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Optical quantum super-resolution imaging
and hypothesis testing

Ugo Zanforlin 1 , Cosmo Lupo 2, Peter W. R. Connolly1, Pieter Kok3,

Gerald S. Buller1 & Zixin Huang4

Estimating the angular separationbetween two incoherent thermal sources is a

challenging task for direct imaging, especially at lengths within the diffraction

limit. Moreover, detecting the presence of multiple sources of different

brightness is an even more severe challenge. We experimentally demonstrate

two tasks for super-resolution imaging based on hypothesis testing and

quantum metrology techniques. We can significantly reduce the error prob-

ability for detecting a weak secondary source, even for small separations. We

reduce the experimental complexity to a simple interferometer: we show (1)

our set-up is optimal for the statediscrimination task, and (2) if the two sources

are equally bright, then this measurement can super-resolve their angular

separation. Using a collection baseline of 5.3 mm, we resolve the angular

separation of two sources placed 15μm apart at a distance of 1.0mwith a 1.7%

accuracy - an almost 3-orders-of-magnitude improvement over shot-noise

limited direct imaging.

Hypothesis testing, parameter estimation, and imaging are funda-

mental scientific tasks that can all be improved using quantum

techniques1–3. A judicious choice of quantum probe state or mea-

surement observable can significantly improve the information gained

in ameasurement. These improvements canmanifest in amultitude of

ways. For example, the noise in an image may be reduced4,5, or the

resolutionof the imagemaybe improvedbeyond the classical Rayleigh

limit6–9. Other improvements include ghost imaging, where informa-

tion is extracted from quantum light that has not directly interacted

with the object10,11, and quantum-enhanced non-linear microscopy12.

Quantum lithography13,14, and quantum sensing15–17 exploit entangled

or correlated sources to enable precision beyond what is achievable

classically. In microscopy, these techniques compete with classical

super-resolution methods that use engineered sources that exhibit

non-linear responses or exploit selective activation and bleaching of

fluorophores18–21.

When source engineering is not an option, which is the case for

astronomical observations, quantum techniques can beat the diffrac-

tion limit by unlocking all the information about amplitude and phase

in the collected light. Traditionally, the resolution of an imaging sys-

tem is limited by the the Rayleigh criterion7: the minimum angular

separation that can be resolved is θmin≈λ=D, where λ is the wavelength

and D is the diameter of the lens. A recent result for super-resolving a

pair of incoherent sources has triggered much interest in the field3. It

was shown that there is no loss of precision associated with estimating

the sources’ angular separation, even when their separation is smaller

than θmin. However, prior to measuring the separation, one needs to

ensure that there are two sources and not just one. One straightfor-

ward method would be to use direct imaging (DI) to determine whe-

ther a secondary source is present. In a diffraction limited system, the

image of a point-like object is not a point but has a finite spread

characterised by the point-spread function (PSF). If the two sources

overlap on the image screen, this blurring presents a severe practical

obstacle to direct detection of exoplanets22,23, especially when one

source is much dimmer than the other.

Quantum hypothesis testing techniques, on the other hand, can

be used (Fig. 1) when the task is to determine whether a secondary

source exists1. The goal is to minimise the probability of a false
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negative (missing the second source). If we are happy to accept a

certain probability of false positives (type-I error), then the probability

of a false negative (type-II error) is given by the quantum Stein

Lemma24,25. This asymmetric error setting is particularly applicable to

rare events such as exoplanet identification22,23, or events with

important ramifications such as dimer detection in microscopy26. In

quantum information theory, the two hypotheses—one source versus

two sources—are modelled by two quantum states, ρ0 and ρ1. We

consider n detection events, and work in the regime of highly atte-

nuated signals where n corresponds to the number of photons

received. We define αn and βn as the probabilities of type-I and type-II

errors, respectively. Given a bounded probability of a type-I error,

αn < δ, the quantum Stein lemma27,28 states that:

