UNIVERSITY of York

This is a repository copy of *Hex-Tile: Evaluation Prototype of a Novel Tile-based Processor Array:Preliminary Report.*

White Rose Research Online URL for this paper: <u>https://eprints.whiterose.ac.uk/190803/</u>

Version: Published Version

Other:

Crispin-Bailey, Christopher orcid.org/0000-0003-0613-9698, Austin, Jim orcid.org/0000-0001-5762-8614, Thuphairo, Pakon et al. (1 more author) (2022) Hex-Tile: Evaluation Prototype of a Novel Tile-based Processor Array:Preliminary Report. UNSPECIFIED.

Reuse

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item.

Takedown

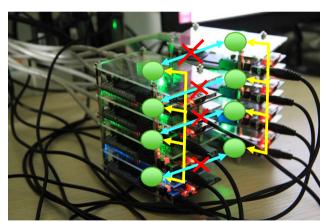
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

eprints@whiterose.ac.uk https://eprints.whiterose.ac.uk/

Investigating Novel 3D Modular Schemes for Large Array Topologies: Power Modeling and Prototype Feasibility.

Pakon Thuphairo, Christopher Bailey, Anthony Moulds, Jim Austin

Department of Computer Science University of York, York, United Kingdom


Background and Motivation Alternatives to Rack-Mount

Background - Structural comparison

- Wiring effort (Power + data communication)
- Lengths of vertical and horizontal data channels
- Empty volume for cooling

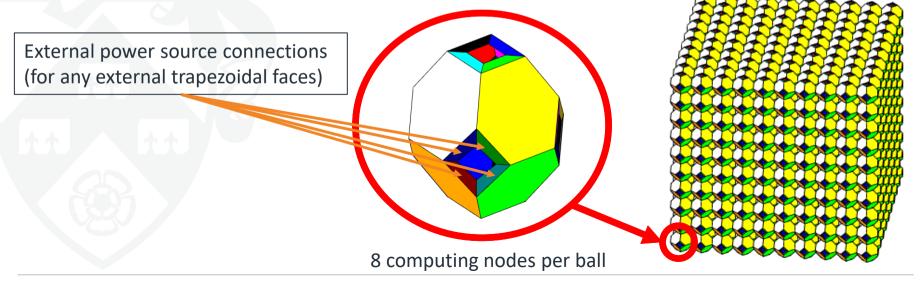
Adapted from [1] Blade server (Vertical distance is for illustration purpose)

Adapted from [2]

Small single-board

Our 'ball computer' packaging

External


DC Power supply

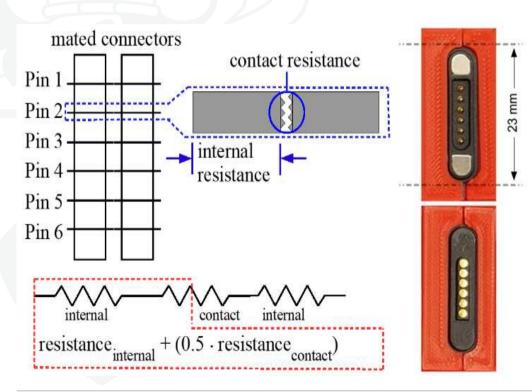
[1] https://upload.wikimedia.org/wikipedia/commons/thumb/d/d0/Supermicro_SBI-7228R-T2X_blade_server.jpg/1024px-Supermicro_SBI-7228R-T2X_blade_server.jpg [2] https://upload.wikimedia.org/wikipedia/commons/thumb/2/27/Cubieboard HADOOP cluster.JPG/1024px-Cubieboard HADOOP cluster.JPG

Motivation – Power grid simulation 🗞

- This power grid system does not exist in conventional rack/cabinet systems.
 - Direct external power sources supplied to each blade/rack server
- In this work, in contrast, how does it impact on the scalability in the concept of hexagonal-tile system for large scales?

