UNIVERSITYW

This is a repository copy of Trade-offs For Memory Bandwidth Reduction in Stack
Processor Design.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/191109/

Version: Accepted Version

Conference or Workshop Item:

Crispin-Bailey, Christopher orcid.org/0000-0003-0613-9698 and sotudeh, reza (1995)
Trade-offs For Memory Bandwidth Reduction in Stack Processor Design. In: 10th
International conference on mathematical and computer modelling and scientific
computing, 05-08 Jul 1995, USA.

Reuse

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of
the full text version. This is indicated by the licence information on the White Rose Research Online record
for the item.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Trade-offs for Memory Bandwidth Reduction In
Stack-Processor Design,

C. Bailey and R. Sotudeh.
SST, University of Teesside, Middlesbrough,
Cleveland, TS1 3BA, UK.

(email: c.bailey@teesside.ac.uk)

ABSTRACT

This paper presents an evaluation of techniques for reducing memory bandwidth overheads of
stack-processors executing compiled C-code. The results build upon our previous work which
investigated hardware concepts using modest benchmarks. Now, with access to better compilers
and benchmarks, we can present a more extensive appraisal of this work.

Stack-based processors abandon the traditional register file concepts of RISC and CISC in favour of
implicit stack based computation: an architecture ideal for FORTH execution. However, trends indicate
increasing importance for HLLs (High-Level-Languages) such as C. If the advantages of stack processor
hardware are to be retained for future technology. the issue of efficient HLL execution in a stack based
context must be investigated thoroughly and new trade-offs identified.

Our research group's efforts have concentrated upon the design of a new stack-processor with
particular attention to the implications of C-based code behaviour for stack machine design.
Modelling of our 32-bit design is being conducted with VHDL design tools, and some simplified

processor designs have already been synthesised.

Quantitative results presented for compiled C programs include stack depth analysis, instruction
set effects, and the effects of local variable optimisation on bandwidth and stack behaviour. The
application of stack-cache buffering and instruction packing techniques are also quantified and
performance estimates reviewed. Including the effects of recently proposed software
optimisations, which we have now investigated, has allowed us to identify previously un-

recognised trade-offs of possible significance for future stack processor design.

KEYWORDS

Stack-machine, Bufferring, Stack-cache,Modelling, Memory-bandwidth, Optimisation.

INTRODUCTION

Mainstream processor designs are heavily biased towards register file computation. Whilst CISC
technology attempts to increase the semantic value of each instruction, RISC designs lean
towards simplification of instruction set and architecture for higher throughput as shown by
Hennesey (1990). The concepts of stack based computation, dating back to the earliest years of
computing, have largely been ignored. Examples include Hamblin (1957),Dent (1968), and

Duncan (1977)

citation: 10th International conference on mathematical and computer modelling and scientific computing, Boston July 1995.

citation: 10th International conference on mathematical and computer modelling and scientific computing, Boston July 1995.

Although stack processors have much to offer, particularly in embedded systems and real-time
control environments, they h.ave failed to migrate to mainstream computing. Their specialisation
toward FORTH programming in recent years has made them a poor choice where HLL
Janguages are preferred, and with FORTH itself adopting new features akin to mainstream

HLLs. the next gf’.neratj()n of stack processors must take into account the evolving demands of
their intended environments.

Increasing performance of stack processors is our major research objective. This has to be placed
in the context of better support for HLL features, whilst maintaining the stack based computing
philosophy and its inherently minimal processor logic.

Memory bandwidth is of particular importance to stack processor technology. Whereas CISC
and RISC designs utilise cache heavily, and indeed rely upon it in meeting performance targets,
the stack processor cannot always utilise such techniques. In embedded systems and real-time
control, there are often demands for deterministic and predictable system behaviour. Cache
increases overall performance, but the penalty is reduced system determinance as Koopman
(1993) has shown.

We have concluded that widening the application areas for stack processor technology is
critically linked to achieving optimal throughput for HLL-oriented language models, in a system
where limited bandwidth and low memory costs are primary concemns. This paper presents
results from a number of issues we have investigated and thier implications for better stack
processor performance. A number of trade-offs are identified, and new mathematical models are

presented.

