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The SQ2 TAGED-PKD 2-Stage Adaptive Study With a Patient

Enrichment Strategy and Treatment Effect Modeling for

Improved Study Design Efficiency in Patients WithQ7

ADPKDQ1

Q8 Ronald D. Perrone, Ali Hariri, Pascal Minini, Curie Ahn, Arlene B. Chapman, Shigeo Horie,
Bertrand Knebelmann, Michal Mrug, Albert C.M. Ong, York P.C. Pei, Vicente E. Torres, Vijay Modur,
and Ronald T. Gansevoort

Rationale & Objective: Venglustat, a glucosylcer-
amide synthase inhibitor, inhibits cyst growth and
reduces kidney failure in mouse models of auto-
somal dominant polycystic kidney disease (ADPKD).
STAGED-PKD aims to determine the safety and
efficacy of venglustat and was designed using
patient enrichment for progression to end-stage
kidney disease and modeling from prior ADPKD
trials.

Study Design: STAGED-PKD is a 2-stage,
international, double-blind, randomized, placebo-
controlled trial in adults with ADPKD (Mayo Class
1C-1E) and estimated glomerular filtration rate
(eGFR) 45-<90 mL/min/1.73 m2 at risk of rapidly
progressive disease. Enrichment for rapidly
progressing patients was identified based on
retrospective analysis of total kidney volume
(TKV) and eGFR slope from the combined
Consortium for Radiologic Imaging Studies of
Polycystic Kidney Disease and HALT-PKD A
studies.

Setting & Participants: Target enrollment in
stages 1 and 2 was 240 and 320 patients,
respectively.

Interventions: Stage 1 randomizes patients 1:1:1
to venglustat 8 mg or 15 mg once daily or placebo.
Stage 2 randomizes patients 1:1 to placebo or

venglustat, with the preferred dose based on stage
1 safety data.

Outcomes: Primary endpoints are TKV growth rate
over 18 months in stage 1 and eGFR slope over
24 months in stage 2. Secondary endpoints
include: annualized rate of change in eGFR from
baseline to 18 months (stage 1); annualized rate
of change in TKV based on magnetic resonance
imaging from baseline to 18 months (stage 2);
and safety, tolerability, pain, and fatigue (stages 1
and 2).

Limitations: If stage 1 is unsuccessful, patients
enrolled in the trial may develop drug-related
adverse events that can have long-lasting effects.

Conclusions: Modeling allows the design and
powering of a 2-stage combined study to assess
venglustat’s impact on TKV growth and eGFR
slope. Stage 1 TKV assessment via a nested
approach allows early evaluation of efficacy and
increased efficiency of the trial design by
reducing patient numbers and trial duration.

Funding: This study was funded by Sanofi
Genzyme.

Trial registration: STAGED-PKD has been regis-
tered at ClinicalTrials.gov with study number
NCT03523728.

Autosomal dominant polycystic kidney disease (ADPKD)
is a monogenic disease characterized by development of

fluid-filled kidney cysts, kidney enlargement, hypertension,
and eventual progression to kidney failure.1,2 Glyco-
sphingolipids (GSLs) are lipid molecules with important
roles as structural components of cellular membranes and
cell-signaling regulators.3 GSLs are enriched in certain
microdomains of kidney tubule cell membranes, including
primary cilia, where pathogenic GSL accumulation can
disrupt ciliary signaling, leading to cyst formation.4 GSLs
accumulate in ADPKD cells via increased glucosylceramide
synthase (GCS) activity and increased de novo ceramide syn-
thesis (Fig 1).4

Venglustat is a once-daily, oral investigational GCS in-
hibitor (Fig 1) that may reduce GSL production.4 In mouse
models of ADPKD, lowering glucosylceramide levels
by ≥70% with venglustat was associated with reduced
cyst growth, increased cyst cell differentiation, and

preservation of kidney function.4 In a phase 1 study of
healthy individuals, venglustat reduced plasma gluco-
sylceramide, which resulted in venglustat receiving orphan
drug designation for ADPKD from the US Food and Drug
Administration and the European Medicines Agency.5-7

Designing interventional trials in ADPKD is complex. A
patient’s current disease state (ie, kidney function) and risk
for progression (ie, cyst burden) should be the principal
considerations for inclusion criteria in ADPKD interven-
tional trials. Patients should be enrolled on the basis that
treatment is anticipated to be effective; however, the study
population should also be enriched for individuals at
greater risk of disease progression and will reach study
endpoints during the timeframe of the trial.8

