
This is a repository copy of Orchestrating Networked Machine Learning Applications Using
Autosteer.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/191185/

Version: Accepted Version

Article:

Wen, Z, Hu, H, Yang, R orcid.org/0000-0001-6334-4925 et al. (8 more authors) (Cover
date: 01 Nov.-Dec. 2022) Orchestrating Networked Machine Learning Applications Using
Autosteer. IEEE Internet Computing, 26 (6). pp. 51-58. ISSN 1089-7801

https://doi.org/10.1109/MIC.2022.3180907

© 2022, IEEE. Personal use of this material is permitted. Permission from IEEE must be
obtained for all other uses, in any current or future media, including reprinting/republishing
this material for advertising or promotional purposes, creating new collective works, for
resale or redistribution to servers or lists, or reuse of any copyrighted component of this
work in other works. Uploaded in accordance with the publisher's self-archiving policy.

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of
the full text version. This is indicated by the licence information on the White Rose Research Online record
for the item.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

2022 Published by the IEEE Computer Society IEEE INTERNET COMPUTING 1

Orchestrating Networked Machine

Learning Applications Using Autosteer
Zhenyu Wen, Haozhen Hu, Zhejiang University of Technology, Hangzhou, 310023, China

Renyu Yang, University of Leeds, Leeds, LS2 9JT, UK

Bin Qian, Ringo W.H Sham, Rui Sun, Newcastle University, Newcastle, NE1 7RU, UK

Jie Xu, University of Leeds, Leeds, LS2 9JT, UK

Pankesh Patel, University of South Carolina, Columbia, South Carolina, 29208, USA

Omer Rana, Cardiff University, Cardiff, CF24 3AA, UK

Schahram Dustdar, TU Wien, Vienna, 1040, Austria

Rajiv Ranjan, Newcastle University, Newcastle, NE1 7RU, UK

A platform for orchestrating networked Machine Learning (ML) applications over

distributed environments is described. ML applications are transformed into automated

pipelines that manage the whole application lifecycle and production-grade

implementations are automatically constructed. We present AUTOSTEER, a software

platform that can deploy ML applications on various hardware resources interconnected

using heterogeneous network resources, across cloud and edge devices. Device

placement optimization and model adaptation are used as control actions to support

application requirements, and maximize the performance of ML model execution over

heterogeneous computing resources. The performance of deployed applications is

continually monitored at runtime to overcome performance degradation due to incorrect

application parameter settings or model decay. Three real-world applications are used to

demonstrate how AUTOSTEER can support application deployment and runtime

performance guarantees.

Machine Learning (ML) systems and applications are intrinsically non-deterministic and need to operate

in an environment which is constantly-evolving, and contains ever-changing data. Typically, a networked

machine learning application consists of a variety of components for data collection, device control, model

inference (e.g., speech recognition, object detection), which are deployed and managed at different

locations, i.e. either on locally managed servers or remotely in cloud data centers or edge environments.

 ML applications executing over a networked platform are arguably complex systems which have to

be continuously updated and maintained. ML applications need to be transformed into automated

pipelines that manage the whole application lifecycle and build production-grade machine learning

implementations. A pipeline workflow, typically in the form of a graph representing the component

interconnections in an ML application, can comprise: data management, model learning (model selection,

training and hyper-parameter selection), model testing and validation and model deployment. Thereafter,

 DEPARTMENT: VIEW FROM THE CLOUD

VIEW FROM THE CLOUD

2

run time management is responsible for ensuring performance guarantee, i.e., end-to-end model

performance optimization and model update1, so that the deployed ML applications can be dynamically

modified to run time environment.

 Doing so manually is generally unrealistic and not scalable, particularly when thousands of ML

applications are submitted and maintained in edge and cloud platform that may be composed of hundreds

of devices with heterogeneous hardware and software specifications. Continuous and automatic

orchestration plays a pivotal role in deploying, managing and synchronizing models of the ML

applications across multiple tiers in a distributed computing environment. For instance, the trained

models will be published and delivered to specific cloud servers or edge devices to run inference. Some

specific applications, e.g., federated learning tasks require on-device training, indicating more complex

device placement and model synchronization. Moreover, model decay arising from changes in data,

would inevitably diminish model accuracy over time. Hence, an orchestrator calls for observation of the

performance deviation and redeployment of the updated models.