STACK PROCESSOR TECHNOLOGY

Anyone who is familiar with the FORTH
programming languages will be familiar with
the concepts of stack based programming. A
FORTH interpreter uses a virtual stack as an
automatically extensible computation scratch-
pad, which must be used in Last-in-First-out
order. Items on the stack may however be
exchanged in limited ways to permit stack re-
ordering. It is therefore not surprising that many Main Memory :
current stack processors are optimised for : :
FORTH execution. : e :

A true stack processor implements a hardware . —
model based upon dual stacks. The primary D
stack (the Data Stack) is for operand storage
and manipulation, whilst the second (Retumn) Fi L ;. rM
stack holds program counter values and acts as

auxiliary storage for call/exit events. Fig.1, shows a simplified stack processor.

By utilising a stack, the data storage is automatically managed as computation progresses. No
register address fields are necessary since the majority of the operations act implicitly upon the
Top-Of-Stack (TOS) and Next-On-Stack (NOS) items.

it should also be nnlu'l that, xincc_ the stack cells on chip are separate register cells, there is no
need for the cwnp?cxﬂy of nvluln»pnn addressable register files, a considerable advantage in
inimisation of logic complexity.

Any stack growth 1s accommodated by spilling successive items through the on-chip stack cells
10 1'nuin memory. whcrc a stack pointer tracks the top of the auxiliary stack space. This implies a
heavy bandwidth requirement for stack transfers to and from memory (known as 'stack spilling'),
put techniques exist 1o limit this overhead as we shall see in later sections of the paper.

SCOPE OF THIS PRESENTATION.

In this paper we collate findings from a series of
related studies, Bailey et al (1994a, 1994b,
1995a), in order assess the problems of stack . iy
processor performance, and identify future
directions. Figure 2, below, serves as a useful
illustration of the key areas we will examine in
this paper. This shows the general memory

bandwidth utilisation of a series of benchmarks, | D Stack
broken down into its components. 38%

I-Fetch
The benchmark code presented throughout this 37%
paper was based upon a set of C source
programs which were then compiled into Fhe Fiod M " For B ¥
stack based code of a proposed machine le

architecture (UTSA) and then simulated with
tools developed by our research group. It was
clear to us that there are three major areas of
stack processor performance to be addressed: stack spilling, local variable access, and instruction

fetch bandwidth.

Data Stack Spilling,

By far the largest source of memory traffic was data stack spilling, with a minor contribution
from the retun stack. Here we have investigated buffering issues within the context of C-code
rather than the previous FORTH-oriented studies. Since the majority of stack processor
instructions lead to stack growth or shrinkage, the overhead for stack spilling is often in the
region of 0.9 to 1.0 memory accesses per instruction: a severe handicap to any idea of single
cycle execution. It is well known that this can be marginalised using buffering, and it is generally
assumed that this will in practice be minimised by stack buffers of 16 to 32 cells.

The issue of buffering was found to be more complex than previously thought, as we indicated in
Bailey (1995a), with new trade-offs being identified that will ultimately apply to the vast
majority of programming languages targeted for stack processor execution.

Local Variables,

An area essential for our studies was the support of local variables, now a feature of new
FORTH standards as well as a comerstone of many mainstream HLL's. It is clear that after

oving stack spilltratfic from - the distribution model of Fig 2. jocal vanables represent a

*m
- k to performance

majot hottlence

geveral stack-schedulingtechmques are proposed in Koopman (1997 1o reduced the impact of
im“” variable references

we have implemented some of those post-compilation optimisation techniques and evaluated
perfomuance tor our UTSA architecture. Our work progresses beyond Koopman s original study
by dsscssINg the impact that stack scheduling has upon cxecution characteristics and dynamic
b;.mymur of those programs. Trade-ofts encountered when taking into account hardware
auributes such as stack buttfering and instruction set architecture are apparent.

Instruction Fetch Bandwidth.

Partial reduction of local varable traffic leaves one final barrier to higher performance: the stack
machine cannot exccute instructions faster than they can be fetched from memory. Instruction
fetch bandwidth ultimately limits performance in the absence of cache. Normally we would
simply make the memory faster. And, if cost was a factor (it usually is), then cache would
provide memory speed-up without inflating system cost. However the main application areas of
stack processors are still firmly rooted in embedded systems and real-time control environments.
Often, here, cache is prohibited in order to strictly maintain completely deterministic and
predictable system behaviour as discussed in Koopman (1993). Here the multi-level cache
hierarchies of the current-generation PC would be met with a cry of contempt, if not despair !.

