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Reinforcement Learning for NOMA-ALOHA under

Fading
Youngwook Ko and Jinho Choi

Abstract—We consider a non-orthogonal multiple access in a
random-access ALOHA system, in which each user randomly
accesses one out of different time slots and send uplink packets
based on power differences. In the context of an asymmetric
game, we propose a non-orthogonal multiple access ALOHA
system based on multi-agent reinforcement learning tools that
can help each user to find its best strategies of improving the
rates of successful action choices. While taking into account not
only collisions, but also fading, we analyze the mean rewards of
actions under general settings and focus on the case that involves
two different groups of users. To characterize the behaviors of
accessing strategies, we apply multi-agent action value methods
that consider either greedy or non-greedy actions, combined
with an acceleration gradient descent. Our results show that in
the proposed system, users employing the greedy action-based
methods can be randomly divided into two groups of users and
increase the rates of successful action choices. Interestingly, in
relatively limited channels, such greedy methods turn many of
users to be with a state of barring-access. In this case, the
proposed acceleration, non-greedy action methods are shown to
reduce such unfairness, at a loss of successful action rates.

Index Terms—Non-Orthogonal Multiple Access; Random Ac-
cess; Throughput

I. INTRODUCTION

In order to improve the spectral efficiency by exploit-

ing power differences in wireless multiuser systems, non-

orthogonal multiple access (NOMA) has been extensively

studied [1] [2] [3]. While NOMA has been mainly considered

for downlink transmissions in a cellular system where the

power difference occurs due to users’ different distances

from a base station (BS) in a cell [4] [5], it can also be

applied to uplink transmissions [6]. In particular, for uplink

random access, in [7], it is shown that NOMA can help

improve the throughput. Since random access does not require

coordinated transmissions, it becomes suitable for machine-

type communication (MTC) where a large number of devices

are to be connected with low signaling overhead for various

Internet-of-Things (IoT) applications [8] [9]. In MTC, NOMA

can also help support more devices to be connected with a

limited radio resource [10] [11].

To understand the performance of random access, game

theory is often applied, where users are players competing with

each other [12] [13] [14]. Likewise, when NOMA is applied to

a random access system such as ALOHA [15], which results
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in NOMA-ALOHA, a model based on non-cooperative game

theory can be used to understand its performance as in [16]

[17]. While non-cooperative game theory is a tool to see the

behaviors of players (i.e., devices and sensors that compete

for access in random access), it can also be used to derive

learning rules for interacting players [18] [19].

In general, although the application of game theory helps

understand the performance of random access systems and

finds access strategies for users, it is still difficult to find

learning rules when users are distributed and unable to

communicate with each other except for special cases. For

example, we can consider a special case where all the players

have the same conditions (i.e., symmetric games). In this case,

fictitious play [20] [21], which is a learning rule based on the

history of players’ selected strategies in the past, can help

find best strategies as own history would be the same as the

others’ history under the symmetric condition. Unfortunately,

in NOMA-ALOHA, users may have different conditions as

their channel gains depend on their distances from the BS

located at the center of a cell. Thus, the resulting game is not

symmetric and a simple learning rule may not be efficient.

In this context, reinforcement learning methods [22] can

be used for slotted ALOHA systems [23]–[27]. In particular,

a reinforcement learning based random access was studied

to dynamically tune the barring factor and the mean barring

time for energy efficient MTCs in LTE systems [24]. In a

multi-channel slotted ALOHA, [25] developed a cooperatively

trained deep reinforcement learning based controller that de-

pends on the complexity of different random access schemes,

in improving the performance of random access control. In

[26], when NOMA is applied to random access IoT networks

with UAV relays, a constrained Markov Decision Process, as a

reinforcement learning tool, was useful to learn a cooperative

policy in controlling multi-UAV altitudes and random access

probability of IoT users such that the maximum long-term

network capacity is achieved. Moreover, when multi-agent

reinforcement learning is applied to distributed random access

users, [27] has improved both throughput and fairness between

active users by selecting a set of channel access policies for

consecutive time slots. In the case when users get randomly

distributed and have different conditions in NOMA-ALOHA

systems, however, it is vital to understand how each user

can self-learn the environment to find its own best strategies.

To obtain the reliability in a random collision channel, the

proposed work is motivated to bring into the ALOHA systems

the power differences used in the NOMA. Intuitively, when

two users compete themselves a shared channel, the use of

power differences can allow to recover the data from the two
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users even on the shared channel, which was not possible in

the existing ALOHA due to collisions resulting in decoding

failure. In view of this, it is desired for each user to find the

strategy of randomly choosing not only one of channels, but

also one of power levels.

In this work, we consider NOMA-ALOHA reinforcement

learning and aim to find random access strategies to more

general cases. The main contributions made by this work are

summarized in the following. In particular, after computing

the mean rewards of actions under general settings, we focus

on the case where users can be divided into two groups. In a

cellular system, we can have two groups of users: one group

of users are close to the base station (BS) and the other group

of users are far away from the BS. In a distributed manner,

we exploit action value methods based on multi-arm bandit

problems, such that each user learns the environments to find

its own best strategies for accessing random channels and

deciding its power allocation levels at either zero, high or low

level. Particularly to characterize its behaviors of accessing

strategies, we apply the multi-agent action-value methods [22]

that take into account either the greedy or non-greedy decision

actions, combined with the acceleration gradient descent. This

work is the first attempt to consider the reinforcement learning

methods for a slotted ALOHA system with random NOMA

users. Unlike the NOMA systems as controlled multiple ac-

cess, the proposed NOMA-ALOHA exploits the opportunities

of random access systems as uncontrolled multiple access.