βn = exp �nDðρ0∣∣ρ1Þ �
ffiffiffiffiffiffi

nb
p

Φ�1ðδÞ �OðlnnÞ
h i

, ð1Þ

where

Dðρ0∣∣ρ1Þ=Tr ρ0ðln ρ0 � lnρ1Þ
� �

, ð2Þ

is the quantum relative entropy (QRE)29,Φ(δ) is the Error Function, b is

the variance of the QRE30 and ln indicates the natural logarithm. The

quantum Stein Lemma and the quantum Cramér-Rao bound are

usually defined in terms of number of copies of the state. However,

here we work in the regime of highly attenuated signals and post-

selected on photon detection events. Therefore, we refer to n as the

number of photons detected. The two approaches differ only by a

normalisation factor dictated by the overall transmission-detection

efficiency. In the limit of large n, the leading term in the error exponent

is the one proportional to the QRE D(ρ0∣∣ρ1). Therefore βn ’
exp �nDðρ0∣∣ρ1Þ

� �

asymptotically. The quantum Stein lemma is already

optimised over all possible measurements, therefore, it depends only

on the two states to be discriminated, ρ0 and ρ1. The QRE provides a

significant improvement in the error exponent βn over the classical

relative entropy for direct imaging1, thereby significantly reducing the

probability of error, even when the two sources have small angular

separations.

Once it is established with reasonable confidence that there are

two sources, one can use quantum metrology to perform para-

meter estimation on the angular separation. The ultimate precision

in the estimation is dictated by the quantum Cramér–Rao bound31.

For any density matrix ρ(θ) with spectral decomposition

ρðθÞ=∑ipi∣ei
�

ei
�

∣ that encodes the information of the parameter θ,

the mean square error Δ2θ is lower bounded by the quantum Fisher

information (QFI) Iθ,

Δ2θ≥
1

nIθ
, Iθ =2∑

i,j

�

ei∣∂θρ∣ej
�

pi +pj

, ð3Þ

where∂θ ρ = ∂ρ/∂θ, and n is the number of photons detectedwhere the

summation is restricted to terms with pi þ pj >0. The QFI represents

the ultimate precision limit for the estimation of the given parameter,

which may be achieved by some particular measurement. Obviously,

not all measurements allow us to achieve it. For any given measure-

ment, which yields a particular distribution of measurement outputs,

the optimal mean square error is bounded by its associated classical

Fisher information (FI), which is the classical counterpart of the QFI.

Here we describe a method, based on interferometry, to experimen-

tally achieve the ultimate quantum Cramér–Rao bound32. If a lens is

used and the PSF is approximately Gaussian, this ultimate bound can

be achieved by spatial-mode demultiplexing (SPADE) or similar

methods3,33. For estimating the transverse separation between two

equally bright sources, the QFI has been shown to be finite and

independent of the separation3. This is in contrastwithDI, which allows

us to estimate the separation with limited precision that drops to zero

when the separation is small compared to the width of the PSF.

Sub-Rayleigh super-resolution imaging through coherent detec-

tion of incoherent light is currently an active area of research5,34–47.

However, implementing the optimal measurement is typically non-

trivial. In this paper we achieve two goals: (1) we experimentally

demonstrate clear sub-Rayleigh scaling for quantum state discrimina-

tionof singular versusbinary sources, and (2)weapproach thequantum

Cramér–Rao bound for estimating the angular separation of two sour-

ces with equal brightness. Most importantly, we significantly simplify

the required experimental complexity. The two goals are achieved with

a singlemeasurement set-up: all the above tasks can be performedwith

a simple interferometer with two spatial modes, i.e., we collect photons

at two spatial locations. Then, we perform photon counting at the

output of the interferometer, and by analysing the statistics we can

saturate both the QRE and the quantum Cramér–Rao bound.

Results
The Model
First, consider the task of discriminating between one source or two

sources with a separation s in the object plane. Hypothesis H0 states

that onlyone source is present, and it is positioned at x0. HypothesisH1

states that two sources are present, where the first source is centred at

x0, and it has an angular separation θ = s/z0 with the second. Further-

more, they have relative intensities (1 − ϵ) and ϵ respectively; without

loss of generality, we assume ϵ ≤0.5.Wewill label a photon originating

from the brighter source with intensity (1 − ϵ) as ∣ψstar

�

, and the source

with intensity ϵ as ∣ψplaneti. The two states on the image plane are

generally non-orthogonal. The density matrices associated with the

two hypotheses H0 and H1 are, respectively

ρ0 = ∣ψstarihψstar∣, ð4Þ

ρ1 = ð1� ϵÞ∣ψstarihψstar∣+ ϵ∣ψplanetihψplanet∣: ð5Þ

These two hypotheses can be discriminated by DI, in which case an

optical system (which wemaymodel as a thin converging lens) is used

to create an image of the (unknown) source. The optical system is

characterised by its PSF, which for a circular aperture is described by

the Airy function. The latter, in turn, can be well-approximated by a

Gaussian function with variance σ. In DI, the focused image is

measured via pixel-by-pixel intensity detection, which in the weak-

signal regime yields the empirical probability distribution of detecting

a photon in each pixel. From the analysis of the data collected this way,

one addresses the problem of hypothesis testing. The probability of a

false negative is quantified by the classical analogue of the quantum

Stein lemma, which expresses the error exponent in terms of the

classical relative entropy (CRE), i.e., the Kullback–Leibler divergence.

