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Abstract

This paper proposes bootstrap based tests for the specification of a given parametric con-
ditional distribution in autoregressive time series with GARCH-type disturbances. The tests
are based on an estimated residual empirical process and are implemented by parametric boot-
strap. We show that the proposed tests are asymptotically valid, consistent, and have nontrivial
asymptotic power against a large proportion of local alternatives. Our approach relies on non-
primitive regularity conditions and certain properties of exponential almost sure convergence.
The regularity conditions are shown to be satisfied by GARCH(p,q); this technique of veri-
fication is applicable to other models as well. In our Monte Carlo study, the proposed tests
performed well and better than several competing tests, including the information matrix test.
A real data example illustrates the testing procedure.

Keywords: GARCH; goodness-of-fit; residual empirical process; Kolmogorov-Smirnov test; lack-of-

fit test; stochastic recurrence equations.
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1 Introduction

Time series models with conditionally heteroscedastic disturbance terms, in particular those in the

family of Generalized AutoRegressive Conditional Heteroscedastic [GARCH] models, are widely

used in empirical studies; examples include option pricing and currency exchange rate. In view of

the practical importance of this class of models, there is a need for a range of specification tests in the

econometricians’ tool box. To this end, this paper develops methodology for testing the specification

of a fully parametric GARCH-type model that includes a parametric error distribution. This is

an area in which there is a scarcity of methodological developments although there is an extensive

literature on GARCH-type models. To implement the proposed test, an easy to use bootstrap

method is proposed and is shown to be asymptotically valid and consistent. The proposed methods

are applicable to a wide range of models used in empirical studies, including linear GARCH(p,q),

AR(k)-GARCH(p,q), and AR(k)-(Asymmetric)AGARCH(p,q).

To illustrate the nature of the testing problem, let us consider an example. Let Xi denote the

financial return from an investment at time i. Consider the AR(1)-GARCH(1,1) model:

Xi = µi(φ)+Ψ
1/2
i (φ)εi, µi(φ) = φ1+φ2Xi−1, Ψi(φ) = φ3+φ4{Xi−1−µi−1(φ)}2+φ5Ψi−1(φ),

where φ = (φ1, . . . , φ5)
⊤ is an unknown parameter ( ⊤ denotes transpose), {εi} are independent and

identically distributed [iid] with zero mean and unit variance, and the common probability density

function [pdf] fθ of {εi} is skew-t(θ) (Hansen 1994). The methodology developed in this paper can

be used for testing the null hypothesis that the parametric forms {µi(φ), Ψ(φ), fθ} are correct.

Formulation of the problem: Let N, Z, and R denote the sets of non-negative integers, integers,

and real numbers, respectively. For a given sequence {υi}i∈Z, let υi−1 (in bold font) denote the

vector of lagged values (υi−1, . . . , υi−k)
⊤, for some known positive integer k < ∞; although the

value of the lag-length k for different vectors could be different, we suppress it in our notation as it

does not affect the derivations. Thus, in what follows, the bold terms Xi−1 and µi−1 are vectors of

known lengths consisting of lagged values of Xi and µi respectively; further, they may have different

lengths. Let Hi denote the information set containing {. . . , X−1, . . . , Xi} at time i (i ∈ Z).

Assume that the process {Xi}i∈Z is strictly stationary and ergodic with finite second moment.

Let the model M be defined as follows:

M :

{
Xi = µi + {Ψi}1/2εi, {εi : i ∈ Z} are iid, εi ∼ F 0

µi = h(Xi−1,µi−1;φ), Ψi = g{Ψ i−1,ηi−1;φ}, F 0 = Fθ,
(1)

for some φ ∈ Φ ⊂ R
r and θ ∈ Θ ⊂ R

s, where F 0 is the common cumulative distribution function

[cdf] of the error terms {εi}i∈Z, E(εi) = 0, Var(εi) = 1, ηi = Xi − µi (i ∈ Z), Fθ is a cdf (θ ∈ Θ),
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the functional forms of {g, h, Fθ} are known, and the finite dimensions r and s are known; thus

F 0 = Fθ0 , with θ0 denoting the true value of θ, µi = E(Xi | Hi−1), and Ψi = Var(Xi | Hi−1)

(i ∈ Z). The distinction between F 0 and Fθ in (1) is important because we will also need to

consider the model defined by (1) without the restriction F 0 = Fθ for some θ ∈ Θ. Let f0 and fθ

denote the pdf’s corresponding to F 0 and Fθ respectively.

This paper develops methods for testing

H0 : Model M is correct vs H1 : Model M is not correct, (2)

where M is as in (1). The {AR(1)-GARCH(1,1), skew-t(θ)} model discussed earlier, is a special

case of M. Let us note that a test of the H0 in (2) is also a test of

H∗
0 : pr[Xi+1 ≤ x | Hi] = Fθ[{x−µi(φ)}/Ψ1/2

i (φ)], ∀x ∈ R, for some (φ,θ) ∈ Φ×Θ (i ∈ N). (3)

Related literature: Almost all of the papers in this literature fall into two categories, except the

information matrix test of White (1982). The studies in the first group have sound theory but are

applicable only to very special cases of M, but not to the general testing problem studied in this

paper. The tests in the second group are based on computer simulations for specific cases, but they

lack rigorous methodology. Thus, there is a need for further methodological developments on the

specific topic studied in this paper, namely test of H0 against H1 in (2).

In model M, the distribution of Xi, conditional on the past {Xj , j < i}, depends on the un-

observable set {. . . , X−1, X0} that extends to the infinite past. Estimation in such models is well

developed; for example, see Lee and Hansen (1994), Hall and Yao (2003), Francq and Zaköıan

(2004), Straumann and Mikosch (2006), Francq et al. (2011), and Conrad and Mammen (2016).

Nevertheless, the theory for testing the specification of the corresponding conditional distribution

model remains to be developed; in this context, most papers on testing focus only on the case the

conditioning variables in the conditional distribution of Xi is fully observable, for example as in

ARCH(p) models (Inglot and Stawiarski 2005; Koul and Ling 2006; Stawiarski 2009; Chen 2012;

Koul and Mimoto 2012; Chen and Hong 2014). The features of M that cause the technical chal-

lenges in developing a bootstrap specification test have been recognized, but the problem remains

unsolved (cf. Horváth et al., 2004).

The methodology for specification tests are available for some special cases of model M. For

example, several tests are available when the conditioning variables, {µj(φ), Ψj(φ), j = 1, . . . , i}, are
observable (cf. Corradi and Swanson 2006, Bierens and Wang 2017, Chen and Hong 2014, Troster

and Wied 2021, Neumann and Paparoditis 2008). However, this is not the case for M because
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the conditional variance, and hence the distribution of Xi, conditional on Hi−1, depends on the

unobservable {. . . , X−2, X−1, X0} extending back to infinite past (cf. Berkes et al. 2003, and Chap. 7

in Francq and Zaköıan 2010). Among the specification tests for M that allow for such unobservable

conditioning variables, there are a few for testing the specification of only some components of the

parametric specification (1). Examples include testing (a) the specification of Ψi(φ) in GARCH(1,1)

(Leucht et al. 2015), (b) the specification of {µi(φ), Ψi(φ)} (Escanciano 2010; Chen and Gao 2011;

Chen et al. 2003), and (c) against no serial residual correlation (Andreou and Werker 2015). Tests

for models with nonnegative error, for example those in Perera and Silvapulle (2017, 2021) and

Perera and Koul (2017), are not applicable to the setting of this paper (see also Dette et al. 2009).

Several tests are available for testing the specification of the error distribution in some special

cases; for example, Koul and Mimoto (2012), Chen (2012), Inglot and Stawiarski (2005); Stawiarski

(2009), Bai (2003), Koul and Ling (2006). None of them is applicable to the general testing problem

(2) for the model M in (1). The information matrix test of White (1982) is a general purpose test

that can be used for testing (2) (Huo and Cho 2021). Its performance in the general context of (2)

does not appear to have been evaluated.

Contribution of this paper : The main contributions of the paper can be summarised as follows:

(a) This paper develops methodology for testing the parametric specification of a large class of

GARCH type models of the form M in (1). A simple and easy to use parametric bootstrap

method for estimating the p-values of the tests is proposed and shown to be asymptotically valid.

(b) The main theorems show that the proposed tests are asymptotically valid and unbiased. Further,

for certain sequences of local alternatives, we show that the asymptotic local power is a strictly

increasing function of the distance between the null and the sequence of alternatives. Therefore,

the asymptotic local power is larger than the asymptotic size of the test, which we term non-trivial

local power. We show that the tests are consistent against a large proportion of fixed alternatives.

We recognize that there are local alternatives and fixed alternatives against which the proposed

tests do not have nontrivial power.

(c) A method for verifying the regularity conditions is illustrated for GARCH(p,q). This method

of verification has a general structure and is also applicable to a range of models, including AR(k)-

GARCH(p,q) and AR(k)-AGARCH(p,q). These verifications may turn out to be long for complex

models, but they follow a well-defined set of mathematical steps that can be performed independent

of the methodological developments in this paper. Thus, the main paper and the verifications for

GARCH(p,q) in the supplement are well separated and they may be read almost independently.
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General comments : Specification tests typically have the assumed model in the null hypothesis,

as in (2). By contrast, in superiority tests the desired model is in the alternative hypothesis and

everything else in the null model (Silvapulle and Sen 2005). An anonymous reviewer indicated that

such a superiority test withM in the alternative hypothesis would be useful and suggested a possible

formulation. Such a test would certainly be useful, but it would require significant new methodology.

Since the statistical inference problem (2) is formulated as a test of hypothesis, it cannot be

used for concluding that the model M is correct; all that it can do is to show whether or not

there is sufficient statistical evidence to conclude that the model M does not fit the data — this

is well known. Further, it cannot detect the source of model violation when the model M in H0

is rejected. Nevertheless, the following strategy is useful. The main scarcity in the specification

testing tool box for models of the form M is for testing the specification of the assumed parametric

form Fθ for the error distribution. Specification tests for {µi(·), Ψi(·)}, without involving Fθ, have

been developed (Escanciano et al. 2018). Therefore, we recommend that such tests and diagnostics

be applied first to choose suitable forms for {µi(·) and Ψi(·)}. Then apply the method in this paper

that is suitable for testing the entire specification M, including the error distribution and the iid

assumption of the error terms.

Outline of the paper : Section 2 introduces the test statistics and states the bootstrap implemen-

tation. Section 3 establishes the weak convergence of the test statistics. Section 4 provides the

general results on the validity of the bootstrap tests. Asymptotic power of the tests against fixed

and local alternatives is discussed in Section 5. Section 6 provides a brief discussion on the ap-

plicability of the method for testing the specification of GARCH(p,q); detailed verification of the

regularity conditions to ensure that our tests are applicable to GARCH(p,q), are provided in the

online supplement to this paper. The results of a simulation study are presented in Section 7, and

Section 8 contains a brief illustrative data example. The Appendix at the end of this paper provides

the main steps for the proofs of the theorems.

2 The test and its bootstrap implementation

Let the observable approximations {Ψ̃i, µ̃i, η̃i} of {Ψi, µi, ηi} be defined recursively by

µ̃i(φ) = h
(
Xi−1, µ̃i−1; φ

)
, η̃i(φ) = Xi − µ̃i(φ), Ψ̃i(φ) = g

(
Ψ̃ i−1, η̃i−1; φ

)
(i ≥ 1;φ ∈ Φ), (4)

conditional on the initial values for {(Xi, Ψ̃i, µ̃i) : i ≤ 0} chosen by the user; in this paper, we use

(Xi, Ψ̃i, µ̃i) = (X̄, 1, X̄) for i ≤ 0, where X̄ = n−1
∑n

i=1Xi. In a theorem established later in this
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paper, we show that the asymptotic properties of our tests do not depend on the initial values. Let

ℓi(φ) = logΨi(φ) + [η2i (φ)/Ψi(φ)], ℓ̃i(φ) = log Ψ̃i(φ) + [η̃ 2
i (φ)/Ψ̃i(φ)] (φ ∈ Φ). (5)

The unobservable Gaussian quasi-loglikelihood and its observable approximations are {−
∑

i ℓi(φ)}
and {−

∑
i ℓ̃i(φ)}, respectively.

To estimate the model under H0, we use the observable Gaussian quasi maximum likelihood

estimator [QMLE] φ̂ = argminφ∈Φ
∑n

i=1 ℓ̃i(φ). Let ε̃i = η̃i(φ̂)/{Ψ̃i(φ̂)}1/2 (i = 1, . . . , n) denote the

observable residuals. Under the null hypothesis H0, {ε̃i, i = 1, . . . , n} are expected to behave almost

as a simple random sample from Fθ. Therefore, we propose to estimate θ by θ̂ := argmaxθ∈ΘQn(θ),

where Qn(θ) =
∑n

i=1 ~(θ; ε̃i) and ~ is a suitably chosen function. For example, ~(θ; ε) could be

log fθ(ε), in which case θ̂ is expected to be close to the maximum likelihood estimator of θ based

on the unobservable sample {εi : i = 1, . . . , n}.
To simplify the statements of the main results, we assume that (φ̂, θ̂) converges in probability,

and define (φ0,θ0) = plim(φ̂, θ̂) where ‘plim’ denotes the probability limit. If H0 is true, then the

regularity conditions imposed later entail that (φ0,θ0) is the true parameter value of the null model

M in (1); ifH0 is not true then (φ0,θ0) is treated as a pseudo-true value. The bootstrap test is valid

even if we do not make the foregoing assumption that (φ̂, θ̂) converges in probability under H1,

but the results would be unnecessarily complicated. Next, with I denoting the indicator function,

we define the following two empirical distributions and their corresponding empirical processes:

Fn(x) = n−1
∑n

i=1 I(εi ≤ x), Wn(x) =
√
n
{
Fn(x)− Fθ0(x)

}
, (6)

F̃n(x) = n−1
∑n

i=1 I(ε̃i ≤ x), W̃n(x) =
√
n
{
F̃n(x)− F

θ̂
(x)

}
. (7)

If H0 is true then we expect n−1/2Wn(·) and n−1/2W̃n(·) to be uniformly close to zero. The

latter is observable, but not the former. Therefore, a test statistic can be based on the latter. If

H0 is not true, then we expect any mis-specification to result in F̃n being not uniformly close to

F
θ̂
. For example, suppose that the true error distribution F 0 is not of the form Fθ and that the

rest of the specification in M is correct. Then, F̃n is consistent for F 0, but F
θ̂
is not consistent for

F 0. Therefore, supx |W̃n(x)| is expected to be large. In fact, as shown in Section 5, if any one of

the three parametric forms {Fθ, µi(φ), Ψi(φ)} for the specification of model M is incorrect, then

supx |W̃n(x)| is expected to be large for almost any type of misspecification.

These heuristics suggest that we may use a suitably chosen functional of W̃n and θ̂, denoted

T := T (W̃n; θ̂), as a statistic for testing (2). In this paper, we consider the following:

Kolmogorov–Smirnov [KS], T1 = supx
∣∣W̃n(x)

∣∣; Cramér–von Mises [CvM ], T2 =
∫
W̃ 2
n(x)dFθ̂

(x);
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Kuiper [Ku], T3 = supx W̃n(x)+supx{−W̃n(x)}; Anderson–Darling [A2], T4 =
∫
W̃ 2
n(x)[Fθ̂

(x){1−
F
θ̂
(x)}]−1dF

θ̂
(x); Watson [U2], T5 =

∫ {
W̃n(x)−

∫
[W̃n(x)]dFθ̂

(x)
}2

dF
θ̂
(x).