When cache cannot be used to increase memory bandwidth then other mechanisms must be found
to enhance performance. We have investigated the concept of instruction packing, where several
compact stack processor instructions may be packed into a single memory word, and fetched

within a single cycle.

Our results show that stack processors can achieve high dynamic packing densities even with
naively generated compiler code. This reduces fetch overheads whilst releasing memory
bandwidth for data fetches and local variable access. We find that executing 3 instructions for
every 2 memory cycles is typical even including explicit data fetch/store overheads.

STACK BUFFERING HARDWARE.

Stack buffers are in some respects similar to cache, but are considerably simpler in form and
have much more modest requirements in terms of logic and silicon area. The sequential nature of
an implicitly addressed stack means that there is no need for address fields in the buffer 'cache'.
Instead, a stack pointer typically keeps track of the memory area corresponding to the interface
between CPU stack cells and main memory over-spill. Fig.3, shows a more detailed view of s

stack processor, with buffered stacks.

By introducing a non-linear relationship between stack depth modulations and the associated
memory transfers that would nomally be generated (which are largely redundant) the buffer

climinates most of the stack spill traffic.

Demand-Fed Buffering,

A common choice in stack processor design is the demand fed approach, which has a linear
buffer block. This can accommodate a certain degree of stack growth or contraction without

pecoming empty or full. A small intemal pointer keeps track of the butter level, and spills/fills
are gcncrmcd when full/empty situations are encountered. This topic was examined by Koopman
(1989). and Hayes ¢l al (1987). Such a scheme is shown in Fig 4.

Whilst stack depth change remains within the
range of the buffer, no spilling to memory occurs.

TS However as soon as the buffer capacity is
ALU exceeded, the buffer must access main memory,
NOS spilling the bottom buffer item to the main
memory stack space.
The stack typically encounters short term depth
Buffer Buffer changes that lie within the buffer capacity, whilst
SP RP | following longer term trends that are 'tracked’ at a
I penalty of occasional spills to and from memory.
[AddrBus ¥ |
| Data Bug | The Tagged Push-Through Buffer.
FigJ, Buffered Stack Processor System Whilst the demand-fed buffer is somewhat

simpler than a randomly addressable cache, it still
requires indexing of items within a small storage file which is addressed by buffer index
pointer(s). From our research we have identified a possible alterative buffering system which
may be applicable to optimisation of stacks in general, and could have comparable performance
to the demand fed buffer. A much simpler buffer scheme can be envisaged if we abandon the idea

of index pointers in the buffer space, and instead use an n-bit wide shift register for stack buffer
contents.

POP PUSH PUSH We propose a word-wide shift register
RW T RW ‘ RW ‘ arrangement through which stack items may
T A T E be pushed and popped. This would result in
52 Ea—— I A memory transfers to maintain buffer continuity
c B o A after each push or pop. However, with the
3 c T = addition of read-in and write-back tags, the
redundant memory transfers can be avoided,

(’ , as is illustrated in Fig.5.

\ C

d d d When a POP occurs at the top-of-stack, the
8 e e buffer contents shift up by one cell. However,
rather than immediately reading in a value to
MEMORY MEMORY MEMORY | fill up the vacant cell in the shifi-block, we

Deferred Read Write Avoided Write Back §imply clear the read-in flag of that cell to
Fio5 T Push-Thr Buffer indicate that its contents are not present. The
read is deferred, and will only take place if

‘ that item is popped right to the top of the
buffer, a rare occurrence as buffer size is increased.

Conversely, If an item is read into the buffer its write-back-tag bit is cleared. If any change takes
plaCe. the tag bit is set. If and when the item is pushed back into memory,
ISsued if the tag bit indicates a change in contents. If the write
contents are already in memory.

the transfer is only
-back-tag remains clear, then its

we have established that the top of stack items change with ever decreasing frequency as the
stack depth increases, such ‘lhar TOS changes for the majority of operations, whilst the third and
fourth stack items changc tor perhaps 10% of Opcrations executed. The hardware requirements
of the push through buffer are somewhat differen from demand fed. We require only an n+2 bit
wide shift register, where n is the word-size of the stack in bits.