The trajectory of kidney function decline is strongly
associated with Mayo Imaging Class 1 (uniform distribu-
tion of cysts throughout the kidneys), which categorizes
patients in 1 of 5 groups based on their height-adjusted
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total kidney volume (TKV) at a given age.9,10 TKV can be
measured reliably and is a recognized prognostic enrich-
ment biomarker in patients with ADPKD, increasing over
time to reflect kidney cyst enlargement, preceding loss of
kidney function, and identifying patients at higher risk of

developing kidney failure.9,11-13 TKV growth rate is
accepted as a reasonably likely surrogate endpoint for
ADPKD progression trials by the Food and Drug Admin-
istration and may provide evidence for accelerated drug
approval, though subsequent determination of the in-
tervention’s effect on a clinical endpoint, such as eGFR, is
necessary if an effect on the reasonably likely surrogate
endpoint is demonstrated.8,14,15

The STAGED-PKD trial (Study To Assess Glucosylceramide
synthase inhibitor Efficacy in ADPKD; NCT03523728) is
an international, multicenter, randomized, double-blind,
placebo-controlled study designed to characterize the
efficacy, safety, tolerability, and pharmacokinetics of
venglustat in patients with rapidly progressing ADPKD.
This paper describes the adaptive 2-stage design of
STAGED-PKD that used (1) a patient enrichment strategy
that identified a rapid progressor population for inclu-
sion in the trial and (2) first-time use of modeling
exploring the relationship between TKV and eGFR.
STAGED-PKD tests the hypothesis that GCS inhibition by
venglustat, at a dose with a favorable safety and tolera-
bility profile, may be a viable treatment to slow cyst
growth and preserve kidney function in patients with
rapidly progressing ADPKD. This enables the assessment
of venglustat on TKV and eGFR in one efficient, short-
duration trial.
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Figure 1. GSL biosynthesis in ADPKD and potential effect of the GCS inhibitor venglustat. Adapted from Natoli et al 4 Loss of poly-
cystin function disrupts the TSC complex, and consequently suppression of Rheb is inactivated, leading to activation of mTORC1.
mTORC1 activation increases de novo ceramide synthesis. Polycystin dysregulation also activates mTORC2, which also promotes
de novo ceramide synthesis and increases GL-1 by increasing GCS production. Beyond polycystin disruption, other factors may
impact GSL accumulation in ADPKD, including growth factor activation (eg, epidermal growth factor 1 or insulin-like growth factor
1) of mTORC2 or cytokine- and ROS-mediated activation of sphingomyelinase activity. Red boxes show molecules that are upregu-
lated in cystic kidneys compared with normal kidneys. Yellow box overlay indicates GSL accumulation that could be attenuated/
stopped with a GCS inhibitor.Abbreviations: ADPKD, autosomal dominant polycystic kidney disease; EGF, epidermal growth factor;
IGF, insulin-like growth factor; GCS, glucosylceramide synthase; GL-1, glucosylceramide; GM3, monosialodihexosylganglioside;
GSL, glycosphingolipid; mTORC, mammalian target of rapamycin complex; Rheb, Ras homolog enriched in brain; ROS, reactive ox-
ygen species; RTK, receptor tyrosine kinase; TNF, tumor necrosis factor; TSC, tuberous sclerosis.

PLAIN-LANGUAGE SUMMARY

Patients with autosomal dominant polycystic kidney

disease experience kidney enlargement due to growth

of kidney cysts, which eventually leads to kidney fail-

ure. Venglustat, a new oral therapy, may prevent kidney

cyst formation and preserve kidney function. This paper

describes the design of a single, 2-stage study that

evaluates the safety and efficacy of venglustat in patients

with autosomal dominant polycystic kidney disease

who have a high cyst burden and decreased kidney

function. This study design enables the assessment of

venglustat in one efficient, short-duration trial. It uses a

strategy that enables the study population to be

enriched with patients who have rapidly progressing

disease. The number of patients included is based on

modeling the relationship between 2 biomarkers of

disease severity.
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METHODS

Enrichment of Patients at Risk of Rapidly

Progressing ADPKD

Prognostic enrichment was used for the primary analysis
population to select patients at risk for rapidly progressing
ADPKD based on age (18-50 years), chronic kidney disease
stage (G2–3A), and Mayo Imaging Classification (1C–1E).
Using prognostic enrichment to define eligibility criteria
enables the detection of treatment benefit on TKV and
eGFR in the same population, avoiding the need to
perform separate trials in patients with early- and late-stage
ADPKD.