Simpler formulas are available for computing the statistics T1, . . . T5, as indicated below. Since

F̃n(x) is a nondecreasing step function and F
θ̂
(x) is non-decreasing, it follows that the maximum and

the minimum of W̃n(x) may occur only at the n jump points, {ε̃1, . . . , ε̃n}. Therefore, Kolmogorov–

Smirnov and Kuiper statistics can be computed easily. For the integral statistics, simpler formulae

are derived by changing the variable of integration to y = F
θ̂
(x). Let ε̃(1) ≤ · · · ≤ ε̃(n) denote the

ordered values of {ε̃1, . . . , ε̃n}, D+ =
√
nmaxi

{
i/n − F

θ̂
(ε̃(i))

}
, and D− =

√
nmaxi

{
F
θ̂
(ε̃(i)) −

[(i− 1)/n]
}
. Then, we obtain the following simple computational formulas:

KS = max{D+, D−}, CvM =
∑n

i=1

{
Fθ̂(ε̃(i))− (2n)−1(2i− 1)

}2
+ (12n)−1,

Ku = D+ +D−, A2 = −n− n−1
∑n

i=1(2i− 1)[log{Fθ̂(ε̃(i))}+ log{1− Fθ̂(ε̃(n+1−i))}],
U2 = CvM − n{n−1

∑n
i=1 Fθ̂(ε̃(i))− 0.5}2.

Similar tests have been studied in the literature for models that are either simpler or different

(cf. Andrews 1997; Horváth et al. 2004). Our tests complement the literature on empirical processes

based tests such as those in Andrews (1997), Khmaladze and Koul (2004), Koul and Ling (2006),

Escanciano et al. (2018), and Delgado and Stute (2008).

The main results in Section 3 show that the limiting null distributions of test statistics such as

T1, . . . , T5 depend on the unknown parameter (φ0,θ0). The covariance kernel of the limiting process

of W̃n turns out to be complicated; consequently, it does not appear that it would be possible to

find a transformation that would lead to an asymptotically distribution free test, for example as in

Bai (2003), Koul et al. (2012), Perera and Koul (2017), and Escanciano et al. (2018). Therefore,

in this paper, we propose a bootstrap method to estimate the p-values of the test statistics and

implement the tests; for a detailed account of bootstrapping dependent processes, see Lahiri (2003).

2.1 The bootstrap algorithm for implementing the test

Since the population model is fully parametric underH0, we propose a parametric bootstrap method

based on T := T (W̃n; θ̂). The following algorithm uses the first m periods as burn-in.

Step 1: Compute {φ̂, θ̂, T} for the realized sample {X1, . . . , Xn}.
Step 2: Generate n+m+ 1 independent observations {ε∗−m, . . . , ε∗n} from F

θ̂
.

Step 3: Generate {X∗
−m, . . . , X

∗
n}, under H0, with (φ̂, θ̂) as the true population value.

[Remark: In this step, first choose the initial values (X∗
i , Ψ

∗
i , µ

∗
i ) = (X̄, 1, X̄), for i < −m, where

X̄ = n−1
∑n

i=1Xi. Then generate X∗
i recursively using the model equation (1), for i = −m, . . . , n.]

Step 4: Based on the bootstrap sample {X∗
1 , . . . , X

∗
n}, compute the analogs {φ̂∗

, θ̂
∗
, T ∗} of {φ̂, θ̂, T}.
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Step 5: Repeat steps 2–4 a large number of times and estimate the p-value by p̂, the proportion of

times T ∗ exceeds the sample value T. Finally, the proposed bootstrap test is

Reject H0 at level α if p̂ ≤ α. (8)

Under the assumptions of Theorem 2 in Section 4.2, it can be shown that the effect of the

initialization in Step 3 is negligible in large samples. Therefore, to simplify the exposition, we

assume that the above bootstrap method has no initialization effect.

3 Weak convergence of the test statistics under the null

The main result of this section shows that, under H0, the test statistic Tj converges in distribution

to a non-degenerate continuous random variable (j = 1, . . . , 5). This theorem imposes several

high-level regularity conditions that are stated as Assumptions 1-7. Since almost all of them have

appeared in the literature, we indicate where they have appeared and make only brief comments.

First, let us introduce some notation. For a function of a parameter and real variable, let ‘dot’

and ‘prime’ denote differentiations with respect to the parameter and the real variable, respectively.

For example, ~̇(θ, x) = (∂/∂θ)~(θ, x), ~′(θ, x) = (∂/∂x)~(θ, x), Ψ̇i(φ) = (∂/∂φ)Ψi(φ),

Ψ̈i(φ) = (∂2/∂φ∂φ⊤)Ψi(φ), Ḟθ(x) = (∂/∂θ)Fθ(x), and F
′

θ(x) = (∂/∂x)Fθ(x). Let

τi(φ) = Ψ̇i(φ)/Ψi(φ), ϕi(φ) = µ̇i(φ)/
√
Ψi(φ), (φ ∈ Φ). (9)

We say that a sequence of random variables {Yi}i∈N converges to zero exponentially almost surely,

Yi
e.a.s.→ 0, if there exists γ > 1 such that γiYi

a.s.→ 0 as i → ∞. Let
d→ and

p→ denote convergence in

distribution and convergence in probability, respectively. Let ‘
w⇒’ denote weak convergence.

3.1 Assumptions

In the following assumptions, B denotes a generic compact neighborhood of either φ0 or θ0.

Assumption 1. (1.1). The parameter space Φ is compact. The model (1) admits a unique sta-

tionary and ergodic solution {Ψi(φ0), µi(φ0)}i∈Z with φ0 as an interior point of Φ.

(1.2). µ0(φ)
a.s.
= µ0(φ0) and Ψ0(φ)

a.s.
= Ψ0(φ0) imply that φ = φ0.

(1.3). There exists an αL > 0 such that g(·) > αL [g is defined in (1)].

(1.4). µi, Ψi, µ̃i, and Ψ̃i are twice continuously differentiable (i ∈ Z), and E[|X0|4+d], E[|µ0(φ0)|4+d],
E[‖ϕ0(φ0)‖4+d], E[|Ψ0(φ0)|2+d], E[‖τ0(φ0)‖2+d] are finite for some d > 0.

Assumption 2. (2.1). supφ∈Φ |Ψ̃i(φ)− Ψi(φ)|, supφ∈Φ |µ̃i(φ)− µi(φ)| e.a.s.→ 0 as i → ∞.

(2.2). supφ∈B ‖ ˙̃Ψ i(φ)− Ψ̇i(φ)‖, supφ∈B ‖ ˙̃µi(φ)− µ̇i(φ)‖ e.a.s.→ 0 as i → ∞.

8



Assumption 3. (3.1). The objective function M(φ) := E[−ℓ0(φ)], where ℓi(φ) := logΨi(φ) +

{Xi − µi(φ)}2/Ψi(φ), is uniquely maximized at φ = φ0.

(3.2). E[ℓ̇0(φ0)ℓ̇0(φ0)
⊤] and E[ℓ̈0(φ0)] are invertible, ‖φ̂− φ0‖ = op(1), and

√
n(φ̂− φ0)− n−1/2A(φ0)

∑n
i=1 ℓ̇i(φ0) = op(1), where A(φ) = −[Eℓ̈0(φ)]

−1.

Assumption 4. The following results hold for every constant M > 0:

(4.1). sup
√
n | µi(t)− µi(s)− (t− s)⊤µ̇i(s) | {Ψi(φ0)}−1/2 = op(1),

(4.2). sup
√
n | {Ψi(t)}1/2 − {Ψi(s)}1/2 − 2−1(t− s)⊤Ψ̇i(s){Ψi(s)}−1/2 | {Ψi(φ0)}−1/2 = op(1),

where the supremum is taken over 1 ≤ i ≤ n and {(t, s) : t, s ∈ B,
√
n‖t− s‖ ≤ M}.

Assumption 5. max1≤i≤n ‖τi(φ0)‖ and max1≤i≤n ‖ϕi(φ0)‖ are op(n
1/2).

Assumption 6. (6.1). The parameter space Θ is compact with θ0 being an interior point of Θ,

Q(θ) := E[~(θ; ε0)] is uniquely maximized at θ = θ0, ‖θ̂−θ0‖ = op(1) and E[~̈(θ0; ε0)] is invertible.

(6.2). Let hθ(ε) = {hθ1(ε), . . . , hθq(ε)}⊤ := −E[~̈(θ; ε0)]
−1

~̇(θ; ε). Then, E[hθ0(ε0)] = 0 under H0.

There exists a d > 0 such that supθ∈B
∫
‖hθ(t)‖2+dfθ(t) dt < ∞.

Assumption 7. (7.1). For all θ ∈ Θ, Fθ has an a.e. positive density fθ.

(7.2). fθ(y) and Fθ(y) are twice continuously differentiable in (θ, y).

(7.3). There exist real numbers a > 0 and d > 0 such that
∫
|y|4+dfθ(y)dy < ∞ and

supy∈R,|u|<a(1 + y2)|f ′
θ{(1 + u)y}| < ∞ for θ ∈ B. Further, there exists a nonnegative function K

with
∫
K(y)dy < ∞, such that supθ∈B ‖ḟθ(y)‖ ≤ K(y) for all y ∈ R.

(7.4). supθ∈B, y∈R(1 + |y|)fθ(y), supθ∈B, y∈R ‖(∂2/∂θ∂θT )Fθ(y)‖2+d, supθ∈B, y∈R ‖Ḟθ(y)‖,
and supθ∈B

∫
|1− x|2+dfθ(x)dx are finite.

(7.5). There exists a uniformly continuous function r : R 7→ [0,∞), such that (a) E[r2(ε0)] < ∞
and supθ∈Θ

∫
r2(x)fθ(x) < ∞, (b) |~′(θ;x)| ≤ r(x) and |~′′(θ;x)| ≤ r(x) for θ ∈ Θ, and (c)

supθ∈B ‖u(θ;x)‖ ≤ r(x) for u = ~̇
′, ~̈ and ~̈

′.

Assumptions 1–5 involve only the semiparametric modelXi = µi(φ)+Ψ
1/2
i (φ)εi leaving the error

distribution F 0 unspecified. This model has been studied extensively in the literature for various

special cases, such as GARCH(p,q) and AGARCH(p,q), and Assumptions 1–5 have appeared as

lemmas in those studies. Therefore, these assumptions are well-entrenched in the literature.

Assumption 1 has been used in the literature to prove the asymptotic normality of n1/2(φ̂−φ0),

which requires E|X0|4 < ∞ (cf. Lee and Hansen 1994; Berkes and Horváth 2004; Francq and

Zaköıan 2004; Ling 2007; Straumann and Mikosch 2006). If E|X0|4 = ∞ then n1/2(φ̂ − φ0) does

not converge to a normal distribution but to a stable law (cf. Hall and Yao 2003). Our assumption
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E|X0|(4+d) < ∞ for some d > 0, is practically equivalent to E|X0|4 < ∞. Assumption 1 also requires

the true value φ0 to be an interior point. This condition may not allow overspecifications of Ψi(φ)

under the null hypothesis. As an example, suppose that the true DGP is GARCH(1,1) and the null

hypothesis specifies GARCH(2,2) with Ψi(φ) = φ1 + φ2X
2
i−1 + φ3X

2
i−2 + φ3Ψi−1(φ) + φ4Ψi−2(φ),

φ1 > αL > 0, φ2, φ3, φ4, φ5 ≥ 0. Then, the true parameter φ0 lies on the boundary of the parameter

space, and hence Assumption 1 is not satisfied (see, e.g, Remark 7.2 in Francq and Zaköıan 2010).

The e.a.s rate of convergence assumed in Assumption 2 plays a central role throughout this

paper. It is satisfied by many models of the form M, including GARCH(p,q) and AGARCH(p,q)

(see Straumann and Mikosch 2006). In general, it is satisfied by models that are defined by

stochastic recurrence equations as in (1) that satisfy a certain contractive on average property (see

Straumann and Mikosch 2006). The e.a.s. rate of convergence in Assumption 2 helps to show that

the remainder terms that appear in various Taylor series expansions, converge to zero faster than

n−1/2. Consequently, their effects become asymptotically negligible. Another use of the e.a.s. rate

of convergence in Assumption 2 is that the effect of the initial values on inference based on the

QMLE, and the effects of substituting (Ψ̃i, µ̃i) for (Ψi, µi) become asymptotically negligible.

An expansion of the form in Assumption 3 is typically satisfied by the Gaussian QMLE (cf. Ling

2007; Francq and Zaköıan 2004; Lee and Hansen 1994; Berkes and Horváth 2004). Assumption 4 is a

slightly stronger version of conditions (8.3.2) and (8.3.3) on page 381 in Koul (2002). Assumptions 3,

4, and 5 are satisfied if (a) Assumptions 1 and 2 are satisfied, (b) E[ℓ̈0(φ0)] and E[ℓ̇0(φ0)ℓ̇0(φ0)
⊤]

are invertible, and (c) there exist a compact neighbourhood Kφ(⊂ Φ) of φ0 and a d > 0, such that

supφ̄∈Kφ
E‖Y0(φ̄)‖2+d < ∞ for Y0 ∈ {τ0, ϕ0, Ψ̈0{Ψ0}−1/2, µ̈0{Ψ0}−1/2}. Thus, Assumptions 3, 4,

and 5 follow essentially from moment conditions previously used in the literature.

Assumptions 6 and 7 are about the parametric form Fθ for the error distribution. The only

high-level condition in Assumptions 6 and 7 is that θ̂
p→ θ0 as n → ∞. This is a mild condition

since it turns out that ε̃i and εi are close for large i. The other parts in Assumptions 6 and 7 can be

verified directly for a given Fθ. For most parametric families, Assumption 6 holds when θ̂ is based

on ~(θ;x) = log fθ(x); this is not surprising since θ̂ is the MLE in the iid setting. The condition
∫
|y|4+ddFθ(y) < ∞ as in Assumption 7.3 is mild since the asymptotic normality of the QMLE φ̂

requires E|ε1|4 < ∞. Conditions similar to Assumption 7.1 have been used in Koul and Ossiander

(1994) and Koul and Ling (2006). Assumption 7.5 is typically satisfied when ~(θ;x) = log fθ(x).

For example, for the case fθ is the normal density and ~(θ;x) = log fθ(x), Assumption 7.5 holds

with r(x) = |x|. Similarly, this condition is also satisfied by many other choices for fθ.
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3.2 Weak convergence of the test statistic under the null hypothesis

Let D[0, 1] and D[−∞,∞] denote the spaces of cadlag functions on [0, 1] and [−∞,∞] respectively,

equipped with the uniform metric. The next theorem says that, under the null hypothesis, each

test statistic converges weakly to a distribution that depends on unknown nuisance parameters.

Theorem 1. Suppose that H0 holds and Assumptions 1-7 are satisfied. Then, we have the following:

1. W̃n
w⇒ W0 in D[−∞,∞], where W0 is a centered Gaussian process.

2. There exists a continuous functional gj : D[0, 1] → R such that Tj = gj{W̃n◦F−1
θ0

}+op(1) and

Tj
d→ gj{G0} as n → ∞ where G0 is a centered Gaussian process with the same covariance

kernel as for W0 ◦ F−1
θ0

and W0 is the process in the previous part (j = 1, . . . , 5).

The proof is given in the Appendix at the end of this paper. The definition of the centered

Gaussian process W0 is provided in the online supplement. The method that we adopt for showing

that W̃n
w⇒ W0 is not standard, and involves some new techniques/results based on stochastic

recurrence equations,
e.a.s.→ rate of convergence, and asymptotic uniform expansions of weighted

empirical processes. The results in Escanciano (2010), in particular Theorem A1 therein, have

paved the way to the development of our new techniques. The proof of part 2 of our theorem

follows from the continuous mapping theorem and the weak convergence of W̃n.

4 Asymptotic validity of the bootstrap test

This section establishes the asymptotic validity of the bootstrap test (8).