The main memory locations corresponding to
the top and bottom of buffer are tracked by
the stack pointer itself (bottom), and a stack-
pointer offset address equal to the depth of
the buffer. With a paged stack memory
management scheme, the offset addition wil]
be between 8 and 12 bits for the most likely
architectural options. We shall compare the

performance of the two buffering strategies, , X .
under various conditions, in later sections of Fig.6. Nomalised Stack Depth Probabilit

this paper.

40
20

0 1 2 3 4 5 6 7 8
Normalised Stack Depth

Stack Depth Prob.
%

Stack Behaviour and Buffer Performance

Buffer performance is dependant both upon stack depth behaviour, buffer size, and the algorithm
applied. The dynamic behaviour of the data stack is illustrated in Fig.6, which represents the
normalised stack depth profile for a set of C benchmarks compiled to stack code. The nature of
compiler generated code is quite different from that produced by a good FORTH programmer.
Rather than keeping useful data items on the data stack during a series of computations, the
compiler tends to start with an empty stack, fetches the associated operands, then computes and
stores the results, leaving the stack empty once again.

This system will use the minimum number of stack cells, a subject well researched by Bruno et
al (1975), but is not necessarily the
optimal choice for absolute perfonmance.

We shall see later that optimisation of 100

the raw code produces better use of the a: 80

stack, but not without changing the € 60

behaviour of the stack. The two stack = 40]

buffer strategies of interest were ;i 20 i
simulated, and were found to perform as 0 = F pessh-T hrough
in Fig.7., which reveals the relationship 9123, 6 5 AT
between increased buffer size and —— o

reduced stack spill traffic. On
logarithmic scales the characteristics are
dpproximately straight lines, implying an
€xponential form of behaviour.

Fig.7. Stack Buffer Performance Comparison.

. AL;]J_IQMMMQGC] ot Butfer Behaviour,

we have found that the buffer spilling behaviour can be approximated by an exponential decay
formula of the form given by equation 1.
(‘.

Sxb) = sx e®b (Egn

Here. S(x.b) Tepresents the spill traffic for a buffer algorithm denoted by 'x', with a buffer size of
v’ cells. The damping efficiency ‘o' determines the rate at which traffic is reduced when buffer
size is increased. It was determined from analysis of the data for Fig.7, that the damping factors
for the two algorithms were -0.773 and -0.715 (for Demand-fed and Push-through buffers
respectively). The baseline traffic was measured at s = 0.846 for the benchmarks considered,
indicating that 85% of instructions caused a change in data stack depth. Hence the two
algorithms can be represented by:-

S(Demfb) = 0.846¢0.773b
S(Pthrp) = 0.846e-0.715b

Comparative Efficiency

A comparison of Demand-Fed and Push-Through buffering (as shown in Fig.7) indicates that the
demand fed algorithm is marginally better for small buffers than the tagged-push-through buffer,
this is reflected in the @ constant. With larger buffer capacities, both algorithms meet the
objective of eliminating the majority of stack spill traffic. If hardware considerations such as
logic complexity are important, then it may be that the simpler push-through-buffer is a better
choice.

LOCAL VARIABLE MANAGEMENT.

The second area of attack, in reducing bus bandwidth requirements, centres upon the reduction or
climination of local variable traffic during computation. Local variable transfers are a
significant problem whenever high-level language based computation is encountered, and usually
arises from the residence of local variables in main memory.

In our UTSA design, we have decided upon maintaining locals in a third stack, held in main
memory. This Frame Stack’, can be addressed by offset addressing relative to the frame pointer.
It follows that, whenever a computation takes place, the contents of the operands (being held in
local variables) are fetched from the external frame stack to the intemal data stack. After
computation, the result is written back to the corresponding local variable in main memory. This
is clearly going to generate a large amount of variable traffic, as was apparent in the traffic
breakdown of Fig.2.

Local Variable Redun

After studying a suite of benchmarks, we found the dynamic distribution of locals as in Fig.8. We

havp found that the typical distribution of locals in an executing program to be such that local
vanable fetches outweigh local variable stores by 3 or 4 fetches to every store.

