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Enhancing Visual Coding Through Collaborative

Perception
Lingling An, Zhen Yan, Weizheng Wang, Jian K. Liu, and Keping Yu

Abstract—A central challenge facing the nature human-
computer interaction involves understanding how neural circuits
process visual perceptual information to improve the user’s
operation ability under complex tasks. Visual coding models aim
to explore the biological characteristics of retinal ganglion cells to
provide quantitative predictions of responses to a range of visual
stimuli. The existing visual coding models lack adaptability in
natural and complex scenes. Therefore this paper proposes an
enhanced visual coding model through collaborative perception.
Our model first extracts the multi-modal spatiotemporal features
of the input video to simulate the retinal response characteristics
adaptively. Secondly, it uses the basis function to compile the in-
put stimulus into a multi-modal stimulus matrix. Afterward, the
upstream and downstream filters reform the stimulus matrix to
generate the spike sequence. Experiments show that the proposed
model reproduces the physiological characteristics of ganglion
cells in the biological retina, leading to the high accuracy, good
adaptability, and biological interpretability in comparison with
its rivals.

Keywords—Visual Coding, Multi-modal Stimulus, Feature
Compilation, Nonlinearity.

I. INTRODUCTION

W ITH the emergence of hybrid intelligence systems, a

deep understanding of human perception characteris-

tics is vital to designing natural human-computer interaction.

Vision is the most important source of external information

input for human beings, which not only provides the input of

external environment information but also greatly affects deep-

level emotions and cognition. The retina plays an essential

role in the human’s most important sensory system – vision,

which converts complex external light stimulus signals into

bioelectrical signals to provide subsequent visual nerves to

construct biological vision. The research of signal conversion

on the retina can help understand the deep mechanism of

human vision, thereby providing a theoretical basis for the

realization of artificial vision [1]. Baccus et al. focused on sala-

mander retinal ganglion cells (RGCs) and presented that input
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visual stimuli transmit nerve impulses to postsynaptic neurons

through the polarization/depolarization of membrane potential

[2]. The research showed that the ON-/OFF-type bipolar cells

in the retina and the biological connection structure on the

connection layer where they are located can help achieve pre-

liminary stimulation processing and information compression

[3] [4]. Gollisch et al. pointed that the nonlinearities within

ganglion cell receptive fields (RFs) are of great importance to

building actual neural code of retinal neurons when designing

visual prostheses for the eye [5].

Existing visual coding models can be mainly divided into

two categories: 1) linear-nonlinear (LN) calculation based and

2) neural networks based. In the first category, the input

stimulus and the nonlinear calculation mode determine the

final performance of the model. By extracting the temporal

and spatial characteristics of visual stimuli, specific nonlinear

calculations are used to obtain the activation rate curve of

neurons. For example, Carandini et al. presented a linearity

and normalization model in simple cells of the macaque

primary visual cortex [6], which is designed to account for

important response nonlinearities. This LN model extends the

linear model to include mutual shunting inhibition among

a large number of cortical cells. Pillow et al. proposed a

probabilistic spiking model to predict and decode the retinal

ganglion cell responses [7], termed as the linear-nonlinear

Poisson (LNP) model, which consists of a leaky integrate-

and-fire model driven by a stimulus-dependent current, a

spike history-dependent current, and a Gaussian noise current.

The LNP model can predict the detailed time structure of

responses to visual stimuli, capture the interaction between the

spiking history and sensory stimulus selectivity, and explain

the variability in responses to repeated stimuli. The generalized

quadratic model (GQM) provides a high-order approximation

to the Wiener-Volterra expansion [8], which fits and trains

the ‘mean-variance’ of the output pulse sequence, resulting

in a more powerful and more flexible model for feature

space inference. In the retinal coding experiment of artificial

white noise, simple stimulus signals based on brightness can

artificially realize biological nonlinear calculations in retinal

ganglion cells. Moreover, environmental features of complex

natural scenes, such as rapid changes in brightness, changes

in contrast and brightness, movement of objects, and subtle

changes in sharp edges, are necessary for reconstructing the

physiological process of the retina [9]–[12]. In view of the

different stimulus effects caused by different levels of input

features, Park et al. used basis functions with tail effects

to encode the original stimulus signal, making the stimulus

effect more bio-interpretable [13]. Heitman et al. proposed a
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generalized linear model (GLM) to encode the responses of