4.1 Regularity conditions

Let ω̄ := (φ̄
⊤
, θ̄

⊤
)⊤ denote an arbitrary point in Φ × Θ. Let {Xi(ω̄), Ψi(ω̄), µi(ω̄)}i∈Z denote

the stationary process defined by model M except that the population parameter value of the

data generating process [DGP] is ω̄, which may be different from the true value ω0 of the target

population. In the previous section, ω̄ was fixed at ω0 := (φ⊤
0 ,θ

⊤
0 )

⊤ and we suppressed ω0;

for example, we wrote Xi for Xi(ω0). Now, to study bootstrap, we need to explicitly show the

population parameter ω̄ for the DGP. Let µi(φ; ω̄) and Ψi(φ; ω̄) based on {Xi(ω̄)}i≥0 be defined as

µi(φ; ω̄) = h
{
Xi−1(ω̄),µi−1(φ; ω̄);φ

}
, Ψi(φ; ω̄) = g

{
Ψ i−1(φ; ω̄),ηi−1(φ; ω̄);φ

}
, (10)

where ηi(φ; ω̄) = Xi(ω̄)−µi(φ; ω̄), (i ∈ Z; φ ∈ Φ); note that φ ∈ Φ and φ̄ ∈ Φ play different roles.
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Next, we modify (4) to define the corresponding quantities at the population parameter ω̄

instead of at ω0. Let µ̃i(φ; ω̄) and Ψ̃i(φ; ω̄) corresponding to {Xi(ω̄)}i≥0 be defined recursively as

µ̃i(φ; ω̄) = h
{
Xi−1(ω̄), µ̃i−1(φ; ω̄);φ

}
, Ψ̃i(φ; ω̄) = g

{
Ψ̃ i−1(φ; ω̄), η̃i−1(φ; ω̄);φ

}
, (11)

where η̃i(φ; ω̄) = Xi(ω̄)−µ̃i(φ; ω̄), conditional on (Xi(ω̄), Ψ̃i(φ; ω̄), µ̃i(φ; ω̄)) = (X̄, 1, X̄) for i ≤ 0.

Let Kω denote a ‘small’ set containing an open neighbourhood of ω0 ≡ (φ0,θ0); the precise

choice of Kω is made at the time of verifying the regularity conditions. Therefore, ω̂ lies in Kω

with probability approaching one. To establish bootstrap validity, we will consider DGPs with true

parameter ω̄, where ω̄ ∈ Kω. Recall that a regularity condition to establish the weak convergence

of the test statistic is that supφ∈Φ |Ψ̃i(φ;ω0) − Ψi(φ;ω0)| e.a.s.→ 0 as i → ∞ (see Assumption 2).

To establish validity of the bootstrap, we need the corresponding stronger uniform convergence,

supω̄∈Kω
supφ∈Φ |Ψ̃i(φ; ω̄)− Ψi(φ; ω̄)| e.a.s.→ 0 as i → ∞. The crux of Condition M, stated below for

validity of bootstrap is that Assumptions 1–7 hold uniformly over ω̄ ∈ Kω.

Condition M. There exist compact neighbourhoods Kφ(⊂ Φ) and Kθ(⊂ Θ) of φ0 and θ0, respec-

tively, such that the following conditions hold with Kω = Kφ ×Kθ:

(M1). (a) At every ω̄ ∈ Kω, there exists a unique stationary ergodic process {Xi(ω̄), Ψi(ω̄), µi(ω̄)}i∈Z,
satisfying model M defined by (1). (b) sup(φ,ω̄)∈Φ×Kω

|Ỹi(φ; ω̄) − Yi(φ; ω̄)| e.a.s.→ 0 as i → ∞ for

Yi ∈ {µi, Ψi}. [The symbol Ỹi(φ; ω̄) for Yi = µi, denotes µ̃i(φ; ω̄).]

(c) For Yi ∈ {µ̇i, Ψ̇i, Ψ̈i, µ̈i}, we have sup(φ,ω̄)∈Kφ×Kω
‖Ỹi(φ; ω̄)− Yi(φ; ω̄)‖ e.a.s.→ 0 as i → ∞.

(M2). For the process {Xi(ω̄), Ψi(φ; ω̄), µi(φ; ω̄)}, let the analog of {τi(φ), ϕi(φ), ℓi(φ)} be denoted

by {τi(φ; ω̄), ϕi(φ; ω̄), ℓi(φ; ω̄)}. Let E(ω̄) and P (ω̄) denote the corresponding expectation and prob-

ability measure, respectively. Then, we have the following:

(a) For some d > 0, sup(φ,ω̄)∈Kφ×Kω
E(ω̄)‖Y0(φ; ω̄)‖2+d < ∞ for Y0 ∈ {τ0, ϕ0, Ψ̈0Ψ

−1/2
0 , µ̈0Ψ

−1/2
0 }.

(b) E(ω̄)[ℓ̇0(φ̄; ω̄)ℓ̇0(φ̄; ω̄)⊤], E(ω̄)[ℓ̈0(φ̄; ω̄)], and E(ω̄)[~̈(θ̄; ε0(ω̄))] are nonsingular (ω̄ ∈ Kω).

(M3). (a) Assumptions 6 and 7 in Section 3.1 hold with B = Kθ.

(b) Let ωn := (φn,θn) denote a given non-random sequence such that ωn → ω0 as n → ∞.

Let the analog of {φ̂, θ̂}, based on {Xi(ωn), Ψi(φ;ωn), µi(φ;ωn) : i = 1, . . . , n}, be denoted by

{φ̂(ωn), θ̂(ωn)}. Let h
(ω)
θ (t) = {h(ω)

θ1 (t), . . . , h
(ω)
θq (t)}⊤ := −E(ω)[~̈(θ; ε0(θ))]

−1
~̇(θ; t). Then, there

exists d > 0 such that supω∈Kω

∫
‖h(ω)

θ (t)‖2+dfθ(t) dt < ∞. Further, ‖θ̂(ωn)−θn‖ = oP (ωn)(1) and

θ̂j(ωn)− θnj =
1

n

n∑

i=1

h
(ωn)
θnj

(εi(θn))− [φ̂(ωn)− φn]
⊤Qnnj + oP (ωn)(n−1/2) (j = 1, . . . , q),

where Qnnj = n−1
∑n

i=1[ϕi(φn;ωn) + τi(φn;ωn)εi(ωn)/2]h
′(ωn)
θnj

(εi(θn)).
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(M4). (a) Assumption 1.3 in Section 3.1 holds. (b) For any ω̄ ∈ Kω, if µ0(φ; ω̄)
a.s.
= µ0(φ̄; ω̄) and

Ψ0(φ; ω̄)
a.s.
= Ψ0(φ̄; ω̄) then φ = φ̄.

Next, we comment on the foregoing conditions and then state the validity of the bootstrap

test in the next subsection. Condition (M1)(a) is essentially the same as Assumption (1.1), except

that the latter is about the existence of a solution to the defining equations at the single value ω0

while (M1)(a) is for any fixed value in a neighbourhood of ω0. In practice, there is no difference

between these two conditions since ω0 is arbitrary and unknown. Conditions (M1)(b) and (M1)(c)

correspond to Assumption 2; this is the core of Condition M. The difference is that Condition (M1)

requires the convergence in Assumption 2 to hold uniformly in a small neighbourhood of ω0 rather

than only at the fixed point ω0. If Condition (M1) is satisfied then Assumption 2 holds when the

true DGP corresponds to either (a) ωn with ωn → ω0, or (b) ω̂ ∈ Kω, conditional on {X1, . . . , Xn}.
The main purpose of the stochastic recurrence equation method, developed and illustrated in the

Supplement for GARCH(p, q), is to verify (M1)(b) and (M1)(c).

Condition (M2) is mild and most of it is already contained in Assumptions 1–5. Finiteness of the

moments relating to τ0 and ϕ0 follow from Assumption (1.4). Condition (M2)(b) is a slight variation

of Assumptions (3.2) and (6.1). Condition (M3)(b) is essentially an extension of Proposition 3 in

the Appendix to the triangular array setup. Once (M2) has been established, (M3)(b) should follow

without much difficulty in much the same way as for the Quasi-loglikelihood function. Condition

(M4)(b) is essentially the same identifiability requirement as Assumption (1.2).

4.2 The main result on the asymptotic validity of the bootstrap test

First, we recall some standard notation. Let Op∗n , op∗n , and E∗ denote the usual stochastic orders

of magnitude and expectation, respectively, with respect to the bootstrap law, P ∗
n , conditional on

{X1, . . . , Xn}. The convergence in distribution of bootstrap statistics is denoted by ‘
d∗−→’. For

example, ‘T ∗
j

d∗→ gj(G0), in probability ’ means that P ∗
n(T

∗
j ≤ z)

p→ P{gj(G0) ≤ z}, at every

continuity point z of P{gj(G0) ≤ z}. The convergence of bootstrapped values such as T ∗
j and of

processes such as W̃ ∗
n{F−1

θ̂
(·)} presented below are ‘in probability’, and they are valid irrespective

of whether or not H0 is true.

Theorem 2. Suppose that Conditions (M1)–(M4) are satisfied. Additionally, assume that (φ̂, θ̂)

converges in probability to (φ0,θ0), and that (φ0,θ0) is an interior point in Φ × Θ. Let G0 be

the limit process introduced in Theorem 1 except that (φ0,θ0) is the pseudo-true value if H0 is not

satisfied. Then, conditional on {X1, . . . , Xn},
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1. W̃ ∗
n ◦ F−1

θ̂
converges weakly to G0, in probability.

2. g{W̃ ∗
n ◦ F−1

θ̂
} d∗→ g{G0}, in probability, for any continuous functional g : D[0, 1] → R.

3. There exists a continuous functional gj : D[0, 1] → R such that T ∗
j = gj(W̃

∗
n ◦ F−1

θ̂
) + op∗n(1),

in probability (j = 1, . . . , 5).

4. The p̂ used in (8) is a valid large sample estimate of the p-value, and the bootstrap test (8)

based on Tj is asymptotically valid (j = 1, . . . , 5).

We close this section with a few comments on the possibility of extending the methodology

developed in this paper to the multivariate GARCH family. To establish the asymptotic validity of

our tests we show that the asymptotic approximations derived for a fixed true value (φ0,θ0), see,

e.g., Straumann and Mikosch (2006), hold uniformly over populations having the true parameter

in a neighbourhood of (φ0,θ0). In order to extend the methodology developed in this paper to the

multivariate GARCH we need to first extend the aforementioned type of uniform convergence results

to a multivariate setup. A particularly important property of the stochastic recurrence equations

defining the GARCH family that we use in our proofs is that it is “contractive on average”, which

is established by showing that the top Lyapunov exponent is less than one. It is encouraging that

some multivariate GARCH models (see (A2) on page 295 in Francq and Zaköıan, 2010) satisfy such

a condition. This indicates that the asymptotic approximations that we derive for a fixed true value

may also be extended to a multivariate setting. However, it is not clear whether such expansions

would also hold uniformly over a local parameter space in a multivariate setting. In addition, to

establish bootstrap validity, we develop crucial results in Section S3 in the Supplement, in particular

Theorem S1. This theorem provides a uniform approximation of weighted empirical processes in

a triangular array setting. If we were to extend our proofs to multivariate GARCH, we need to

extend this theorem to the multivariate setting. However, the theoretical foundation of uniform

convergence of multivariate weighted empirical processes is not yet well-developed, and hence it is

unclear whether or not such a result would hold in the multivariate setting. Thus, although there

are some promising indications that our methodology could potentially be extended to multivariate

GARCH, there are several significant technical challenges that need to be resolved first.

5 Asymptotic power of the tests

Since the model under the null hypothesis is fully parametric and the test does not involve kernel

type nonparametric components, one would expect that the proposed tests would have non-trivial
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limiting power against certain local alternatives converging to the null hypothesis at the parametric

rate O(n−1/2). We consider two such sequences of local alternatives, each corresponding to violating

one assumption in H0. The first assumes that only the error distribution is misspecified, and the

second assumes that only the conditional mean and/or conditional variance is misspecified.

5.1 Local power when only the error distribution is misspecified

Let F̃ denote a cdf satisfying the conditions imposed on the true error distribution. Let δ ≥ 0

be fixed but arbitrary. Define m(·) := {F̃ (·) − Fθ0(·)} − [
∫
hθ0(ε) dF̃ (ε)]⊤Ḟθ0(·) and F(n) :=

(1− n−1/2δ)Fθ0 + n−1/2δF̃ (n > δ−2). Suppose that F(n) 6∈ {Fθ : θ ∈ Θ}. Consider the sequence of

local alternatives, H1n : The model (1) holds except that the common error distribution is F(n).

Theorem 3. Suppose that Assumptions 1-7 hold. Further, assume that supx∈R[f̃(x)/fθ0(x)] < ∞,

Ḟθ0(·) is continuous on R, and Ḟθ0(−∞) = 0 = Ḟθ0(∞). Then, under H1n, W̃n(·) w⇒ δm(·)+W0(·),
where W0 is the centered Gaussian process in Theorem 1. In consequence, the asymptotic local power

of Tj (j = 1, . . . , 5) strictly increases with δ; further, the asymptotic distribution of the test statistic

under H1n strictly stochastically dominates that under H0. Additionally, suppose that (M1)–(M4)

are also satisfied. Then, conditional on {X1, . . . , Xn}, the aforementioned asymptotic local power

properties of Tj carry over to the corresponding bootstrap test in (8), in probability (j = 1, . . . , 5).

To prove this theorem, we apply an extension of the Anderson lemma to Gaussian processes

(Lewandowski et al. 1995). Andrews (1997) studied Kolmogorov–Smirnov type specification tests

for a special case of the setting in this paper. Andrews conjectured that Kolmogorov type tests

have local asymptotic power strictly larger than the asymptotic size of the test. Our foregoing

theorem shows that the result that Andrews (1997) conjectured is correct. Finally, let us note that

to prove the strict stochastic dominance result in Theorem 3, an approach based on the Kac–Siegert

representation appears difficult.

5.2 Local power when the conditional mean and/or variance is misspecified

Let ri = r(Xi−1, Xi−2, . . .) and si = s(Xi−1, Xi−2, . . .) be stationary processes satisfying the moment

conditions of µi and Ψi, respectively. Further, suppose that the following probability limits exist:

Rr = plim n−1
∑n

i=1 ri/Ψ
1/2
i , Rrϕ = plim n−1

∑n
i=1(riϕi/Ψ

1/2
i ), Rs = plim n−1

∑n
i=1 si/Ψi, and

Rsτ = plim n−1
∑n

i=1(siτi)/Ψi, where τi and ϕi are as in (9). Let δ > 0 be fixed but arbitrary.

Further, let H2n : Xi = (µi+ n−1/2δri) + (Ψi+ n−1/2δsi)
1/2εi (i ∈ N) with the rest of the model

specification in M being correct ; this setting is similar to that in Ling and Tong (2011). Thus,
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the only misspecification is in the conditional mean and/or variance. Let λn denote the likelihood

ratio for H0 against H2n. Then, we have log(λn) = δn−1/2
∑n

i=1Ki + Rn, for some {Ki}i∈N and

Rn. As in the proof of Theorem 3 in the previous section on local power, it may be verified that

log(λn) is asymptotically N(−2−1σ2, σ2) for some σ > 0, and H0 is contiguous to {H2n}n∈N. Hence
the techniques in the previous subsection can be applied for deriving the asymptotic local power

against H2n. The proof of the next theorem is similar to that of Theorem 3, and hence is omitted.

To simplify notation, let us write f, F and Ḟ for fθ0 , Fθ0 , and Ḟθ0 respectively. Let A = A(φ0),

where A(φ) = −[Eℓ̈0(φ)]
−1 (see Assumption 3). Let h(ε) = hθ0(ε), where hθ(ε) is defined in

Assumption 6. Let τi = Ψ̇i(φ0)/Ψi(φ0), ϕi = µ̇i(φ0)/
√

Ψi(φ0), and Q = plim[n−1
∑n

i=1Qi], where

Qi = h
′

(εi){ϕi + 2−1εiτi}⊤; the matrix Qi arises in the proof of Theorem 1. Let

Mµ(x) = Rr

[{∫
f ′(t)h⊤(t) dt

}
Ḟ (x)− f(x)

]
− 2R⊤

rϕA
[
Q⊤Ḟ (x) +

{x

2
E[τ1] + E[ϕ1]

}
f(x)

]

Mψ(x) =
Rs

2

[{∫
tf ′(t)h⊤(t) dt

}
Ḟ (x)− xf(x)

]
−R⊤

sτA
[
Q⊤Ḟ (x) +

{x

2
E[τ1] + E[ϕ1]

}
f(x)

]
.