In the limit that θ ≤ σ and ϵ≪ 1 the classical relative entropy from DI is

approximately ðexpðθ2=σ2Þ � 1Þ ϵ2=21. This quadratic scaling in ϵ

formally expresses the challenges of using DI for exoplanet detection,

especially when the planet is much dimmer and very close to the star.

Fig. 1 | An optical imaging system is used to discern between two hypotheses,

followed by parameter estimation. If hypothesisH0 is true (a), only one source of

intensityN is present; ifH1 is true (b), two sources are present, with total intensityN

and the relative intensity is ϵ/(1 − ϵ). For H1, angular separation between the two

sources is θ = s/z0.
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By contrast, the QRE provides a 1/ϵ improvement over the CRE1.

An almost-optimal quantum measurement, SPADE3, is able to achieve

linear scaling in ϵ by performing spatial Hermite–Gaussian mode

sorting1. Though the SPADE device has recently been built and

demonstrated48,49, the set-up is sensitive to misalignment of the sour-

ces’ centroid3, cross-talk48, and is unsuitable for large-baseline instru-

ment devices—SPADE is suited for circular lenses and mirrors and

building such optical components larger than 10’s of metres is infea-

sible. Here, we present an alternative approach with reduced experi-

mental complexity that can also be adapted for large-baselines

devices50. If instead of a lens we place two optical collectors, d1 and d2,

separated by d = ∣d1 − d2∣, and at a distance z0 from the sources (see

Fig. 2), then the states ∣ψstar

�

and ∣ψplanet

E

can be described as

∣ψstar

�

=
1
ffiffiffi

2
p ∣d1

�

+ eiϕ∣d2

�� �

, ð6Þ

∣ψplaneti=
1
ffiffiffi

2
p ð∣d1i+ eiψ∣d2iÞ, ð7Þ

where ϕ,ψ are the optical path differences of the sources to the two

collectors. In the paraxial regime, these are

ϕ≈
k d θ

2
, ψ≈� k d θ

2
, ð8Þ

where k is the wavenumber. Here we have assumed that the centre of

the two collectors alignswith the centroid of the star-planet system for

simplicity, but this is not necessary. In the limit of ϵ≪ 1, the QRE

between ρ0 and ρ1 is approximately (see Supplementary Information

for details)

Dðρ0∣∣ρ1Þ≈
k
2
θ
2
d
2
ϵ

4
: ð9Þ

Equation (9) is also linear in ϵ, thus has a factor 1/ϵ improvement

compared to the classical counterpart; an optimal measurement that

saturates the QRE (i.e., the measurement’s CRE that matches the QRE)

is obtained by placing a phase shifter and a 50:50 BS after the two

collectors, followed by photon counting. Given an imperfect inter-

ferometer with visibility ν, if there is no planet (H0 is true), then the

probabilities that the photon is detected at detectors a or b are:

pH0
ðaÞ= 1

2
1 + ν cosðϕ+αÞ½ �, ð10Þ

pH0
ðbÞ= 1

2
1� ν cosðϕ+αÞ½ �: ð11Þ

Where α is an adjustable phase. Otherwise, if H1 is true, then the

probabilities are:

pH1
ðaÞ= 1

2
½ð1� ϵÞð1 + ν cosðϕ+αÞÞ+ ϵð1 + ν cosðψ+αÞÞ�, ð12Þ

pH1
ðbÞ= 1

2
½ð1� ϵÞð1� ν cosðϕ+αÞÞ+ ϵð1� ν cosðψ+αÞÞ�: ð13Þ

Given that we know the output probabilities of the two hypoth-

eses, the CRE of this measurement is given by the classical version of

Eq. (2), where

DðpH0
∣∣pH1

Þ= ∑
i2 a,bf g

pH0
ðiÞ lnpH0

ðiÞ � lnpH1
ðiÞ

h i

: ð14Þ

The CRE is maximised for

α ≈ � k d ϵðx0 + sÞ=z0 + ð1� ϵÞðx0Þ=z0
� �

, ð15Þ

and matches the QRE. Intuitively, this corresponds to the point where

∣pH1
ðaÞ � pH0

ðaÞ∣= ∣pH1
ðbÞ � pH0

ðbÞ∣ is maximised.