In this context, we develop several reinforcement learning

algorithms for NOMA-ALOHA users to find their own best

strategies via recursively computing the estimate of the action

rewards. Considering NOMA-ALOHA users under different

conditions and without any cooperative policy, the simulation

results demonstrate that the proposed methods can outperform

the existing ALOHA systems with reinforcement learning

(RL-ALOHA) in terms of the average success rates. We also

show the new impact of user ratios on channels: given the user-

to-channel ratio, the average success rate of increased users

can still converge. Moreover, our results show that, in NOMA-

ALOHA using the reinforcement learning, users exploiting the

greedy action based methods can be randomly divided into the

two groups in order to increase the rate of successful action

choices. In the case when the number of users is relatively

much greater than that of channels, however, such greedy

methods are shown to turn some users to be left in a state

of unfair restricted access. In this case, we show that the

acceleration, non-greedy action methods can help to reduce

such unfairness at the cost of successful action rates.

II. BACKGROUND

In this section, we briefly discuss NOMA-ALOHA and

reinforcement learning.

A. NOMA-ALOHA

Suppose that a system consists of multiple users and a BS.

For random access, we assume a time slotted system for slotted

ALOHA [15] [28] and a user is to send a packet within a

time slot. As in [7], in order to increase the throughput, while

a number of power levels can be considered for NOMA, we

only consider two power levels, denoted by PH (a high power

level) and PL (a low power level), where PH > PL > 0, in

this paper. The resulting random access scheme is referred to

as NOMA-ALOHA.

In order to see the throughput improvement of slotted

ALOHA by NOMA, suppose that the number of active users

follows a Poisson distribution with mean λ. Then, the through-

put becomes

ηnoma = Pr(one active user)

+ Pr(two active users)
1

2
︸︷︷︸

(a)

2
︸︷︷︸

(b)

= λe−λ +
λ2

2!
e−λ, (1)

where (a) is the probability that one active user chooses PH

and the other active user chooses PL and (b) is the number

of successfully received packets, which is 2 as one transmits

a packet with a transmit power of PH and the other PL.
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Fig. 1: Throughput curves of slotted ALOHA and NOMA-

ALOHA protocols as functions of λ.

Fig. 1 shows the throughput curves of slotted ALOHA and

NOMA-ALOHA. Clearly, NOMA-ALOHA performs better

than S-ALOHA in terms of throughput. From (1), it can be

seen that the throughput of NOMA-ALOHA is maximized

when λ =
√
2 and the maximum throughput becomes

max ηnoma = (1 +
√
2)e−

√
2 ≈ 0.5869.

This shows that the maximum throughput of NOMA-ALOHA

with two power levels is about 1.6-time higher than that of

slotted ALOHA (which is e−1 ≈ 0.3679).

B. Reinforcement Learning

Reinforcement learning is a computational approach to learn

what to do in order to maximize a numerical reward. In

particular, an agent (or user), who tries to learn, discovers

which actions/choices may yield the most reward by consid-

ering trial-and-error search and delayed rewards. In a time

slotted ALOHA system, a user takes repeatedly a choice

among different time slots for its packet. Here, the number
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of successfully transmitted packets can be treated as a reward

corresponding to the choice. In order to increase the rewards,

the user may take repeated action choices and emphasizes its

actions on the best rewards. By this way, the reinforcement

learning can help users to increase the rewards.

To measure the performance of reinforcement learning, sup-

pose that each user is faced with a choice among M different

actions. After each choice the user receives a numerical reward

chosen from a stationary probability distribution that relies on

the action the user selected. Then, each of the M actions has

a mean reward given that that action is selected: it is referred

to as the value of that action. The value of an arbitrary action,

a, is denoted by q∗(a) and defines the mean reward given that

a is selected:

q∗(a) = E[Rt|At = a],

where At is the action selected on step t, and Rt is the

corresponding reward. We assume that the action values are

not known with certainty, even though we may have estimates.

Denote by qt(a) the estimated value of action, a, at step t. We

are desired to make qt(a) close to q∗(a).

III. SYSTEM MODEL

Suppose that there are K users (or players or agents)

and M channels for uplink transmissions. It is as-

sumed that each player has the set of actions, A =
{(H, 1), . . . , (H,M), (L, 1), . . . , (L,M), 0}, where H and L

stand for transmissions with power PH and PL, respectively,

and 0 stands for no transmission. Here, PH > PL > 0
and (H,m) is the action of choosing transmit power PH and

channel m. Let hk;m denote the channel coefficient from user

k on channel m to the BS. The received signal at the BS on

channel m is given by

ym =
∑

k∈KH,m

√

PHhk;msk +
∑

k∈KL,m

√

PLhk;msk + nm, (2)

where KH,m and KL,m are the index sets of the users who

choose channel m with power PH and PL, respectively, sk
is the signal transmitted from user k, and nm ∼ CN (0, N0)
is the background noise of channel m. Let E[sk] = 0 and

E[|sk|2] = 1 for normalization.

We also assume that users do not know the channel coef-

ficients, hk;m. As a result, no power control is employed. In

addition, each user can choose only one action at a time. Thus,

the index sets, KH,m and KL,m, are disjoint.

As with the use of two power levels, notice that multi-user

superposed transmission (MUST) was introduced in the 3GPP

Release 13 to enable NOMA for a small number of users and

recently proposed to realize MUST in LTE-Advanced systems,

focusing on the multiplexing of two users only. In practice, it is

more desirable to use a small number of power levels although

using many power levels is theoretically possible at the high

cost of power inefficiency. In view of this, the proposed system

considers a generalized number K of users who randomly

access M channels with a random choice of either power level,

which differs from the conventional two-user NOMA scenario,

where the two users using the power levels are determined. We

further demonstrate the performance for the case of having

more than two power levels in Section VI.