Then, we have the following result about the asymptotic local power of the tests.

Theorem 4. Suppose that Assumptions 1-7 are satisfied. Further, suppose that Ḟ (·) is continuous
on R, and Ḟ (−∞) = 0 = Ḟ (∞). Then, under H2n, W̃n(·) w⇒ δM(·) + W0(·), in D[−∞,∞],

where W0 is the centered Gaussian process in Theorem 1, M(x) = Mµ(x) +Mψ(x). Suppose that

M(x) 6= 0 on a set of positive measure. Then, the asymptotic local power of Tj (j = 1, . . . , 5)

strictly increases with δ; further, the asymptotic distribution of the test statistic under H2n strictly

stochastically dominates that under H0. Additionally, suppose that Conditions (M1)–(M4) are also

satisfied. Then, conditional on {X1, . . . , Xn}, the aforementioned asymptotic local power properties

of Tj carry over to the corresponding bootstrap test in (8), in probability (j = 1, . . . , 5).

This theorem shows that the test has asymptotic local power larger than the asymptotic size of

the test if and only if M(x) 6= 0 for x ∈ D, where D is some set with positive measure. Due to the

nature of the above explicit form of M(x) it is difficult to provide general primitive conditions to

characterize the cases when M(·) = 0 and hence the local asymptotic power in Theorem 4 is zero.

Nevertheless, it is instructive to examine the expression for M(x) in a simple example.

Let us consider the ARCH(1) model Xi = Ψ
1/2
i εi, where Ψi = φ0 + φ1X

2
i−1. We consider

the simpler case when the error distribution Fθ = F 0 is free of unknown parameters; therefore,

there is no parameter θ, and f(x) > 0 (x ∈ R). Then Ḟθ0(x) = 0, ϕi(φ) = µ̇i/Ψi = 0, and

hθ(ε) = 0. Consider the sequence of local alternatives H2n : Xi = (Ψi + n−1/2δsi)
1/2εi, where

si = s(Xi−1, Xi−2, . . .) = α0 +
∑p0

j=1 αjX
2
i−j for some p0 ∈ N, α0 > 0, and 0 ≤ αj < 1 (j =

16



1, . . . , p0). Then {si} is strictly stationary and ergodic and 0 < E(s1) < ∞. Further, Mµ = 0

and Mψ(x) = Pxf(x), where P = −2−1plim n−1
∑n

i=1[1 + τ⊤i AE(τ1)]si/Ψi = −2−1[E(s1/Ψ1) +

E(τ⊤1 As1/Ψ1)E(τ1)], τi = (1, X2
i−1)

⊤Ψ−1
i , and A[2×2] = 2E{[1, X2

i−1; X2
i−1, X

4
i−1]Ψ

2
i−1}. Note that

si is strictly positive, the elements of τi are positive with probability one, the elements of E(τ1) and

A are positive, and P = −2−1[E(s1/Ψ1)+E(τ⊤1 As1/Ψ1)E(τ1)] > 0. Therefore, M(x) = Pxf(x) 6= 0

for every x 6= 0. Therefore, our bootstrap test has asymptotic local power larger than its asymptotic

size. Similarly, our test has non-trivial asymptotic power against H2n for any stationary sequence

{si} satisfying E(s1/Ψ1) + E(τ⊤1 As1/Ψ1)E(τ1) 6= 0. However, if E(s1/Ψ1) = −E(τ⊤1 As1/Ψ1)E(τ1)

then our test does not have nontrivial local power.

5.3 Consistency of the tests against fixed alternatives

We say that the bootstrap test based on Tj is consistent if, conditional on {X1, . . . , Xn}, the p-value
p̂ in (8) converges to 0, in probability, as n → ∞, under the fixed alternative. Suppose that the

true DGP is different from that in H0, which would be the case if one of the parametric forms

{Ψi(φ) : φ ∈ Φ}, {µi(φ) : φ ∈ Φ}, or {Fθ : θ ∈ Θ} is not correctly specified. For simplicity, we

consider only the Kolmogorov–Smirnov type statistic T1 := n1/2‖F̃n −F
θ̂
‖∞. In general, we would

expect F̃n, being the empirical distribution of the residuals {ε̃1, . . . , ε̃n}, to converge to a distribution
function under some conditions, which may include that the true DGP is stationary. Let us suppose

that this is the case, and there exists a distribution function Ga such that ‖F̃n −Ga‖∞ = op(1).

Under the assumptions of Theorem 2, we have ‖F
θ̂
− Fθ0‖∞ = op(1) and hence n−1/2T1 :=

‖F̃n − F
θ̂
‖∞

p→ ‖Ga − Fθ0‖∞. In general, we do not know the functional form of Ga or the value

of ‖Ga − Fθ0‖∞. If ‖Ga − Fθ0‖∞ 6= 0 then T1 = n1/2‖F̃n − F
θ̂
‖∞

p→ ∞ as n → ∞, and hence

the bootstrap test based on T1 would be consistent. Next, we consider two fixed alternatives, show

that ‖Ga − Fθ0‖∞ 6= 0, and deduce the consistency of the bootstrap test.

Suppose that the assumptions of Theorem 2 are satisfied, the error distribution F 0 is not of

the form Fθ (θ ∈ Θ), and the rest of the specifications in H0 are correct. Since F 0 is not of the

form Fθ (θ ∈ Θ) and Θ is compact, we have ‖F 0 − Fθ0‖∞ > 0. Since the only misspecification is

in the error distribution, it follows that the Gaussian QMLE φ̂ is consistent for the true value φ0,

‖F̃n − F 0‖∞ = op(1) (see the proof of Theorem 1), the aforementioned Ga may be chosen as F 0,

and ‖Ga − Fθ0‖∞ = ‖F 0 − Fθ0‖∞ > 0. Therefore, the bootstrap test based on T1 is consistent.

Next, we consider consistency of the test when the conditional variance is misspecified; for

simplicity, we consider the case when there is no mean function µi. Suppose that the null model

is H0 : Xi = {Ψi(φ)}1/2εi, and that the true DGP is Xi = g
1/2
i ei, where {Xi, gi, ei} is stationary
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and {ei} is iid with common continuous distribution function F e(·). Let Bi = Ψ
1/2
i (φ0)g

−1/2
i and

Ga(x) = E[F e(Bix)] (x ∈ R), where the expectation E(·) is with respect to the true DGP.

To study consistency of the test, let us suppose that gi is not of the form Ψi(·), and hence

the conditional variance is misspecified. Then, {Bi}i∈N forms a sequence of identically distributed

nondegenerate random variables, and Ga(x) := E[F e(Bix)] is a continuous cdf. Further, since

F̃n(x) = n−1
∑n

i=1 I(ε̃i ≤ x) (x ∈ R), where ε̃i = Ψ̃
−1/2
i (φ̂)g

1/2
i ei (i = 1, . . . , n), it can be shown

using the regularity conditions of the bootstrap tests and by applying the Ergodic theorem that

F̃n(x) = Ga(x)+op(1) (x ∈ R). Then, by using a Glivenko-Cantelli type argument, we obtain that

the uniform convergence ‖F̃n −Ga‖∞ = op(1) also holds, and hence ‖F̃n − F
θ̂
‖∞

p→ ‖Ga − Fθ0‖∞.

Therefore, if ‖Ga − Fθ0‖∞ 6= 0, then T1
p→ ∞ as n → ∞ and hence the bootstrap test based

on T1 is consistent. Since {Bi}i∈N is nondegenerate, one would expect in this scenario to have

‖Ga − Fθ0‖∞ 6= 0, irrespective of whether or not the error distribution is correctly specified;

the main feature that drives the consistency of the test in this case is the fact that {Bi}i∈N is

nondegenerate under misspecifications of the conditional variance.

Similar type of arguments hold when the null model is the more general formM that includes the

mean function µi(·), and the misspecification may be in any part of the specification in M. Further,

such arguments are also applicable to the tests based on {T2, . . . , T5} with the norm ‖ · ‖∞ replaced

by that corresponds to the particular statistic. The following proposition summarizes these results.

Proposition 1. Suppose that the assumptions of Theorem 2 are satisfied, and one of the three

parametric specifications {Ψi(φ), µi(φ), Fθ} in H0 is not correct. Additionally, assume that there

exists a distribution function Ga such that ‖F̃n −Ga‖∞ = op(1) and ‖Ga − Fθ0‖∞ > 0. Then, the

bootstrap test (8) based on Tj is consistent (j = 1, . . . , 5).

In view of Proposition 1 our tests may not have power against misspecifications that allow

‖ plim F̃n − Fθ0‖∞ = 0. The set of such fixed alternatives appear to be small.

6 Verification of the high-level assumptions for GARCH(p, q)

Since the asymptotic validity of the proposed bootstrap tests are established under a set of high-

level conditions, it is essential to know how these conditions could be verified for a given model. In

this section, we indicate the formulation for verifying the regularity conditions for GARCH(p,q),

and the detailed verifications are relegated to the online supplement. The method of verification

therein is a step-by-step exercise in mathematics, and it is applicable to a range of models.
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Consider the GARCH(p,q) model with error distribution Fθ:

M :

{
Xi = {Ψi}1/2εi, {εi : i ∈ Z} are iid, εi

d∼ Fθ,
Ψi = α0 +

∑p
j=1 αjX

2
i−j +

∑q
j=1 βjΨi−j

(12)

for some (φ,θ) where φ⊤ = (α0, α1, . . . , αp, β1, . . . , βq). Let Fθ be the skew−t(θ) where θ = (v, λ)⊤,

v ≥ 5. The details provided below would remain largely unchanged for many other distributions.

Let {Ui}i∈Z be iid uniform(0,1) random variables, and εi(θ) = F−1
θ (Ui), (θ ∈ Θ; i ∈ Z). Without

loss of generality, assume that εi = εi(θ0). A typical assumption made in empirical studies involving

GARCH(p,q) is that {1−
∑

j βj0 −
∑

j αj0} > 0 and E{|ε1|4} < ∞ (Francq and Zaköıan 2010).

Let Zi = supθ̄∈Kθ
|εi(θ̄)|, where Kθ denotes a closed ball in Θ containing the true value θ0

as an interior point. If {1 −
∑

j βj0 −
∑

j αj0} > 0 and E(|Zi|4+δ) < ∞ for some δ > 0 and Kθ,

then the conditions of Theorem 2 for the consistency of the bootstrap test are also satisfied (see

the Supplement). Therefore, we conclude that the bootstrap test (8) for testing the specification

of model M in (12) is consistent. The additional requirement E(|Z1|4+δ) < ∞, for some δ > 0, is

only slightly stronger than the condition E{|ε1|4} < ∞.

In the method of verification presented in the Supplement, we represent both the model under

the null hypothesis and the operational bootstrap processes simultaneously in a system of stochastic

recurrence equations [SRE]. These equations are defined such that the observable random quantities,

such as Xi and X∗
i (i = 1, . . . , n), are generated simultaneously by the same SRE. Then, we invoke

results from the literature on SRE.

The regularity conditions in the main theorems of this paper on the consistency of the bootstrap

are weak enough to ensure that the results are applicable to a broad class of models that are likely

to be used in empirical studies. Some of the steps in the verifications are in fact generalizations

of the steps to show that the Gaussian QMLE is asymptotically normal, using the SRE approach.

These observations lead us to conjecture that, for a given specific model of the form M, if the

asymptotic normality of the Gaussian QMLE φ̂ can be established using the SRE approach (for

example, as in Straumann and Mikosch 2006), it is likely that the conditions (M1)–(M4) are also

satisfied and they can be verified using the method illustrated in the Supplement for GARCH(p,q).

Conversely, if the asymptotic normality of φ̂ cannot be established using the SRE approach then

it is likely to be difficult to verify (M1)–(M4) using the method illustrated in the Supplement.
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7 Simulation Study

This section presents the results of a simulation study that evaluates the finite sample performance

of the proposed tests and comparisons with the information matrix test of White (1982). For the

null model, we consider (a) GARCH(1,1) and (b) AR(1)-GARCH(1,1), each combined with a range

of choices for Fθ. We include the test statistics, KS, CvM , Ku, A
2, and U2 defined in Section 2.

Since our tests are developed for a broad class of null models of the form M, it is desirable to

include some special cases of model M and tests that are specifically developed for the special cases.

To this end, we consider the test proposed by Koul and Mimoto (2012), denoted KM hereafter,

which is developed for GARCH(p,q) with the error distribution being free of unknown parameters.

In our simulation study, the KM test turns out to have large type-I error rates. Therefore, we

also consider a non-operational size corrected version of KM , denoted KMe. This test uses the

true value of ω in the computations instead of the estimator ω̂, and computes the critical value by

simulation. Thus, KM and KMe are neither operational nor competitors to our tests, but they

provide useful information to assess the performance of our tests against some benchmark. With

this in mind, we consider several cases for which the KM and KMe tests are applicable, e.g., the

GARCH(1,1) model with standard normal error distribution. For the null error distribution of

standard normal, we also include the Jarque-Bera test for normality (cf. Bera and Jarque, 1981).

Empirical power of the tests are evaluated against various misspecifications of the conditional

mean, conditional variance, error distribution, and violations of the iid error assumption. We

consider sample sizes ranging from 500 to 15000, with 2000 Monte Carlo replications, and adopt

the “Warp-Speed” Monte Carlo method of Giacomini et al. (2013).

The choices for the error distribution

F1: Standard normal [N]; pdf: fN (x) = (2π)−1/2 exp(−x2/2).

F2: Laplace [L]; pdf: fL(x) = 2−1/2 exp(−
√
2|x|).

F3: Standardized t with d degrees of freedom [Std t(d)].

F4: Generalized error distribution [GED]; pdf: fGE(x,θ) = {2Γ(θ−1)}−1θCθ exp(−|Cθx|θ),
where Γ is the gamma function, Cθ = {Γ(3θ−1)/Γ(θ−1)}1/2, and θ ∈ Θ ⊂ R

+.

This family encompass several distributions, for example Laplace (θ = 1) and normal (θ = 2).

F5: Standardized extreme value distribution [SEVD]; pdf: fEV (x) = β−1 exp{z − exp(z)},
where z = (x−m)/b, b =

√
6/π, m = bγe, and γe is the Euler-Mascheroni constant.

F6: Skewed-t(v, λ) distribution, where v and λ are the degrees of freedom and skewness parameters

respectively (cf. Hansen 1994).
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F7: Normal-Laplace mixture [NL(ρ)]; pdf: fNL(x) = (1− ρ)fN (x) + ρfL(x).

The choices for the data generating process

M1: G-F [GARCH(1,1) model]: Xi = {Ψi}1/2εi, Ψi = 0.1 + 0.2X2
i−1 + 0.7Ψi−1, εi

iid∼ F.

[In the abbreviation G-F , F denotes the error distribution, and it may be any of the aforementioned

7 distributions; for example, G-N denotes GARCH(1,1) with standard normal error distribution.]

For the DGPs M2 – M4 below, we used the GARCH(1,1) model, Ψi = 0.1 + 0.2e2i−1 + 0.7Ψi−1.

M2: ARG-F [AR(1)-GARCH(1,1)]: Xi = 0.1 + 0.2Xi−1 + ei, ei =
√
Ψiεi, εi

iid∼ F.

M3: ARG(a)-F [AR(1)-GARCH(1,1) with non-iid errors]: Xi = 0.1 + 0.2Xi−1 + ei,

ei =
√
Ψiεi, εi = (c0εi−1 + c1)ai, ai

iid∼ F, c0 = 0.3, c1 = (1− c20)
1/2.

M4: TARG-F [Threshold AR(1)-GARCH(1,1)]:

Xi :=

{
0.5 + 0.8Xi−1 + ei, Xi−1 ≤ 0.8,

0.05 + 0.06Xi−1 + ei, Xi−1 > 0.8,
ei =

√
Ψiεi, εi

iid∼ F .

M5: EGARCH-F [EGARCH(1,1) model]: Xi = {Ψi}1/2εi, εi
iid∼ F,

lnΨi = 0.1 + 0.5 lnΨi−1 + 0.3(|εi−1| − E|εi−1|)− 0.8εi−1.