We now move onto performing quantum parameter estimation

on the state. When the source intensities are equal, the QFI for the

above state is ref. 32

Iθ =
k
2
d
2

4
, ð16Þ

which is constant in the effective pupil size d and independent of the

angular separation θ. Hence, the angular separation can be estimated

with constant precision even when its value is below the Rayleigh

length, i.e., well beyond the diffraction limit. The very same measure-

ment that achieves the maximum relative entropy, also allows us to

saturate the quantum Cramér–Rao bound dictated by the QFI (i.e., the

measurement achieves the minimum uncertainty).

Define ay0
d1
ðay0

d2
Þ to be the creation operator at the collector posi-

tion d1(d2). The adjustable phase shift α and the beam splitter trans-

form the operator as

ay0
d1

! 1
ffiffiffi

2
p ay

d1
+ay

d2

	 


, ð17Þ

ay0
d2

! eiα
ffiffiffi

2
p ay

d1
� ay

d2

	 


: ð18Þ

Applying the transformation in Eqs. (17) and (18) to the state

ρ= 1=2 ð∣ψstarihψstar∣+ ∣ψplanetihψplanet∣Þ, the probabilities of detecting

the photon at either detector are

paðϕ, α, νÞ=
1

2
1 + ν cosðαÞ cos ϕð Þ½ �, ð19Þ

pbðϕ, α, νÞ=
1

2
1� ν cosðαÞ cos ϕð Þ½ �: ð20Þ

Here ϕ is the same as in Eq. (8). Determining ϕ statistically will

provide an estimation on the angular separation, explained in the next

sections. The maximum classical relative entropy and Fisher informa-

tion are achieved around the phase values α =0 or π. At these values,

the CRE coincides with the QRE, and the Fisher information coincides

with the QFI32.

Fig. 2 | Schematic of two sources with a separation of s in the object plane, with

relative intensities ϵ and 1 − ϵ, at a distance z0 from the collectors. Two col-

lectors atd1 and d2direct light into a two-input interferometer consisting of a phase

shift ofα and a 50:50beamsplitter, followedbyphoton counters. A collector canbe

any optical element that collects light. This could incorporate lenses or in the case

of this experiment, two fibre connectors that present only the bare fibre core

diameters in the direction of the source.
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Experimental set-up
The experimental set-up is depicted in Fig. 3. A fibre-coupled vertical

cavity surface-emitting laser (VCSEL) with 848.2 nm central wave-

length (0.11 nm FWHM) is operated in pulsedmode at a repetition rate

of 1MHz. This specific wavelength is chosen as it provides a good

trade-off between single-photon detection efficiency (≈ 40%) with

commercially available thick-junction silicon single photon avalanche

diodes (Si-SPADs) detectors and tolerable optical loss in silica fibres

(≈ 2.2 dB/km)51. The resulting coherent states are then coupled into

two electro-optic modulators (EOMs) enabling phase and amplitude

modulations of the individual coherent states. An external arbitrary

waveform generator (AWG) electrically drives the two modulators by

means of randomisedmodulation patterns so that the resulting optical

states resemble apseudo-thermal source52, required for the incoherent

sources specified by themodel and tested using a Hanbury Brown and

Twiss interferometer. This modulation approach provides absolute

control over each coherent state emitted by the source, including

preserving the coherent state for use in interferometric measure-

ments. In the results presented in this paper, we alternate the pseudo-

thermal state with a coherent state that acts as a reference. The

reference pulses provide the necessary interferometric stabilisation

that is controlled via feedback from the two detectors, after the two

pulses interfere at the beamsplitter. The alternate set of thermally

modulated states instead are used to compute all relevant quantities

detailed in our model (see Supplementary Information for further

details).

After phase and amplitude modulation, the pseudo-thermal

states are coupled into multimode optical fibres (8m in length) in

order to maximise mode dispersion and reduce wavefront spatial

correlations due to the initial coupling of the VCSEL to single mode

based optical components. The final thermal radiation is coupled

into an adjustable aspheric collimator lens providing precise align-

ment with the remaining free-space optical components. Two

pseudo-thermal sources are extracted from the collimated beam via

a custom-made optical mask with two circular pinholes etched onto

the surface, effectively reproducing two idealised point-like sources

corresponding to the two distant stars of our model. Different

etched patterns were fabricated using laser-written lithography in

order to study a wide range of configurations with pinhole dimen-

sions ranging from 10 to 50 μm in diameter and with spatial

separation spanning from just 15 μm to almost 1 cm (see Supple-

mentary Information for further details).