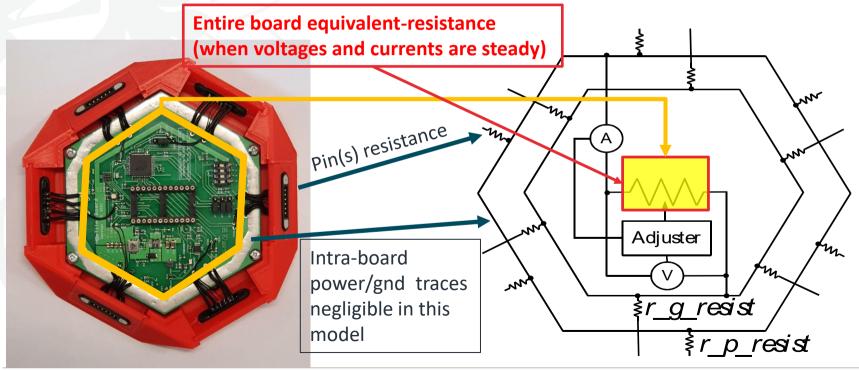
Introduction – from tile to ball

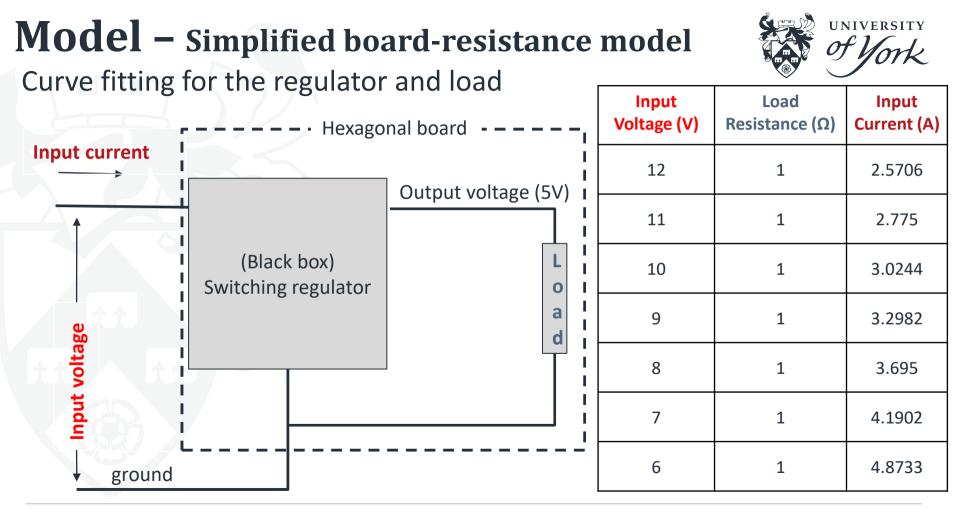
1D/2D/3D compossible configurations (prototype)



Simulation and Prototype Details

Model – Connector pin resistance


- 'Off-the-shelf' connectors in the current prototype
- Variants of (custom-made) more suitable connectors can be used for different power and data communication requirements.



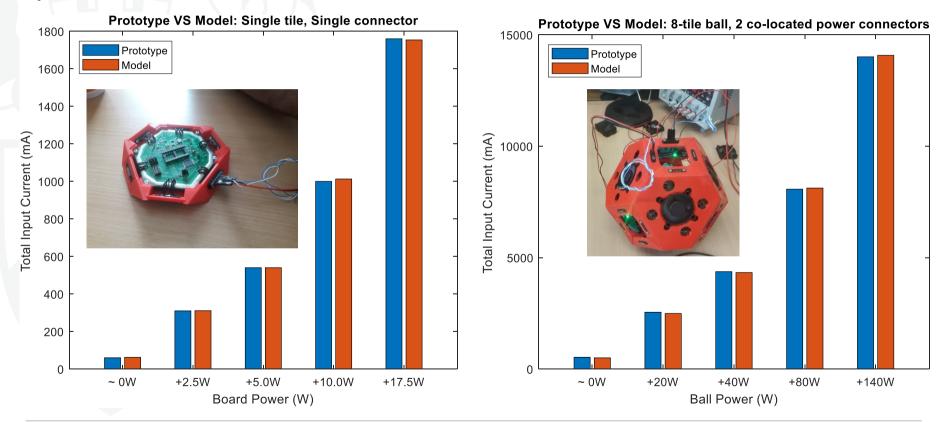
Model – Simplified board-resistance model

- Switching regulator models take long simulation times.
- A Simplified model has been created for our scalability simulations.

Model – Simplified board-resistance model

Curve fitting for the regulator and load (for a constant load-resistance)