IV. REINFORCEMENT LEARNING MODEL

We consider a learning model for NOMA-ALOHA and find

the average rewards and payoffs under fading.

A. Formulation of a Learning

We can formulate a K-agent reinforcement learning with

the following elements:

1) the set of agents or users, K = {1, . . . ,K};

2) the set of actions of users, A;

3) the payoffs of agents, denoted by Rk, for user k.

To define the payoff, suppose that user k chooses an action

of (H,m) or (L,m), which means that this user chooses

transmit power PH or PL, respectively, and sends the signal

through channel m to the BS. Denote by Vk;m and Wk;m the

instantaneous rewards of user k when choosing (H,m) and

(L,m), which become 1 if the transmissions are successful.

Otherwise (i.e., transmission is unsuccessful), the instanta-

neous reward is 0.

Finally, the payoffs can be found as

Rk(H,m) = Vk;m, Rk(L,m) = Wk;m, and Rk(0) = C0,
(3)

where C0 is the cost of action i = 0, i.e., no transmission.

Note that the payoffs in (3) depend on the others’ actions.

For mixed strategies, let

xk = [xk;H,1 . . . xk;H,M xk;L,1 . . . xk;L,M xk;0]
T ∈ X , (4)

where xk;i,m represent the probability that user k chooses an

action of (i,m), i ∈ {H, L}, and

xk;0 = 1−
M∑

m=1

xk;H,m + xk;L,m,

which is the probability of no transmission.

Here, X becomes a 2M -simplex. In addition, let

x−k = (x1, . . . ,xk−1,xk+1, . . . ,xK).
To evaluate values for the payoffs corresponding to actions

of (i,m), the estimated payoffs can be denoted by

qk = [qk;H,1, · · · , qk;H,M , qk;L,1, · · · , qk;L,M ], (5)

where qk;i,m indicate the estimated payoffs of selecting an

action of (i,m) for i ∈ {H, L}. Noting Rk(i,m) ∈ {0, 1},

qk;i,m can also represent the estimated probability that user

k chooses an action of (i,m) to make the transmission

successful.

B. SINR

Suppose that user k chooses action (i,m), i ∈ {H, L}. Then,

the SINR becomes

SINRk(i,m) =
αk;mPi

Im
, i ∈ {H, L}, (6)

where αk;m = |hk;m|2 and

Im =
∑

k′ 6=k

αk′,m (PHZk′;H,m + PLZk′;L,m) +N0. (7)
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Here, Zk;i,m, i ∈ {H, L} are the activity variables that depend

on the action selected by user k and are given by

Zk;i,m =

{
1, if user k chooses an action of (i,m)
0, o.w.

(8)

Clearly, E[Zk;i,m] = xk;i,m and
∑M

m=1 Zk;H,m + Zk;L,m ∈
{0, 1}.

In the paper, we consider the following assumption.

A1) Independent Rayleigh fading channels are assumed for

|hk;m|. In particular, we have

αk;m ∼ Exp(ᾱk;m), (9)

where ᾱk;m = E[αk;m]

Consequently, we can see that the SINR in (6) is a random

variable that depends on the selection of all the users’ actions

and channel gains.

It is worthy to note that the approaches [7] [16] [29] do not

need to consider the SINR in (6), as it is assumed that users

know the CSI. If the CSI is known at a user, power control can

be performed so that a required SINR for successful decoding

can be achieved if no collision happens. However, as in (2), no

power control is used. As a result, in order to find the average

payoffs, we need to take into account not only collisions, but

also fading (i.e., random channel coefficients, (9)).

C. Mean Rewards

In this subsection, we find the mean rewards for given

opponents’ mixed strategies.

1) Mean Reward with (H,m): Suppose that user k is the

player of interest. The signal transmitted by user k can be

successfully decoded under the following conditions:

Ea1) user k is only the user choosing (H,m);
Ea2) and the SINR is higher than or equal to ΓH.

For convenience, let

βk;i,m =
Γi

Piᾱk;m
, i ∈ {H, L}. (10)

We can find the mean reward when user k chooses (H,m) for

given x−k as follows.

Lemma 1: Under the assumption of A1, for given x−k, it

can be shown that

E[Vk;m] = e−βk;H,mN0

∏

k′ 6=k

φk′;m(1− xk′;H,m), (11)

where

φk′;m = 1− βk;H,mPLᾱk′;m

1 + βk;H,mPLᾱk′;m

xk′;L,m

1− xk′;H,m
. (12)

Proof: See Appendix A.

2) Mean Reward with (L,m): In this case, the signal

transmitted by user k can be successfully decoded under the

following conditions:

Eb1) user k is only the user choosing (L,m);
Eb2) at most one another user, say user k′, chooses (H,m);
Eb3) and the signals from users k and k′ (if exists) can be

coded. ΓH.

That is, Wk;m = 1 if all the above conditions are satisfied.

The mean reward can be found as follows.

Lemma 2: Under the assumption of A1, for given x−k, the

mean reward when user k chooses action (L,m) is given by

E[Wk;m] = e−βk;L,mN0

[
∏

k′ 6=k

(1− xk′;m)

+
∑

n 6=k




∏

k′ 6=k,n

(1− xk′;m)



xn;H,mθk,n;m

]

, (13)

where xk;m = xk;H,m + xk;L,m and

θk,k′;m =
e
−Γ

H
(Γ

L
+1)N0

P
H
ᾱ
k′;m

1 + ΓH

PLᾱk;m

PHαk′;m

=
e−βk′;H,m(ΓL+1)N0

1 + βk′;H,mPLᾱk;m
.

Proof: See Appendix B.