primate RGCs to naturalistic visual stimuli [14], which shows

that the additional spatial nonlinearities, gain control, and/or

peripheral effects are important in the first stage of visual

processing. Maheswaranathan et al. presented a computational

framework to fit parameters of hierarchical nonlinear models

to recordings of ganglion cells in the retina, in which the LN-

LN models consist of three cell layers connected by two states

of LN processing [15]. Experiments show the LN-LN models

can accurately describe the retinal coding and is amenable to

biophysical interpretation.

With the rapid development of deep learning, visual coding

models through artificial neural networks has attracted much

attention [16]. Mcintosh et al. proposed deep learning models

of the retinal response to natural scenes [17], which constructs

3-layer deep convolutional neural networks (CNNs) to capture

retinal responses to natural image sequences. This model is

shown to be more accurate than LN models and GLMs, but it

has a weak ability to sense low-order global features and faces

the problems of over-fitting and parameter explosion if increas-

ing the network layers. Afterward, a CNN architecture with a

sparse readout layer was designed to factorize the spatial and

feature dimensions. In addition, multilayer recurrent neural

network (RNN) models are proposed to model complex com-

putations of neurons of primate retinal ganglion cell responses

[18], which obtain good predictive ability with small amounts

of training data by capturing spatial and temporal processing

components. However, the models are vulnerable to nonlinear

neurons with weak spike-triggered average responses. Sinz et

al. developed a deep RNN to predict inferred spiking activity

of mouse V1 neurons [19], which can correctly predict the

orientation tuning of neurons in responses to artificial noise

stimuli. The convolutional RNN [20] used the convolution

operation to extract the spatiotemporal features of the input

video to improve the performance of the model when dealing

with natural scenes. However, the neural network-based visual

coding models suffer from the high computational cost and

poor interpretability.

In order to improve the adaptability of retina coding (RC)

models in complex natural scenes, this paper proposes a multi-

modal stimulus non-linear model, termed MSNM. First, our

model extracts spatiotemporal features of the visual stimuli in

the receptive field (RF) of ganglion cells to obtain the complex

exterior stimuli, which is performed by the connection struc-

ture of bipolar cells and amacrine cells on the real biological

retina. By considering the influence of the luminance intensity

of the input video, instantaneous changes in brightness and

darkness, and movement of objects, our model then uses

the basis function with time distribution characteristics for

convolutional coding and constructs a multi-modal stimulus

matrix. Thirdly, the stimulus matrix is filtered to obtain the

firing rate curve of neurons through a two-layer LN filters

with upstream and downstream structures. Finally, the neurons

emit pulse spikes according to the firing rate and the Poisson

random process. In comparison with the existing models, our

model is featured by

1) applicability. The proposed model can encode video sig-

nals in different environments due to its adaptive feature

selection. For example, in a weakly illuminated scene,

the rod cells in the human retina are sensitive to light

intensity, while the color-sensitive cone cells have a

weakened response. In this case, our model keeps the

stimulus input of the luminance intensity and neglects

the stimulus corresponding to color channels.

2) flexibility. Convolutional coding of basis functions pro-

vides the time-domain reshaping of multi-modal input

stimuli and also emphasizes the impact of multiple stimuli

on the coding results in different environments. In this

way, the stimulus information can be more concentrated

in a small-sized stimulus matrix, which speeds up the

training and coding speed of our model. In addition,

the basis function distribution can be flexibly adjusted

according to the parameters such as the duration and

offset.

3) interpretability. Our model is a nonlinear retinal coding

model with the upstream and downstream structures. In

the upstream filtering stage, two independent linear filter

subunits are designed to extract the ‘excitation-inhibition’

information in the stimulus matrix, and the piece-wise

nonlinear function performs local optimization to obtain

the upstream filtering result. In addition, our model

introduces peripheral control inputs, such as historical

excitation states. Such a process is similar to the excited

state in biological retinal neurons, which makes the model

reliable and biologically interpretable.