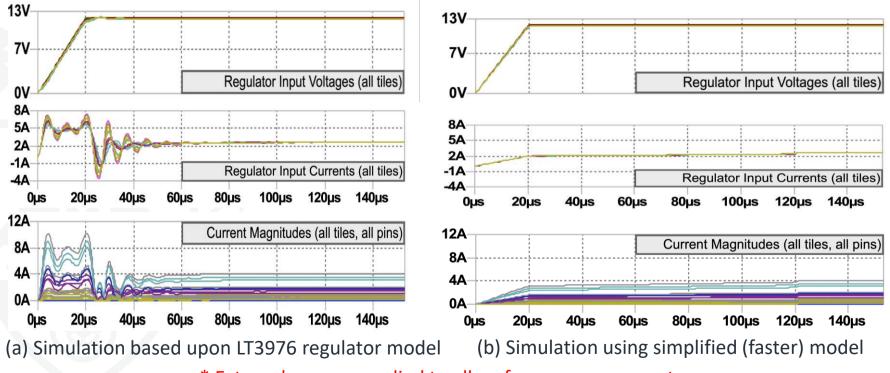
📣 Curve Fitting Tool				- 0 X
File Fit View Tools Desktop Window Help				X 5 K
← ఈ 💹 🔍 🍣 🦞 🐙 🍕 🔚 🧱 🥰				
untitled fit 1 🗶 🕂				
Fit name: untitled fit 1 X data: x Y data: y Z data: (none) Weights: (none)	Polynomial Degree: 3 Robust: Off Center and scale		✓✓✓Fit Options	Auto fit Fit Stop
Results Linear model Poly3: $f(x) = p1^xx^3 + p2^xx^2 + p3^xx + p4$ Coefficients (with 95% confidence bounds): $p1 = -0.006025 (-0.008172, -0.003878)$ $p2 = 0.2087 (0.1506, 0.2668)$ $p3 = -2.623 (-3.133, -2.112)$ $p4 = 1.439 (12.94, 15.85)$ Goodness of fit: SSE: 0.0002951 R-square: 0.9999 Adjusted R-square: 0.9999 RMSE: 0.009917		8 9 X	10 11	• y vs. x untilled fit 1
Table of Fits	T I T	E E	T T	T



Validation Simulator vs. Prototype

Model Validation – switching vs prototype

Input-current validation



*LT3976 regulators, from Analog Devices, Inc., are used in our prototype.

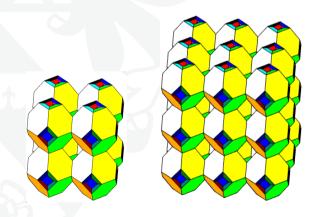
Model validation

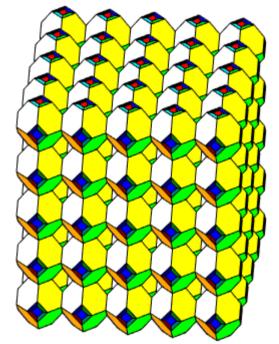
Switching VS Simplified model, 3x3x3-ball

* External power supplied to all surface power connectors

UNIVERSIT **Simulation framework** Automated: SPICE source-code files generator Manual: **Ball-array** generator (tile-level parameterizable) MATLAB * External power/ground lines renaming Ball Single-ball template XY planes Tile Tile generator Tile Tile XZ planes **LTspice** Multiple-ball generator Tile Tile generator ANALOG YZ planes Inter-ball signals Tile Tile AHEAD OF WHAT'S POSSIBLE™ generator renaming

* https://upload.wikimedia.org/wikipedia/commons/thumb/2/21/Matlab_Logo.png/800px-Matlab_Logo.png