M6: BIL-F [Bilinear model]: Xi = 0.1 + 0.6Xi−1 + 0.7εi−1Xi−2 + εi, εi
iid∼ F.

M7: NLMA-F [Nonlinear moving average model]: Xi = 0.8ε2i−1 + εi, εi
iid∼ F.

M8: AR2G22-F [AR(2)-GARCH(2,2)]: Xi = 0.1 + 0.3Xi−1 + 0.4Xi−2 + ei, ei =
√
Ψiεi, εi

iid∼ F,

Ψi = 0.1 + 0.1e2i−1 + 0.2e2i−2 + 0.2Ψi−1 + 0.4Ψi−2.

Design for comparison with the information matrix test of White (1982)

The Information Matrix (IM) test introduced by White (1982) is a well-known general purpose

specification test for parametric models. Under White’s original formulation of the IM test, which

was based on iid observations, the asymptotic null distribution of the IM-test statistic was shown

to be χ2. Its asymptotic null distribution has not been derived for the general setting of this paper.

Implementation of the information matrix test in our setting is challenging because it relies on the

third order derivatives of the log likelihood function for modelM that involves stochastic recurrence

equations. Nevertheless, it appears that one may still estimate the finite sample null distribution

of the IM-test statistic by bootstrap; see Huo and Cho (2021) and Cho and White (2014).

We compare the IM test with our tests for two sequences of local hypotheses. Both sequences

use AR(1)-GARCH(1,1) for the mean-variance functions. For the error distributions, we use the

following mixture distributions with fSkT (x, v, λ) denoting the pdf of Skewed-t(v, λ):

SkewTL(δ), pdf : fSkTL(x) = (1− δ)fSkT (x, 7,−0.1) + δfL(x), (13)
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GESkewT(δ), pdf : fGESkT (x) = (1− δ)fGE(x, 1.5) + δfSkT (x, 7,−0.1), (14)

with n = 1000, 2000, 3000 and δ = 0, 0.2, 0.4, 0.6, 0.8, 1. For each (δ, n), and the error distribu-

tion (13), we test the null hypothesis that the data were generated from an AR(1)-GARCH(1,1)

model with Skewed-t(v, λ) distribution for some (v, λ). Similarly, for the DGP with error distri-

bution (14), we test the null hypothesis that the data are generated from an AR(1)-GARCH(1,1)

model with GED(θ) distribution. To obtain the p-values of the IM-test statistic, we applied the

parametric bootstrap method in Section 4 of Huo and Cho (2021).

Results of the simulation study

A summary of the main results are presented in Table 1 and Figure 1. Additional simulation

results are presented in Section S4 in the Supplement. The results and discussions for comparing

our tests with KMe and Jarque-Bera [JB] tests are also provided in the Supplement; recall that

these tests are not competitors to our tests but were included to provide some benchmarks that are

different from the IM test. The effect of model overspecification under the null hypothesis (i.e when

the true DGP is strictly nested in the null model) is also evaluated in Section S4 in the supplement.

The main observations are the following:

(a) The tests proposed in this paper, namely KS, Ku, CvM , U2, and A2, performed consistently

well throughout in terms of empirical type-I error rates. We also observed that our tests performed

well in the over-specified settings, in the sense that the type I error rates of our tests were close to

the nominal level (see Figures S7 and S8 in the Supplement).

(b) Our tests outperformed the information matrix test.

(c) The tests proposed in this paper exhibited non-trivial empirical power (i.e. power higher than

the nominal level of the test) properties against a range of alternative models. These include only

the error distribution is different from that in the null model, only the mean function is different

from that in the null model, the conditional variance is different from that in the null model, and

the models for {µi, Ψi} are the same as for the null model but the errors are not iid.

(d) For testing the specification of a GARCH model with a known distribution function, for example

the standard normal, the KMe test performed better than the tests proposed in this paper for small

samples. This was expected since KMe used the true population parameter value, instead of the

estimator, thus avoiding an important source of variation. Our tests exhibited increasingly better

performance as the sample size increased and outperformed the KMe in large samples.

(e) In terms of empirical power, the Anderson–Darling test (A2), the Kuiper’s test (Ku) and the

Watson’s test (U2) performed marginally better than the KS and the CvM tests.
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Table 1: Empirical type I error rates and power (%) at 5% nominal level for testing ‘H0: AR(1)-
GARCH(1,1) with error distribution Fθ’; the sample size n = 1000.

DGP Fθ (in H0) KS Ku CvM A2 U2

Type-I error rate(%)

ARG-N N 5.0 4.2 4.9 4.6 4.4
ARG-L L 4.9 5.3 4.9 4.7 5.2
ARG-SEVD SEVD 4.8 5.2 5.4 4.7 5.5
ARG-Std t(5) Std t(5) 4.6 4.9 4.1 3.9 3.7
ARG-N GED(θ) 5.3 4.4 4.1 3.9 4.4
ARG-L GED(θ) 5.1 5.5 4.6 5.0 4.9
ARG-GED(1.5) GED(θ) 5.0 5.9 5.5 4.5 5.7
ARG-Skewed-t(7,−0.1) Skewed-t(v, λ) 5.1 4.6 4.5 5.0 6.1
ARG-Std t(5) Std t(d) 4.8 6.4 4.7 4.1 5.7

Empirical power (%)

EGARCH-N N 99.9 99.9 99.9 99.9 99.9
TARG-SEVD SEVD 99.3 99.2 99.8 99.6 99.3
EGARCH-N GED(θ) 99.9 99.9 99.9 99.9 99.7
NLMA-L GED(θ) 25.8 34.7 38.5 76.9 28.1
BIL-Skewed-t(7,−0.1) Skewed-t(v, λ) 34.3 15.6 45.6 47.3 17.5
TARG-Std t(5) Std t(d) 51.2 32.1 59.1 61.5 37.9
AR2G22-GED(1.5) N 41.7 60.6 50.3 61.3 67.0

ARG(a)-N N 98.5 91.9 99.4 99.8 94.9

ARG(a)-L L 70.1 51.5 76.8 79.5 54.7

ARG(a)-SEVD SEVD 68.6 41.5 71.1 94.5 45.8

ARG(a)-Std t(5) Std t(5) 77.7 52.6 81.8 82.2 54.7

ARG(a)-N GED(θ) 81.9 42.2 96.2 97.6 41.3

ARG(a)-L GED(θ) 85.3 68.7 88.5 91.0 72.0

ARG(a)-GED(1.5) GED(θ) 77.1 45.7 90.2 93.9 44.5

ARG(a)-Skewed-t(7,−0.1) Skewed-t(v, λ) 90.6 74.7 93.1 92.8 78.6

ARG(a)-Std t(5) Std t(d) 62.0 49.3 64.8 67.4 45.5

Note: (1) Fθ is the parametric family of error distributions under H0, N: Normal; L:
Laplace; Std t: Standardized t; GED: Generalized error distribution; SEVD: Stan-
dardized extreme value distribution; Skewed-t: Skewed t. (2) DGPs are defined by
models M2–M8.
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Figure 1: Empirical power curves at the 10% level. For panels on the left, the null hypothesis is
‘H0: AR(1)-GARCH(1,1) with the error distribution being Skewed-t(v, λ)’ and the DGP, denoted
ARG-SkewTL(δ), is AR(1)-GARCH(1,1) with Skewed-t and Laplace mixture for which the pdf is
fSkTL(x) = (1 − δ)fSkT (x) + δfL(x). For panels on the right, the null hypothesis is ‘H0: AR(1)-
GARCH(1,1) model with the error distribution being GED(θ)’, and the DGP, denoted ARG-
GESkewT(δ), is AR(1)-GARCH(1,1) with generalized-error and Skewed-t mixture distribution for
which the pdf is fGESkT (x) = (1− δ)fGE(x) + δfSkT (x).
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8 An empirical illustration

To illustrate the testing procedure, we briefly discuss an example based on the energy price growth

rate data studied by Bai and Lam (2019) and by Huo and Cho (2021). The variable of interest

is the growth rate of the weekly energy price. More precisely, we consider the growth rates of

the Baltic liquefied petroleum gas (BLPG) price, propane Argus Far East index (PAFEI), and

propane CP swap price (CPS). The data were obtained from the energy price data provided by

Bai and Lam (2019). Each of these samples contains 601 observations and spans the period from

the second week of 2005 to the 35th week of 2016. Huo and Cho (2021) analyzed this data set by

applying several diagnostic tests, and concluded that an AR-GARCH(1,1) model with a skewed

t-distribution provides a good fit; see Table 4 in Huo and Cho (2021).

Instead of using the AR-GARCH(1,1), we apply the AR-AGARCH(1,1) model, because the

stylized facts of the energy price growth rates are known to display the so-called leverage effects.

More precisely, we test the goodness-of-fit of the model

Xi = µi+
√

Ψiεi, µi = φ1+φ2Xi−1, Ψi = φ3+φ4

{
|ηi−1|−γηi−1

}2
+φ5Ψi−1, ηi = Xi−µi, (15)

with skew-t(v, λ) error distribution, where v and λ are the degrees of freedom and the skewness

parameters, respectively (Hansen 1994). To this end, we apply the tests based on T1, . . . , T5 defined

in Section 2 together with the bootstrap information matrix [IM] test considered in Section 7. The

bootstrap p-values for the tests are provided in Table 2.

In view of the results in Table 2, the AR(1)-AGARCH(1,1) model with the skew-t(v, λ) error

distribution cannot be rejected for both BLPG and CPS. It does not appear that this model is

adequate for the variable PAFEI. Although the IM test provides a relatively large p-value of 0.162

for PAFEI, in view of the low empirical power of the IM test in the simulation results of the previous

section, it is prudent not to rely solely on the IM test.

Table 2: The bootstrap p-values for the specification tests of AR(1)-AGARCH(1,1) with error
distribution skew-t(v, λ).

Variable KS Ku CvM A2 U2 IM

BLPG 0.494 0.268 0.454 0.200 0.182 0.205

PAFEI 0.031 0.020 0.069 0.047 0.025 0.162

CPS 0.236 0.281 0.265 0.435 0.404 0.487
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SUPPLEMENTARY MATERIAL

The online Supplement to this paper provides the verification of the regularity conditions for

GARCH(p,q). It also contains a general result on asymptotic uniform expansions for a class of

weighted empirical processes. In addition, some simulation results are also provided.
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A APPENDIX: Main steps for the proofs of Theorems 1, 2, and 3

Lemma 1. Suppose that Yi
e.a.s.→ 0 as i → ∞. Then there exist a nonnegative random variable Z and

γ > 1 such that ‖Yi‖ ≤ γ−iZ (i ∈ N). Further, max1≤i≤n ‖Yi‖ = OP (1) and
∑n

i=1 ‖Yi‖ = Op(1).

Proof. Let Ω0 be a set of probability 1 such that, for some γ > 1, we have γi‖Yi(ω)‖ → 0 as

i → ∞ for every ω ∈ Ω0. Let ǫ > 0 and ω ∈ Ω0 be given. Then, there exists n0(ǫ, ω) such that

γi‖Yi(ω)‖ < ǫ for all i ≥ n0(ǫ, ω) and ω ∈ Ω0. Let Z(ω) = ǫ + max1≤i≤n0(ω,ǫ) γ
i‖Yi(ω)‖ (ω ∈ Ω0).

Then, ‖Yi(ω)‖ ≤ γ−iZ(ω) for ω ∈ Ω0 and i ∈ N. The other two parts follow easily.

A.1 Proof of Theorem 1

Recall that {εi, i ∈ Z} are iid and ε̃i = η̃i(φ̂)/{Ψ̃i(φ̂)}1/2 (i = 1, . . . , n). Also recall the definitions

of Fn,Wn, F̃n, and W̃n from (6) and (7). In what follows, we write ‘
∑

’ for ‘
∑n

i=1’. Let us introduce

the following terms corresponding to {ε̃i, F̃n, W̃n} by replacing {η̃i(·), Ψ̃i(·)} with {ηi(·), Ψi(·)}:

ε̂i = ηi(φ̂)/{Ψi(φ̂)}1/2, F̂n(x) := n−1
∑

I(ε̂i ≤ x), Ŵn(x) :=
√
n
{
F̂n(x)− F

θ̂
(x)

}
. (A.1)

To prove Theorem 1, we show that (a) supx |W̃n(x) − Ŵn(x)| = op(1), and (b) Ŵn(·) converges

weakly to the centered Gaussian process W0(·) in Theorem 1. Then, the weak convergence of W̃n(·)

26



and that of each of the test statistics would follow. Let

Vi = {Ψ1/2
i (φ̂)− Ψ

1/2
i (φ0)}Ψ

−1/2
i (φ0), Ui = {µi(φ̂)− µi(φ0)}Ψ

−1/2
i (φ0), (A.2)

Ṽi = {Ψ̃1/2
i (φ̂)− Ψ

1/2
i (φ0)}Ψ

−1/2
i (φ0), Ũi = {µ̃i(φ̂)− µi(φ0)}Ψ

−1/2
i (φ0). (A.3)

In order to show that supx |W̃n(x)− Ŵn(x)| = op(1) we use Theorem A1 of Escanciano (2010). To

this end, in the next lemma, we first establish that four regularity conditions are satisfied.

Lemma 2. Under Assumptions 1−7, the following four conditions are satisfied.

(L1). Let Zb, c := {(z1, z2)⊤ ∈ R
2 : |z1| + |z2| ≤ b, z1 ≥ c − 1}. Then, for all 0 < b < ∞ and

0 < c < ∞, supx∈R, (z1,z2)⊤∈Zb,c
|x|fθ0(x+ xz1 + z2) < ∞.

(L2). Let K > 0, 0 < δ < 1 be arbitrary but fixed. Let ∆K = {s ∈ R
p : ‖s‖ < K}. Then, for every

0 < c < 1 there exists n0 ∈ N, such that, P (infs∈∆K
min1≤i≤n{Ψi(φ0+n−1/2s)/Ψi(φ0)} > c2) ≥ 1−δ

for all n ≥ n0. Further, there exists a constant c0 > 0 such that, for all n sufficiently large,

P (infs∈∆K
min1≤i≤n{Ψ̃i(φ0 + n−1/2s)/Ψi(φ0)} > c20) ≥ 1− δ.

(L3). max1≤i≤n{|Ṽi|+ |Ũi|} = Op(1), max1≤i≤n{|Vi|+ |Ui|} = op(1).

(L4). ∀δ > 0, ∃c > 0 such that P (min1≤i≤n Ṽi > c− 1) ≥ 1− δ, for all n sufficiently large.

Proof. Proof of (L1) : This follows from the facts that supx fθ0(x) and supx |xfθ0(x)| are finite.

Proof of (L2) : To prove the first part of (L2), let ξi,n,s = {Ψi(φ0+n−1/2s)}1/2{Ψi(φ0)}−1/2. Write

ξi,n,s = 1 +
{Ψi(φ0 + n−1/2s)}1/2 − {Ψi(φ0)}1/2 − (n−1/2s/2)⊤Ψ̇i(φ0){Ψi(φ0)}−1/2

{Ψi(φ0)}1/2
+2−1(n−1/2s)⊤Ψ̇i(φ0)/Ψi(φ0), (s ∈ ∆K),

by adding and subtracting the same terms. By Assumptions 4.2 and 5, ξi,n,s converges to one, in

probability, uniformly over s ∈ ∆K and 1 ≤ i ≤ n. Hence, the first part of (L2) follows.

