
This is a repository copy of Orchestrating Networked Machine Learning Applications Using
Autosteer.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/191185/

Version: Accepted Version

Article:

Wen, Z, Hu, H, Yang, R orcid.org/0000-0001-6334-4925 et al. (8 more authors) (Cover 
date: 01 Nov.-Dec. 2022) Orchestrating Networked Machine Learning Applications Using 
Autosteer. IEEE Internet Computing, 26 (6). pp. 51-58. ISSN 1089-7801 

https://doi.org/10.1109/MIC.2022.3180907

© 2022, IEEE. Personal use of this material is permitted. Permission from IEEE must be 
obtained for all other uses, in any current or future media, including reprinting/republishing 
this material for advertising or promotional purposes, creating new collective works, for 
resale or redistribution to servers or lists, or reuse of any copyrighted component of this 
work in other works. Uploaded in accordance with the publisher's self-archiving policy.

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless 
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by 
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of 
the full text version. This is indicated by the licence information on the White Rose Research Online record 
for the item. 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



   

2022                                    Published by the IEEE Computer Society             IEEE INTERNET COMPUTING       1 

Orchestrating Networked Machine 

Learning Applications Using Autosteer 
Zhenyu Wen, Haozhen Hu,  Zhejiang University of Technology, Hangzhou, 310023, China 

Renyu Yang, University of Leeds, Leeds, LS2 9JT, UK 

Bin Qian, Ringo W.H Sham, Rui Sun, Newcastle University, Newcastle, NE1 7RU, UK 

Jie Xu, University of Leeds, Leeds, LS2 9JT, UK 

Pankesh Patel, University of South Carolina, Columbia, South Carolina, 29208, USA 

Omer Rana, Cardiff University, Cardiff, CF24 3AA, UK 

Schahram Dustdar, TU Wien, Vienna, 1040, Austria 

Rajiv Ranjan, Newcastle University, Newcastle, NE1 7RU, UK  

 

A platform for orchestrating networked Machine Learning (ML) applications over 

distributed environments is described. ML applications are transformed into automated 

pipelines that manage the whole application lifecycle and production-grade 

implementations are automatically constructed. We present AUTOSTEER, a software 

platform that can deploy ML applications on various hardware resources interconnected 

using heterogeneous network resources, across cloud and edge devices. Device 

placement optimization and model adaptation are used as control actions to support 

application requirements, and maximize the performance of ML model execution over 

heterogeneous computing resources. The performance of deployed applications is 

continually monitored at runtime to overcome performance degradation due to incorrect 

application parameter settings or model decay. Three real-world applications are used to 

demonstrate how AUTOSTEER can support application deployment and runtime 

performance guarantees. 

 

Machine Learning (ML) systems and applications are intrinsically non-deterministic and need to operate 

in an environment which is constantly-evolving, and contains ever-changing data. Typically, a  networked 

machine learning application consists of a variety of components for data collection, device control, model 

inference (e.g., speech recognition, object detection), which are deployed and managed at different 

locations, i.e. either on locally managed servers or remotely in cloud data centers or edge environments.  

       ML applications executing over a networked platform are arguably complex systems which have to 

be continuously updated and maintained. ML applications need to be transformed into automated 

pipelines that manage the whole application lifecycle and build production-grade machine learning 

implementations. A pipeline workflow, typically in the form of a graph representing the component 

interconnections in an ML application, can comprise: data management, model learning (model selection, 

training and hyper-parameter selection), model testing and validation and model deployment. Thereafter,  
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run time management is responsible for ensuring performance guarantee, i.e., end-to-end model 

performance optimization and model update1, so that the deployed ML applications can be dynamically 

modified to run time environment.   

       Doing so manually is generally unrealistic and not scalable, particularly when thousands of ML 

applications are submitted and maintained in edge and cloud platform that may be composed of hundreds 

of devices with heterogeneous hardware and software specifications. Continuous and automatic 

orchestration plays a pivotal role in deploying, managing and synchronizing models of the ML 

applications across multiple tiers in a distributed computing environment. For instance, the trained 

models  will be published and delivered to specific cloud servers or edge devices to run inference. Some 

specific applications, e.g., federated learning tasks require on-device training, indicating more complex 

device placement and model synchronization.  Moreover, model decay arising from changes in data, 

would inevitably diminish model accuracy over time.  Hence, an orchestrator calls for observation of the 

performance deviation and redeployment of the updated models.  