Slon: Local 3 Fetch lnm

@

£

=

<

£

=

v

c

=

-

%

=

€ e

& e R

2 5

13

& v 2 v " o
7 Y Y 2 € g
v 2 £ = & =

(=4
F.y P,.‘,))

lit 4 lit 4
fp- fp-
lloc 2 rsul
loc 1 tuck?
loc 0 rsu4
lit 2 dup
@loc O rsu3
@loc 1 Lt 2
mul rsu3
@loc O mul
@loc 2 rsd3
mul rsd4
add tuck3
@loc 1 mul
@loc 2 add
mul rsd4
add rsd3
mul mul
loc 3 add
@loc 3 mul
lit 4 lit 4
fp+ fp+

exit exit

Fi

Fig 9, Stack Based Code to calculate

SUfixy.z)= 2xf(xX y)+(xX z)+(yx z)}.

Dynamic
I Static

100

Local Varlable Refs.
8

w 5 _: Sesamtes

None 1-reg 2-reg 3-rtegq 4-reg
Degree of Optimisation
l k-cell Vs Local Reduction

This result implies that local variables are
frequently utilised in a non-destructive
fashion, whilst being moditied relatively
infrequently. This short-term invariance of
the variables allows us to make duplicates
of their contents on the data stack, which
may later be used in preference to exteral
memory access.

Figure 9 illustrates the level of
improvement that can be achieved using
this technique, showing a compiler-
generated subroutine fragment before and
after intra-block scheduling.

It should be apparent in the case of Fig.9.
that all locals (@loc and !loc) are
eliminated from the code without
lengthening the instruction count. In the
origional un-optimised code tthere were 11
local variable references. In general, a few
residual locals remain, but execution times
significantly improve.

Effectiveness of Intra-Block

hedulin

In order to assess the performance of
Koopman's technique, we produced a series
of nmeasurements to indicate its
effectiveness in removing local variables
from benchmarks. The results extended
Koopman's work by varying the degree of
optimisation possible to reflect the
restrictions in top-of-stack access that may
occur in differing stack processor
architectures. This is illustrated in Fig.10.

Figure 10 shows clearly the effects of
permitting increasing cell accessibility at
the top of stack.: As we increase stack
accessibility more local variables are
eliminated. The effect is particularly
visible for 2 and 3 stack-cell access, but,
for 4 stack-cell accessibility and beyond
there is a rapidly diminishing return. The
increased complexity of hardware

supporting deeper stack access may make
this undesirable.

Wﬂ Bufter Behaviour
m

an important factor. and one which was
‘re\’iOUSI,V ignored. is the eftect that intra-
block scheduling has upon stack behaviour.
gy radically altenng the use of the data
st.:ick by the program code being executed.
we inevitably cause major alterations in that
grams stack behaviour, as can be seen in

Fig.ll Normalised Stack Depth Probabilities.,

pro
Fig.11.

Even though a small reduction in baseline tratfic (from s = 0.846 to 5, = 0.786) was observed, it
was found that application of intra-block scheduling resulted in poorer buffer performance. The
stack buffer's damping efficiency for a given size of buffer was reduced because the stack
behaviour it attempts to dampen, has altered. Table-1 emphasises the change in the buffer
behaviour. We have found that the effect of intra-block scheduling upon stack behaviour is to
increase stack depth range. with a typical doubling of depth variation during program execution.
As a result, the stack bufters have a harder task to perform in reducing stack spill traffic, and this
results in degraded stack buffer pertormance, as illustrated in Figl12a and 12b.

We can now represent the degraded stack Unoptimised | Optimised
buffer performance by the models given | DemandFed | @=-0.773 | @y =-0.592
below, and hence begin to mathematically Push-Thru w=-0.715 W, = -0.566
quantify the degrading effects of local | Basetraffic. | s = 0.846 |5, = 0.786
variable ~ optimisation on butter Table-1. Buffer Model Parameter
performance.
Demand-Fed Buffer

S(Demfby) = 0.786 € 0-592b
S(Pthrb,) = 0.786 ¢ 0366 b o 10

o 80

E 60

- 4

Reduction in Buffer Efficiency, S 2
@ o

Having measured the buffer performance
both before and after applying local variable

4 Butter Capacity
reduction, we can make a comparison
between the approximations of the Fig.l2a, Effect of Intra-block Sc in
mathematical models in terms of thier ® on Demand-Fed Buffer.
values:
Demand fed: Push-Through Buffer

0.773 +0.592 = 1.30 (i.e.. 30% worsc).