 Deploying such networked machine learning systems, particularly in an IoT and edge environment

can be challenging due to the difficulty in managing the complexity of heterogeneous network and

hardware resources. A variety of devices are used for data exchange, model training and data analysis

encompassing edge devices (such as IoT gateways and base stations) and servers (such as GPU, CPU,

and TPU-based devices). Existing ML model development can be computationally expensive and

resource intensive, which impede the effective deployment of applications, particularly those with strict

latency requirements to resource-constrained devices.

 In this article, we propose a platform solution to deployment and runtime management for the

pipelines of networked machine learning applications. We devise AUTOSTEER, a management system

that can automatically deploy networked machine learning applications over heterogeneous network and

hardware resources while ensuring their performance through deployment plan optimization and model

adaptation. At runtime, AUTOSTEER continually monitors the performance of deployed applications and

automatically performs model update to mitigate performance degradation caused by obsolete

application parameters setting or model decay. Finally, we use three real-world applications that are

executed upon AUTOSTEER to showcase how the mechanisms are engaged in the application

deployment and run-time maintenance.

MOTIVATION

Motivating Examples

We primarily categorize the networked machine learning applications into a) centralized off-site ML

applications that can be trained offline or offsite, and b) distributed on-site/federated ML applications that

must build their models using local dataset on individual device and, in some cases, share and aggregate

models with other peer devices.

 Centralized off-site learning applications. A smart home application allows users to observe the

occupancy of their house, remotely control the smart devices (e.g., LEDs, air conditioner) via smartphone

and even automatically control the smart devices. For example, a smart home application can

automatically adjust the temperature of air conditioners based on the occupancy, weather and so on.

 Distributed on-site/federated learning applications. A high-quality brain tumor detection

application relies on a huge amount of magnetic resonance imaging (MRI) data that is only locally

VIEW FROM THE CLOUD

 3

available and managed within a specific institution domain due to GDPR and other privacy regulations.

A shared model is typically distributed to different data owners and trained locally. Locally-trained models

will be combined into a consensus model.

Research Scope and Overview

In general, the pipeline for such an application can be depicted as the workflow in Figure 1. The pipeline

starts with and augments an initial model that has been trained offline along with a reference to meta

data and the associated data sources on which the model has been trained. Thereafter, the workflow

management platform typically addresses two fundamental problems: planning for device placement

and model adaptation in the deployment phase and model execution performance guarantee in the

runtime phase.

 Determining the placement of ML components on available resources remains a key challenge --

especially due to heterogeneity of resources. Additionally, models have to be converted, for example

through model pruning2, post-training quantization3, and identifying a “focus” for the associated model

through distillation techniques. This enables the generated models to best fit the target device, balancing

the model size with accuracy of prediction. Significant recent efforts in this area include TinyML and

EdgeML.

FIGURE 1. Conceptual Workflow

 Once the plan of deployment comes into effect, run time management ensures that the model

performance can be monitored and overcomes model staleness. In the automated and continuous

pipeline, triggers can be used to update application parameters or retrain the stale model with fresh data

when performance observably degrades due to dynamic environment changes, such as network speed

drop, workload bursting, model drift or lack of generalization. For applications of federated learning and

distributed training, the platform run time also needs to enforce efficient on-device training.

 A key focus of this work is to devise an orchestration system for supporting multiple ML model

development and performance optimization. Additionally, the system needs to scale to support both

application size and resource heterogeneity. To underpin precise performance monitoring and anomaly

detection while measuring platform health and resource utilization, we also need to track and inspect

(distributed) system fingerprints -- consisting of various performance indicators and application metrics

such as drift and prediction scores.