To enrich for patients with rapidly progressing ADPKD,
a retrospective analysis was performed of data from 2
published prospective, longitudinal studies, the Con-
sortium for Radiologic Imaging Studies of Polycystic Kid-
ney Disease (CRISP; NCT01039987) study and HALT
Progression of Polycystic Kidney Disease Study A (HALT-
PKD A; NCT00283686; Item S1).16-18 Patients included in
CRISP and HALT-PKD A were used (Table S1) because
databases from both were available in the National Institute
of Diabetes and Digestive and Kidney Diseases central re-
positories, and both studies included patient populations
similar to the STAGED-PKD target population. These
datasets were obtained after receiving ethics committee
approval. Patients from CRISP and HALT-PKD A were
stratified by Mayo Imaging Class and, within each class,
TKV growth rate was plotted against eGFR rate of decline.

Modeling the Relationship Between TKV Growth

and eGFR Decline

Although TKV growth rate is accepted as a reasonably
likely surrogate endpoint for ADPKD progression trials by
the Food and Drug Administration, there is currently no
fixed definition of what constitutes a substantial treatment
effect on TKV. Therefore, existing data were used to
develop a quantitative understanding of the relationship
between TKV and kidney function outcomes. Assuming
that a 30% treatment effect on the rate of eGFR decline
would be verifiable in a postmarketing confirmatory trial
(based on the outcomes of the tolvaptan TEMPO 3:4 and

REPRISE Q3studies), an effect on TKV growth that could be
reasonably translated into a 30% improvement in eGFR
decline was targeted as constituting a substantial treatment
effect in subsequent modeling.19,20

All patients who were included in CRISP (N = 241) or
HALT-PKD A (N = 558) were considered. Seventy-seven
patients were excluded because of a lack of baseline or
postbaseline TKV or eGFR data; therefore, 722 patients
were included in this retrospective analysis (Item S2,
Fig S1). TKV growth rate increased with increasing Mayo
Class during study follow-up (Table 1, Fig 2). Similarly,
eGFR declined with increasing Mayo Class during follow-
up (Table 1, Fig 2).

Table 1. TKV Growth Rate and eGFR Rate of Decline in CRISP and HALT-PKD A Studies, by Mayo Class

Parameter

Mayo Class

P1A (N = 44) 1B (N = 165) 1C (N = 251) 1D (N = 167) 1E (N = 95)

TKV growth rate, %/y

Estimate 2.8 4.5 6.2 6.7 7.5 < 0.001

95% CI 2.0-3.5 4.0-5.0 5.7-6.7 6.1-7.3 6.5-8.5

eGFR rate of decline,
mL/min/1.73 m2/y

Estimate 0.96 1.71 2.96 3.40 4.87 < 0.001

95% CI 0.30-1.61 1.41-2.02 2.68-3.23 3.04-3.76 4.24-5.50

Note: Mean TKV growth rate was estimated from a linear mixed-effect model on log10(TKV). Mean eGFR rate of decline estimated from a linear mixed-effect model.
Abbreviations: CI, confidence interval; CRISP, Consortium for Radiologic Imaging Studies of Polycystic Kidney Disease; eGFR, estimated glomerular filtration rate;
HALT-PKD, HALT Progression of Polycystic Kidney Disease; TKV, total kidney volume.
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Figure 2. Class-level data from the CRISP and HALT-PKD A
studies. Based on retrospective analysis of 2 historical studies.
For each class, mean TKV growth rate is plotted against mean
eGFR rate of decline. The size of each bubble is proportional
to the sample size. Abbreviations: CRISP, Consortium for Radio-
logic Imaging Studies of Polycystic Kidney Disease; eGFR, esti-
mated glomerular filtration rate; HALT-PKD, HALT Progression of
Polycystic Kidney Disease; STAGED-PKD, study to assess glu-
cosylceramide synthase inhibitor efficacy in ADPKD; TKV, total
kidney volume.
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Retrospective Analysis of Individual TKV and eGFR

Data From CRISP and HALT-PKD A

The Pearson correlation between individual rates of TKV
growth and eGFR decline showed a significant correla-
tion (P < 0.001; Fig 3), although the correlation coef-
ficient (0.35) was weak. A statistical model predicting
future eGFR at time t as a function of baseline eGFR, age,
and TKV growth rate was also built (Item S3, Table S2).
A significant interaction between the TKV growth rate
and time (P < 0.001) indicated that the rate of eGFR
decline significantly increased with increasing TKV
growth rate.