To prove the second part, write di,n,s := {
√
Ψ̃i(φ0 + n−1/2s) −

√
Ψi(φ0 + n−1/2s)}/

√
Ψi(φ0),

and ξ̃i,n,s =

√
Ψ̃i(φ0 + n−1/2s)/

√
Ψi(φ0). Then ξ̃i,n,s = di,n,s + ξi,n,s, (s ∈ ∆K), and

inf
s∈∆K

min
n∗≤i≤n

ξ̃i,n,s ≥ inf
s∈∆K

min
n∗≤i≤n

di,n,s + inf
s∈∆K

min
n∗≤i≤n

ξi,n,s,

for any given pair {n∗, n} with 1 < n∗ ≤ n. Since Ψi(φ0) > αL > 0, by Assumption 2 and

Lemma 2.3 of Straumann and Mikosch (2006), sups∈∆K , n∈N

∣∣di,n,s
∣∣ e.a.s.→ 0 as i → ∞. Therefore, the

second part of (L2) follows.
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Proof of (L3) : Since n1/2(φ̂−φ0) = Op(1), by using Assumptions 3, 4, 5, we obtain max1≤i≤n
∣∣Vi

∣∣ =
op(1) and max1≤i≤n |Ui| = op(1). Since Ψi(φ0) > αL > 0, for each i ≥ 1, we have that

|Ṽi| ≤ α
−1/2
L

∣∣∣
√
Ψ̃i(φ̂)−

√
Ψi(φ̂)

∣∣∣+ |Vi|. (A.4)

From Assumption 2, supφ∈Φ |Ψ̃i(φ) − Ψi(φ̂)| e.a.s.→ 0, and hence by using Lemmas 2.1 and 2.3 in

Straumann and Mikosch (2006), we obtain that max1≤i≤n

∣∣∣
√

Ψ̃i(φ̂) −
√
Ψi(φ̂)

∣∣∣ = Op(1). Since

max1≤i≤n
∣∣Vi

∣∣ = op(1) then it follows from (A.4) that max1≤i≤n{|Ṽi|} = Op(1). By using similar

arguments, we also obtain that max1≤i≤n |Ũi| = Op(1).

Proof of (L4) : Fix 0 < δ < 1. Since n1/2(φ̂−φ0) = Op(1), there exists a constant K > 0 such that

P (n1/2|φ̂ − φ0| > K) < δ/2 for all n sufficiently large. Further, in view of Condition (L2), there

exists a constant c > 0 such that P (infs∈∆K
min1≤i≤n{

√
Ψ̃i(φ0 + n−1/2s)/

√
Ψi(φ0)} ≤ c) < δ/2.

Let An,K = {n1/2|φ̂ − φ0| > K}. Then, for all n sufficiently large, P
(
min1≤i≤n Ṽi ≤ c − 1

)
≤

P
(
infs∈∆K

min1≤i≤n
{√

Ψ̃i(φ0 + n−1/2s)/
√

Ψi(φ0)
}
≤ c

)
+ P (An,K) ≤ δ.

Proposition 2. Under Assumptions 1−7, we have that supx∈R |W̃n(x)− Ŵn(x)| = op(1).

Proof. Let K̃n(x) := n−1/2
∑{

I[εi ≤ ˜̺i(x)]−Fθ0 [˜̺i(x)]
}
, x ∈ R, where ˜̺i(x) = x+xṼi+ Ũi. Then

K̃n(x)−Wn(x) forms a sum of conditionally centered bounded random variables (x ∈ R), and hence

by (L1)–(L4) in Lemma 2, we have Var(K̃n(x)−Wn(x)) ≤ E
[
n−1

∑ |Fθ0 [˜̺i(x)]−Fθ0(x)|
]
= op(1).

By Theorem A1 of Escanciano (2010) and Lemma 2, we also obtain that the process K̃n − Wn

is asymptotically equicontinuous, and hence from the asymptotic tightness of K̃n −Wn, it follows

that supx∈R |K̃n(x)−Wn(x)| = op(1).

Remark 1. To show the tightness of (K̃n − Wn), the standard techniques are insufficient as ex-

plained in Escanciano (2010) (see pages 749, 750, and Appendix).

Next, let Kn(x) := n−1/2
∑{

I[εi ≤ ̺i(x)] − Fθ0 [̺i(x)]
}
, x ∈ R, where ̺i(x) = x + xVi + Ui.

Since max1≤i≤n |Vi| = op(1) and max1≤i≤n |Ui| = op(1), by using Theorem S1 in the Supplementary

Material we obtain that supx∈R |Kn(x)−Wn(x)| = op(1). Hence, supx∈R |K̃n(x)−Kn(x)| = op(1).

Since W̃n(x)− Ŵn(x) = n−1/2
∑

I[εi ≤ ˜̺i(x)]− n−1/2
∑

I[εi ≤ ̺i(x)], it follows that

sup
x∈R

∣∣W̃n(x)− Ŵn(x)− n−1/2
∑{

Fθ0 [˜̺i(x)]− Fθ0 [̺i(x)]
}∣∣ = sup

x∈R
|K̃n(x)−Kn(x)| = op(1). (A.5)

Next, fix δ > 0. From (L1)–(L4), there exist constants K > 0 and c > 0 such that the event

Bn
K, c := {(Ṽi, Ũi)⊤ ∈ ZK,c, (Vi,Ui)⊤ ∈ ZK,c, 1 ≤ i ≤ n}, satisfies P (Bn

K, c) > 1 − δ for all n

sufficiently large, and on the event Bn
K, c, we have

sup
x∈R

∣∣∑Fθ0 [˜̺i(x)]− Fθ0 [˜̺i(x)]
∣∣ ≤ A1n

−1/2
∑∣∣Ṽi − Vi

∣∣+ sup
x∈R

fθ0(x)n
−1/2

∑∣∣Ũi − Ui
∣∣, (A.6)
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whereA1 = supx∈R, (z1,z2)⊤∈ZK, c
|x|fθ0(x+xz1+z2). From Condition (L1), A1 < ∞, and supx∈R fθ0(x)

is finite by Assumption 7.4. Since Ψi(φ0) > αL > 0, |{Ψ̃i(φ̂)}1/2 − {Ψi(φ̂)}1/2| e.a.s.→ 0, and

|µ̃i(φ̂) − µi(φ̂)| e.a.s.→ 0 as i → ∞ (see Assumptions 1.3 and 2), we also obtain that |Ṽi − Vi| e.a.s.→ 0

and |Ũi − Ui| e.a.s.→ 0 as i → ∞. Therefore, an application of Lemma 2.1 of Straumann and Mikosch

(2006), or Lemma 1, yields that
∑

{|Ṽi − Vi| + |Ũi − Ui|} = Op(1). Since δ is arbitrary, it follows

from (A.5) and (A.6) that supx∈R |W̃n(x)− Ŵn(x)| = op(1).

Recall that Assumption 3.2 provides an asymptotic representation for n1/2(φ̂−φ0) as a sum of

stationary terms up to op(1). The next proposition gives a similar representation for n1/2(θ̂ − θ0).

Proposition 3. Suppose that Assumptions 1−7 are satisfied. Then, θ̂j − θ0j = n−1
∑

hθ0j(εi) −
(φ̂− φ0)

⊤Qnj + op(n
−1/2), where Qnj = n−1

∑
[ϕi(φ0) + τi(φ0)εi/2]h

′

θ0j
(εi), (j = 1, 2, . . . , q).

Proof. By the usual one-term Taylor series expansion of the first derivative of the objective function

Qn(θ), we obtain
√
n(θ̂ − θ0) = n−1/2

∑
hθ0(ε̃i) + op(1), where, hθ(ε) := −E[~̈(θ; ε0)]

−1
~̇(θ; ε).

Again, by a Taylor series expansion of hθ0(ε̃i) around ε̃i = εi, we obtain n−1/2
∑

hθ0j(ε̃i) =

n−1/2
∑[

hθ0j(εi) + (ε̃i − εi)h
′
θ0j

(εi)
]
+ op(1). Then, approximate ε̃i on the right hand side by

ε̂i and obtain that n−1/2
∑

(ε̃i − εi)h
′
θ0j

(εi) = n−1/2
∑

(ε̂i − εi)h
′
θ0j

(εi) + op(1). Since ε̂i = di(φ̂)

and εi = di(φ0), where di(φ) = ηi(φ)/Ψi(φ), using one-term Taylor expansions and Assumptions 4

and 5, we obtain that {ε̂i(φ̂)−εi(φ0)} is asymptotically linear in (φ̂−φ0). Hence, the proof follows

by substituting the expansion for (φ̂− φ0) in Assumption 3.2.

Proof of Theorem 1. First, we show that Ŵn(·) ⇒ W0(·). To this end, we show that Ŵn(·) is

tight and its finite dimensional distributions converge. Then, we use Proposition 2 to deduce that

W̃n(·) ⇒ W0(·) and use the continuous mapping theorem to conclude that the null distributions of

the test statistics converge. Let B1n(x) = n1/2{Fn(x) − Fθ0(x)}, B2n(x) = n1/2{F
θ̂
(x) − Fθ0(x)},

and B3n(x) = n1/2{F̂n(x)− Fn(x)}, x ∈ R. Then, Ŵn(x) = B1n(x)−B2n(x) +B3n(x), x ∈ R.

We show, in turn, that B1n, B2n, and B3n are tight, and hence so is Ŵn. The empirical process

B1n is tight since it is based on iid variables. Next, let Qi = h
′

θ0
(εi){ϕi(φ0) + 2−1εiτi(φ0)}⊤ and

ξi(φ0, εi) = A(φ0){τi(φ0)(1− εi
2)− 2εiϕi(φ0)}. By Proposition 3 and Assumption 3.2 we have

φ̂−φ0 = n−1
∑

ξi(φ0, εi)+op(n
−1/2), θ̂−θ0 = n−1

∑
hθ0(εi)−Qi(φ̂−φ0)+op(n

−1/2). (A.7)

By expanding F
θ̂
(x) about θ0, and substituting the foregoing representation for θ̂ − θ0, we obtain

sup
x∈R

∣∣B2n(x)− n−1/2
∑

{hθ0(εi)− Ci(φ0, εi)}⊤Ḟθ0(x)
∣∣ = op(1), (A.8)
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where Ci(φ0, εi) = {n−1
∑n

j=1Qj}ξi(φ0, εi). Next, to obtain an expansion for B3n, note that

B3n(x) = n−1/2
∑

I(εi ≤ x+ xVi + Ui)− n−1/2
∑

I(εi ≤ x), x ∈ R.

Using Assumptions 1, 3, 4 and 5, and invoking Lemma 2, one obtains that max1≤i≤n |Vi| = op(1)

and max1≤i≤n |Ui| = op(1). Hence, by Theorem S1 in the Supplementary Material, we obtain

supx∈R
∣∣B3n(x)− n1/2{Fθ0(x+ xVi + Ui)− Fθ0(x)}

∣∣ = op(1).

Therefore, from the special case of Lemma 6 below with ωn = ω0 = (φ⊤
0 ,θ

⊤
0 )

⊤, we have that

supx∈R |B3n(x) − B0(x)| = op(1) where B0(x) = n1/2(φ̂ − φ0)
⊤E[(x/2)τ1(φ0) + ϕ1(φ0)]fθ0(x).

Therefore, by substituting the expansion (A.7) for n1/2(φ̂− φ0) in B0(x), we obtain that

sup
x∈R

|B3n(x)− fθ0(x)E[
x

2
τ1(φ0) + ϕ1(φ0)]

⊤n−1/2
∑

ξi(φ0, εi)| = op(1). (A.9)

Next, let gi(t) = ai(t) − bi(t) + ci(t), where ai(t) = I(εi ≤ F−1
θ0

(t)) − t, bi(t) = {hθ0(εi) −
Ci(φ0, εi)}⊤Ḟθ0(F

−1
θ0

(t)), ci(t) = fθ0(F
−1
θ0

(t))E[2−1F−1
θ0

(t)τ1(φ0) + ϕ1(φ0)]
⊤ξi(φ0, εi), and Gn(t) =

n−1/2
∑n

i=1 gi(t). Since Ŵn(x) = B1n(x)−B2n(x) +B3n(x), from (A.8) and (A.9), it follows that

sup
t∈[0,1]

|
√
n{F̂n(F−1

θ0
(t))− F

θ̂
(F−1

θ0
(t))} −Gn(t)| = op(1). (A.10)

Furthermore, we also obtain that cov[Gn ◦ Fθ0(x), Gn ◦ Fθ0(y)] converges, and with G0(·) as in

Theorem 1, cov{Gn(s), Gn(t)} = cov{G0(s), G0(t)}+ o(1), s, t ∈ [0, 1].

An application of Theorem 18.3 in Billingsley (1999) yields that the finite dimensional distribu-

tions of Gn converge to those of W0◦F−1
θ0

, where W0 is the centered Gaussian process in Theorem 1.

By Markov’s inequality, Proposition 3, and using Assumptions 7 and 5, one can verify that each

of n−1/2
∑

ai(t), n
−1/2

∑
bi(t) and n−1/2

∑
ci(t) is asymptotically equi-continuous. Further, from

the convergence of finite dimensional distributions of Gn to those of W0 ◦ F−1
θ0

, it follows that

Gn
w⇒ W0 ◦ F−1

θ0
in D[0, 1]. Then, in view of (A.10) and Proposition 2, we obtain that W̃n

w⇒ W0

in D[−∞,∞]. Theorem 1 follows by an application of the continuous mapping theorem.

To show that the test statistic Tj (j = 1, . . . , 5) converges in distribution, we showed that

W̃n = n1/2(F̃n − F
θ̂
) converges weakly. Since W̃n is an empirical process based on the empirical

distribution function F̃n of the residuals {ε̃1, . . . , ε̃n} that have a complex dependence pattern, it is

difficult to prove weak convergence of W̃n by showing its tightness directly. Therefore, we showed

that supx |W̃n(x)− Ŵn(x)| = op(1) and that Ŵn converges weakly. To indicate the new techniques

used for the proof of the former, note that W̃n(x)−Ŵn(x) = n−1/2
∑

I[εi ≤ ˜̺i(x)]−n−1/2
∑

I[εi ≤
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̺i(x)], where ̺i(x) = x+ xVi + Ui and ˜̺i(x) = x+ xṼi + Ũi. Intuitively, we expect the influence of

initial conditions to vanish in the limit and therefore |Ũi−Ui| and |Ṽi−Vi|, and hence |˜̺i(x)−̺i(x)|
(i = 1, . . . , n) to be small enough to ensure that supx |W̃n(x)− Ŵn(x)| = op(1). While the intuition

turns out to be correct, we used some new techniques based on stochastic recurrence equation

and
e.a.s.→ rate of convergence to provide a complete answer. To this end, we used Theorem A1 of

Escanciano (2010); for a discussion of the relevance of this theorem to the context of our result, see

pages 749, 750, and the introductory remarks to the Appendix therein. To apply this theorem, we

showed that max1≤i≤n |Ũi| = Op(1), max1≤i≤n |Ṽi| = Op(1), and
∑n

i=1 |Ũi−Ui|+ |Ṽi−Vi| = Op(1);

to this end, we used Assumption (2.1), which is a high level regularity condition involving
e.a.s.→

rate of convergence. In the Supplementary Material, we show that Assumption (2.1) is satisfied by

GARCH(p, q) and note that the method of verification therein is more general and that it could be

applied to other GARCH type models for verifying Assumption (2.1). These verifications depend

on solutions Ṽi and Ũi of the stochastic recurrence equations defining the GARCH models satisfying

|Ũi − Ui| e.a.s.→ 0 and |Ṽi − Vi| e.a.s.→ 0. Thus, this paper uses
e.a.s.→ rate of convergence in a novel way

to prove the weak convergence of W̃n and hence that of Tj (j = 1, . . . , 5).

A.2 Proof of Theorem 2

In this section, we assume, without further comments, that Conditions (M1)–(M4) are satisfied.

A.2.1 Some results when the true parameter is ωn, and ωn → ω0 as n → ∞

Let Ω0 denote a set of probability one such that ω̂ := (φ̂, θ̂) converges to ω0 along every sample

path in Ω0. To establish the consistency of the bootstrap test, in probability, we restrict attention

to a sample path in Ω0. If ω̂ is known to converge to ω0 only in probability, we may work with

subsequences along which ω̂
a.s→ ω0, and then deduce the bootstrap consistency, in probability. In

what follows, we adopt this standard argument without repeating the details.