Based on the results in (11) and (13), certain optimal

strategies for users can be analytically obtained. To this end,

the BS uses known statistics of the channels to find an optimal

strategy (e.g., the mixed strategy Nash equilibrium (NE) as

discussed in [30]) and feeds back to the users so that they can

access the uplink channels according to the optimal strategies.

However, if the channel statistics are not available, the BS is

unable to compute the optimal strategy. In this case, each user

may attempt to learn how to choose the actions to maximize

their gains, which will be discussed in Section V.

V. REINFORCEMENT LEARNING ALGORITHMS

We now consider different algorithms of the reinforcement

learning for the NOMA-ALOHA and utilize them to address

ways on how each user can learn to find actions referring

to its own past action choices. Each user exploit the learned

ability to best find which actions to further take, estimating the

probability of reliable transmissions by each action. To this

end, we develop the action value methods based on multi-arm

bandit problems, which are stateless and can be considered as

Markov Decision Process with a single state.

A. Greedy Action Method

We first consider an action-value method that estimates the

reward values of actions and uses the estimates to make action

selection decisions. We assume that the mean rewards cannot

be known with certainty because user k is not aware of the

others’ actions. Instead, each user intends to compute the

estimated value of action at each learning step and select the

action of the greatest estimated value.

For this, we focus on a particular user k and formulate

several elements of an action-value method for this user as

follows:

1) the action a = (i,m) ∈ A of user;

2) the estimated reward of action, qn, at time n;

3) the immediate reward of action, Rn, at time n;

4) the initial rewards, q1 = 0, for all a ∈ A.

Denote by qn(a) one element of qk for a single action a ∈
A at time n. Given {qn(a)}, ∀a ∈ A, in each time step, the

greedy action selection rule can be written as

a(n) = argmax
a∈A

{qn(a) | qn(a) ∈ qk}.
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To simplify notation, we focus on an arbitrary action. Let

Rn denote the reward received after at most the n-th selection

of this action, and qn represents the estimate of its action

reward after it has been selected n − 1 times at most. In

case when this action is not selected at time n, then we keep

Rn = Rn−1 and qn+1 = qn. In general, given qn and the n-th

reward, Rn, the new average of all n rewards can be computed

by

qn+1 =
1

n

n∑

i=1

Ri

=
1

n
Rn +

n− 1

n
qn = qn + η(n)(Rn − qn),

(14)

where η(n) = 1
n

denotes the learning rate parameter and q2 =
R1 for arbitrary q1.

In the learning context of NOMA–ALOHA notice that

Rn ∈ {Vk;m,Wk;m, C0} and qn represent the sample average

of Rn’s over at most n selections of this action. Implicitly,

qn indicates the estimated probability of the successful trans-

missions corresponding to the use of this action a ∈ A. In

addition, the term of (Rn − qn) in (14) represents an error

in the estimate, which is reduced by moving qn towards Rn,

the n-th reward of action. It is presumed that Rn indicates

a desirable direction in which qn moves. For example, when

qn > Rn, the new estimate reward of this action, qn+1, is

reduced by a scaled quantity of the error. Likewise, in the

case when qn < Rn, the new estimate is incremented to move

towards Rn. This is equivalent to the standard gradient descent

that utilizes a gradient direction towards the current reward at

steps.

As for a step size of learning/moving, notice that the

parameter η(n) = 1
n

varies from one step to another and

controls the learning rate. Particularly, as n grows larger the

values for η(n) make the error term negligible. This implies

that for a large n, the new average qn+1 will be relying more

on the estimated average of all n− 1 rewards than the current

reward Rn. The use of this learning rate parameter allows

the action-value method to treat the estimated average more

important than the current reward for a large n. Therefore, the

choice η(n) = 1
n

, which results in the sample-average method,

guarantees a convergence to the true action value by the law

of large numbers. The RL-NOMA with the greedy action

sample-average method is shown in Algorithm 1. Notice in

Algorithm 1.7-8 that banditH(·) or banditL(·) returns Vk;i,m

or Wk;i,m, respectively, taking into account all conditions of

Ea1-Ea2 or Eb1-Eb3 in the previous section.

The greedy action method in Algorithm 1 intends to best

utilize the actions of greatest rewards and would be appropriate

particularly in intermediate overloads of users, e.g., cases

when M ≤ K ≤ 2M . Such a method of RL-NOMA would

allow all K users to eventually converge to their qk, ∀k with

‖qk‖0 6= 0. This implies that in the case of K ≤ 2M ,

the greedy method drives all the users to bring their action

selection decisions at either PH or PL on at least one channel m
for m ∈ {1, · · · ,M}. It is because the greedy action selection

always exploits current knowledge to maximize immediate

reward.

Algorithm 1 RL-NOMA with Greedy method

1: User k, ∀k, independently run the following steps.

2: Initialization, for a = 1 to 2M + 1,

Z(a) = V (a) = W (a) = 0, q(a) = 0,

where a ∈ A and A(a) denotes A(·) of action a.

3: procedure RL-NOMA(M,K,PH , PL)

4: while 1 do ⊲ A loop until a convergence

5: a ֋ argmaxa∈A q(a), ⊲ greedy action

6: user k transmits by action a, ⊲ NOMA process

⊲ Rewards

7: V ֋ banditH(a) if a ∈ {(H, 1), · · · , (H,M)} ,

8: W ֋ banditL(a) if a ∈ {(L, 1), · · · , (L,M)} ,

9: R ֋ V +W ,

10: Z(a) ֋ Z(a) + 1,

11: q(a) ֋ q(a) + 1
Z(a) (R− q(a)),

12: Learning outcomes: qk.