A neutral density filter is mounted on a separate movable micro-

positioner block (not shown) placed in front of one of the two pinholes

reducing the transmitted optical power through one of the pinholes.

This configuration creates a controlled intensity imbalance between

the two pseudo thermal sources effectively creating one bright source

(a distant star) and one dimmer source (a distant exoplanet). At 1m

from themask, two single-mode polarisationmaintaining (PM) optical

fibres, separated by 5.3mm, are mounted on a micropositioner block

(not shown) coupling the transmitted light beams into a balanced

interferometer whose output modes are monitored by Si-SPAD

detectors. The collectors used with the PM fibres are commercial

fibre connectors with the bare fibre cores facing the approximate

direction of the source. An adjustable air-gap is placed in one of the

two optical paths allowing us to loss-balance the interferometer aswell

as providing direct control over the optical path-length difference. A

time-correlated single photon counting (TCSPC) unit processes the

generated timetags with 1 ps resolution enabling fast readout times as

well as full digital post-processing. For each configuration of the set-

up, 25 individual measurements are taken with a 5 s integration time in

order to reduce Poissonian errors associated with photon-count data.

An active feedback mechanism is implemented to ensure high inter-

ferometric visibility (> 99%) during the entire duration of the data

acquisition by means of a piezoelectric actuator adjusting the path-

length difference of the interferometer via the air-gap (see Fig. 3).

Experimental results
We experimentally measured the probability of the photon arriving at

detectors a and b. As an example, in Fig. 4 we show the probability of

the photon arriving at detector a for ϵ = 0.5 and angular separations of

1.48 × 10−5 rad and 5.9 × 10−5 rad. As expected, the contrast is higher for

smaller separations: in the limit of small θ, the smaller the separation,

the more spatially coherent the light becomes. In the limit that θ =0,

we have a point source and the visibility should be 100% in theory.

First, we compute the relative entropies of the two scenarios. In

Fig. 5, we present the CRE of themeasurement for different values of ϵ

using an angular separation of 5.9 × 10−5 rad. For comparison, we also

show the relative entropy for direct imaging using a lens with a dia-

meter equal to the fibre separation of 5.3mm (assuming a Gaussian

PSF). Fig. 5 shows the distinct difference in scaling in ϵ between our

method andDI. For ϵ > 10−2, we see that the two-modeCREmatches the

two-mode QRE well. Due to experimental imperfections, around

ϵ ~ 10−3 the achievable relative entropy has significantly deviated from

VCSEL (≈ 850 nm)

Collimating

Lens
50:50 BS

Si-SPAD

detectors
Variable air-gap

Single mode PM fibrePM Phase modulator AM Amplitude modulator Micropositioner

AMPM

(Mask)

TCSPC

(Feedback control loop)

Multimode fibre
Connectorised

fibre coupler

Fig. 3 | Experimental set-up.AVCSELoperated in pulsedmodegenerates coherent

states that are phase and amplitude modulated to reproduce a pseudo thermal

state. These states are then coupled into amultimodefibre and then collimated to a

custom optical mask shaping the light beam into two pseudo-point-like sources. At

1m distance, two single-mode polarisation-maintaining fibres collect the

transmitted beam through connectorised couplers, followed by an adjustable air-

gap that tunes the phase α, a 50:50 beam splitter and two single-photon detectors.

These detectors are two Si-SPADs and register photon detection events storing

their information onto a PC for post-processing via a TCSPC module. A feedback

control system is used for interferometric stabilisation via the adjustable air gap.
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the ideal quantum case, but still surpasses the DI limit by twoorders of

magnitude.

We now present themethod of analysis and results for estimating

the angular separation.We usemaximum likelihood estimation to first

extract the optical path difference ϕ between the source and the two

collectors, and then obtain an estimator for the angular separation θ.