Based on this model, the predicted rate of decline in
eGFR associated with different TKV growth rates was
calculated (Table 2). This suggested that a 50% reduction
in TKV growth rate would be associated with a 20% to
30% reduction in eGFR rate of decline (Table 2). These
rates of eGFR decline for each imaging class are similar to
those reported by Irazabal et al.9 A similar association
between TKV growth and eGFR decline was demonstrated
in the TEMPO 3:4 trial, providing further validation for the
model.19 This also suggests that a larger relative reduction
in eGFR rate of decline may be observed in patients with
more rapid TKV progression. For example, in a population
of patients progressing at a rate of 5%/year, a 50%
reduction in TKV growth rate (ie, from 5% to 2.5%/year)
would reduce the eGFR rate of decline from 2.71 to 2.08
mL/min/1.73 m2/year (23% reduction; 95% confidence
interval [CI], 17%-29%). Furthermore, in patients

progressing at a rate of 8%/year, a 50% reduction in TKV
growth rate (ie, from 8% to 4%/year) would reduce the
eGFR rate of decline from 3.46 to 2.46 mL/min/1.73 m2/
year (29% reduction; 95% CI, 23%-35%).

STAGED-PKD Study Design

STAGED-PKD is a randomized, double-blind, placebo-
controlled, 2-stage study using a seamless design to
characterize the efficacy, safety, tolerability, and phar-
macokinetics of venglustat in patients at risk of rapidly
progressing ADPKD. This efficient trial design combines
2 stages into 1 trial, and data from stage 1 are used in the
analysis for stage 2. This is possible because of the
similar endpoints in stages 1 and 2 and the identical
inclusion/exclusion criteria for the primary analysis
population.

Stage 1

The primary objective of stage 1 is to determine the effect
of venglustat on the rate of TKV growth in patients at risk
of rapidly progressing ADPKD. Because both TKV growth
and height-adjusted TKV growth are deemed to be the
same in an adult population (and therefore of stable
height), height-adjusted TKV was not used. Stage 1 has
a ≤30-day screening period, including a 2-week single-
blind placebo run-in (to assess compliance in potential
patients, ie, identify those unlikely to follow the assigned
treatment regimen), followed by a 24-month randomized,
double-blind, placebo-controlled treatment period. After
run-in, patients are randomized 1:1:1 to receive placebo
or venglustat 8 mg or 15 mg once daily for 24 months,
with each treatment arm having approximately 80 patients
(Fig 4A). The end of stage 1 is defined as completion of 18
months of treatment by all patients (or discontinued), with
TKV and eGFR assessed for ≥18 months. Patients from
stage 1 will continue blinded treatment for a further 6
months, to a total of 24 months, to obtain eGFR data at the
24-month timepoint.

Stage 2

The primary objective of stage 2 is to determine the effect
of venglustat on eGFR in patients at risk of rapidly pro-
gressing ADPKD. Stage 2 has a similar design to stage 1
(Fig 4B). However, after run-in, approximately 320
additional patients are randomized 1:1 to receive placebo
and venglustat (dose determined in stage 1). Thus, with
patients from stage 1, each treatment arm will have
approximately 240 patients (ie, 80 patients from the stage-
1-chosen venglustat dose arm plus 160 patients added at
stage 2 versus 240 patients in the placebo arm). Enroll-
ment into stage 2 starts immediately after completion of
enrollment into stage 1. After the first 150 randomized
patients from stage 1 complete ≥1 month of treatment or
prematurely discontinue treatment, the Data Monitoring
Committee (DMC) performs an unblinded review of the
aggregate safety data to select the venglustat dose for pa-
tients in stage 2.
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Figure 3. Correlation between TKV growth and eGFR decline
based on individual-level data from CRISP and HALT-PKD A.
Predicted eGFR rate of decline based on a model predicting
eGFR at time t as a function of TKV growth rate and adjusted
for baseline eGFR and age. Abbreviations: CRISP, Consortium
for Radiologic Imaging Studies of Polycystic Kidney Disease;
eGFR, estimated glomerular filtration rate; HALT-PKD, HALT Pro-
gression of Polycystic Kidney Disease; TKV, total kidney volume
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In stage 2, a secondary analysis population of 80
additional patients (aged greater than or equal to 18 to
less than or equal to 55 years, baseline eGFR ≥30-<45

mL/min/1.73 m2) are randomized 1:1 to venglustat or
placebo to assess treatment exposure in patients with
more advanced ADPKD. These patients will be analyzed

Table 2. Relationship Between TKV Growth Rate and Predicted eGFR Rate of Decline

TKV Growth
Rate, %/y

Predicted eGFR
Rate of Decline,
mL/min/1.73 m2/y (95% CI)

Predicted Effect on eGFR Decline With 50% Reduction on TKV
Growth Rate

eGFR Rate of Decline,
mL/min/1.73 m2/y (95% CI)

Relative Reduction in
eGFR Decline, % (95% CI)

4 2.46 (2.24-2.67) 1.96 (1.66-2.25) 20% (15%-26 %)

5 2.71 (2.52-2.90) 2.08 (1.81-2.35) 23% (17%-29 %)