       Deploying such networked machine learning systems, particularly in an IoT and edge environment 

can be challenging due to the difficulty in managing the complexity of heterogeneous network and 

hardware resources.  A variety of devices are used for data exchange, model training and data analysis 

encompassing edge devices (such as IoT gateways and base stations) and servers (such as GPU, CPU, 

and TPU-based devices). Existing ML model development can be computationally expensive and 

resource intensive, which impede the effective deployment of applications, particularly those with strict 

latency requirements to resource-constrained devices.  

       In this article, we propose a platform solution to deployment and runtime management for the 

pipelines of networked machine learning applications.  We devise AUTOSTEER, a management system 

that can automatically deploy networked machine learning applications over heterogeneous network and 

hardware resources while ensuring their performance through deployment plan optimization and model 

adaptation. At runtime, AUTOSTEER continually monitors the performance of deployed applications and 

automatically performs model update to mitigate performance degradation caused by obsolete 

application parameters setting or model decay. Finally, we use three real-world applications that are 

executed  upon AUTOSTEER to showcase how the mechanisms are engaged in the application 

deployment and run-time maintenance.  

 

MOTIVATION 

 

Motivating Examples 

We primarily categorize the networked machine learning applications into a) centralized off-site ML 

applications that can be trained offline or offsite, and b) distributed on-site/federated ML applications that 

must build their models using local dataset on individual device and, in some cases, share and aggregate 

models with other peer devices.    

 

       Centralized off-site learning applications. A smart home application allows users to observe the 

occupancy of their house, remotely control the smart devices (e.g., LEDs, air conditioner) via smartphone 

and even automatically control the smart devices. For example, a smart home application can 

automatically adjust the temperature of air conditioners based on the occupancy, weather and so on.  

 

       Distributed on-site/federated learning applications. A high-quality brain tumor detection 

application relies on a huge amount of magnetic resonance imaging (MRI) data that is only locally 
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available and managed within a specific institution domain due to GDPR and other privacy regulations. 

A shared model is typically distributed to different data owners and trained locally. Locally-trained models 

will be combined into a consensus model.   

 

Research Scope and Overview 

In general, the pipeline for such an application can be depicted as the workflow in Figure 1. The pipeline 

starts with and augments an initial model that has been trained offline along with a reference to meta 

data and the associated data sources on which the model has been trained.  Thereafter, the workflow 

management platform typically addresses two fundamental problems:  planning for device placement 

and model adaptation in the deployment phase and model execution performance guarantee in the 

runtime phase.   

       Determining the placement of ML components on available resources remains a key challenge -- 

especially due to heterogeneity of resources. Additionally, models have to be converted, for example 

through model pruning2, post-training quantization3, and identifying a “focus” for the associated model 

through distillation techniques. This enables the generated models to best fit the target device, balancing 

the model size with accuracy of prediction. Significant recent efforts in this area include TinyML and 

EdgeML.  

 

 
FIGURE 1. Conceptual Workflow 

 

 

       Once the plan of deployment comes into effect, run time management ensures that the model 

performance can be monitored and overcomes model staleness. In the automated and continuous 

pipeline, triggers can be used to update application parameters or retrain the stale model with fresh data 

when performance observably degrades due to dynamic environment changes, such as network speed 

drop, workload bursting, model drift or lack of generalization. For applications of federated learning and 

distributed training, the platform run time also needs to enforce efficient on-device training.  

       A key focus of this work is to devise an orchestration system for supporting multiple ML model 

development and performance optimization. Additionally, the system needs to scale to support both 

application size and resource heterogeneity. To underpin precise performance monitoring and anomaly 

detection while measuring platform health and resource utilization, we also need to track and inspect 

(distributed) system fingerprints -- consisting of various performance indicators and application metrics 

such as drift and prediction scores. 
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CHALLENGES 

 

We elaborate on these specific challenges facing the ML workflow platform in the following notable 

aspects: 

 

Complexity of device placement and model adaptation. Planning for a pipeline of a given ML application 

indicates a mapping procedure between awaiting models and available computing resources on the 

devices. To accommodate the specific demands of diverse distributed or federated learning applications, 

infrastructure resources have become increasingly heterogeneous, making the planning a far more 

intricate task: 

 

       1) Device placement: Successfully deploying sizeable components of the ML applications served in 

the platform requires stringent capacity check and optimization solution under numerous constraints. The 

manifestation of heterogeneity intrinsically stems from the static attributes of the hardware, such as CPU, 

GPU, memory, SSD and network bandwidth, and of the software including operating system version, 

clock speed, and particularly software libraries.  The compatibility of a given hardware or library version 

even becomes a hard constraint, for any violations of such requirements would completely fail the 

deployment. For example, some components are compiled for ARM MALI cannot be executed on Nvidia 

GPU. The network constraints, such as bandwidth sharing among co-located components or network 

latency specified by each individual component, will further exacerbate the planning complexity.  