Push-Through:

Spill Traffic
%

oRB8888

0.715 +0.566 = 1.26 (i.e., 26% worse).

It we nommalise the baseline traftic to 1.0 Butter Capacity
then we may verify this by equating the

buffer cfficiency for a given value of b. Fig.J2b L of Intra-

on Push-Through Buffer,

F“rmamplc. the demand fed buffer with b= 2 delivers performance of -

S(demf,2) = s.e0773.(2) - 0.213.5

[n order O achieve similar performance with an equal workload after intra-block scheduling, we

have suggested a buffer 1.3 times larger, hence:-

S(demf,2.6)= 5. -0-592.(2.6) = 0214 &

Thus, it appears that the relationship for traffic damping is verifiable, and a degradation in buffer
efficiency of 30% due to the change in stack behaviour is quantified comrectly by our model
Naturally, we may only select buffers of size 2 or 3 in practice rather than 2.6, but the
implication is that any demand-fed buffer would need to be 30% larger in order to maintain equal
performance after applying intra-block scheduling. Since the baseline traffic reduces slightly (by
about 8%), this slightly offsets the reduced buffer efficiency, so that the actual increase in spill

traffic may not be as great as might be envisaged.

The effects of Intra-Block scheduling clearly have an influence over other performance factors,
and whilst the effects may not be particularly significant in that case, the application of global
scheduling [Koop92] would have a more pronounced effect. and will no-doubt be found to have
more significant influence over the behaviour of buffers in stack based systems.

INSTRUCTION FETCH REDUCTION.

In order to reduce the final bus bandwidth bottleneck - instruction fetch overhead, we chose to
investigate ways of exploiting the minimal length of stack based instructions in a 32 bit data

width architecture.

If instruction fetch overheads were significantly reduced, the result would be an architecture that
could execute several instructions per memory cycle without cache - provided that stack spilling

and local variable traffic had been dealt with as discussed previously.

Packed i ion wWor m

By packing several short stack operations in each 32 bit word it was expected that several
instructions would be executed for every instruction-word fetch issued.

This concept has been investigated in a RISC context by Bunda (1993) and Patterson (1985), but
failed to generate substantial savings due to RISC's long instruction lengths. However, the trade-
off discussed by Bunda for register-window size Vs. code density (hence reduced instruction fetch
overhead) does not translate to the implicit operand addressing scheme of the stack processor, so
more significant gains can be made with this concept when using stack processor technology as

the core architecture.

TSA I ion

The full set of word formats for our proposed 'University of Teesside Stack Architecture' are
?llustrated in Fig.13. One format permits up to three operations to be packed in a memory word,
implying a peak throughput of 3 times the extemal memory bandwidth.

"”]W{—W-OP CLASS 3 ln~ .pr;lc(icc, longer ms[ruclions. are

L'O_l] occasionally required, to support long literals
@ 20-OP (constants) for example, or absolute memory

CLASS 2 addresses. This means that the code density
@ 20-OP will rarely reach 3 instructions per word in

@ practice.

@E— 0P cLasst The following results indicate the

effectiveness of the instruction packing
scheme for both static (Fig.14) and dynamic
(Fig.15) code density.

Fig. 13.Instruction packing for 32-pit word,

The static code density only reflects the mapping of opcodes onto memory words, not the
efficiency of the instruction fetch scheme. Dynamic code density does reflect this factor however,
and represents the number of instructions executed (including any nops) for each word fetched.

The figures show that the static code density is quite impressive, reaching an average of over 2.7
instructions packed in every word. The dynamic figure shows, however, that the number of
instructions executed for every word fetched is somewhat lower - an average of 2.2 instructions

per word.

The reduced density of dynamic measurements reflect the fact that basic blocks may end in the
middle of an instruction word, while looping and procedure call frequencies weight some localised
characteristics of the program in preference to others.

Word Alignment Vs, Code Density.

One area where trade-offs have been identified is in the area of word alignment. The issue is
whether we should make calls and jumps word-aligned, or permit a jump to be made to individual
instructions within a memory word.