6 2.96 (2.78-3.14) 2.21 (1.96-2.46) 25% (19%-32 %)

7 3.21 (3.02-3.40) 2.33 (2.10-2.56) 27% (21%-33 %)

8 3.46 (3.25-3.68) 2.46 (2.24-2.67) 29% (23%-35 %)

9 3.72 (3.46-3.97) 2.58 (2.38-2.78) 30% (25%-36%)

10 3.97 (3.67-4.26) 2.71 (2.52-2.90) 32% (26%-37%)

Note: Predicted eGFR rate of decline for a given TKV growth rate was based on a linear mixed-effect model of eGFR at time t as a function of baseline eGFR, age, and
TKV growth rate.
Abbreviations: CI, confidence interval; eGFR, estimated glomerular filtration rate; TKV, total kidney volume.

End of Stage 1

When all patients have completed 18 months

Subset for accelerated approval

Venglustat 15 mg (n=80)

Venglustat 8 mg (n=80)

Blinded Treatment PeriodRun-inScreening

Placebo (n=80) 18 months

R

Enrollment

First patient: February 11, 2019

Last patient: June 5, 2020

24 months

Stratification

• Progression rate, ADPKD Stage 1C 

vs 1D vs 1E 

• Geographical region, North America 

vs Europe vs China vs Japan vs 

Republic of Korea vs ROW

Inclusion

• ADPKD Stage 1C–1E

• eGFR ≥45 to <90 mL/min/1.73 m2*

• Age 18–50 years

Enrollment

First patient: June 5, 2020

Goal recruitment date: December 2021

Stratification

• Progression rate, ADPKD Stage 1C 

vs 1D vs 1E 

• Geographical region, North America 

vs Europe vs China vs Japan vs 

Republic of Korea vs ROW

Inclusion

• ADPKD Stage 1C–1E

• eGFR ≥45 to <90 mL/min/1.73 m *

• Age 18–50 years R

End of Stage 2

When all patients have completed 24 months

For full approval

Enrollment in Stage 2 will start as 

soon as enrollment in Stage 1 is 

completed (no pause)

Venglustat 8 mg or 15 mg  (n=160 additional patients)

Placebo (n=160 additional patients)

Blinded Treatment Period 24 monthsRun-inScreening
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Figure 4. Study design and key steps in STAGED-PKD stage 1 (A) and stage 2 (B). *To ensure adequate representation of patients
across the spectrum of eGFR, a minimum of 20% of patients are enrolled in each of the following categories: ≥45-<60 mL/min/1.73
m2; ≥60-<75 mL/min/1.73 m2; and ≥75-<90 mL/min/1.73 m2; yHighest dose determined to be well tolerated in stage 1. Abbrevia-
tions: ADPKD, autosomal dominant polycystic kidney disease; eGFR, estimated glomerular filtration rate; ROW, rest of the world;
STAGED-PKD, study to assess glucosylceramide synthase inhibitor efficacy in ADPKD.
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separately from the primary safety and efficacy
analyses.

Endpoints and Assessments

Efficacy

The stage 1 primary endpoint is the annualized rate of TKV
change based on magnetic resonance imaging from base-
line to 18 months (measured at baseline, months 1 [to
detect any hemodynamic effect, as was noted for tol-
vaptan], 9, and 18).21 All study sites should use magnetic
resonance imaging T2 sequence with fat saturation in the
coronal viewing plane. The main stage 1 secondary
endpoint is the annualized rate of change in eGFR from
baseline to 18 months (measured at baseline, month 1,
month 3, and then every 3 months). Creatinine is
measured using the Roche Creatinine (rate-blanked) Jaffe
method standardized to the isotope-dilution mass spec-
trometry method.

The stage 2 primary endpoint is the annualized rate of
change in eGFR from baseline to 24 months (measured at
baseline, month 1, month 3, and every 3 months there-
after). Although measured glomerular filtration rate is the
gold standard for measuring kidney function, longitudi-
nal changes in measured glomerular filtration rate and
eGFR have been found to be similarly associated with
chronic kidney disease-relevant outcomes.22 Stage 2
secondary endpoints include the annualized rate of
change in TKV based on magnetic resonance imaging
from baseline to 18 months. Reversible, negative acute
treatment effects on eGFR have been observed in ADPKD
clinical trials, and total eGFR slope calculated from

prerandomization baselines can be misleading as a
result.17,23 The primary analysis in STAGED-PKD assumes
no acute effect, and the slope is based on all data from
baseline to month 24; a secondary analysis includes only
data after 1 month. Our preclinical data and clinical trials
in other indications do not support any hemodynamic
effect on eGFR. Further, the 1-month evaluation will
provide the additional evidence that venglustat has no
hemodynamic effect on eGFR. Other secondary endpoints
are shown in Table 3. Iohexol is administered in a stage 2
substudy of approximately 15% of patients (eGFR 45-<90
mL/min/1.73 m2) to evaluate measured glomerular
filtration rate (at baseline, months 12, and month 24).
The full schedule of assessments is shown in Table S3.
Daily diaries regarding ADPKD symptoms are completed
on specified days (Item S4).