 

       2) Model adaptation: The advancement of deep models such as Recurrent Neural Network (RNN) 

and Convolutional Neural Network (CNN) leads to the substantially increased parameter number and the 

resultant computational cost, which hinders the real-world model deployment into embedded and edge 

devices. Hence, model pruning and compression can be used to reduce model size, remove redundant 

weights such that pre-trained models can better adapt to portable devices with limited resources (e.g. 

memory, CPU, power and bandwidth) and be applied into real-time applications.  

 

       3) Enabling dependent components within a pipeline: Each individual ML model has its own 

specification and format of input and output data. Dependencies are referred to as the interactions, such 

as the data flows and remote callings, among interconnected components. This would be problematic 

and challenging particularly when components deployed on various devices are interconnected via 

different network types and protocols. Hence, it is imperative to design an effective data messaging 

system to orchestrate the data flow and manage the network traffic across different models whilst 

considering the particular specification and data format. 

 

       Optimized runtime management. Improper application parameter setting or model decay could result 

in poor performance of a ML application and even failures. The first task of runtime management is to 

perform end-to-end and intra-application optimization. Application parameters (e.g., model accuracy, 

task off-loading rate) need to be adjusted at runtime to ensure the allocated resource can guarantee the 

expected performance level. To do so, the orchestration system should be capable of automatically 

detecting any performance degradation of the deployed applications and then dynamically work out the 

optimal configuration to rescue the abnormal performance. Secondly, in the face of any model failures, 

the orchestration system should automatically perform local on-device training while synchronize and 

aggregate the up-to-date global models on the fly. 
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       Low-cost platform monitoring and troubleshooting. Monitoring is one of the primary issues in 

maintaining ML applications and systems; outline or anomaly detection is important to find out 

unexpected model prediction or any system-wide issues in the early stage. However, anomaly detection 

and trouble-shooting could be challenging as high-quality labeled data is sparse and difficult to obtain 

and hence only semi-supervised or unsupervised approaches could be applied. The overhead is another 

non-negligible consideration when designing application instrumentation and metric collection. This 

usually indicates a tradeoff between the accuracy and granularity of the measured data. Hence, the 

platform solution of infrastructure monitor should have an overall co-design of metric sampling, storage 

and real-time analysis. 

 

SYSTEM DESIGN 

 

In response to the aforementioned challenges, we develop AUTOSTEER, an orchestration platform for 

application deployment and runtime management. In this section we mainly highlight a set of key 

techniques used for implementing the orchestration mechanism. Figure 2 describes the architecture of 

AUTOSTEER.  

 

Automatic Application Deployment 

Application and resource specification. The user submits a ML application with execution logic, pre-

trained models and specifies the pertaining requirements such as model accuracy, end-to-end latency, 

etc. To achieve an automatic deployment, we need to translate these knowledge to machine-

understandable language. We use a UML-based visual domain specific language4 that can easily 

represent the component dependencies within an application and specify the format and source of input 

and output of each individual component. As a result, the interactions between components, such as 

data flows and service calls, are loosely-coupled through interfaces and agnostic about any model 

updates. Apart from the application specification, standardized resource specification is the key to 

automatic and efficient deployment. we exploit5 for specifying the available underlying computing 

resources and the hardware and software requirements of each application.   

 

       Planning optimization for device placement. To navigate the algorithmic complexity, the orchestrator 

in AUTOSTEER adopts two optimization techniques: gradient based optimization6 and reinforcement 

learning (RL)7. Gradient-based approaches work upon a realistic model to formalize an optimization 

problem and usually have relatively low time complexity without the need of apriori knowledge or 

experience, which are therefore suitable for new applications. In contrast, RL-based methods can learn 

the optimal planning from the experiences and can better support the uncertainties compared the 

Gradient-based solutions. 