OMMSPUe
TYaPUPUN

R\U[PTe
MaUageTeU[

LPfec`cSe Vf Ne[^VYRed MachPUe LeaYUPUg AWWSPca[PVUZ

AWWSPca[PVU
DeWSV`TeU[

De]Pce
PSaceTeU[

Da[a
Read

MVdeS
TYaPUPUN

MVdeS
GeUeYa[PVU

MVdeS
AdaW[a[PVU

e2e PeYM
OW[PTPaa[PVU

OU-de]Pce
TYaPUPUN

MVdeS
UWda[e

OYcheZ[Ya[PVU IUfYaZ[Y\c[\Ye
ReZV\Yce

MaUaNeTeU[
PeYMVYTaUce

MVUP[VY
AUVTaS` De[ec[PVU

aUd DPaNUVZPZ

VIEW FROM THE CLOUD

4

CHALLENGES

We elaborate on these specific challenges facing the ML workflow platform in the following notable

aspects:

Complexity of device placement and model adaptation. Planning for a pipeline of a given ML application

indicates a mapping procedure between awaiting models and available computing resources on the

devices. To accommodate the specific demands of diverse distributed or federated learning applications,

infrastructure resources have become increasingly heterogeneous, making the planning a far more

intricate task:

 1) Device placement: Successfully deploying sizeable components of the ML applications served in

the platform requires stringent capacity check and optimization solution under numerous constraints. The

manifestation of heterogeneity intrinsically stems from the static attributes of the hardware, such as CPU,

GPU, memory, SSD and network bandwidth, and of the software including operating system version,

clock speed, and particularly software libraries. The compatibility of a given hardware or library version

even becomes a hard constraint, for any violations of such requirements would completely fail the

deployment. For example, some components are compiled for ARM MALI cannot be executed on Nvidia

GPU. The network constraints, such as bandwidth sharing among co-located components or network

latency specified by each individual component, will further exacerbate the planning complexity.

 2) Model adaptation: The advancement of deep models such as Recurrent Neural Network (RNN)

and Convolutional Neural Network (CNN) leads to the substantially increased parameter number and the

resultant computational cost, which hinders the real-world model deployment into embedded and edge

devices. Hence, model pruning and compression can be used to reduce model size, remove redundant

weights such that pre-trained models can better adapt to portable devices with limited resources (e.g.

memory, CPU, power and bandwidth) and be applied into real-time applications.

 3) Enabling dependent components within a pipeline: Each individual ML model has its own

specification and format of input and output data. Dependencies are referred to as the interactions, such

as the data flows and remote callings, among interconnected components. This would be problematic

and challenging particularly when components deployed on various devices are interconnected via

different network types and protocols. Hence, it is imperative to design an effective data messaging

system to orchestrate the data flow and manage the network traffic across different models whilst

considering the particular specification and data format.

 Optimized runtime management. Improper application parameter setting or model decay could result

in poor performance of a ML application and even failures. The first task of runtime management is to

perform end-to-end and intra-application optimization. Application parameters (e.g., model accuracy,

task off-loading rate) need to be adjusted at runtime to ensure the allocated resource can guarantee the

expected performance level. To do so, the orchestration system should be capable of automatically

detecting any performance degradation of the deployed applications and then dynamically work out the

optimal configuration to rescue the abnormal performance. Secondly, in the face of any model failures,

the orchestration system should automatically perform local on-device training while synchronize and

aggregate the up-to-date global models on the fly.

VIEW FROM THE CLOUD

 5

 Low-cost platform monitoring and troubleshooting. Monitoring is one of the primary issues in

maintaining ML applications and systems; outline or anomaly detection is important to find out

unexpected model prediction or any system-wide issues in the early stage. However, anomaly detection

and trouble-shooting could be challenging as high-quality labeled data is sparse and difficult to obtain

and hence only semi-supervised or unsupervised approaches could be applied. The overhead is another

non-negligible consideration when designing application instrumentation and metric collection. This

usually indicates a tradeoff between the accuracy and granularity of the measured data. Hence, the

platform solution of infrastructure monitor should have an overall co-design of metric sampling, storage

and real-time analysis.

SYSTEM DESIGN

In response to the aforementioned challenges, we develop AUTOSTEER, an orchestration platform for

application deployment and runtime management. In this section we mainly highlight a set of key

techniques used for implementing the orchestration mechanism. Figure 2 describes the architecture of

AUTOSTEER.