B Aligned B Unaligned B Aligned M Unaligned

w

h—

e

Packing Density
N

Packing Density
N

I

ST I

|
TR R

LT

T

pa—
a—

It can be seen from Fig. 14, that forcing program flow to take place on word boundaries results in
a4 substantial decrease in static code density, from 2.7 to 2.3 instructions per word. The
U'?aligned code mapping was found to produce 20% smaller program memory requirements than
dligned code. When dynamic code density figures are examined (Fig.15) it is clear that unaligned

code displays no consistent advantage over aligned code. The average gain for the whole
penchmark suite was almost nil.

without a more comprehensive set of benchmarks, it seems that we cannot make firm conclusions
about the benefit of word-aligned program code. But our results at least serve to indicate that the
application of OpumMIsatons to improve dynamic code density would be worth investigating.

word alignment Tr. fi

Since it scems to be clear that program size is reduced by using unaligned code, then there may be
some justification for using it. Conversely, non-aligned code seems to deliver comparable
dynamic performance, yet also implies larger address range capability and simpler address
generation logic. Additional arguments, such as cache efficiency may also play a part in the
evaluation process. We are concemed with improving systems where cache is not acceptable, but
other applications may have quite different operating requirements.

A more detailed investigation would help to resolve these questions. Examining both hardware
and software factors whilst accounting for optimisation strategies targeted toward increased
dynamic code density (hence optimising for execution speed) would help to quantfy these trade-
offs. This is beyond the scope of this paper, but may be addressed in future studies.

OVERALL PERFORMANCE GAINS

Now that we have examined the three areas which were identified as critical for our proposed
stack processor performance, we can quantify the effects of each optimisation on the system, and
assess the gains likely for combination of these strategies.

Mathematical Performance model.
Let us first propose a mathematical model in order to represent the memory bandwidth
requirements of a stack processor system, represented by equation 2, which assumes overlapping

fetch-execute cycles.
1

M= -- + Spxx,b) *SR(x,b)* M +m
1f (Eqn. 2)
Where i = Dynamic instruction density,
SD(X,b) = Data stack. Spi” Traffic,) SR(X.b) = Retumn stack spxll Trafﬁc,
mp_ = Local Variable Access/Instr, m = Other Mem Access/Instr.

We have already introduced the stack buffer spilling function S(x py . which represents the data
stack spilling overhead for a given stack. However, the stack processor is typically a dual stack
system, hence we now have two stack spilling terms, one for data stack traffic, and another for

return stack traffic.

In practice return stack baseline traffic is quite small with s = 0.1 being typical, so that even
minimal buffers will eliminate most return stack spilling. The return stack is not subject to any
trade-offs pertaining to intra-block scheduling. We have measured the key characteristics for a
simulated stack processor system, with a series of C compiled benchmarks, as shown in Table-2.

L\JJL\M Symbol Value
5 2.20
From the above .valgcs \\L le u?scss the S(demf.b) 0.846 0. 773D
performance 0‘1 ~]Lciﬁclmsi:$i(lj 5“‘;“ S(demfb,,) 0.786 ¢-0-592 b
processor for a spe : ON. 0T\ 'my (Before Optimisation) | 0.409
ample. @ demand fed buffer with size _—
L\‘{n ithout local variable optimisation my (After Optimisation) 0.269
h;f,, withou P - 0.08
gives:-
Table-2, K racteri

1/

Sp(Demf.8)
SR(Demf.8)

m L
m

0.4545
0.00174
0.00021
0.4090
0.0800 +

Total M

0.945 (model projection)

Hence the memory bandwidth requirement would be M = 0.945. In other words the CPU issues
1.06 instructions for each memory access, barely achieving single-memory-cycle execution.

Now, after applying local variable scheduling, we may identify the new performance of the

system, as shown in the second projection.

1/ = 0.4545

SD(Demf,S) = 0.00689 (increased)

mp, = 0.2690 (decreased)

m = 0.0800 +

Total M = 0.8106 (decreased overall)

We find that the system performance is now 1.23 instructions executable in every memory cycle,
or a speedup of 16 % by using local scheduling, with no need for cache.

Performance projection

verification

The series of curves in Fig.16 shows the relative performance of several machine/software
configurations as projected by the mathematical models introduced. Such theoretical performance
projections mirror measurements made on our CPU simulator, verifying the mathematical model.
For example, we find in simulation that a 100 ns memory cycle has the potential to deliver 12
Mips with packed instruction fetch and local variable optimisation.

