Here we use the shooting method to solve the boundary value
problem in Eq. (25). In detail, we use Wolfram Mathematica to
build an interactive window to adjust the period parameters to
find the approximate period as the initial value of the shooting
method. Then, in the vicinity of a given initial value, we use
a seeking algorithm to obtain the final oscillation period satis-
fying the boundary conditions. The final results are shown in
Table 2, in which the observed values Pobs, analytical solutions
Panl, numerical solutions with the semi-circle loop geometry Psc,
and the numerical solutions with the real loop geometry Preal
are compared. The deviation from Pobs is provided in the paren-
theses following the calculated periods. The accuracy of these
three periods increases progressively. More specifically, Preal is
the closest to Pobs and their average deviation is 10.6%. The
deviation of Psc, 18.3%, is slightly larger than this latter and
the deviation of Panl is the largest at 39.3%. This indicates that
the eigenvalues of the governing equation are sensitive to the
coronal loop geometry.

4. Discussion and conclusions

In this paper, we process three randomly selected coronal loop
oscillation events, where the oscillation periods of the coronal
loops are fitted. In all three events, only the fundamental tone
is detected, and there is no obvious higher overtone component.
We estimate the density distribution of the coronal loop using

DEM diagnostics, and then we use the exponential decay model
to fit the density scale height. Next, we use the potential field
model to extrapolate the magnetic field distribution of the coro-
nal loop, and thereby reconstruct the 3D structure of the loops.
This analysis led us to three important results, as follows.
1. Combining the information available on the density and

oscillations, we estimate an average magnitude of the mag-
netic field strength of Bkink = 3.9 ± 0.4, 24.9 ± 0.8, and
14.4 ± 0.5 G for the three events considered. These values
are consistent with the results derived by applying the mag-
netic field extrapolation 〈B〉 = 4.3 ± 0.1, 22.9 ± 0.1, and
16.0 ± 0.1 G, respectively.

2. We used a string model to derive the approximated govern-
ing equation of the coronal loop and find an analytic solu-
tion (Eq. (24)) under the assumption that the loop has a
linear loop geometry, exponentially stratified density, and
uniform magnetic field. This solution requires a correction
factor πH/µ1s ha to Eq. (5) when taking the influence of
the density variation into account. It is shown that a loop
with higher density scale height H has a longer period, as
expected.

3. We used both analytical and numerical methods to com-
pute the periods with the information of density, magnetic
field, and different loop geometries. The periods calculated
with the extrapolated loop geometries are closest to the
observed ones, which are better than those periods calcu-
lated with the loop geometry taken as a semi-circle or a linear
shape.

There are several uncertainties in our calculations and some
improvement can be made in future, which is discussed from the
aspects of oscillation analysis, DEM diagnostics, assumptions in
the calculations, and magnetic field extrapolation as follows.

In our oscillation analysis, we sampled the data within a
certain time window and the non-linear fitting model is incom-
plete, which would cause some errors in deriving the oscilla-
tion parameters. In fact, we also tried to measure the oscillation
period using spectral analysis methods such as discrete Fourier
transform and wavelet transform. However, due to the fact that
we sampled the data in a certain time window, the frequency
detected by the former method is limited in resolution, which
means that the period value cannot be obtained accurately. On
the other hand, the wavelet transform depends on the choice of a
suitable wavelet function. While it is more effective to use spec-
tral analysis to confirm the existence of higher order overtones,
it is more precise to acquire the period of the fundamental fre-
quency using a fitting method.

The density and temperature distributions are diagnosed with
the DEM analysis in Sect. 2.2, where the density distributions
are obtained with the SSW routine aia_loop_autodem.pro.
To have the density of the entire loop, we sampled the data man-
ually. As a DEM analysis needs to satisfy the assumption of opti-
cal thickness and relies on the integration along the LOS, the
final temperature diagnostics has a large error and will affect the
density measurement through error transmission. In addition, if
the starting and ending points of our sampling data are not con-
sistent with the actual footpoints of the coronal loop, the den-
sity distribution will affect the fitting results of the density scale
height H and the density at the footpoint nf .

It is worth noting that the coronal loop structure obtained in
our simulation has an inclination and the loop geometry devi-
ates from a semi-circle, which were taken into account in our
calculations. We selected three points at a coronal loop to deter-
mine the loop plane, and then the influence of the inclination
was eliminated by using the rotation matrix to rotate it to the
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vertical direction. Next, the profile of the coronal loop was rep-
resented by an interpolation function of the height distribution
along the loop. Finally, the two complicated factors, the inclina-
tion and loop geometry, were considered in the governing equa-
tions. The results show that the coronal loop geometry has a sig-
nificant influence on the periods (Table 2). A loop with different
paths and the same magnetic and density distribution would have
markedly different oscillation periods.

In our measurement of Loop #1 (as shown in Fig. 3),
the magnetic field Bkink derived using the solar magneto-
seismological method is 3.9 ± 0.4 G while Aschwanden &
Schrijver (2011) obtained Bkink = 4.0 ± 0.7 G. We adopted
ε = 0.1 which is close to ε = 0.08 ± 0.01 used in
Aschwanden & Schrijver (2011). However, our derived plasma
density ni = 4.3 × 108 cm−3 is larger than ni = (1.9 ±
0.3) × 108 cm−3 obtained in Aschwanden & Schrijver (2011),
and the loop length L = 96.1 ± 10.98 Mm in our mea-
surement is much smaller than Losc = 143 ± 20 Mm
used in Aschwanden & Schrijver (2011). We integrated the
length of the selected field lines as the coronal loop length,
whereas Aschwanden & Schrijver (2011) adopted the trigono-
metric method. Our loop length is sensitive to the accuracy of
the magnetic model, and there is some considerable error as indi-
cated by the mismatch between the simulated magnetic field and
the observed coronal loops (see Fig. 3a). The average magnetic
field strength 〈B〉 = 4.3 ± 0.10 G obtained via Eq. (4) is much
lower than 〈B〉 = 11 G derived by Aschwanden & Schrijver
(2011). Here, we used the magnetic field extrapolation derived
by the potential field model, which is more accurate on small
scales than the PFSS model applied in Aschwanden & Schrijver
(2011). This is because the PFSS method makes use of the syn-
optic map of the SDO/HMI magnetogram, which is constructed
from the observations during a whole rotation. As a result, the
magnetic field obtained by the PFSS method is less accurate
than the magnetic field extrapolation using the real-time magne-
togram. However, our magnetic field extrapolation in the Carte-
sian coordinates adopts the linear approximation using a plane
tangent to the solar surface at the image centre (Gary & Hagyard
1990). This would cause deviations near the solar limb or with
a relatively large field of view. The aforementioned error can
be eliminated with the extrapolation in the spherical coordinate
(Gilchrist & Wheatland 2014; Guo et al. 2016a,b).

In conclusion, in the three chosen coronal loop oscillation
events, we measured the density distribution with a DEM anal-
ysis and obtained the distribution of magnetic field strength
as well as the information on loop geometry with magnetic
field extrapolations. We then used the physical and geometri-
cal parameters to compute the oscillation periods, which deviate
from the observed values by only 10.6% on average. That is to
say, the period derived by considering the realistic density, mag-
netic field, and loop geometry comprehensively coincides with
the observed period. In addition, our multi-tool research shows
that the loop geometry significantly affects the oscillation prop-
erties of coronal loops, which indicates that the period is sen-
sitive not only to the density and magnetic field but also to the
loop geometry.
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