Automatic Application Deployment

Application and resource specification. The user submits a ML application with execution logic, pre-

trained models and specifies the pertaining requirements such as model accuracy, end-to-end latency,

etc. To achieve an automatic deployment, we need to translate these knowledge to machine-

understandable language. We use a UML-based visual domain specific language4 that can easily

represent the component dependencies within an application and specify the format and source of input

and output of each individual component. As a result, the interactions between components, such as

data flows and service calls, are loosely-coupled through interfaces and agnostic about any model

updates. Apart from the application specification, standardized resource specification is the key to

automatic and efficient deployment. we exploit5 for specifying the available underlying computing

resources and the hardware and software requirements of each application.

 Planning optimization for device placement. To navigate the algorithmic complexity, the orchestrator

in AUTOSTEER adopts two optimization techniques: gradient based optimization6 and reinforcement

learning (RL)7. Gradient-based approaches work upon a realistic model to formalize an optimization

problem and usually have relatively low time complexity without the need of apriori knowledge or

experience, which are therefore suitable for new applications. In contrast, RL-based methods can learn

the optimal planning from the experiences and can better support the uncertainties compared the

Gradient-based solutions.

 We also construct an efficient data messaging subsystem where two types of dependencies are

defined -- data flow and service call. Since the orchestration system needs to deliver a large volume of

data in distributed environments, high system throughput becomes a critical system objective. We employ

the publish/subscribe paradigm implemented in Apache Kafka to underpin the data flows. The service

call, on the other hand, is implemented through RESTful APIs, as the precise command delivery is the

primary goal. Both the AUTOSTEER publish/subscribe and RESTful paradigms can be implemented

upon a vast majority of network types and protocols, hence capable of supporting most networked

machine learning applications.

VIEW FROM THE CLOUD

6

FIGURE 2. The Architecture of AUTOSTEER

Model Adaptation

Computation optimization aims to improve the execution efficiency of different computation units

associated with the model (e.g., vector-vector, vector-matrix and matrix-matrix operations) on various

hardware. Optimizing the execution pipeline of the computation graph of a neural network can further

improve model performance. We use TensorRT along with the adjustment of weights and numerical

precision associated with the activation function (e.g., INT8 and FP16). Model architecture optimization

improves the efficiency of on-device computation through well-designed models such as MobileNetV2,

ShuffleNet etc., -- part of the TensorFlow-Lite toolkit). We use YOLOv38 to strike a balance between

computation efficiency and model accuracy.

 In addition, more advanced and customizable approaches such as neural architecture search

(NAS)9 and model compression can be implemented in AUTOSTEER further. NAS automates the search

of an optimal network structure with the aid of reinforcement learning or Genetic Algorithm (GA) based

approaches. However, it is computation-intensive and tends to be problematic given the portable devices

with limited resources. Model compression is thus extensively studied in three notable aspects: model

pruning that removes the redundant parameters within the networks; quantization that reduces the

weights precision and knowledge distillation10 that trains a new small model based on a larger model.

Quantization is the most straightforward approach at the risk of precision degradation and model pruning

is the most well-established approach but requires extra calibration process. Integrating mixed

techniques in the platform is already underway for building more adaptive and robust models.

End-to-end Application Optimization

In a networked machine learning system, computational and network resources are dynamically available

at different levels. Application parameters such as input rate and the targeted accuracy need to be

UML-BaZed DSL TOSCA (YAML CVUf）

GYadieU[-baZed
OW[iTiaa[iVU

RL-baZed
OW[iTiaa[iVU

MVdeS
PY\UiUg

MVdeS
Q\aU[iaa[iVU

KUV^Sedge
DiZ[iSSa[iVU

N\eYaS AYch
SeaYch

HaYd^aYe De]iceZ

Ne[^VYked ML
AWWSica[iVUZ

Applica[ion
Deplo`men[

AWWSica[iVU
SWecifica[iVU

ReZV\Yce
SWecifica[iVU

PSaceTeU[
PSaUUiUg

Applica[ion
R\n[ime

InfraZ[r\c[\re
R\n[ime

R\UUiUg MVdeSZ

GYadieU[-baZed
OW[iTiaa[iVU

RL-baZed
OW[iTiaa[iVU

De[ec[PeYf
DegYada[iVU RefiUe

CVUfig\Ya[iVU
OU-de]ice
TYaiUiUg

FedeYa[ed
LeaYUiUg

De[ec[DYif[
VY FaiS\YeZ

UWda[e
MVdeSZ

Me[Yic CVSSec[iVU AUVTaS` De[ec[iVU RVV[Ca\Ze AUaS`aeY

VIEW FROM THE CLOUD

 7

adjusted, in response to the ever-changing traffic congestion, to assure the end-to-end latency or system

throughput.