The remainder of this paper is organized as follows: Section

II details the modules in the proposed model including the fea-

ture extraction and compilation, nonlinear retinal coding, and

parameters estimation. The experimental results are analyzed

in Section III. Section IV concludes the paper.

II. PROPOSED MODEL

In this section, we detail the proposed multi-modal stimulus

nonlinear model, termed MSNM, which physiologically re-

produces the information inputs of RGCs with precise spiking

output prediction performance. As shown in Fig. 1, the MSNM

includes two modules: a) feature extraction and compilation

and b) non-linear retinal coding. Given a natural video, the

multi-modal spatiotemporal features, such as the luminance

intensity, instantaneous changes in brightness and darkness,

movement of objects, etc., are firstly extracted and compiled

by basis functions to generate the multi-modal stimulus matrix.

Secondly, the proposed MSNM employs a pair of LN upstream

subunits to filter the stimuli matrix to simulate the excita-

tion/inhibition balance mechanism in visual circuits. Finally,

the downstream filter activates the upstream results to obtain

the spike sequences.

A. Feature Extraction and Compilation

In the upstream of visual circuits, the photoreceptor cells

and transport layer cells preprocess the input video and extract

spatiotemporal features. Therefore, how to distinctly stimulate

this feature selection mechanism is of great importance to

RC models. The LN model simply considers the luminance

intensity of pixels in the RF as external inputs of ganglion



3

Upstream filter

Poisson process

 Nonlinear reforming

Historical excitation

Downstream filter

Spike sequence

b) Nonlinear Retinal Coding

S...

Natural video

 Luminance intensity Boxcar

 Instantaneous changes Raised Cosine

Movement of objects Nonlinearly Scaled Cosine

 Multi-modal feature extraction Feature compilation

a) Feature Extraction and Compilation
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Fig. 1. The framework of the proposed MSNM. It includes two modules: a) feature extraction and compilation and b) nonlinear retinal coding. The S represents
the multi-modal stimulus matrix of the natural video after feature extraction and compilation.

cells, which is vulnerable to complex natural scenes due to the

lack of effective feature exaction [6]. To obtain high predic-

tion performance, the GQM overemphasizes the mathematical

fitting rather than the biological mechanism [8]. In addition,

neural network-based RC models employ deep convolution

networks to extract features, which is a precise approach

but requires much computation cost. Although using large

convolution kernels and reducing network depth can alleviate

the overfitting and computing cost, the lack of physiological

interpretability is a barrier to broad applications.

To target the weakness above of RC models, we propose

to extract multi-modal spatiotemporal features from natural

videos based on the physiological response mechanism of the

retina. Given a natural video with N frames, we first calculate

the sum of luminance intensity in tth video frame to construct

the luminance intensity feature vector f1 = [f1(t)]
N
t=1 by

f1 (t) =
∑

x

∑

y

R ∗ V (x, y, t) (1)

in which V (x, y, t) is the luminance intensity at the (x, y) in

the tth frame, R is the range of RF, the ∗ means the ‘center-

edge’ RF extraction operation. According to our research

findings, the instantaneous changes in brightness and darkness

can also make ganglion cells generate spikes. Based on this,

the instantaneous feature vector f2 = [f2(t)]
N
t=1 is secondly

captured by

f2 (t) = f1 (t)− f1 (t− 1) (2)

Previous research agrees that the response of ganglion cells

to visual stimuli is not the simple summation of luminance

intensity [21]. Local features or variations in contrast or colors

can alter the excitation state of ganglion cells significantly.

Therefore, both brightness of the central area and object

movement is collected and normalized to build the movement

feature vector f3 = [f3(t)]
N
t=1 by

f3 (t) =
∑

x

∑

y

(V ′ (x, y, t)− V ′ (x, y, t− 1)) (3)

V ′(x, y, z) =

∫∫∫

1
√

(2π)3|
∑∑∑

|
exp(−

1

2
(V (x, y, z)− µ)⊤

∑∑∑−1

(V (x, y, z)− µ))dxdydz
(4)

where V ′(x, y, t) means the result when the tth video frame

is processed by 3-D Gaussian blur, µ is the mean vector, and
∑

is the covariance matrix.