B. ǫ–Greedy Method

Notice in practice that we would often face highly overloads

of users for K ≫ 2M , in which greedy action selections may

make 2M among K users dominate M channels, while the

rest (K−2M) users might likely converge to no transmission

action (i.e., xk;0 = 1). To resolve this problem, we consider

the RL-NOMA with the use of near greedy action selection

method, called the ǫ–greedy method.

In particular, the ǫ–greedy method, as a simple alternative

to the greedy method, is to select actions greedily most of

the steps, but every once in a while with a small probability

ǫ, select randomly one among all the actions with equal

probability, which is independent of the estimated rewards.

A benefit of the ǫ–greedy method is that, in the limit as n
steps increase, every action will be selected an infinite number

of times, ensuring that all the q(a) converge to their positive

values. Unlike the greedy method that could often get stuck

performing suboptimal action selections, the ǫ–greedy method

is expected to perform better because users with this method

continue to explore and improve their chances of selecting the

optimal action. Therefore, in a highly overload of users, the ǫ–
greedy method would be more appropriate for a NOMA user

to consider a balance between exploitation and exploration in

action selection decisions. Accordingly, alternating some steps

of the greedy method, the ǫ–greedy method for the RL-NOMA

is presented in Algorithm 2.

C. Acceleration Gradient Descent of Nonstationary Selection

We now consider the RL-NOMA for non-stationary situa-

tions. Notice that the two algorithms above consider a sample

average method, appropriate for stationary bandit problems, in

which the reward probabilities do not change over time.

However, in cases when users of the NOMA system inde-

pendently select actions without a prior, the resulting NOMA

would effectively be non-stationary in the sense that each user

select its actions to maximize own rewards, which are contin-

ually influenced by independent activities of others. Without

appreciating mixed strategies, x−k, from the other users and
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Algorithm 2 RL-NOMA with ǫ–Greedy method

1: User k, ∀k, independently run the following steps.

2: Initialization, for a = 1 to 2M + 1,

Z(a) = V (a) = W (a) = 0,

q(a) = 0,

and ǫ ∈ (0, 1)
where a ∈ A and A(a) denotes A(·) of action a.

3: procedure RL-NOMA(M,K,PH , PL, ǫ)
4: while 1 do ⊲ A loop until a convergence

⊲ ǫ–greedy action

5: a ֋ argmaxa∈A q(a) with probability 1− ǫ
6: a ֋ a random action with probability ǫ
7: user k transmits by action a, ⊲ NOMA process

⊲ Rewards

8: V ֋ banditH(a) if a ∈ {(H, 1), · · · , (H,M)} ,

9: W ֋ banditL(a) if a ∈ {(L, 1), · · · , (L,M)} ,

10: R ֋ V +W ,

11: Z(a) ֋ Z(a) + 1,

12: q(a) ֋ q(a) + 1
Z(a) (R− q(a)),

13: Learning outcomes: qk.

especially in a highly overload of users (i.e., K ≫ 2M ), such

nonstationary situations may more often occur, and it would

make sense to put a more weight on immediate rewards than

estimates of the average rewards.

To this end we consider the exponential average in order to

freeze the coefficients on both the rewards: immediate reward

and estimated average reward, unlike Algorithms 1 and 2.

That is, we replace the coefficient on the error term, R −
q(a), with a constant step-size η ∈ (0, 1]. This results in the

coefficient on q(a) with 1 − η, producing a similar recursive

learning formula for the exponential average, as

qn+1(a) = (1− η)qn(a) + ηRn,

where recall that qn(a) represents q(a) at the n-th selection

of action a and Rn is its immediate reward.

Algorithm 3 RL-NOMA with Acceleration Greedy method

1: User k, ∀k, independently run the following steps.

2: Initialization, for a = 1 to 2M + 1,

Z(a) = V (a) = W (a) = 0, q(a) = 0,

η ∈ (0, 1],
where a ∈ A and A(a) denotes A(·) of action a.

3: procedure RL-NOMA(M,K,PH , PL, η)

4: while 1 do

5: a ֋ argmaxa∈A q(a), ⊲ Greedy action

6: user k transmits by action a, ⊲ NOMA process

⊲ Rewards

7: V ֋ banditH(a) if a ∈ {(H, 1), · · · , (H,M)} ,

8: W ֋ banditL(a) if a ∈ {(L, 1), · · · , (L,M)} ,

9: R ֋ V +W ,

10: Z(a) ֋ Z(a) + 1,

⊲ Acceleration gradient descent

11: q(a) ֋ q(a) + η (R− q(a)),

12: Learning outcomes: qk.

Algorithm 4 RL-NOMA with Acceleration ǫ–Greedy method

1: User k, ∀k, independently run the following steps.

2: Initialization, for a = 1 to 2M + 1,

Z(a) = V (a) = W (a) = 0, q(a) = 0,

ǫ ∈ (0, 1), and η ∈ [0, 1),
where a ∈ A and A(a) denotes A(·) of action a.

3: procedure RL-NOMA(M,K,PH , PL, η, ǫ)
4: while 1 do

⊲ ǫ–greedy action

5: a ֋ argmaxa∈A q(a) with probability 1− ǫ
6: a ֋ a random action with probability ǫ
7: user k transmits by action a, ⊲ NOMA process

⊲ Rewards

8: V ֋ banditH(a) if a ∈ {(H, 1), · · · , (H,M)} ,

9: W ֋ banditL(a) if a ∈ {(L, 1), · · · , (L,M)} ,

10: R ֋ V +W ,

11: Z(a) ֋ Z(a) + 1,

⊲ Acceleration gradient descent

12: q(a) ֋ q(a) + η (R− q(a)),

13: Learning outcomes: qk.

Notice that the learning-rate η here controls a trade-off.