 We specify model parameters based on extensive benchmarking experiments and transform the

problem of finding the “best” setting of parameters into an optimization problem using techniques such

as convex optimization, evolution based and gradient based methods. Reinforcement learning is an

alternative approach that uses statistical or deep learning model where the application parameters are

the actions of the agent, and the available computing resources represent the environment. The system

performance is represented by the reaction of the environment to the actions. As opposed to the

optimization-based approaches that have better interpretability but need extra hand-crafted modeling

process, the reinforcement learning based approaches have better representation capabilities and can

learn to set optimal application parameters from experience.

Model Update

Coping with the drift. During the lifecycle of a ML application, the relationship between the input variables

and the performance of the targeting prediction inevitably experiences constant change and drift over

time. The model drift usually originates from the following aspects: 1) invalid measurement indicator: the

replacement of data collection devices may give rise to different value spaces and a broken device could

always deliver nil reading. 2) concept drift: data distribution or statistical characteristics, which is uncertain

and frequently varying over time, may lead to concept drift. 3) data drift: The model effectiveness is also

prone to inherent changes such as the seasonal temperature rise and fall. Drifts can be roughly

categorized into several classes: sudden drift (sudden change of the data pattern). gradual/incremental

drift (new pattern that replaces the old ones within a period of time), and reoccurring drift (old patterns

re-pop up later).

 It is imperative to detect such drifts, understand the degree of drift and intervene the model for

adapting to changing environments. There are three representative classes of drift detection: 1) error

rate based approaches focus on the online detection of errors or sudden changes for triggering the model

update. 2) data distribution based approaches mainly measure the statistical similarities between the

original data and the new data and check if the difference is sufficient for model update. 3) hypothesis

test based approaches, built upon the previous two methods, apply various hypothesis tests to quantify

further the severity of model drift. Based on these approaches, our solution can determine when to

intervene according to the starting and ending points of the drift, where to intervene, i.e., localizing the

concept/data drift in the feature space. and how to intervene, in the light of the type and degree of the

drift, by adaptively choose model update strategies. The most straightforward approach is the model

retraining and updating. For concept drift, we ensemble several base classifiers or utilize knowledge

transfer learning for the emerging new target variables.

 System implementation. The amount of data engaged in the model update has an impact on the

training effectiveness and the system overhead: less data can reduce computation and storage cost but

only reflect the latest data distribution; more data is beneficial for reshaping models with higher precision,

along with increased overhead. We employ an adaptive window-based solution to select the optimal data

amount used for on-device training and/or global model synchronization via ADWIN11 algorithm: instead

of using a fixed time window, the algorithm calculates the drift rate from all possible windows and selects

the best cut that reveals the optimal drift level. We modularize and implement the drift detection and

alarming system in AUTOSTEER. The detection module is responsible for data retrieval and extraction

of data statistical properties, and we then leverage hypothesis tests to evaluate the drift degree. Once

the alarming system confirms the existence of the model drift, we employ techniques in Section Model

VIEW FROM THE CLOUD

8

Adaptation for efficient on-device training. For federated learning applications, once local model has been

updated, we also trigger gradient aggregation to keep the global model up-to-date.

Infrastructure Monitor and Maintenance

To learn how the applications perform, we either collect general-purpose telemetry metrics in a black-

box manner or instrument, as an integral part of the models, subsystems or system services, in a white-

box manner. The metric tracking and tracing system of our orchestration infrastructure collects system

logs, model metrics (task execution status, prediction statistics and evaluation metrics as baselines),

system metrics (request latency, error rates, network status, etc.), and resource metrics (CPU utilization,

memory utilization, GPU usage, etc.) in real time, and ships them to a centralized analytic platform. We

adopt the random sampling mechanism on each agent that is deployed on each physical node, for

reducing the overhead of data collection. More advanced technologies such as sketch12 can be further

added. Anomaly Detector comprises real-time event-based processing units, used for identifying per-

application performance degradation while Root-cause Analyzer is implemented to troubleshoot the

causes of performance degradation based on the collected performance indicators.