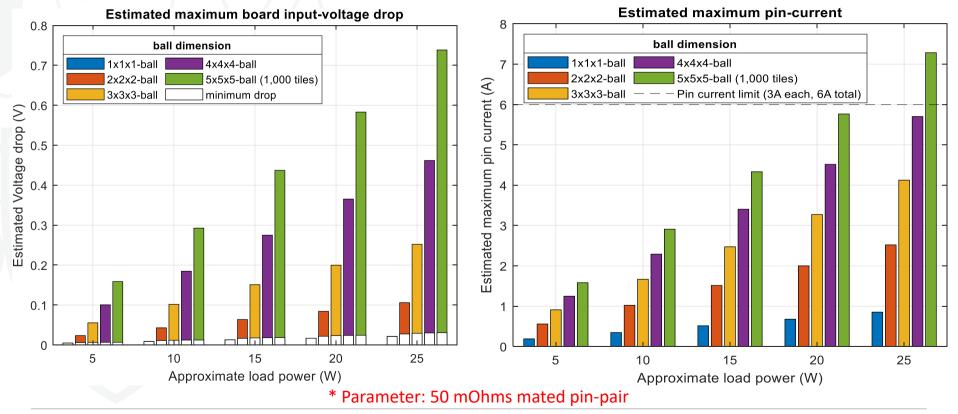

** https://upload.wikimedia.org/wikipedia/commons/thumb/8/86/Analog_Devices_Logo.svg/1920px-Analog_Devices_Logo.svg.png


Scalability Evaluations

Scalability Results

Experimental scenarios

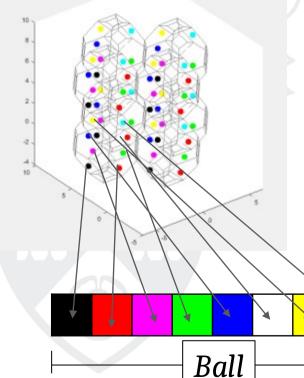
5x5x5 cube 1,000 tiles


1 ball2x2x2 cube3x3x3 cube8 tiles64 tiles216 tiles

4x4x4 cube 512 tiles

Scalability Results

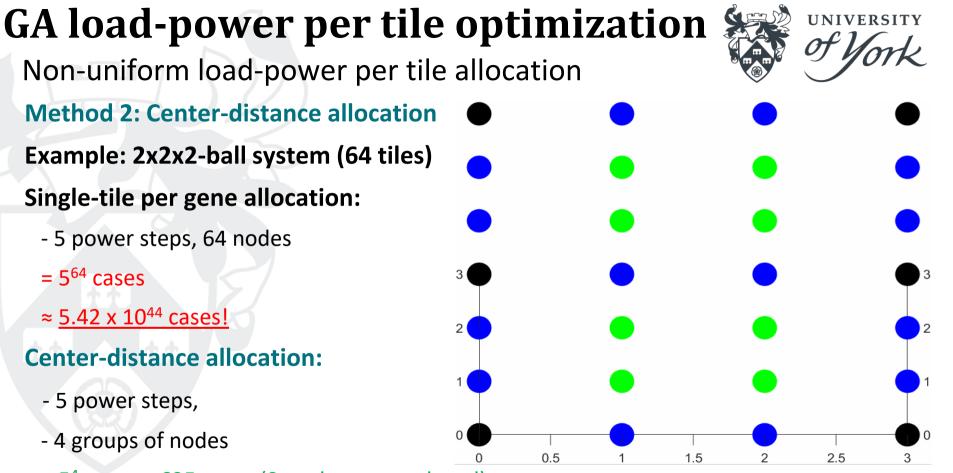
Uniform load-power per tile allocation


Further Optimization Brute Force ? Genetic algorithms ?

GA load-power per tile optimization 疑

Ball

Non-uniform load-power per tile allocation

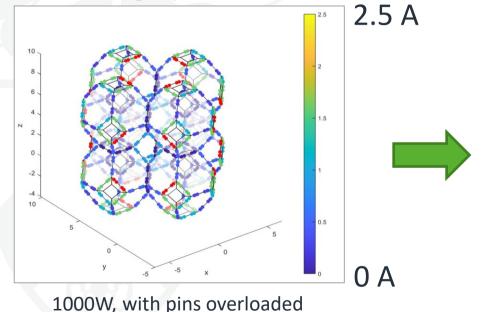


Method 1: Single-tile per gene

- Large search space (for a large system)
- Suitable for arbitrary...
 - non-symmetric external power connection
 - non-symmetric system shapes

Ball

Chromosome


= <u>5⁴ cases = 625 cases (Search space reduced)</u>

GA load-power per tile optimization

Constraints: total 1000W-load per system, 3A connector pin

During optimisation

Stopping criteria reached

*Red dots = Overloaded pin currents (> 2.5A, for illustration purpose)

Outcomes and Implications

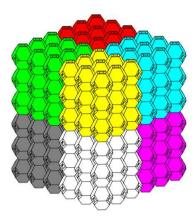
Outcomes

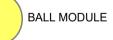
- What we have done ...
 - Hardware prototype system
 - Testing the prototype
 - Models and simulation framework
 - Validating accuracy
 - Switching model vs hardware prototype
 - Switching model vs simplified model
 - Scalability projection
 - Power-grid optimization framework
 - Power pattern on a large scale
 - Visualization

Implications

- **Existing prototype:** Allowing to achieve the system of the order of 1,000 processor tiles, even with a very basic prototype construction.
- With highly optimized fabrication, > 1000 tiles could be achievable.
- Reducing size = Higher density
- Current ball size: Many thousand processors in a server cabinet volume
- Cooling
 - More detailed investigation needed
 - But with the current tool capabilities, the power consumed at pins and tiles can be predictable.
 - Allowing a cooling model to be developed in the future

Possible future works


Simulation framework


- Model: Temperature/Manufacture-affected pin-resistance variability
- Opensource SPICE simulator (Ngspice) for simplified models. (In progress)
- Simulations on a computing cluster (In progress)
- Interfacing with an interconnection network simulator (BookSim2, In progress)
- Cooling design and simulation

Hardware developments

- Reducing hops: Localized shared physical wires?
 - Bus: Beneficial for broadcast-intensive workloads?
 Concern: Serialization, bandwidth issues?
- Power reservoir:
 - Intra/Inter-ball power storage?
 - Reducing voltage/current spike
- In-System Cooling:
 - Intra-ball fan/pump/impellor?

INTER-BALL FLOW ASSIST IMPELLOR

Q&A Thank you for your attention