Our method for extracting ϕ is a simpler version of the phase esti-

mation method used in refs. 53, 54. We can determine ϕ directly from

the detection statistics. To choose the estimator, it is useful to deter-

mine a probability density function for ϕ based on the detection

results. The probability density function forϕ, P(ϕ), canbedetermined

from Bayes’ theorem as follows: prior to any detected photons, we

assumeno knowledge ofϕ, and the corresponding prior distribution is

therefore P0(ϕ) = 1/(2π). After one detection event μ = a, b and adjus-

table phase α, we have

Pðϕ∣μ, α, νÞ / Pðμ∣ϕ, α, νÞ P0ðϕ∣α, νÞ: ð21Þ

where Pðμ ∣ϕ, α ,νÞ is the update probability distribution. After m

detection events, the vector of measurement outcomes is

μ
!

m = ðμ1, μ2, . . . , μmÞ, where each element μj∈ {a, b}, with j∈ [1,m],

corresponds to the detector a or b that signalled the presence of the

photon. The probability density function for ϕ is then54

Pðϕ∣ μ!m, α, νÞ / Pðμm∣ϕ, α, νÞ Pðϕ∣ μ
!

m�1, α, νÞ, ð22Þ

where the proportionality constant is determined by normalising the

distribution.

In order to obtain ananalytic form forPðϕ∣ μ!m, α, νÞ, we express it
as a Fourier series

Pðϕ∣ μ!m, α, νÞ=
1

2π
∑
m

k =�m
ake

ikϕ, ð23Þ

where ak depends on μ
!

m, α and ν. After each detection event, we can

write the updated distribution in this Fourier form as well. For exam-

ple, if detector b fires, then following from Eq. (20),

Pðμ= b∣ϕ, α, νÞ= 1

2
1� ν cosðαÞ cosðϕÞ½ �, ð24Þ

which we can rewrite as

Pðμ=b∣ϕ, α, νÞ= 1

2
� 1

4
ν cosðαÞ eiϕ � 1

4
ν cosðαÞ e�iϕ: ð25Þ

Therefore the update coefficients are a0 =π,a1 =a�1 = � π
2

ν cosðαÞ. The factor ν cosðαÞ is computed directly from the coherent

state statistics (see Supplementary Information for detailed derivation).

Before the first detection (the prior distribution), Eq. (23) contains only

one term, a0= 1. After each detection event the number of Fourier

coefficients grows by 2 (the ±m terms in the Fourier expansion). The

coefficients ak are updated using Eqs. (19), (20) and (22).

As an example, Fig. 6 shows the probability density function P(ϕ),

calculated based on Eq. (23) after 12740 detection events where 1478

were output at detector b, with ν cosðαÞ=0:981. Since cosðϕÞ is an even

function, there are two peaks, symmetrically placed around zero. We

require only the magnitude of ϕ in the estimation of the angular

separation θ.

Following maximum likelihood estimation, the value of ϕ at the

maximum of P(ϕ) becomes our estimate, and the estimate of the

separation θ is then given by

^θest = 2∣ϕ∣=ðkdÞ: ð26Þ

Once this estimate is obtained, we use the mean-square error

(MSE) to quantify the precision, given by

MSEðθÞ=Δ2θ+ ð�θ� θtrueÞ
2
: ð27Þ

Here �θ is the mean value of the estimates, and θtrue is the true

value of the angle, which in this case is accessible via direct measure-

ment. The MSE is equal to the variance for unbiased measurements

and appropriately penalises biased estimates as well.

Fig. 5 | Relative entropyof the twohypotheses for different values of ϵ, using an

angular separation of 5.9 × 10−5 rad. The plot shows: (1) the QRE of the two-mode

state (blue solid line), (2) the CRE of the measurement maximised over α, given

ν =0.995 (orange dotted line), (3) the CRE for shot-noise limited direct imaging (DI,

teal dashed line), and (4) the experimental data points (red crosses).

Fig. 6 | Simulated probability density function PðϕÞ with ν cos (α) = 0.981 . The

probability density function forϕ, after 12740 detection events of which 1478were

from detector b.

Fig. 4 | Photon detection probability of one of the detectors, as a function of

the applied phase α, which is adjusted using the distance of the air-gap. The

data shown are for ϵ =0.5, for physical separations of 1.5 × 10−5 m and 6.0 × 10−5 m;

the angular separations are 1.48 × 10−5 rad and 5.9 × 10−5 rad, respectively.
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For each value of the angular separation we obtained 25 different

estimates, each detecting approximately n ≈ 60000 photons. Figure 7

shows the MSE multiplied by n × Iθ. The experimental data points are

indicated by red crosses, and the achievable precision for shot-noise

limited DI (using a circular lens of diameter 5.3mm) is indicated by the

dash-dotted line.

Experimentally, the data was collected with the factor ν cosðαÞ
between 0.96 and0.985. This is the shaded orange region in Fig. 7. The

quantumCramér-Rao bound is equal to 1 in this figure (blue solid line).