After the feature extraction, the proposed MSNM compiles

the input stimuli into multi-modal stimulus matrix S =
[S1 S2 S3] by flexibly selecting basis functions, in which the

kth basis matrix, Sk, is calculated by

Sk = fk ⊗ Bk, k = 1, 2, 3. (5)

Here, the fk is the kth feature vector, the Bk means the

corresponding basis function, and the ⊗ performs the 2-D

convolution operation. It can be seen that the compilation

process can transform the simple stimuli vector into a 2-D

matrix, including both instantaneous stimulus and persistent

effect by controlling the parameters of Bk, which helps to

stimulate the biological process of visual circuits on the retina.

The response of neurons to a single input stimulus can be

considered a cluster of a series of physiological processes.

Receiving an external stimulus, the object neuron will generate

both a rapid response and some weak but persistent change

in membrane potential, which demands basis functions to

compile input stimuli into a distribution that contains variable

temporal features. For example, the basis function ‘Boxcar’

can transform an afferent stimulus into a continuous equivalent

stimulus effect with a specific time delay [22], defined by

Bη(ε) =

{

c for η = 1 and ε0 < ε < ε1
0 otherwise

(6)

where c is a constant, ε0 and ε1 are the upper and lower bounds

of the interval, respectively. The ‘Raised Cosine’ function is

based on ‘Boxcar’ and takes the subtle temporal effect of

external stimuli into account [23]. The first order raised cosine

function over a finite interval, −T < x < T , is defined as

B1(x) =

{

1

2T
[1 + cos π

T
x] −T < x < T

0 otherwise
(7)
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The ‘Nonlinearly Scaled Cosine (NSC)’ function is defined by

B2(x) =
1

2
(cos[mid(−π,

lnx− β

2β
π, π)] + 1) (8)

where mid function means to take the middle value of the

three, and the β is a constant greater than zero [24]. It is noted

that different basis functions can be employed to achieve the

sustained effect of stimulus for different application situations.

B. Nonlinear Retinal Coding

The nonlinear computation in RGCs is the key component

of retinal coding models. Inspired by the nonlinear input

model (NIM) [25], we utilize a cascade LN scheme with

upstream and downstream structures to simulate the biological

computation of RGCs. In the upstream part, a pair of parallel

LN subunits is first used to filter the multi-modal stimulus

matrix S.

G(t) =

2
∑

i=1

gi(t) =

2
∑

i=1

ωiyi(S · ki) (9)

in which the G(t) is the generation function that represents

the response of neurons to the input stimulus. The ki is a

linear filter that transforms the input stimulus matrix into the

optimal solution in the corresponding parametric space. The

y(·) is a nonlinear calculation that rectifies the liner filter result

to further find the optimal nonlinear solution in a local field.

The ωi is an excitation/inhibition scale term and determines

whether each subunit has an ‘excitatory’ or ‘inhibitory’ effect

on the neuron. When the neuron generates a selective response

by excitation or inhibition subunit, the generation function

G(t) with high values will generate firing spikes. If the results

of the linear and nonlinear filters are offset, the neuron keeps

rest.

After getting the response of neurons to the input stimulus,

an activation function is necessary to reform the G(t) into

the firing rate r(t) of the RGCs. The spiking of RGCs is

sparse which means it keeps rest in most of the time. Thus,

the G(t) obtained from the upstream filters needs further non-

linear calculation reforming.

r(t) = α log[1 + exp(β(G(t) + h · x− γ))] (10)

where the h is the linear operation on extra external input

x such as historical excitation state. The α, β, and γ deter-

mine the scale, shape, and offset of the spiking nonlinearity

respectively. A stochastic Poisson process is finally conducted

to generate the spike sequence.