The smaller η, the more each subsequent average looks like

its predecessor (resulting in a smoother curve of the average

rewards over steps), while the larger η, the more the average

approximates the (zig-zagging) immediate rewards. This way,

the estimates of the average rewards never converge but

continue to vary in response to the most recently received re-

wards. Taking into account a control of zig-zagging immediate

rewards, user k may enhance the gradient descent step (called

acceleration gradient descent), which reduces the undesirable

zig-zagging motions possibly influenced by others. Therefore,

it would be more desirable in a nonstationary situation along

with a highly overload of users in the NOMA systems. Details

of the acceleration gradient descent steps for both the greedy

and the ǫ–greedy methods are summarized in Algorithms 3

and 4, respectively.

VI. SIMULATIONS AND DISCUSSIONS

We now present simulation results for the proposed rein-

forcement learning driven NOMA-ALOHA methods. In simu-

lations, we consider two distribution cases of NOMA-ALOHA

users: the double-distribution case when K(= 2M) users

access M channels; and the over-distribution case when K(>
2M) users do. Since the case of K < 2M is straightforward to

have a convergence at all the users, only the above two cases

are interested. In particular, for simulated plots, we consider

that K ∈ {8, 16, 40}, M = 4, PH = 0.8, PL = 0.2, ǫ ∈ [0, 5]
and 10 dB of the average SNR on the NOMA links.

To measure the performance figures in the two cases, we

illustrate the average success rate (ASR) of actions made

by each agent and the sum of estimated rewards (ERs) of

actions at each agent. As physical interpretation, the former

may indicate the reliability of decision actions, while the latter

does the efficacy of cumulated decision actions, considering

both the present and the past rewards of the actions.
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Fig. 2: Average success rates of the RL-NOMA-ALOHA actions versus transmissions: (a) GA method of Algorithm 1 and (b)

ǫ-GA method of Algorithm 2, when ǫ = 5,M = 4,K = 8, PH = 0.8, PL = 0.2 and up to 2000 transmissions.

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Transmissions

10-1

100

A
v
e
ra

g
e
 a

c
ti
o
n
 s

u
c
c
e
s
s
 r

a
te

Solid: RL-NOMA-ALOHA
Dash: RL-ALOHA 

4 Agents converging with H mode

Conventional RL-ALOHA: 
only 50% of agents accessed

4 Agents converging with L mode

(a) Acceleration-GA method

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Transmissions

10-2

10-1

100

A
v
e
ra

g
e
 a

c
ti
o
n
 s

u
c
c
e
s
s
 r

a
te

Convergence gap  0.1

All agents leveraging all
possible actions of (i,m).

(b) Acceleration ǫ-GA method

Fig. 3: Average success rates of the RL-NOMA-ALOHA actions versus transmissions: (a) Acceleration-GA of Algorithm 3 and

(b) Acceleration ǫ-GA of Algorithm 4, when ǫ = 5, η = 0.1,M = 4,K = 8, PH = 0.8, PL = 0.2 and up to 2000 transmissions.

A. Double-Distributed Case when K = 2M

Fig. 2(a) depicts that the ASR of the RL-NOMA-ALOHA

actions made by each agent can converge at high transmission

trials, using the Algorithm 1. For illustrations in this figure,

K = 8 agents individually learn to non-orthogonally access

M = 4 channels in either H or L mode, when PH = 0.8, PL =
0.2 and up to 2000 trials of transmission. This figure shows

two groups of agents, each group making greedy actions to

either H or L mode and presenting the ASR convergence at

two different levels. Particularly, Fig. 2(a) shows that the ASR

from the group in the H mode converge at about 0.85, after

400 transmissions, while the ASR from the group in the L

mode do at the lower level (i.e., 0.58) from 1000 transmissions.

Compared with the existing RL-ALOHA where a half agents

are under restricted access, the proposed system is shown to

achieve higher ASR.

Likewise, Fig. 2(b) depicts the ASR of the RL-NOMA-

ALOHA with Algorithm 2 versus the transmission trials

additionally when ǫ = 5. As shown in this figure, the use of

Algorithm 2 makes the ASR of all agents converge about, 0.3.

Regarding the convergence speed of the ASR, Fig. 2(b) shows

that Algorithm 2 can increase the number of transmissions

towards the convergence. For example, in Fig. 2(b), the ASR

convergence from the group in the H mode occurs after 800
transmissions, while that from the same group in Fig. 2(a)

does around after 400 transmissions.

Fig. 3(a) depicts the ASR considering Algorithm 3 when

η = 0.1,M = 4,K = 8, PH = 0.8, PL = 0.2 and

up to 2000 trials of transmission. This figure shows that

the ASR converges at high transmissions into two different

levels, which are shown to be the same as Algorithm 1 in

Fig. 2(a). However, as with the convergence speed, Fig. 3(a)

shows that the ASR converges after 200 transmissions by

the use of Algorithm 3. This reveals that Algorithm 3 can

be superior to Algorithms 1 and 2, respectively, because

Algorithm 1 achieves the convergence after 400 transmissions

and Algorithm 2 does after 800 transmission. As shown in

this figure, the proposed system outperforms the benchmark,

in terms of the ASR and the convergence speed.

Fig. 3(b) depicts the ASR of the RL-NOMA-ALOHA with
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(a) GA method (b) ǫ-GA method

Fig. 4: Sum of the estimated action rewards across K agents over transmissions: (a) GA method of Algorithm 1 and (b) ǫ-GA

method of Algorithm 2, when ǫ = 5,M = 4,K = 8, PH = 0.8, PL = 0.2 and up to 2000 transmissions.