Safety

Adverse events, vital signs, and laboratory parameters are
evaluated at every study visit (Table S3). Full physical
examinations are carried out at screening and months 18
and 24, and abbreviated physical examinations (at run-in,
baseline, and months 1, 3, 6, 9, 12, 15, 21, and 25) focus
on areas important for the assessment of adverse events
(Item S5).

Patients who prematurely and permanently discontinue
study medication will return for site visits at month 18 (for
magnetic resonance imaging and other planned assess-
ments) and month 24 (for eGFR and measured glomerular
filtration rate measurement and other planned assessments;
Item S6).

Table 3. STAGED-PKD Endpoints

Endpoint Type Endpoint

Stage 1 (from baseline to 18 mo)

Primary • Annualized rate of change in TKV based on MRI

Secondary • Annualized rate of change in eGFRCKD-EPI

Stage 2 (from baseline to 24 mo unless otherwise specified)

Primary • Annualized rate of change in eGFRCKD-EPI

Secondary • Annualized rate of change in TKV based on MRI from
baseline to 18 mo

Stage 1 and stage 2 (from baseline to 18 and 24 mo, respectively)

Secondary • Change in pain (BPI-Item 3)
• Change in fatigue (BFI-Item 3)
• Plasma venglustat concentrations
• TEAEsa, AEs, and serious AEs
• Laboratory parameters, vital signs, electrocardiogram,
and physical examination findings

• Change in BDI-II score (depression)
• Change in lens clarity by ophthalmologic examinationb,
including Snellen or Tumbling E distance chart, slit
lamp examination and examination of cornea, lens, and
retina

Abbreviations: AEs, adverse events; BDI-II, Beck’s Depression Inventory-II; BFI, Brief Fatigue Inventory; BPI, Brief Pain Inventory; eGFRCKD-EPI, estimated glomerular
filtration rate chronic kidney disease-epidemiology collaboration; MRI, magnetic resonance imaging; TEAE, treatment-emergent adverse event; TKV, total kidney
volume.
aTEAEs are defined as AEs that developed, worsened (in the opinion of the Study Investigator), or became serious during treatment (the period from the first dose to
up to 30 days after the last dose of study treatment).
bExamination should include pupil dilation and evaluation of the lens according to the lens opacities classification system III.
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Selection of Study Dose and Study Blinding

Venglustat doses 8 mg and 15 mg were selected for stage 1
assessment based on results from assessments in animal
models and healthy volunteers.5,24,25 Venglustat is provided
as 2 × 4 mg or 1 × 15 mg opaque hard gelatin oral capsules;
placebo is provided in oral identical capsules in matched
packaging (Items S7 and S8). In stage 2, patients will be
randomized to the venglustat dose determined by the DMC. If
the DMC recommends the 8 mg dose of venglustat for stage
2, patients receiving 15 mg venglustat in stage 1 will switch
over to the recommended 8 mg dose for the remainder of the
study. However, if the DMC recommends the 15 mg dose of
venglustat for stage 2, then patients from stage 1 receiving
the 8 mg dose in stage 1 will remain on 8 mg until the end of
the study. Irrespective of the dose recommended by the DMC
for stage 2, all patients in stage 1 will continue with ven-
glustat treatment for the entire 24 months.

STAGED-PKD Eligibility Criteria

Patients included in stage 1 and stage 2 are males and fe-
males with ADPKD aged greater than or equal to 18 and
less than or equal to 50 years with an eGFR ≥45-<90 mL/
min/1.73 m2 at screening. Eligibility based on eGFR values
is confirmed at 1 of the 2 first prerandomization visits. All
included patients are required to be of Mayo Imaging Class
1C, 1D, or 1E, with TKV values confirmed by a central
reader before visit 3 (baseline).9

Overt proteinuria is uncommon in patients with ADPKD
and therefore is not included as an eligibility criterion in
STAGED-PKD; however, proteinuria is measured in all
patients.26 All patients are screened for comorbid condi-
tions at study entry (Item S9).

All patients are required to give voluntary written
informed consent, and study oversight is conducted by a
steering committee and DMC independent of the study
sponsor (Item S10).