C. Parameters Estimation

The proposed MSNM can be described as a quadratic linear-

nonlinear model, including an upstream parallel LN module

and a downstream spiking nonlinear computation. The whole

process can be expressed by

r(t) = F [
∑

i

ωiyi(S · ki) + h · x] (11)

The parameter estimation of the MSNM mainly includes the

linear filter ki, the subunit nonlinear rectification function yi(·)

and the downstream nonlinear function F [·]. Assuming that

the spiking process is a conditionally inhomogeneous Poisson

process with rate r(t) = F (k,S, y(·), α, β, γ), according to

the general point-process theory [26], the log-likelihood LL

of the observed spike sequences Q(t) is defined as

LL ∼

∫

Q(t)log(F (k,S, yi(·), θ))− F (k,S, yi(·), θ)dt

(12)

in which the θ is the {α,β,γ} for short. To optimize the

parameters to maximize the log-likelihood LL, we utilize the

block coordinate ascent to estimate the parameters respectively

[27]. When optimizing one set of parameters, the other two

parameters are fixed. The optimization can be conducted

alternately to obtain the global solution as long as theyi(·)
is piece-wise linear and F [·] is concave.

The estimation of the linear filter ki is accomplished by

calculating the gradient of log-likelihood gradient with respect

to the ki by

∂LL

∂ki,j
=

∑

t

(
Q(t)

r(t)
− 1)F ′[G(t)]ωiy

′

i(gi(t))Sj(t). (13)

Here, F ′[·] and y′i(·) are the derivatives of F [·] and yi(·) with

respect to their arguments, and Sj(t) is the jth column of the

multi-modal stimulus matrix at the time t. In addition, a L2

norm constrained is employed to prevent the fragility caused

by minimum singular value in S.

The upstream nonlinear function y(·) is often defined as

parametric functions such as the rectified-linear or regressive

quadratic function. Here we provide a non-parametric scheme

to construct the function y(·). Firstly, the yi(·) is initialized to

be a non-zero linear function as

y(x) =

{

0 if x < 0
x otherwise

. (14)

The filter ki is estimated based on this non-zero linear

function. Afterward, the upstream rectification functions y(·)
are added nonlinearity by decomposing the y(·) into a piece-

wise linear basis function, yi(t) =
∑

j aijϕj(t) when keeping

the ki fixed. These basis functions ϕ(x) are given by

ϕ(x) =











x−xk−1

xk−xk−1
if x ∈ [xk−1, xk]

xk+1−x

xk+1−xk
if x ∈ [xk, xk+1]

0 otherwise

(15)

in which the xk is a set of grid points which is selected from

the n-quantiles of gi(t).
The downstream nonlinear parameters thus can be estimated

by the log-likelihood gradient to {α,β,γ} respectively when

the upstream filters are optimized and fixed in this iteration.

In summary, the proposed multi-modal stimulus non-linear

model achieves high flexibility and expansibility. In the stage

of feature extraction and compilation, the MSNM can provide

good adaptation to different application situations by adjusting

the types of input stimuli and basis functions. In the stage

of nonlinear retinal coding, two upstream filter subunits can

be added to simulate complex physiological mechanisms in

RGCs and gain excellent prediction performance. Moreover,

any non-linear monotonous function can be employed as the
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downstream spiking function as long as it is concave in the

parameter space.

III. EXPERIMENTAL RESULTS AND ANALYSIS

A. Experimental Configuration

In order to verify the performance of the proposed MSNM,

this section utilizes the log-likelihood LL, cross-correlation

[28], skewness [29], and Clayton copula function [30] as

the metrics for evaluation. The LL can accurately capture

the subtle changes in the excitation probability of biological

neurons and estimate the goodness-of-fit.

The cross-correlation function describes the degree of corre-

lation between the values of random signals X(t), Y (t) at any

two different times t1 and t2. The cross-correlation function

PXY (t, τ) is given by

PXY (t, τ) = E[Y (t+ τ)X(t)], (16)

where the E(·) means the expected value of the product of

Y (t+ τ) and X(t), and the lag τ is positive.