Weobtainedunbiased estimates for values of angular separation θ that

dramatically beat the Rayleigh limit. When θ = 1.48 × 10−5 rad, the root-

mean-square errors are within 1.7% of the real value, which is two to

three orders of magnitude more accurate than what is achievable with

DI using a lens of the same diameter. For all measured angular

separations, the MSE stayed within a factor 2 of the quantum Cramér-

Rao bound.

Discussion
In this work, we have analysed theoretically, and demonstrated

experimentally, two tasks for super-resolution imaging based on

hypothesis testing, quantum state discrimination and quantum para-

meter estimation. Estimating the angular separation between two

sources is a challenging task for direct imaging, especially when their

angular separation is smaller than the point spread function of the

imaging system. The task of determining whether there are one or two

sources is in itself a difficult task, especially when one source is much

dimmer than the other.

We solved both these problems and, compared with previous

works1,33,55, we have reduced the experimental complexity down to a

simple two-input interferometer: we show that a simple set-up

achieves sub-Rayleigh scaling for the state discrimination task, and if

the two sources are of equal brightness, then this measurement can

optimally estimate their angular separation, saturating the quantum

Cramér–Rao bound.

We developed the theoretical analysis in the framework of single

photons. However, the results extend to the regime of thermal sources

as discussed in ref. 1. The experiment was conducted with weak ther-

mal sources, where the probability of detecting multiple photons is

highly suppressed. This reflects the fact that the measurement is post-

selecting on single-photon events, which explains why the experi-

mental data saturates the single-photon quantum limit. A similar

observation was made for the problem of estimating the transverse

separation35. In the absence of background noise, losses do not affect

our resolution apart from reducing the total photon count.

Our experiment also shows a practical optical set-up that could

potentially be integrated with current stellar interferometers. How-

ever, thiswould require a different approach for thephase stabilisation

of the interferometer. For example, the stabilisation could be provided

by a ground-based coherent source or an artificial guide star which are

suitably multiplexed into the interferometry system.

Our set-up is compatible with existing two-mode interferometers:

the two-mode model assumes that the dimension of the collectors is

much smaller compared to the spatial separation of the collectors d.

For optical interferometers where the separation between arms is of

the order of ≈ 100’s m, collection using lenses and compound mirrors

would be appropriate. For telescopes with point-spread functions that

have 10’s ofmilliarcseconds in resolution, we expect ourmethod to be

able to distinguish, or measure the separation of binary stars to pre-

cisions well-above direct imaging. As an example, the exoplanet LkCa

15 c56 was observed with a Large Binocular Telescope (LBT) with a

diffraction-limited PSF of ≈29 milliarcseconds (wavelength at 2.18μm,

7m in baseline). Using our method, if the instrument has visibility ν ≥

98% (achieved byCHARA57), such an instrument can resolve twobinary

stars with separations less than 10milliarcseconds (see Supplementary

Information).

In order to achieve the desired precision, we need a sufficient

number of photon counts acquired over a time period during which

the phase is stabilised. Naturally, the phase stabilisation will be highly

dependent on the environment.One approach is that our systemcould

be entirely translated into a planar waveguide architecture where light

from a telescope could be collimated directly into laser-inscribed

couplers greatly reducing optical losses and improving phase stabili-

sation due to the reduced dimensions of the interferometer58. More-

over, our system could improve the MSE of estimating even smaller

angular separations by increasing the number of collected photons,

but higher interferometric visibility levels (≈ 99%) would be necessary

to avoid signal degradation due to sub-optimal α values.

In our work we used pulsed light for both the reference signals

and the pseudo thermal states. In a practical implementation, a

celestial body would show a continuous form of radiation with a broad

optical spectrum59,60 which limits the interferometric visibility. How-

ever, our system can be easily adapted to implement narrow bandpass

filters to select the right bandwidth for the detection stage at the cost

of a reduced photon level. Moreover, Si-SPADs could be replaced with

SNSPDs for faster sampling time, higher detection efficiencies and

reduced dark counts and timing jitter.

Recently, there has been a renewed interest in two-photon inter-

ferometry (intensity interferometry)61,62. Compared to those techni-

ques, our method requires phase-stabilisation of the interferometer,

butmakes use of every photon received. The two-photonmethods can

achieve a very large baseline without needing an optical link between

the system (or phase stabilisation), but suffer from low probability of

successful detection events. In principle, if one has access to a

quantum-enabled large baseline optical interferometer of the same

baseline (such as those described in ref. 63), our scheme achievesmuch

higher precision.