Statistics

Power and Sample Size Calculation

Sample size calculations for stage 1 require randomization
of approximately 240 patients 1:1:1 to placebo, venglustat 8
mg once daily, or venglustat 15 mg once daily (n = 80 per
arm). Stage 2 requires approximately 320 additional pa-
tients randomized 1:1 to placebo or venglustat preferred
dose for the primary analysis. This is sufficient to provide
approximately 89% power to detect a 50% reduction in the
annualized rate of change in TKV based on stage 1 data and
approximately 87% power to detect a 30% reduction in the
annualized rate of change in eGFR between venglustat and
placebo based on combined stage 1 and stage 2 data.
Overall, the total sample size provides approximately 87%
power to detect an effect on both TKV and eGFR (Item S11).

Statistical Analysis

An interim analysis for futility will be performed when all
patients from stage 1 have completed 9 months of

treatment and approximately 30% have completed 18
months of treatment with TKV data available (or have
prematurely discontinued). Futility may be declared if
insufficient effect of venglustat on the annualized rate of
change in TKV is observed at this interim analysis, based
on prespecified but nonbinding criteria. Futility may be
declared if the 1-sided P value of the primary endpoint at
the interim analysis is >0.30. The 1-sided P value will be
determined from the Multiple Comparison Procedure.
Based on simulations, it is expected that futility may be
declared if the relative reduction versus placebo in TKV
growth rate estimated at the interim analysis is less than
15%. The interim analysis will focus on the primary
endpoint in stage 1 (annualized rate of change in TKV) and
stopping rules will be based on this primary endpoint.

Stage 1 data will be analyzed when all patients from
stage 1 have been randomized and all data are available up
to month 18. Stage 2 analysis will include combined stage
1 and stage 2 data available from baseline to the end of the
24-month treatment period. The primary analysis of stage
1 data will be conducted on all randomized patients in
stage 1 (intent-to-treat population). The primary analysis
of combined stage 1 and stage 2 data will include all pa-
tients with an eGFR ≥45-<90 mL/min/1.73 m2 at
screening randomized in stage 1 and stage 2 (intent-to-
treat population).

For analysis of the primary endpoint in stage 1 (annu-
alized rate of change in TKV), a linear mixed-effect model
will be fitted to the log10-transformed TKV, including
fixed effects of treatment (venglustat 8 mg, venglustat 15
mg, or placebo), time (as a continuous variable), and
treatment × time interaction (Item S12). In the primary
analysis, TKV slopes will be estimated using all data from
baseline to month 18. A secondary analysis will explore
any potential acute effect and will exclude data during the
first month.

The primary endpoint in stage 2 is the annualized rate
of change in eGFR. The analysis of eGFR will be similar to
that of TKV, though without log transformation. The
multiplicity of endpoints (TKV and eGFR) and multiplicity
of analysis (at the end of stage 1 and stage 2) will be
handled using a prespecified statistical procedure, ensuring
a strong control of the overall Type I error rate at the 0.05
level for the entire study. The statistical procedure is
illustrated using a graphical approach and was discussed
and agreed on with the Food and Drug Administration.27

The protocol received regulatory approval in over 20
countries globally.

DISCUSSION

STAGED-PKD was developed using prognostic enrichment
strategies based on modeling to overcome the complexities
of designing an interventional trial in patients with
ADPKD. This approach is necessary because of the pro-
longed time during which kidney function is intact while
disease is progressing (ie, cyst burden is increasing).
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Combining the characteristics of high cyst burden and
declining eGFR in a relatively young cohort enables to test
the hypothesis that potential GCS inhibition by venglustat
may slow cyst growth and preserve kidney function. The
seamless 2-stage design of STAGED-PKD is because of the
similar endpoints in stage 1 and stage 2 and the identical
inclusion/exclusion criteria for the primary analysis pop-
ulation in both stages. stage 1 uses a nested approach,
where the assessment of TKV in stage 1 allows for early
efficacy evaluation and improves trial design efficiency by
reducing the sample size and decreasing overall duration.
However, it also means that, if the study fails the TKV
endpoint, the eGFR endpoint cannot be reached.