The skewness is the number of features that characterize the

degree of asymmetry of a probability distribution density curve

relative to the mean. Intuitively, it is the relative length of the

tail of the density function curve. The definition of skewness

is given by

d3 =

√

m2
3

m3
2

(17)

where

mr =
1

n

n
∑

i=1

(xi − x̄)r, r = 1, 2, . . . (18)

is the rth central moment and x̄ is the arithmetic mean of n

real numbers xi(i = 1, 2, . . . , n).
The Clayton copula function is one of the most popular

parametric families of copulas, which can effectively describe

the nonlinear tail dependence between variables, defined as:

CC (u, v) =
[

u−ζ + v−ζ − 1
]−

1
ζ , ζ > 0 (19)

where C is a copula function, u and v are two arbitrary

probability distribution functions, and the ζ is a constant

greater than zero.

B. Physiological Feature Extraction and Compilation

In the mammalian retina, the light stimulus signal is

processed by photoreceptor cells, transport layer cells, and

ganglion cells and then converted into a time series of spikes

carried by neurotransmitters. Some simple retinal coding mod-

els think that the visual coding of ganglion cells exclusively

depends on the light luminance input. Some recent models

introduce additional control information gained from physio-

logical functions of neurons [14]. But the visual processing

in the retina goes beyond these simple hypotheses in the

following way.

First of all, the photoreceptors collectively refer to rod

cells and cone cells, which transmit bioelectrical signals to

ganglion cells through bipolar cells and amacrine cells in the

transport layer, respectively. The two photoreceptors make the

retina form a typical ‘center-edge’ sensitivity. Secondly, the

biological retina also has a significant ability to respond to

the input visual stimuli instantaneously [21]. When the input

video contains severe or rapid vibration in luminance intensity,

the ganglion cells also produce high-frequency spiking signals.

In addition, the intrinsic attributes of input images, such as

contrast, can also profoundly affect the coding state of RGCs

and provide additional linear space for the visual coding.

Thirdly, besides the hierarchical structure of the photoreceptor,

transport, and coding layers, the visual neural circuits in

the retina contain additional control mechanisms within the

horizontal connection. Therefore, it is very necessary and

reasonable to extract the rich features of the input video to

show the physiological characteristics of retina coding.

In this paper, the proposed MSNM extracts the multi-modal

features (MMF) through collaborative perception and compiles

the feature vectors by flexible basis functions, leading to higher

prediction performance. By contrast, the stimulus matrix is

constructed by applying a simple delay to the input luminance

intensity in the NIM and is directly fed to the coding module

without the feature compilation. Fig. 2(a) shows the cross-

correlation values vs. the log-likelihood LL of three RC

models to demonstrate the influence of introducing multi-

modal features on performance. Here, we create the NIM-

MMF by adding the features, such as instantaneous changes

and movement of objects used in the MSNM, to the NIM.

According to the results, adding additional stimulus features

can improve the prediction performance with greater LL and

cross-correlation. Since the proposed MSNM further compiles

the extracted MMF by the basis functions, it achieves the

highest values of LL and cross-correlation. Moreover, to show

the influence of feature compilation on the performance, Fig.

2(b) compares the cross-correlation vs. the log-likelihood LL

of three RC models. In particular, the NIM compiled represents

the model in which the basis function compiles the luminance

intensity in the NIM. It can be seen that the prediction result

is promoted when the afferent light luminance is compiled by

the basis function, as shown in the results of the NIM and

NIM compiled.

C. Flexibility and Biological Interpretability

In our model, different combinations of features and pa-

rameters determine the stimulus matrix, making the MSNM

adaptable to complex nature scenes flexibly. Fig. 3 shows the

distributions of singular values for different basis functions,

including the ‘Boxcar’, ‘Raised Cosine’, and NSCs with

different nonlinear offsets. To be specific, the NSC-i means the

‘Nonlinearly Scaled Cosine’ basis function with the nonlinear

offset is i. By adjusting the parameters such as the duration

and the offsets, the basis function has a distinctive distribution

of its singular values. For example, the singular values of the

NSC-1 concentrate more on the top than the ones of the NSC-

50. It means the stimulus matrix can be compiled by the basis

function smaller in size, but the performance remains good,

which is of great importance in those tasks for fast coding

needs. In this way, our model achieves good flexibility in

comparison with its rivals.
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(a) and (b), respectively.
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i means the ‘Nonlinearly Scaled Cosine’ basis function with the nonlinear
offset is i. The duration of all basis functions is 100.