First, we introduce a notation. For a given sample path in Ω0, let ωn denote ω̂. Then ωn is not

stochastic, and ωn → ω0 as n → ∞. For the bootstrap algorithm in Section 2.1, we present the sam-

ples in the form of a triangular array with the nth row corresponding to sample size n. Therefore,

the sample in the nth row is generated from the model M with true parameter value ωn, and one

needs to use user supplied starting values at time zero to obtain {Ψ̃i(φ;ωn), µ̃i(φ;ωn), , η̃i(φ;ωn)}.
Additional notation: We adopt the following simpler notation to avoid having to show the

true value ωn repeatedly: we write Ψ̃ni(φ) for Ψ̃i(φ;ωn), where the n in the double suffix of Ψ̃ni

indicates that the process is generated at the true parameter value ωn, and ·̃ indicates “conditional
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on user supplied initial values at time zero”. More generally, we write Yni for Yi(ωn) and Ỹni(φ) for

Ỹi(φ;ωn). For example, Xni = Xi(ωn), Ψni(·) = Ψi(·;ωn), µni(·) = µi(·;ωn), ηni(·) = [Xni−µni(·)],
µ̃ni(·) = µ̃i(·;ωn), ϕ̃ni(·) = ϕ̃i(·;ωn), τ̃ni(·) = τ̃i(·;ωn), η̃ni(·) = [Xni − µ̃ni(·)]. Similarly, we define

L̃nn(φ) =
∑

ℓ̃ni(φ), ℓ̃ni(φ) = log Ψ̃ni(φ) +
[η̃ni(φ)]

2

Ψ̃ni(φ)
, φ̂nn = argmin

φ∈Φ
L̃nn(φ),

and ε̃ni = η̃ni(φ̂nn){Ψ̃ni(φ̂nn)}−1/2. Thus, φ̂nn is the QML estimator based on the observable quasi

log-likelihood function −L̃nn(φ) obtained with user supplied starting values at time zero, when

the process is generated at ωn. Similarly, the analog of θ̂ for this setup, denoted by θ̂nn, is the

estimator based on {ε̃n1, . . . , ε̃nn}. We assume, without loss of generality, that εni = F−1
θn

(Ui),

i ∈ Z, where {Ui}i∈Z are iid uniform (0,1) random variables.

For our bootstrap test to be consistent, we essentially need an extension of Theorem 1 to hold

for the foregoing sampling scheme in a triangular array with true parameter value ωn converging

to ω0. To prove such results in the triangular array setting, we first prove the corresponding result

in the double array setting, and then show that the difference between the corresponding quantities

from the two arrays, converges to zero. The results for the double array are easier to show since

each row is stationary. This is a general approach adopted throughout.

Let Pn denote the probability law of the DGP when the true parameter is ωn, with Opn , opn , and

En denoting the usual stochastic orders of magnitude and expectation, respectively, with respect to

[w.r.t.] Pn. Let Kφ(⊂ Φ) and Kθ(⊂ Θ) be the compact neighborhoods of φ0 and θ0, respectively,

in Condition M. Let n0 be a positive integer such that ωn ∈ Kω := Kφ ×Kθ for all n ≥ n0.

For a continuous matrix-valued function H on a compact set Λ ⊂ R
r, define the norm ‖ · ‖Λ by

‖H‖Λ = sups∈Λ ‖H(s)‖, where ‖ · ‖ is a consistent matrix norm; if H is real valued then ‖H‖Λ =

sups∈Λ |H(s)|; if H is vector valued then ‖H‖Λ = sups∈Λ ‖H(s)‖ where ‖ · ‖ is the Euclidean norm.

By Assumption 2.1, we have supφ∈Φ |Ψ̃i(φ)−Ψi(φ)| e.a.s.→ 0 and supφ∈Φ |µ̃i(φ)−µi(φ)| e.a.s.→ 0 as

i → ∞. This condition is used in the proof of the consistency of the QMLE φ̂. Hence, we expect

that a more general version of Assumption 2.1 is likely to be required when the true parameter

value is ωn. The next lemma, which follows from Condition (M1), formalizes this requirement.

Lemma 3. (a). supn≥n0
‖Ỹni(·)− Yni(·)‖Φ

e.a.s.→ 0 as i → ∞, for Yni = µni, Ψni.

[For example, for Yni = µni, the statement says that supn≥n0
‖µ̃ni(·)− µni(·)‖Φ

e.a.s.→ 0 as i → ∞.]

(b). supn≥n0
‖Ỹni(·)− Yni(·)‖Kφ

e.a.s.→ 0 as i → ∞, for Yni = µ̇ni, Ψ̇ni.

Recall that Assumption 5 states that max1≤i≤n ‖τi(φ0;ω0)‖ and max1≤i≤n ‖ϕi(φ0;ω0)‖ are

op(n
1/2). Since this condition was used in the proof of Theorem 1, we expect that we are likely to
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require that it holds when the true parameter value is ωn as well. The required condition is given

in part(b) of Lemma 5. It follows by Chebyshev inequality. The moment condition to apply the

Chebyshev inequality is given in the next Lemma; it follows easily from Condition (M2).

Lemma 4. There exists d > 0 such that, supn≥n0
En‖τn0(φn)‖2+d, supn≥n0

En‖ϕn0(φn)‖4+d,
supn≥n0

En|µn0(φn)|4+d, and supn≥n0
En|Ψn0(φn)|2+d are finite.

Next, consider Assumptions 3 and 4. The crux of Assumption 3 used in the proof of Theorem 1

is that
√
n(φ̂ − φ0) is asymptotically proportional to n−1/2

∑
ℓ̇i(φ0;ω0), and {ℓ̇i(φ0;ω0)} is a

stationary process. Consequently, when we expand a function of the QMLE φ̂ about the true value

φ0, the expansion lends itself to apply LLN/CLT. Part (a) of the next lemma states an extension

of this result to the above triangular array setting.

Similarly, we need a suitable extension of Assumption 4. This assumption essentially says the

following: Let s ∈ Φ and consider a neighbourhood of radius n−1/2 centered at s. Then, if the

functions µi(t;ω0) and {Ψi(t;ω0)}1/2 are expanded about t = s using a one-term Taylor series,

then the leading term is linear in (t− s), and the remainder term converges to zero in probability,

uniformly over i ∈ {1, . . . , n} and uniformly over s ∈ Φ. Part (c) in the next lemma says that these

conditions are satisfied in the triangular array setting as well. The proof of the next lemma follows

a familiar route using the mean value theorem and Chebyshev inequality; the proof is omitted.

Lemma 5. (a). For all n sufficiently large, the matrices En[ℓ̈n0(φn)] and En[ℓ̇n0(φn)ℓ̇n0(φn)
⊤]

are nonsingular, ‖φ̂nn − φn‖ = opn(1) and ‖√n(φ̂nn − φn) − [n−1/2An(φn)
∑

ℓ̇ni(φn)]‖ = opn(1),

where An(φ) = En[−ℓ̈n0(φ)]
−1 and φ̂nn = argminφ∈Φ Lnn(φ).

(b). max1≤i≤n ‖τni(·)‖Kφ
= opn(n

1/2), max1≤i≤n ‖ϕni(·)‖Kφ
= opn(n

1/2).

(c). Let Λ0(⊂ Kφ) be the closure of an open neighborhood of φ0. Then, for every constant C > 0:

(i) sup
√
n | µni(b)− µni(a)− (b− a)⊤µ̇ni(a) | {Ψni(a)}−1/2 = opn(1),

(ii) sup
√
n | ∆ni(a, b) | {Ψni(a)}−1/2 = opn(1), where

the supremum is taken over 1 ≤ i ≤ n and {(a, b) : a, b ∈ Λ0,
√
n‖b− a‖ ≤ C}, with

∆ni(a, b) = [Ψni(b)]
1/2 − [Ψni(a)]

1/2 − 2−1(b− a)⊤Ψ̇ni(a)[Ψni(a)]
−1/2.

Let Bn(x,φ) := n1/2(φ− φn)
⊤[(x/2)En{τn1(φn)}+ En{ϕn1(φn)}]fθn

(x),

uni(φ) :=
µni(φ)− µni(φn)

{Ψni(φn)}1/2
and vni(φ) :=

{Ψni(φ)}1/2 − {Ψni(φn)}1/2
{Ψni(φn)}1/2

.

In the proofs provided below, the expression
∑

Fθn
{x+xvni(φ)+uni(φ)} arises in the asymptotic

arguments. The next lemma provides a simple asymptotic representation for this expression.
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Lemma 6. supx,φ,K |n−1/2
∑{Fθn

(x+ xvni(φ) + uni(φ))− Fθn
(x)} −Bn(x,φ)| = opn(1), for any

0 < K < ∞, where supx,φ,K denotes the supremum over all x ∈ R and {φ ∈ Φ :
√
n‖φ−φn‖ ≤ K}.

Proof. For brevity, write (uni, vni) for
(
uni(φ), vni(φ)

)
. Let a > 0 be as in Assumption 7.3. Then,

for every x ∈ R, there exists an ux ∈ R with |ux| < a such that, for all large enough n, we

have that Fθn
(x + xvni + uni) − Fθn

(x) = Pni(x) + Qni(x), where Pni(x) = (xvni + uni)fθn
(x)

and Qni(x) = 2−1(xvni + uni)
2f ′

θn
{x(1 + ux)}. Select n1 ∈ N large enough to have θn ∈ Kθ for

all n ≥ n1. From Condition (M3)(a), we obtain supn≥n1, x∈R, |u|<a(x
2 + 1)|f ′

θn
{x(1 + u)}| < ∞.

Hence, using Lemmas 5(b) and 5(c), Condition (M3)(a), and Assumption 7.3, we obtain that

supx,φ,K |
∑

Qni(x)| = O(supφ,K
∑

[vni + uni]
2) = opn(n

1/2). Therefore, the proof follows.

A.2.2 Asymptotic negligibility of the effect of initial values on bootstrap validity

It is well-known that the effect of initial values for the asymptotic normality of the QMLE for

GARCH(p,q) becomes asymptotically negligible (for example, see Berkes et al. 2003, and pages

172 and 177 in Francq and Zaköıan 2010). By a more general version of essentially the same

idea, the effect of the initial values on the bootstrap test in this paper also become asymptotically

negligible. We do not provide a detailed rigorous proof, but a brief outline is provided below.

The following arguments are conditional on X1, . . . , Xn. To avoid ambiguities in the proofs, it

would be better to make the notation for bootstrap quantities more precise. Let Ψ∗
i (·) = Ψi(·; ω̂),

µ∗
i (·) = µi(·; ω̂), and η∗i (·) = [X∗

i −µ∗
i (·)]; recall that X∗

i = Xi(ω̂). Define ε̂∗i = η∗i (φ̂
∗
){Ψ∗

i (φ̂
∗
)}−1/2.

Recall that F̃ ∗
n(x) = n−1

∑n
i=1 I(ε̃

∗
i ≤ x), and W̃ ∗

n(x) =
√
n
{
F̃ ∗
n(x) − F

θ̂
∗(x)

}
, (x ∈ R) are the

bootstrap analogs of F̃n and W̃n in (7). Similarly, let F̂ ∗
n(x) = n−1

∑n
i=1 I(ε̂

∗
i ≤ x), and Ŵ ∗

n(x) =
√
n
{
F̂ ∗
n(x)− F

θ̂
∗(x)

}
, (x ∈ R), be the bootstrap analogs of F̂n and Ŵn, respectively.

It turns out that, supx∈R |F̃ ∗
n(x) − F̂ ∗

n(x)| = op∗n(n
−1/2), in probability, as n → ∞. The main

driver of the proof of this result is that the stochastic recurrence equation that defines model M
is contractive on average as defined in Straumann and Mikosch (2006). Consequently, we obtain

supx∈R |W̃ ∗
n(x) − Ŵ ∗

n(x)| = op∗n(1), in probability, as n → ∞. Therefore, to prove Theorem 2, it

suffices to show that Ŵ ∗
n ⇒ W0, in probability, as n → ∞. This is shown in the next subsection.
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A.2.3 Proof of Ŵ ∗
n ⇒ W0, in probability, as n → ∞

To prove that the bootstrap testing procedure is asymptotically valid, we need to establish that

the bootstrap empirical process Ŵ ∗
n converges weakly. Let

v∗ni = {Ψ∗
i (φ̂)}−1/2{Ψ∗

i (φ̂
∗
)}1/2 − 1, u∗ni = {µ∗

i (φ̂
∗
)− µ∗

i (φ̂)}{Ψ∗
i (φ̂)}−1/2 (A.11)

ε̂∗i = {X∗
i − µ∗

i (φ̂
∗
)}{Ψ∗

i (φ̂
∗
)}−1/2, ε∗i = {X∗

i − µ∗
i (φ̂)}{Ψ∗

i (φ̂)}−1/2. (A.12)

Recall that F̂ ∗
n(x) = n−1

∑
I(ε̂∗i ≤ x), F ∗

n(x) = n−1
∑

I(ε∗i ≤ x), and Ŵ ∗
n = n1/2(F̂ ∗

n − F
θ̂
∗). In

view of the similarity of Ŵ ∗
n to Ŵn, we adopt a method similar to that in the proof of Theorem 1

for Ŵn to derive the weak convergence of Ŵ ∗
n . Thus, we first decompose Ŵ ∗

n into three components

as for Ŵn in the proof of Theorem 1: Ŵ ∗
n = n1/2(F ∗

n − F
θ̂
)− n1/2(F

θ̂
∗ − F

θ̂
) + n1/2(F̂ ∗

n − F ∗
n). The

third term, n1/2(F̂ ∗
n −F ∗

n), is the most challenging of the three as there are no standard techniques

that can be applied to expand this term. Several related results on asymptotic uniform expansions

of weighted empirical processes have been developed in Koul and Ossiander (1994), Koul (2002)

and Koul and Ling (2006). However, these results are not applicable to the setup of our bootstrap

data generation. Therefore, in the Supplementary Material of this paper, we develop a general

result on asymptotic uniform expansions applicable to n1/2(F̂ ∗
n − F ∗

n) by extending some uniform

expansion results of Koul and Ling (2006) and Koul and Ossiander (1994). The next lemma uses

this general result to obtain a tractable asymptotic uniform expansion for n1/2(F̂ ∗
n − F ∗

n).

Lemma 7. Let Ũ∗
n(x) =

√
n(φ̂

∗ − φ̂)⊤[(x/2)E∗{τ∗1 (φ̂)}+ E∗{ϕ∗
1(φ̂)}]fθ̂(x) and

U∗
n(x) =

√
n{F̂ ∗

n(x)− F ∗
n(x)}. Then, supx∈R |U∗

n(x)− Ũ∗
n(x)| = op∗n(1), in probability.

Proof. Note that F̂ ∗
n(x) = n−1

∑
I(ε∗i ≤ x+xv∗ni+u∗ni). Fix a sample path along which ωn = ω̂ →

ω0. By applying Lemma 5(b), with (ϕni, τni,φn) = (ϕ∗
i , τ

∗
i , φ̂), we obtain that

max1≤i≤n n
−1/2‖τ∗i (φ̂)‖ = op∗n(1) and max1≤i≤n n

−1/2‖ϕ∗
i (φ̂)‖ = op∗n(1). (A.13)

Let v∗i (t) := {Ψ∗
i (φ̂)}−1/2{Ψ∗

i (φ̂+ n−1/2t)}1/2 − 1, u∗i (t) := {µ∗
i (φ̂+ n−1/2t)− µ∗

i (φ̂)}{Ψ∗
i (φ̂)}−1/2,

U∗
n(x, t) := n−1/2

∑
{I (ε∗i ≤ x+ xv∗i (t) + u∗i (t))− I (ε∗i ≤ x)} , x ∈ R, t ∈ R

r.