CASE STUDY: EDGE-BASED REAL-TIME VIDEO ANALYTICS

In this section, we showcase a real-world application backed up by the deployment and runtime

management mechanisms in AUTOSTEER.

 As shown in Figure 3(a), we develop an video analytical application following the edge-cloud

paradigm. A set of video generating devices (e.g., traffic surveillance cameras, drones, mobile phones)

produce live video streams which are then processed either on low-power edge devices (e.g. Raspberry

pi, Jetson Nano, computing chips), or GPU cluster in Cloud datacenters. We prototype the video analytic

application via object detection models yolo3 and the Wide Area Network (WAN) communication between

edge devices and the data center is implemented by using the real time video stream transmission

protocol (RTSP).

 The heterogeneity of edge nodes and the interplay among the edge and cloud introduce

uncertainties regarding network latency, hardware slowdown or failures. As discussed in Section End-to-

end Application Optimization, the collected fingerprints and system status are mathematically modeled

with a hierarchy queuing model that reveals the relationships between the workload offloading rate

(between the edge and cloud) and the system latency and throughput. We then formulate a min-latency

optimization problem bounded by a minimal throughput threshold. For model optimization, we implement

two gradient-based optimization algorithms (i.e., PGD-VAO, PGS-VAO) to ascertain a solution to

minimizing the overall latency. All components are containerized and deployed at both the edge and the

cloud side via AUTOSTEER.

 Figure 3(b) shows the performance of our proposed algorithms under empty, normal and busy

system workloads. Specifically, we insert video chunks into system buffering queues to simulate different

workloads. Then, we test our algorithms against other state-of-the-art task-offloading approaches, i.e.,

DeepDecision and FastVA. We can see that with the increase of the workload, the system latency is

increasing as well. It is also clear that our modelling based algorithms (e.g., PGS-VAO, PGD-VAO,

FastVA) perform better than non-modelling based algorithms.

VIEW FROM THE CLOUD

 9

(a) Illustration of an Edge-Cloud Video Analysis System. (b) Performance of Workload Optimizer in

Different System

 Working Conditions

FIGURE 3. The Edge-cloud Video Analysis Application and an Early Performance Comparison

CONCLUSION

Most prior work related to ML applications focuses on algorithm design and optimization for better training

ML models. Although such work is essential for specific applications, there are few studies on the holistic

orchestration solution to maintaining the lifecycle of networked ML applications. In this article, we firstly

highlight several key challenges facing the orchestration systems. We then present a set of techniques

to deploy ML applications onto resources across cloud and edge devices and assure their runtime

performance, making models being served free from model decay and performance degradation due to

inappropriate parameter setting. These assist in finding effective pathways to automating the

management of networked ML applications at production level, although, admittedly, it still calls for

significant effort in large-scale engineering practices and integration with wider domain-specific

scenarios.

ACKNOWLEDGEMENT

This work is supported by UK EPSRC (EP/T01461X/1), the UK Alan Turing Institute Post-Doctoral

Enrichment Award Programme, and the UK Alan Turing Pilot Project. Renyu Yang is the corresponding

author.

REFERENCES

1. Qian, B., Su, J., Wen, Z., Jha, D.N., Li, Y., Guan, Y., Puthal, D., James, P., Yang, R., Zomaya, A.Y. and Rana, O., 2020.

Orchestrating the development lifecycle of machine learning-based IoT applications: A taxonomy and survey. ACM
Computing Surveys (CSUR), 53(4), pp.1-47.

2. Zhu, M. and Gupta, S., 2017. To prune, or not to prune: exploring the efficacy of pruning for model compression. arXiv

preprint arXiv:1710.01878.
3. Jacob, B., Kligys, S., Chen, B., Zhu, M., Tang, M., Howard, A., Adam, H. and Kalenichenko, D., 2018. Quantization and training

of neural networks for efficient integer-arithmetic-only inference. In Proceedings of the IEEE conference on computer vision and

pattern recognition (pp. 2704-2713).