       We also construct an efficient data messaging subsystem where two types of dependencies are 

defined -- data flow and service call. Since the orchestration system needs to deliver a large volume of 

data in distributed environments, high system throughput becomes a critical system objective. We employ 

the publish/subscribe paradigm implemented in Apache Kafka to underpin the data flows. The service 

call, on the other hand, is implemented through RESTful APIs, as the precise command delivery is the 

primary goal. Both the AUTOSTEER publish/subscribe and RESTful paradigms can be implemented 

upon a vast majority of network types and protocols, hence capable of supporting most networked 

machine learning applications.   
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FIGURE 2. The Architecture of AUTOSTEER 

 

Model Adaptation 

Computation optimization aims to improve the execution efficiency of different computation units 

associated with the model (e.g., vector-vector, vector-matrix and matrix-matrix operations) on various 

hardware. Optimizing the execution pipeline of the computation graph of a neural network can further 

improve model performance. We use TensorRT along with the adjustment of weights and numerical 

precision associated with the activation function (e.g., INT8 and FP16).  Model architecture optimization 

improves the efficiency of on-device computation through well-designed models such as MobileNetV2, 

ShuffleNet etc., -- part of the TensorFlow-Lite toolkit).  We use YOLOv38 to strike a balance between 

computation efficiency and model accuracy.   

        In addition, more advanced and customizable approaches such as neural architecture search 

(NAS)9 and model compression can be implemented in AUTOSTEER further. NAS automates the search 

of an optimal network structure with the aid of reinforcement learning or Genetic Algorithm (GA) based 

approaches. However, it is computation-intensive and tends to be problematic given the portable devices 

with limited resources. Model compression is thus extensively studied in three notable aspects: model 

pruning that removes the redundant parameters within the networks; quantization that reduces the 

weights precision and knowledge distillation10 that trains a new small model based on a larger model. 

Quantization is the most straightforward approach at the risk of precision degradation and model pruning 

is the most well-established approach but requires extra calibration process. Integrating mixed 

techniques in the platform is already underway for building more adaptive and robust models. 

 

End-to-end Application Optimization 

In a networked machine learning system, computational and network resources are dynamically available 

at different levels. Application parameters such as input rate and the targeted accuracy need to be 
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adjusted, in response to the ever-changing traffic congestion, to assure the end-to-end latency or system 

throughput. 

       We specify model parameters based on extensive benchmarking experiments and transform the 

problem of finding the “best” setting of parameters into an optimization problem using techniques such 

as convex optimization, evolution based and gradient based methods. Reinforcement learning is an 

alternative approach that uses statistical or deep learning model where the application parameters are 

the actions of the agent, and the available computing resources represent the environment. The system 

performance is represented by the reaction of the environment to the actions. As opposed to the 

optimization-based approaches that have better interpretability but need extra hand-crafted modeling 

process, the reinforcement learning based approaches have better representation capabilities and can 

learn to set optimal application parameters from experience. 

 

Model Update 

Coping with the drift. During the lifecycle of a ML application, the relationship between the input variables 

and the performance of the targeting prediction inevitably experiences constant change and drift over 

time. The model drift usually originates from the following aspects: 1) invalid measurement indicator: the 

replacement of data collection devices may give rise to different value spaces and a broken device could 

always deliver nil reading. 2) concept drift: data distribution or statistical characteristics, which is uncertain 

and frequently varying over time, may lead to concept drift. 3) data drift: The model effectiveness is also 

prone to inherent changes such as the seasonal temperature rise and fall. Drifts can be roughly 

categorized into several classes: sudden drift (sudden change of the data pattern). gradual/incremental 

drift (new pattern that replaces the old ones within a period of time), and reoccurring drift (old patterns 

re-pop up later).  

       It is imperative to detect such drifts, understand the degree of drift and intervene the model for 

adapting to changing environments.  There are three representative classes of drift detection: 1) error 

rate based approaches focus on the online detection of errors or sudden changes for triggering the model 

update. 2) data distribution based approaches mainly measure the statistical similarities between the 

original data and the new data and check if the difference is sufficient for model update. 3) hypothesis 

test based approaches, built upon the previous two methods, apply various hypothesis tests to quantify 

further the severity of model drift. Based on these approaches, our solution can determine when to 

intervene according to the starting and ending points of the drift, where to intervene, i.e., localizing the 

concept/data drift in the feature space.  and how to intervene, in the light of the type and degree of the 

drift, by adaptively choose model update strategies. The most straightforward approach is the model 

retraining and updating. For concept drift, we ensemble several base classifiers or utilize knowledge 

transfer learning for the emerging new target variables.  