The statistical modeling described herein suggests that,
in a population of patients with rapidly progressing
ADPKD, a 50% reduction in TKV growth rate would
constitute a substantial improvement and may be associ-
ated with an approximate 30% reduction in eGFR rate of
decline. A clinical trial with TKV growth rate as a primary
endpoint should therefore be appropriately powered to
detect a 50% reduction in the TKV growth rate. Statistical
modeling also suggests that a larger effect on eGFR may be
observed in patients with more rapid progression of TKV
growth, justifying the enrichment of the STAGED-PKD trial
with patients from Mayo Classes 1C-1E. As a result,
STAGED-PKD was designed to use an enrichment strategy
to identify blended early- and late-stage patients who are
likely to have rapidly progressing ADPKD.8 Of note, study
powering to achieve an approximate 50% treatment effect
on TKV growth rate (actually a 49.2% reduction) was
achieved in TEMPO 3:4, resulting in a 30% slowing of the
eGFR decline rate, with a subsequent post hoc exploratory
analysis indicating that patient enrichment would have
increased study power and efficiency.19,28

SeveralQ4 studies have reported a significant effect on TKV
without significant effects on eGFR. Specifically, HALT-
PKD, ALADIN 1 and 2, and DIPAK 1 reported modest re-
ductions in TKV growth rate ranging from 15%-37%, with
little or no amelioration of kidney function decline.17,29-31

However, based on the present model, effects on TKV
growth of this magnitude would not be expected to
translate into major effects on eGFR; therefore, STAGED-
PKD targeted a 50% reduction in TKV growth in stage 1.
Furthermore, in ALADIN 1, the reduction in TKV growth
was found only in the first year after treatment; follow-up
scans at 3 years showed no benefit of treatment on TKV
growth.29 The lack of effect on eGFR in the DIPAK 1 and
ALADIN 1 and 2 trials could be due to various reasons,
including an intrinsic nephrotoxic effect of the drug off-
setting any potential benefit, administration of a dose too
low to impact eGFR decline, and inclusion of patients with
later-stage ADPKD in whom TKV growth has a smaller
impact on eGFR decline compared with patients with
earlier-stage ADPKD.30 Of note, in a post hoc analysis of
the HALT-PKD Blood Pressure trial, where only the chronic
eGFR slope was considered (data from 4 months,
excluding an acute, reversible eGFR reduction seen as a

result of achieving the low blood pressure target), the
difference between rigorous and standard blood pressure
control reached exactly P = 0.05, with a 0.4 mL/min/1.73
m2 difference in the rate of kidney function decline and a
14.2% difference (P = 0.006) in the rate of kidney volume
increase between the 2 treatment groups.17

The 2-stage design of STAGED-PKD allows for a time-
saving, efficient trial with the possibility of accelarated
approval after stage 1 and lowers cost by reducing the
overall number of patients needed. Without this study
design, STAGED-PKD would have required 600 patients
for stage 2 to reach the same statistical power; this would
be an additional 200 patients than planned. Despite these
advantages, there is a risk associated with the 2-stage
design; if the intervention is unsuccessful, as determined
by the stage 1 futility analysis, patients may develop
venglustat-related adverse events that can have long-lasting
effects and possibly require medical interventions, without
gaining any drug-related benefit. Other challenges associ-
ated with the 2-stage design are development of validated
statistical methods and adequate sample size requirements
for achieving the desired power for the study objectives.32

The pharmacokinetics of venglustat have been assessed
in healthy individuals and animal models and described in
detail previously.25

STAGED-PKD tests a novel biological mechanism in the
treatment of ADPKD, facilitating a better understanding of
the function of GSLs in this disease. The Q5molecular basis of
GSL accumulation in ADPKD is not well understood, but
the mammalian target of rapamycin pathway activation
downstream of polycystin/primary ciliary dysfunction has
been implicated, resulting in increased GCS activity and de
novo ceramide synthesis.4 GSL accumulation may also
promote cyst growth by perpetuating aberrant signaling
via the primary cilium beyond the effects of ADPKD.4 As
GCS is the target, or is downstream in the lipid biosyn-
thesis pathway of aberrant signaling in patients with
ADPKD, the GCS inhibitor venglustat may have the po-
tential to attenuate GSL production and slow cyst forma-
tion (Fig 1).

One potential limitation of this study is the absence of
an active control. Tolvaptan was not used, as a range of
characteristic associated adverse events, a requirement for
frequent transaminase monitoring, and the potential for
study dropouts make its utility as a comparator challenging
in a randomized, blinded study. Moreover, tolvaptan is not
available or reimbursed in all of the countries included in
STAGED-PKD, and in the other countries, many of the
eligible patients with ADPKD do not opt or are not pre-
scribed tolvaptan.33 Given these considerations, not using
an active control arm was deemed acceptable according to
the Investigational Review Boards of participating sites.

In conclusion, this manuscript describes the rationale
and design of STAGED-PKD, a seamless 2-stage trial
enabling optimal dose selection and evaluation of ven-
glustat safety and efficacy in patients with ADPKD. Patient
enrichment alongside the use of change in the TKV growth
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rate as a surrogate endpoint in STAGED-PKD should result
in a more efficient (shorter and smaller) trial than
permitted previously.
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