(a) Acceleration-GA method (b) Acceleration ǫ-GA method

Fig. 5: Sum of the estimated action rewards across K agents over transmissions: (a) Acceleration-GA method of Algorithm 3

and (b) Acceleration ǫ-GA method of Algorithm 4, when ǫ = 5, η = 0.1,M = 4,K = 8, PH = 0.8, PL = 0.2 and up to 2000
transmissions.

Algorithm 4 considering when ǫ = 5, η = 0.1. As shown in

this figure, the ASR can converge at high transmissions and the

levels of the convergence along with Algorithm 4 are similar

to those with Algorithm 2 in Fig. 2(b). However, Fig. 3(b)

shows that the speed of such convergence at each agent can

occur about 200 − 400 transmissions. This means that using

the acceleration, Algorithms 4 and 3 can be more superior to

the other two algorithms in terms of the convergence speed.

However, with respect to the converging levels, Algorithm 3

can be most superior to the others.

We now visualize the rewards of actions obtained at each

agent, who follows the proposed four algorithms. Firstly with

Algorithm 1, Fig. 4(a) depicts the sum of ERs at each agent as

the number of transmission trials increases. In this figure, we

observe that the sum of ERs per agent can converge at high

transmissions. Interestingly, notice from this figure that there

are two distinctive groups of agents in terms of the sum of

ERs: one group in the H mode can get the sum of ERs higher

than the group in the L mode.

Fig. 4(b) illustrates the sum of ERs of the RL-NOMA-

ALOHA with Algorithm 2 when we use ǫ = 5. In this figure,

the sum of ERs per agent also intends to converge at high

transmissions but with a small amount of ripples. Such ripple

exist because each agent make decisions, not only exploiting

the greedy actions with the best rewards, but also exploring

non-greedy action with a potential best rewards in future.

Eventually, Fig. 4(b) shows that the converging level of the

sum of ERs for each agent can be similar to other agents,

which differ from Algorithm 1 in Fig. 4(a).

Fig. 5(a) shows that the sum of ERs using Algorithm 3 when

η = 0.1,M = 4,K = 8, PH = 0.8, PL = 0.2 and up to 2000
trials of transmission. As shown in this figure, there exist the

ripples on the sum of ERs even at high transmission trials. As

validated in our analysis, notice that the use of acceleration

method makes the estimated rewards never converge, with

the emphasis more on the current rewards. Although this,

Fig. 5(a) depicts that half of K = 8 agents can achieve the

estimated rewards more than the other half agents, similar to
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Fig. 7: Average success rates of the RL-NOMA-ALOHA actions versus transmission trials: (a) Acceleration GA method of

Algorithm 3 and (b) Acceleration ǫ-GA method of Algorithm 4, when ǫ = 5, η = 0.1,M = 4,K = 16, PH = 0.8, PL = 0.2
and up to 2000 or 4500 trials of transmission.

Algorithm 1.

Fig. 5(b) depicts the sum of ERs considering Algorithm 4

when ǫ = 5. As seen in Fig. 5(b), the sum of ERs gradually

increases with the transmissions and never converges with

the presence of ripples at high transmission trials. Similar to

Algorithm 2, in addition, Fig. 5(b) shows that Algorithm 4

produces the estimated rewards per agent to similar levels at

high transmissions. This mean that the agents are fairly treated

in terms of the rewards received.

B. Over-Distributed Case when K > 2M

We now consider the case when the number of K = 16
agents is much greater than that of M = 4 channels and we

visualize the impact of the proposed RL algorithms on how

K = 16 agents individually make actions of accessing M = 4
channels in the non-orthogonal manner.

Firstly with Algorithm 1, Fig. 6(a) depicts that the ASR of

each agent can converge towards two different levels at high

transmission trials. For illustrations in this figure, we consider

when K = 16 agents, M = 4 channels, PH = 0.8, PL = 0.2
and up to 2000 trials of transmission. As seen in this figure,

Algorithm 1 produces only 8 among 16 agents being separated

into two groups, each group presenting the ASR convergence

at relative similar positive levels. In particular, Fig. 6(a) shows

that the ASR from the group in the H mode can converge

towards around 0.33, after 1000 transmissions, while the ASR

from the group in the L mode still changes towards about

0.08−0.07 even after 1000 transmissions. It is worth pointing

out that the GA method makes the rest of 8 agents fail to

access M channels, obtaining no values for the ASR.

Unlikely, in Fig. 6(b), the impact of Algorithm 2 on the ASR

is depicted, when ǫ = 5,M = 4,K = 16, PH = 0.8, PL = 0.2
and up to 104 trials of transmission. Allowing the non-greedy

decision actions, as shown in this figure, the ASRs of all the

agents are depicted but they are not converging even after 104

transmissions. This reveals that a simple exploration of non-
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(a) GA method (b) ǫ-GA method

Fig. 8: Sum of the estimated action rewards across K agents over transmissions: (a) GA method of Algorithm 1 and (b) ǫ-GA

method of Algorithm 2, when ǫ = 5,M = 4,K = 16, PH = 0.8, PL = 0.2 and up to 2000 or 104 transmissions.

(a) Acceleration GA method (b) Acceleration ǫ-GA method

Fig. 9: Sum of the estimated action rewards across K agents over transmissions: (a) Acceleration GA method of Algorithm 3

and (b) Acceleration ǫ-GA method of Algorithm 4, when ǫ = 5,M = 4,K = 16, PH = 0.8, PL = 0.2 and up to 2000 or 4500
transmissions.

greedy actions in the ǫ-GA method may make it more difficult

for a number of agents to access the relatively small numbers

of channels in non-orthogonal fashion.