 

       System implementation. The amount of data engaged in the model update has an impact on the 

training effectiveness and the system overhead: less data can reduce computation and storage cost but 

only reflect the latest data distribution; more data is beneficial for reshaping models with higher precision, 

along with increased overhead. We employ an adaptive window-based solution to select the optimal data 

amount used for on-device training and/or global model synchronization via ADWIN11 algorithm: instead 

of using a fixed time window, the algorithm calculates the drift rate from all possible windows and selects 

the best cut that reveals the optimal drift level. We modularize and implement the drift detection and 

alarming system in AUTOSTEER. The detection module is responsible for data retrieval and extraction 

of data statistical properties, and we then leverage hypothesis tests to evaluate the drift degree. Once 

the alarming system confirms the existence of the model drift, we employ techniques in Section Model 
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Adaptation for efficient on-device training. For federated learning applications, once local model has been 

updated, we also trigger gradient aggregation to keep the global model up-to-date.  

 

Infrastructure Monitor and Maintenance 

To learn how the applications perform, we either collect general-purpose telemetry metrics in a black-

box manner or instrument, as an integral part of the models, subsystems or system services, in a white-

box manner. The metric tracking and tracing system of our orchestration infrastructure collects system 

logs, model metrics (task execution status, prediction statistics and evaluation metrics as baselines), 

system metrics (request latency, error rates, network status, etc.), and resource metrics (CPU utilization, 

memory utilization, GPU usage, etc.) in real time, and ships them to a centralized analytic platform. We 

adopt the random sampling mechanism on each agent that is deployed on each physical node, for 

reducing the overhead of data collection. More advanced technologies such as sketch12 can be further 

added. Anomaly Detector comprises real-time event-based processing units, used for identifying per-

application performance degradation while Root-cause Analyzer is implemented to troubleshoot the 

causes of performance degradation based on the collected performance indicators. 

CASE STUDY: EDGE-BASED REAL-TIME VIDEO ANALYTICS 

 

In this section, we showcase a real-world application backed up by the deployment and runtime 

management mechanisms in AUTOSTEER.  

 

       As shown in Figure 3(a), we develop an video analytical application following the edge-cloud 

paradigm. A set of video generating devices (e.g., traffic surveillance cameras, drones, mobile phones) 

produce live video streams which are then processed either on low-power edge devices (e.g. Raspberry 

pi, Jetson Nano, computing chips), or GPU cluster in Cloud datacenters. We prototype the video analytic 

application via object detection models yolo3 and the Wide Area Network (WAN) communication between 

edge devices and the data center is implemented by using the real time video stream transmission 

protocol (RTSP).  

       The heterogeneity of edge nodes and the interplay among the edge and cloud introduce 

uncertainties regarding network latency, hardware slowdown or failures. As discussed in Section End-to-

end Application Optimization, the collected fingerprints and system status are mathematically modeled 

with a hierarchy queuing model that reveals the relationships between the workload offloading rate 

(between the edge and cloud) and the system latency and throughput. We then formulate a min-latency 

optimization problem bounded by a minimal throughput threshold. For model optimization, we implement 

two gradient-based optimization algorithms (i.e., PGD-VAO, PGS-VAO) to ascertain a solution to 

minimizing the overall latency. All components are containerized and deployed at both the edge and the 

cloud side via AUTOSTEER. 

       Figure 3(b) shows the performance of our proposed algorithms under empty, normal and busy 

system workloads. Specifically, we insert video chunks into system buffering queues to simulate different 

workloads. Then, we test our algorithms against other state-of-the-art task-offloading approaches, i.e., 

DeepDecision and FastVA. We can see that with the increase of the workload, the system latency is 

increasing as well. It is also clear that our modelling based algorithms (e.g., PGS-VAO, PGD-VAO, 

FastVA) perform better than non-modelling based algorithms. 
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(a) Illustration of an Edge-Cloud Video Analysis System.       (b) Performance of Workload Optimizer in 

Different System               

                                                                                                      Working Conditions  

FIGURE 3. The Edge-cloud Video Analysis Application and an Early Performance Comparison 

CONCLUSION 

 

Most prior work related to ML applications focuses on algorithm design and optimization for better training 

ML models. Although such work is essential for specific applications, there are few studies on the holistic 

orchestration solution to maintaining the lifecycle of networked ML applications. In this article, we firstly 

highlight several key challenges facing the orchestration systems. We then present a set of techniques 

to deploy ML applications onto resources across cloud and edge devices and assure their runtime 

performance, making models being served free from model decay and performance degradation due to 

inappropriate parameter setting. These assist in finding effective pathways to automating the 

management of networked ML applications at production level, although, admittedly, it still calls for 

significant effort in large-scale engineering practices and integration with wider domain-specific 

scenarios. 
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