Such theoretical performance projections mirror measurements made on our CPU simulator,
verifying the mathematical model. For example, we find in simulation that a 100 ns memory cycle
has the potential to deliver 12 Mips with packed instruction fetch and local variable optimisation.

Thc above simulation figures agree well with the result for the D-M-O model (Demand-fed Multi-
feich Optimised) in Fig.16, for example, where 0.81 memory references per instruction are

predicted with adequate buffers

CONCLUSIONS.

We have presented a number of methods
and techniques for improving stack
processor performance under the limited
conditions of embedded systems
B environments. Most of these techniques

Memory Refs

? g 1 v X ; - o} oy were previous:ly investigated in emp?rical

6 7 4 terms, making formal comparisons

Buffer size b difficult. Our paper has presented a number

of techniques, illustrated trade-offs in each

Fig 16, Performan jections by Model case, and attempted to represent those
effects and trade-offs with a mathematical

modelling approach, hence allowing a

D = Demand Fed Buffer numerical evaluation of trade-offs and

SIM = Single/Multi Fetch performance gains associated with

U/0 = Un-optimised/Optimised Locals optimisation.

The ultimate result of the work presented here is to combine mathematical components, reflecting
various aspects of machine optimisation, and therefore present an overall model of performance.
Our model agrees with simulator output, and allows quantitative comparisons to be applied to
performance data, rather than the previous empirical ad-hoc approach found in previous
publications. Current work is concentrating upon VHDL processor models, which should allow
us to further validate our findings at the hardware level, and allow lower level trade-offs to be
investigated with consideration given to gate-delay and silicon-area trade-offs.

ACKNOWLEDGEMENTS.

L Anew compiler is being developed by Rowley Associates, UK, and MPE Ltd.

2. We wish to acknowledge the support given by Microprocessor Engineering Ltd, Southampton. UK,
both as a research sponsor, and for technical consultation.

3. The research programme was additionally supported by a UK Govt. SERC CASE Award for the
period 1992-1995.

REFERENCES.

Bailey, C., Sotudeh, R. (1994) HLL Enhancement of Stack-Based Processors. EuroMicro Journal of
Microprocessing and Microprogramming Vol. 40, 1994, pp 685-688.

Bailey, C, Sotudeh, R. (1994) The effects of Local Variable Optimisation on a C-based Stack Processor
Environment. Proc. of the 1994 Euroforth Conference, Winchester Nov 1994,

Bailey, C, Sotudeh, R. (1995a) The Effect of Intra-Block Scheduling In a Stack Processor Environment.
Proc. of the 1995 Rochester Forth Conference' on emerging Technologies. Rochester, USA. June
1995.

Bruno. J, Lassagne, T. (1975). The Generation of Optimal Code For Stack Machines. Journal of the
ACM, July 1975, Vol 22, No 3, Pages 382-396.

Bunda, J., Fussell, D.. Jenevin, R., Athas. W. (1993). 16-Bit vs. 32-Bit Instructions for Pipelined
Microprocessors.

Hauck, E.A. Dent, B, A. (1968). Burroughs B6500/B7500 Stack Mechanism. Proc. AFIPS SJCC.

Duncan, F. G. (1977). Stack Machine Development: Australia. Great Britain, and Europe. IEEE
COMPUTER,

Hamblin, C, L. (1957). An Addressless Coding Scheme Based on Mathematical Notations. Proc of the
W.R.E Conf. on computing, Salisbury, South Australia, June 1957.

Hennessy. J. L. Patterson, D, A. (1990) Computer Architecture: A Quantitative Approach. Morgan &
Kaufmann Publishers, Inc. ISBN 1-55860-069-8.

man. P. (1989) Stack C
i om
Koopman. p. (1992 mputers - The
‘Rr:»ches‘lcr Forth ()~ A preliminary ex ¢ New Wave. Ellis
Kmpman‘P 1993 onference. Roches[ploration of opti "7‘H0rw(-)()d Press. 1
,P. (1993) Perils of er, USA mised stac ss. ISBN(
- the PC e JU"C 1992 stack code ge)-7458-04
A. (1985). Reduced instr(jac-he' Embedded ;)y; e generation. Proc l(?f-7i9
ction systems e 92
set computers' CO:n};]rogTamming_ May 1993
; s. of the ACM v/ 3.pp 26
M V28 N '34
ol pp8-21

Koop

patterson, D.