In the stage of nonlinear retina coding, our MSNM designs

an upstream linear filter with two parallel subunits, a piece-

wise nonlinear filter, and a downstream nonlinear filter for

activating the generation function. Fig. 4 and Fig. 5 show the

upstream and downstream filters for different RC models. As

shown in Fig. 4 (a), the upstream parallel filter subunits in

our MSNM capture the excitation and inhibition information

from the stimulus matrix, which better fits the biological

characteristics of the retina coding.

The GQM is a second-order model generated by the spike-

triggered average (STA) and spike-triggered covariance (STC)

statistics. A linear filter and a nonlinear quadratic filter provide

an approximate decomposition like in Taylor Formula. As
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Fig. 4. Filters for different RC models. The (a) shows the upstream linear filter
k, the horizontal axis of (a) means the index of k, and the vertical axis is
its value. The (b) shows the upstream nonlinear filter y(·) and the histogram
of gi(t). The (c) is the downstream nonlinear filter and the histogram of the
generation function G(t).

shown in Fig. 5 (b), the fixed quadratic nonlinear filter in the

GQM results in the bias between its linear filter and the actual

retina filtering when a good mathematical fitting is needed. By

contrast, our upstream nonlinear filter is piece-wise nonlinear,

as shown in Fig. 4 (b), and the parameter optimization of

k, y(·) and F (·) can achieve a satisfactory solution based on

biological mechanisms of the retina coding. Given a biological

filter of RGCs, Fig. 6 further compares the upstream linear

filters k in the GQM and MSNM. It can be noticed that our

MSNM outperforms the GQM in terms of fitting results, which

indicates the MSNM can better restore the excitation/inhibition

filtering of the RGCs. In addition, our MSNM can degenerate

to other RC models. For instance, the MSNM can be regarded

as the GQM when the upstream nonlinear filter y(·) is set as a



7

5 10 15 20 25 30 35

Upstream linear filter k

GQM

0 5 10
0

5

10

15

20

Upstream nonlinear filter y(·)

-4 -2 0 2 4
0

0.2

0.4

0.6

0.8

1

Downstream nonlinear filter F(·)

(b)

(c)

(a)

Index of k

V
a

lu
e

 o
f
k

15

10

5

0

-5

-10

-15

F(·)

G(t)

y(·)

g (t)
i

Fig. 5. Filters of the GQM. The (a) shows the upstream linear filter k, the
horizontal axis of (a) means the index of k, and the vertical axis is its value.
The (b) shows the upstream nonlinear filter y(·) and the histogram of gi(t).
The (c) is the downstream nonlinear filter and the histogram of the generation
function G(t).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Time lag (s)

RGCs

MSNM

GQM

U
p
s
tr

e
a

m
 l
in

e
a

r 
fi
lte

r 
k

0.3

0.2

0.1

0

-0.3

-0.2

-0.1

Fig. 6. Upstream linear filters k for different models. Solid lines show the
filtering results of biological RGCs.

quadratic term, and when the downstream nonlinear function

F [·] is discarded, the MSNM can be the LN model.

D. Performance Comparison

To compare the coding results and prediction accuracy

of different models, we use k-fold cross validation. Fig. 7

evaluates the prediction performance in terms of the cross-

correlation vs. log-likelihood LL. The horizontal axis gives the

LL values, while the vertical axis means the cross-correlation

values. The higher the cross-correlation and LL are, the better

the prediction performance of RC models is. Intuitively, the

more the markers in Figure 7 are distributed in the upper

right, the better the prediction performance of the RC models

is. According to the neuron populations, we can see that

the proposed MSNM is remarkably accurate and powerful in

visual coding compared to other models.