In what follows we apply Theorem S1 stated in the Supplementary Material to show that, for every

0 < b < ∞, supx∈R, ‖t‖<b |U∗
n(x, t)− n−1/2

∑
{Fθn

(x+ xv∗i (t) + u∗i (t))− Fθn
(x)}| = op∗n(1). In order

to apply Theorem S1 to U∗
n(x, t) we need to show that Conditions (D1)–(D5) in the Supplementary

Material are satisfied, with γ∗ni(t) = 1, ρ∗ni(t) = v∗i (t) and ξ∗ni(t) = u∗i (t). With γ∗ni(t) = 1, the

Conditions (D1) and (D5) are trivially satisfied. Next, we consider (D2), (D3) and (D4).
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By applying Lemma 5(c), with (µni, Ψni,φn) = (µ∗
i , Ψ

∗
i , φ̂), we obtain that, for every t ∈ R

r,

max
1≤i≤n

|v∗i (t)−2−1n−1/2t⊤τ∗i (φ̂)| = op∗n(n
−1/2), max

1≤i≤n
|u∗i (t)−n−1/2t⊤ϕ∗

i (φ̂)| = op∗n(n
−1/2). (A.14)

By (A.13) and (A.14), for each t ∈ R
r, max1≤i≤n |v∗i (t)| = op∗n(1) and max1≤i≤n |u∗i (t)| = op∗n(1).

Hence (D2) holds. Let t ∈ R
r be fixed but arbitrary. By the triangle inequality

n−1/2
∑

|v∗i (t)| ≤ n−1/2
∑

|v∗i (t)− 2−1n−1/2t⊤τ∗i (φ̂)|+ n−1/2
∑

|2−1n−1/2t⊤τ∗i (φ̂)|

≤ n1/2 max
1≤i≤n

|v∗i (t)− 2−1n−1/2t⊤τ∗i (φ̂)|+ 2−1‖t‖n−1
∑

‖τ∗i (φ̂)‖. (A.15)

Since n1/2max1≤i≤n |v∗i (t) − 2−1n−1/2t⊤τ∗i (φ̂)| = op∗n(1) by (A.13) and n−1
∑

‖τ∗i (φ̂)‖ = Op∗n(1)

by the Ergodic Theorem, it follows from (A.15) that n−1/2
∑

|v∗i (t)| = Op∗n(1). Similarly, we also

obtain n−1/2
∑

|u∗i (t)| = Op∗n(1). Thus, n
−1/2

∑
{|v∗i (t)|+ |u∗i (t)|} = Op∗n(1). Hence (D3) also holds.

By Lemma 5(c), (A.13), (A.14) and the Ergodic Theorem, for every constant δ > 0,

n−1/2
∑{

sup
‖t−s‖<δ

|v∗i (t)− v∗i (s)|+ sup
‖t−s‖<δ

|u∗i (t)− u∗i (s)|
}

≤ n−1/2
∑{

|2−1n−1/2δ⊤τ∗i (φ̂)|+ |n−1/2δ⊤ϕ∗
i (φ̂)|

}
+ op∗n(1)

≤ δn−1
∑{

2−1‖τ∗i (φ̂)‖+ ‖ϕ∗
i (φ̂)‖

}
+ op∗n(1) = δOp∗n(1).

Hence, for every ǫ > 0, we can select a sufficiently small δ > 0 and an n0 ∈ N such that, ∀n > n0,

P
(
n−1/2

∑{
sup‖t−s‖<δ |v∗i (t)− v∗i (s)|+ sup‖t−s‖<δ |u∗i (t)− u∗i (s)|

}
≤ ǫ

)
> 1− ǫ.

Therefore, Condition (D4) also holds. Hence, by applying Theorem S1 we obtain that, for every

0 < b < ∞, supx∈R, ‖t‖<b |U∗
n(x, t) − n−1/2

∑
{Fθn

(x + xv∗i (t) + u∗i (t)) − Fθn
(x)}| = op∗n(1). From

Lemma 5(a) and the Ergodic Theorem, we have that n1/2(φ̂
∗ − φ̂) = Op∗n(1), and hence it also

follows that supx∈R |U∗
n(x)−n−1/2

∑{Fθn
(x+xv∗ni+u∗ni)−Fθn

(x)}| = op∗n(1). This result together

with an application of Lemma 6 complete the proof.

Proposition 4. Ŵ ∗
n ◦ F−1

θ̂
(·) = n1/2[F̂ ∗

n{F−1

θ̂
(·)} − F

θ̂
∗{F−1

θ̂
(·)}] w⇒ G0(·), in probability, where

G0(·) is as in Theorem 1, with (φ0,θ0) denoting a pseudo-true value if H0 is not satisfied.

Proof. As mentioned earlier, we fix a sample path along which ωn = ω̂ → ω0, and partition the

process Ŵ ∗
n(·) = n1/2{F̂ ∗

n(·)− F
θ̂
∗(·)} as

n1/2{F̂ ∗
n(·)− F

θ̂
∗(·)} = n1/2{F ∗

n(·)− F
θ̂
(·)} − n1/2{F

θ̂
∗(·)− F

θ̂
(·)}+ n1/2{F̂ ∗

n(·)− F ∗
n(·)}. (A.16)
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We consider the three processes on the righthand side of (A.16) separately. The first process

n1/2{F ∗
n(x)−F

θ̂
(x)} in (A.16) is equal to n−1/2

∑
{I(ε∗i ≤ x)−F

θ̂
(x)}; it can be handled as in the

classical Donsker theorem because it is an empirical process of iid terms.

To study the term n1/2{F
θ̂
∗(x) − F

θ̂
(x)} in (A.16), let ξ∗i (φ̂, ε

∗
i ) := Â(φ̂)[τ∗i (φ̂)(1 − ε∗i

2) −
2ε∗iϕ

∗
i (φ̂)] where Â(φ) = E∗[−ℓ̈∗0(φ)]

−1. Further, let Q∗
i := h

′

θ̂
(ε∗i )[ϕ

∗
i (φ̂) + 2−1ε∗i τ

∗
i (φ̂)]

⊤. Then,

from Condition (M3) and Lemma 5(a), we have that

θ̂
∗ − θ̂ =

1

n

∑
h
θ̂
(ε∗i )−Q∗

i (φ̂
∗ − φ̂) + op∗n(n

−1/2), φ̂
∗ − φ̂ =

1

n

∑
ξ∗i (φ̂, ε

∗
i ) + op∗n(n

−1/2). (A.17)

To study the asymptotic behaviour of n1/2{F
θ̂
∗(x) − F

θ̂
(x)}, let us expand F

θ̂
∗(x) about θ̂ using

Condition (M3), Lemma 5(a), and (A.17) and obtain

sup
x∈R

∣∣n1/2{F
θ̂
∗(x)− F

θ̂
(x)} − n−1/2

∑
{h

θ̂
(ε∗i )− C∗

ni(φ̂, ε
∗
i )}⊤Ḟθ̂

(x)
∣∣ = op∗n(1),

where C∗
ni(φ̂, ε

∗
i ) = {n−1

∑n
j=1Q∗

j}ξ∗i (φ̂, ε∗i ). By (A.17) and Lemma 7,

sup
x∈R

|n1/2{F̂ ∗
n(x)− F ∗

n(x)} − f
θ̂
(x)E∗[(x/2)τ

∗
1 (φ̂) + ϕ∗

1(φ̂)]
⊤n−1/2

∑
ξ∗i (φ̂, ε

∗
i )| = op∗n(1).

Let G∗
n(t) = n−1/2

∑n
i=1{ani(t) − bni(t) + cni(t)}, where ani(t) = I(ε∗i ≤ F−1

θ̂
(t)) − t, bni(t) =

{h
θ̂
(ε∗i )− C∗

ni(φ̂, ε
∗
i )}⊤Ḟθ̂

(F−1

θ̂
(t)), and cni(t) = f

θ̂
(F−1

θ̂
(t))E∗[2

−1F−1

θ̂
(t)τ∗1 (φ̂) + ϕ∗

1(φ̂)]
⊤ξ∗i (φ̂, ε

∗
i ).

Then, Ŵ ∗
n ◦ F−1

θ̂
(t) =

√
n{F̂ ∗

n(F
−1

θ̂
(t))− F

θ̂
∗(F−1

θ̂
(t))} = G∗

n(t) + op∗n(1), uniformly in t ∈ [0, 1].

From a martingale central limit theorem (for example, Theorem 18.1 in Billingsley 1999), the

finite dimensional distributions of G∗
n converge weakly, in probability, as n → ∞ to those of G0.

By applying Markov’s inequality and using Condition (M3) and Lemma 5, one obtains that each of

n−1/2
∑

ani(t), n
−1/2

∑
bni(t) and n−1/2

∑
cni(t) is asymptotically stochastically equi-continuous.

Hence, G∗
n
w⇒ G0, in probability. Therefore, Ŵ ∗

n ◦ F−1

θ̂

w⇒ G0, in probability.

A.3 Proof of Theorem 3

Let P
(n)
0 and P

(n)
1 denote the joint distributions of the random variables {X1, . . . , Xn} under H0

and H1n, respectively. First, we show that P
(n)
1 is contiguous w.r.t. P

(n)
0 . To this end, let f(n), fθ0 ,

and f̃ denote the densities of F(n), Fθ0 , and F̃ , respectively. Let δ > 0 be fixed but arbitrary. Since

F(n) = (1− n−1/2δ)Fθ0 + n−1/2δF̃ , we have f(n) = fθ0 + n−1/2δ(f̃ − fθ0). Hence, it follows that

∫
{f1/2

(n) (x)− f
1/2
θ0

(x)− (n−1/2δ/2)ξ(x)f
1/2
θ0

(x)}2dx = o(n−1), (A.18)

where ξ(x) = {f̃(x)− fθ0(x)}f−1
θ0

(x). Further, for any sequence of real numbers {cn : n ∈ N}, with
fcn = fθ0 + cn(f̃ − fθ0), |cn| < 1, where cn → 0 as n → ∞, we have that

∫
{f1/2

(n) (x) − f
1/2
θ0

(x) −
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cnξ(x)f
1/2
θ0

(x)}2dx = o(c2n). The log likelihood ratio of P
(n)
1 to P

(n)
0 is λn =

∑
log{f(n)(εi)/fθ0(εi)}.

Let σ2 =
∫
{f̃(x) − fθ0(x)}2f−1

θ0
(x)dx. Then, under P

(n)
0 , one obtains that λn = δn−1/2

∑
ξ(εi) −

2−1δ2σ2 + op(1), by proceeding as in the proof of Theorem 7.2 in van der Vaart (1998). Hence,

by a central limit theorem, λn converges in distribution, under P
(n)
0 , to a random variable V that

is distributed as N(−2−1δ2σ2, δ2σ2). Therefore, by Le Cam’s first lemma (see van der Vaart and

Wellner, 1996, Theorem 3.10.2), it follows that P
(n)
1 is contiguous w.r.t. P

(n)
0 .

In the proof of Theorem 1, we constructed a process Gn(·), such that Gn(t) = n−1/2
∑

gi(t),

where gi(·) forms a martingale difference sequence. By proceeding as in the proof of Theorem 1,

under P
(n)
0 , Gn(t) converges weakly to a centered Gaussian process with the same covariance

kernel as G0(·), and supt∈[0,1] |W̃n(F
−1
θ0

(t))−Gn(t)| = op(1). Further, under P
(n)
0 , cov[Gn(t), λn] =

E[Gn(t)λn] = δma(t) + o(1), where ma(t) = ma1(t) − ma2(t), ma1(t) = [F̃{F−1
θ0

(t)} − t], and

ma2(t) = [
∫
hθ0(ε) dF̃ (ε)]⊤Ḟθ0{F−1

θ0
(t)}. Therefore, by Le Cam’s third lemma (see van der Vaart

and Wellner, 1996, Theorem 3.10.7), under H1n, W̃n ◦ F−1
θ0

(·) w⇒ G̃(·) in D[0, 1] where G̃(·) =

δma(·) +W0 ◦ F−1
θ0

(·). Thus, the first part of Theorem 3 holds with m(·) = ma ◦ Fθ0(·).
Recall that C[0, 1] denotes the set of continuous functions on [0, 1]. Let ‖h‖∞ = sup0≤t≤1 |h(t)|

and ‖h‖2 = {
∫ 1
0 h2(t) dt}1/2 (h ∈ C[0, 1]). Then, C[0, 1] equipped with any one of these norms, or

any equivalent norms, is a separable Banach space (Kreyszig 1978, pages 61, 62, 180).

For the test to have local power ma(·) must be non-zero. To verify that ma(·) 6= 0, let us suppose

that ma(·) = 0. Then ma1(t) = ma2(t) for every t ∈ [0, 1], and hence F(n) = [1 + n−1/2δb⊤Ḟθ0 ],

where b =
∫
hθ0(ε) dF̃ (ε). Since F(n)(−∞) = 0, we have n−1/2δb⊤Ḟθ0(−∞) = −1 which is a

contradiction. It follows from the assumptions in Theorem 3 that ma(·) is continuous on [0, 1] and

ma(0) = 0 = ma(1); the same holds for −ma(·) as well. Therefore, ma(·) and −ma(·) are nonzero

and lie in the support of G0, which we denote by supp(G0); let us recall that h ∈ supp(G0) if the

G0 measure of {y ∈ C[0, 1] : ‖y − h‖ < ǫ} is positive for every ǫ > 0.

Let ‖·‖ denote a norm on C[0, 1] and suppose that C[0, 1] equipped with ‖·‖ is a separable Banach
space. Let ν denote the Gaussian probability measure on σ{C[0, 1]} generated by G0. Further, let

c > 0 be given and let B denote the ball {g ∈ C[0, 1] : ‖g‖∞ < c}. Then, ν(B) = P [G0 ∈ B] =

P [‖G0‖∞ < c], and ν(B+δ(−ma)) = P [G0 ∈ B−δma] = P [G0+δma ∈ B] = P [‖G0+δma‖∞ < c].

Therefore, by Lewandowski et al. (1995), P [‖G0+δma‖∞ > c] strictly increases from P [‖G0‖∞ > c]

to one as δ increases from zero to ∞. In what follows, we use this result with ‖ · ‖ corresponding to

each of the test statistics T1, . . . , T5 in turn.

Kolmogorov–Smirnov type test [T1] : The asymptotic distribution of KS is ‖δma(·) + G0(·)‖∞,
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where G0 is Gaussian. Let c > 0 be given. Then, P [T1 > c | H1n] → P [‖δma(·) + G0(·)‖∞ > c]

as n → ∞. Therefore, the Kolmogorov–Smirnov type test based on T1 is asymptotically unbiased,

and its asymptotic power against H1n, strictly increases with δ.

Kuiper type test [T3] : For a given h ∈ C[0, 1], let ‖h‖Ku = supx∈R h(x)+ supx∈R{−h(x)}. Then
‖ · ‖∞ and ‖ · ‖Ku are equivalent since ‖h‖∞ ≤ ‖h‖Ku ≤ 2‖h‖∞. Therefore, C[0, 1] equipped with

‖ · ‖Ku is a separable Banach space. By repeating the foregoing arguments for the Kolmogorov–

Smirnov type test, we conclude that T3 is also asymptotically unbiased, and its asymptotic power

against H1n strictly increases with δ.

Cramér–von Mises Type test [T2] : The proof for this follows similarly with ‖ · ‖∞ replaced by

‖ · ‖2. The proof for the Anderson–Darling test [A2
n] is very similar and hence omitted.

Watson’s type test [T5] : Let X0(·) = G0(·)−
∫ 1
0 G0(t) dt and m∗

a(·) = ma(·)−
∫ 1
0 ma(t) dt. It is

easily verified that X0 is Gaussian, m∗
a 6= 0, and m∗

a lies in the support of X0 since ma lies in the

support of G0. Further, P [T5 > c | H1n] → P [‖δm∗
a +X0‖∞ > c] as n → ∞. Therefore, again by

arguments similar to those in the previous paragraphs, the Watson’s type test also has the desired

local asymptotic properties stated in Theorem 3.

Next, to prove the second part, note that by proceeding as in the proof of Theorem 2, one obtains

that, under H1n, T
∗
j
d∗→ gj{G0}, in probability (j = 1, . . . , 5). From the first part of this theorem

and an application of the continuous mapping theorem Tj
d→ gj{G̃} under H1n, (j = 1, . . . , 5).

Recall that G0 is obtained by substituting δ = 0 in G̃(·) = δma(·) + W0 ◦ F−1
θ0

(·). Hence, the

foregoing local asymptotic properties of the tests also hold for their bootstrap implementations.
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