Here, we have focused on the most simple scenario of dis-

criminating one versus two point-like sources, using a two-mode

interferometer. Future work could explore the hypothesis testing for

discriminating between multiple sources of different brightness,

composite hypothesis testing, and the number of modes the inter-

ferometer would require for such tasks.

Methods
Pseudo thermal source generation
Thermal radiation is a semi-classical formof radiation characterised by

a well defined optical intensity but undefined phase64. Its representa-

tion on a phasor diagram is that of a symmetric blurred circle centred

around the axes’ origin (see Supplementary Fig. 1). Thermal states are

Fig. 7 | The mean squared error (MSE) of estimating the angular separation

between two equally bright sources, normalised by the QFI, for different

values of angular separation. The plot shows: (1) the normalised QFI, which is

equal to 1 here, and is constant across the whole range of angular separations θ

(blue solid line); (2) the MSE for shot-noise limited DI (teal dotted-dashed line); (3)

the Fisher information for an interferometer with a visibility-phase factor ν cosðαÞ
between 0.965 and 0.985 (orange shaded region); (4) the experimentally achieved

MSE (red crosses).
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generally associated with optical radiation with a reduced temporal

and spatial coherence65,66 which limit their use for interferometric

measurements. However, our work required precise control over the

interferometer’s reference phase which could not be achieved by

solely implementing a thermal source like an LED. Thankfully, the semi-

classical nature of thermal states allows us to express their mathe-

matical representation as a collection of individual coherent states

weighted by a suitable quasi-probability distribution, i.e., the

Glauber–Sudarshan P-function67:

ρth =

Z

PðαÞ∣αi αh ∣d
2
α, ð28Þ

where P(α) is the normalised P-function.

Referencing Fig. 3, thephaseand amplitudemodulations required

to reproduce the correct P-function of a thermal state were provided

via the two electro-optic modulators (EOMs) fibre-coupled to the laser

source, a vertical cavity surface-emitting laser (VCSEL). A dual-channel

arbitrary waveform generator provided independent electrical driving

voltages to the EOMs which in turn applied a variable phase and

amplitude modulation onto the individual coherent states generated

by the VCSEL. Both modulators were LiNbO3 based with low insertion

and coupling loss (≈ 0.25 dB) and low DC control voltages (≈ 2.5 V for

phase inversion). The amplitude modulators comprised two laser

inscribedwaveguides configured in aMach–Zehnder patternwhere an

external RF signal would change locally the refractive index of one arm

actively altering the output power of the device. In order to reduce any

external interference during their operation, the EOMs were

mechanically and thermally isolated from the environment enhancing

their operational stability. The final pseudo thermal source was tested

by means of a Hanbury Brown and Twiss like experiment68 where

second order correlations between the two detectors monitoring the

interferometer were measured for different time delays via the QuCoa

analysis software for the HydraHarp 400 (PicoQuant) TCSPC module.

Supplementary Fig. 2 shows the computed g(2)(τ) as a function of the

time delay between the two detectors for a pulsed source with a

repetition rate of 1MHz. The results showed a maximum at zero delay

of g(2)(0) = 1.977 ±0.003, in close agreement with the theoretical value

of a true thermal source.

Interferometric calibration
The experimental set-up depicted in Fig. 3 relied on spatial mode

sorting of the pseudo thermal states via interferometric means. How-

ever, precise and reliable control over the optical path difference of

the device was paramount for the desired sorting operation. There-

fore, we implemented an active feedback loop mechanism to have

direct control over the interferometer and the relative phase differ-

enceof its inputs. A reference coherent signalwasmultiplexed into the

input signals via the same EOMs used for the generation of the pseudo

thermal states. This mechanism effectively halved the final repetition

rate to 500KHz since every two laser pulses, one was used for cali-

bration and tuning operations. Supplementary Fig. 3 depicts a sim-

plified representation of a one-shot modulation signal used for the

phase changing EOM. The first signal applies a voltage that imprints a

complete π shift onto the coherent state while the second signal

applies a random phase uniformly extracted from the set [0, 2π)

ensuring that the final P-function was not skewed due to limited ran-

domness generation69,70. The adjustable air-gap placed in one of the

optical path of the interferometer was then used to ensure that the

phase applied to the reference signal state was kept constant

throughout the detectors’ integration time thus resulting in high

interferometric visibility (≈ 99 %).

Data availability
All data generated in this study have been deposited in theHeriot-Watt

University database71.
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