VIEW FROM THE CLOUD

10

4. Eterovic, T., Kaljic, E., Donko, D., Salihbegovic, A. and Ribic, S., 2015, October. An Internet of Things visual domain specific

modeling language based on UML. In 2015 XXV International Conference on Information, Communication and Automation
Technologies (ICAT) (pp. 1-5). IEEE.

5. Binz, T., Breitenbücher, U., Kopp, O. and Leymann, F., 2014. TOSCA: portable automated deployment and management

of cloud applications. In Advanced Web Services (pp. 527-549). Springer, New York, NY.
6. Maclaurin, D., Duvenaud, D. and Adams, R., 2015, June. Gradient-based hyperparameter optimization through reversible

learning. In International conference on machine learning (pp. 2113-2122). PMLR.

7. Sutton, R.S. and Barto, A.G., 2018. Reinforcement learning: An introduction. MIT press.
8. Redmon, J. and Farhadi, A., 2018. Yolov3: An incremental improvement. arXiv preprint arXiv:1804.02767.
9. Elsken, T., Metzen, J.H. and Hutter, F., 2019. Neural architecture search: A survey. The Journal of Machine Learning

Research, 20(1), pp.1997-2017.
10. Cho, J.H. and Hariharan, B., 2019. On the efficacy of knowledge distillation. In Proceedings of the IEEE/CVF international

conference on computer vision (pp. 4794-4802).

11. Bifet, A. and Gavalda, R., 2007, April. Learning from time-changing data with adaptive windowing. In Proceedings of the
2007 SIAM international conference on data mining (pp. 443-448). Society for Industrial and Applied Mathematics.

12. Yang, T., Zhou, Y., Jin, H., Chen, S. and Li, X., 2017. Pyramid sketch: A sketch framework for frequency estimation of data

streams. Proceedings of the VLDB Endowment, 10(11), pp.1442-1453.

Zhenyu Wen is currently a professor with the Institute of Cyberspace Security, Zhejiang University of Technology,

China. His research interests include Multi-objects optimization, Crowdsources, AI and Cloud computing. Email:

zhenyuwen@zjut.ed.cn

Haozhen Hu is currently a master student with the College of Information, Zhejiang University of Technology, China.

His research interests include distributed machine learning. Email: 2112003108@zjut.edu.cn

Renyu Yang is currently a research fellow with University of Leeds, UK. His research interests include large-scale

reliable distributed systems, big data analytic and applied machine learning. Email: r.yang1@leeds.ac.uk

Bin Qian is a postgraduate research student in the school of computing, Newcastle University, UK. His research

interests include IoT, Machine Learning. Email: b.qian3@ncl.ac.uk

Ringo W.H Sham is a research technician in the school of computing, Newcastle University, UK. His research

interests include IoT, Machine Learning. Email: ringo.sham@newcastle.ac.uk

Rui Sun is a postgraduate research student in the school of computing, Newcastle University, UK. His research

interests include IoT, Machine Learning. Email: r.sun5@newcastle.ac.uk

Jie Xu is currently a Chair Professor at the School of Computing, the University of Leeds, UK and chief scientist of

BDBC, Beihang University, China. His research interests include reliable distributed systems, resource

management, dependability, and big data. Email: j.xu@leeds.ac.uk

Pankesh Patel is currently a researcher in AI Institute, University of South Carolina, Columbia, South Carolina, USA

Email: dr.pankesh.patel@gmail.com

Omer Rana is a full professor in the School of Computer Science and Informatics at Cardiff University. His research

interests include performance modelling, simulation, IoT, and edge analytics. Email: ranaof@cardiff.ac.uk.

Schahram Dustdar is a Full Professor of Computer Science with a focus on Internet Technologies heading the

distributed system group at the TU Wien. Email: dustdar@dsg.tuwien.ac.at

Rajiv Ranjan is a Chair and Professor at Newcastle University, UK, and at China University of Geosciences, China.

He has expertise in cloud computing, big data, and the Internet of Things. Email: raj.ranjan@ncl.ac.uk