The spike raster and prediction firing rate of different

models are shown in Fig. 8, in which ‘RGCs’ shows the

biological firing records of retinal ganglion cells when a nature

video is given [31]. Compared with the biological firing rate
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Fig. 7. The comparison results of the cross-correlation vs. log-likelihood LL
for different RC models. Each marker shows the values of the cross-correlation
and log-likelihood LL of each neuron. For example, the red circles show the
prediction values of the 34 neurons in the LN model.

curve plotted by the solid red line in Fig. 8, the RC models

successfully mimic the spike responses of neurons, as shown

in the colored solid lines. However, retinal ganglion cells keep

rest most of the frame times, which means the spike activation

is sparse. When the frame time is bigger than 1300, the retinal

ganglion cells hardly generate any firing spikes, i.e., there are

few black dots in the RGCs region in Fig. 8. It can be seen

that our MSNM exhibits such sparseness, leading to a good

consistency with the biological firing records. This is because

our MSNM designs the upstream linear filter with two parallel

subunits which can capture the excitation and inhibitions of

neurons. But other models still generate occasional spikes

when RGCs keep rest, which causes a bias between actual

and estimation results.

In order to further assess the performance of RC models

in predicting the visual response characteristics of ganglion

cells, we calculate the skewness values of the neuron firing rate

curves of 102 neurons according to Eq. (17). Fig. 9 plots the

skewness curves for different retinal coding models, in which

the black line gives the skewness curve of the biological retinal

ganglion cells. It can be seen that the proposed MSNM model

is much closer to the RGCs result than its rivals, benefiting

from the multi-modal stimulus matrix and excitation/inhibition

filters in the MSNM.

In the retina, the visual coding of different ganglion cells

has horizontal interaction. To find the correlation between

neurons’ sparse spiking, we use a Clayton copula function

to construct the joint distribution of RGCs. As shown in Fig.

10, the Clayton copula function has a ‘heavy tail’ sensitive

to covariates (u, v). The parameter ζ identifies how the (u, v)
has a synchronous excitation/rest state. The higher the ζ is, the

stronger the synchronicity of (u, v) is. Fig. 11 shows the Clay-

ton copula function parameter ζ vs. the correlation coefficient.

We can see that the results of other RC models cluster in the

regions with ζ values less than 6. In contrast, our MSNM

model is similar to biological ganglion cell responses and
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Fig. 8. The spike raster and prediction firing rate of different RC models. In this experiment, the natural input video is repeatedly played 33 times, and
the ‘RGCs’ gives the biological firing records of retinal ganglion cells when a nature video is given [31]. The bottom 33 raster lines represent the impulse
response of biological neurons to the video. The black dots show the firing spikes of the neurons, and the solid red line means the average firing rate curve
of ganglion cells. From the bottom to the top, the simulation output results and firing rate curves of different RC models are plotted, in which the colored
solid lines show the average firing rate curves of different RC models, respectively.
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Fig. 9. The skewness values of 102 neurons for different RC models. The
black line gives the skewness curve of the biological retinal ganglion cells.

better reflects the strong and weak distribution characteristics

of interactions between neurons.

IV. CONCLUSION

To improve the adaptability of retinal coding models in

natural and complex scenes, this paper presents a nonlinear

retinal coding model based on multi-modal stimulus input. It

extracts the spatiotemporal features in the natural video and

compiles the features by using basis functions to construct

a multi-modal stimulus matrix. By employing the upstream

linear subunits, the proposed model mimics the excitation-

inhibition balance mechanism in biological neurons. And
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Fig. 10. Clayton distribution density. It can be divided into asynchronous and
synchronous regions. The synchronous region is near the axis y = x, which
means the spikes/rests of two neurons are relevant. The asynchronous spikes
scatter in the region (1, 0) or (0, 1). A Clayton function with a high ζ has a
lower value in the asynchronous region and a ridgeline in y = x. The higher
the ζ is, the stronger the correlation is.

the nonlinear calculation effectively activates the generation

function to generate firing spikes. Experimental results show

our model is a bio-interpretable coding model and can accu-

rately reproduce the internal biological computing properties

of biological ganglion cells.
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