In this light, Fig. 7(a) illustrates the impact of Algorithm 3

on the ASR, when η = 0.1,M = 4,K = 16, PH = 0.8, PL =
0.2 and up to 2000 trials of transmission. As seen in this figure,

using the acceleration method in Algorithm 3 allows the ASR

of each agent to rapidly converge after 400 transmissions for

the group in the H mode and after about 600 transmissions for

the other group. This speed of convergence by Algorithm 3 in

this figure is faster than those by Algorithms 1 and 2 in Fig. 6.

However, there still present the two groups of greedy agents,

with presence of other 8 agents failing to access M channels.

In the context of treating the agents fairly in terms of

the ASR, Fig. 7(b) shows that all the K = 16 agents with

Algorithm 4 may have the ASR converge towards the relatively

similar levels, after about 2000 transmissions. In a hybrid use

of ǫ-GA and acceleration methods, this observation reveals

that using the ǫ-greedy method can reduce the relative gaps

of the ASRs among the agents, while the acceleration method

helps to fasten the convergence of the ASRs over reduced

transmissions, compared to the other algorithms. Therefore,

in the case when K > 2M , it is worth pointing out that

Algorithm 4 is shown to be most superior to the other

algorithms with respect to the fairness, while Algorithm 3 is

most superior to the others with respect to the ASR, at the

inevitable cost of non-access at some agents, seen in Fig. 9(a).

Now, we illustrate the rewards of actions made by agents,

to represent the efficacy of the proposed four algorithms in

the case when K > 2M . Firstly with Algorithm 1, Fig. 8(a)

depicts the sum of ERs across agents with transmission trials.

This figure clearly shows that the sum of ERs per agent

can converge at high transmissions. Interestingly, notice from

Fig. 8(a) that only 8 greedy agents receive rewards by their

actions to access M = 4 channels and the rest 8 agents are

left with no rewards failing to access none of the M = 4
channels. Likewise, Fig. 8(b) depicts the sum of ERs when

using Algorithms 2. As clearly seen in the figure, all the
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Fig. 10: Average success rates of the RL-NOMA-ALOHA

actions with K = 40 agents: GA method of Algorithm 1 when

M = 20,K = 40, PH = 0.8, PL = 0.2.
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Fig. 11: Average success rates of the RL-NOMA-ALOHA

with three power levels: GA method of Algorithm 1 when

M = 4,K = 8, P1 = 0.8, P2 = 0.16, P3 = 0.04.

agents can achieve positive rewards over the transmissions.

This differ from the two GA-based algorithms in the view of

fair accessing. In particular, Fig. 8(b) shows the sum of ERs

at every agent obtaining positive levels even after a relatively

large number (e.g., 104) of transmission trials.

Integrating the acceleration concept to both GA and ǫ-
GA methods, Figs. 9(a) and 9(b) depict the sum of ERs of

agents, using Algorithm 3 and 4, respectively. As shown in

Fig. 9(a), there are only 8 agents who obtain positive rewards

with small fluctuations at high transmissions, and the rest 8
agents with zero rewards. This reveals that both Algorithms 1

and 3 are beneficial only to greedy agents at the cost of

unfair accessing. Such unfairness will be more significant as K
increases for a given M . Unlike, as seen in Fig. 9(b), the sum

of ERs at every agent can behave as random spikes. This may

indicate that each agent using Algorithm 4 can take relatively

more opportunities of exploring actions, that produce a current

rewards higher than the average one. This results mainly from

emphasizing on the current rewards together with the non-

greedy actions, in the proposed RL-NOMA process.

Fig. 10 now depicts the average success rates with an

increased number of users. When having K = 40 users

over M = 20 channels, this figure has demonstrated that the

average success rates with K = 40 users can perform similar

to those for the case when having K = 4 users at the ratio

of K/M = 2. With increased number of users, in addition,

it is shown that the proposed system can still outperform the

benchmark in terms of the average success rates.

In Fig. 11, the performance has been demonstrated by

applying three power levels to the proposed system. As shown

in this figure, all the agents of the proposed system can achieve

the average success rates higher than those in the benchmark.

Particular, all the gents are shown to be divided into three

converging levels, where the minimum converging level still

gets higher than that of agents in the benchmark system.

VII. CONCLUDING REMARKS

We considered the NOMA-ALOHA system that has users

to randomly access one out of different time-slots without the

channel state information and exploit power differences for

uplink transmissions. In the NOMA-ALOHA, we developed

the reinforcement learning methods for each user to computa-

tionally find its own best strategies and improve the rates of

successful action choices. We analyzed the average rewards

and payoffs of actions selected by the users, with the presence

of random collisions and fading. We devised the greedy and

non-greedy action value-based algorithms for the NOMA-

ALOHA, characterizing the insights into the exploitation and

exploration action values with the two groups of users. Inter-

estingly, the results showed that with the greedy action-based

methods, a user can improve the rates of successful action

choices, while accessing repeatedly a same slot within the

same group of users. We also showed that this greedy action

methods can face severe unfairness at the relatively limited

number of channels while the acceleration, non-greedy action

based methods can enhance the fairness. This work revealed

that when the NOMA-ALOHA employs the acceleration, non-

greedy actions, the random access users can control their best

strategies repeatedly in-between the two groups, in order to

improve the fairness and the rates of successful action choices.

APPENDIX A

PROOF OF LEMMA 1

The mean of Vk,m is given by

E[Vk;m] = Pr(Ea1,Ea2) = Pr(Ea2 |Ea1) Pr(Ea1). (15)

For given x−k, we have

Pr(Ea1) =
∏

k′ 6=k

(1− xk′;H,m). (16)

Under Ea1, we have

Im =
∑

k′ 6=k

αk′,mPLZk′;L,m +N0. (17)
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Thus, we have

Pr(Ea2 |Ea1) = Pr(SINRk(H,m) ≥ ΓH |Ea1)

= Pr

(

αk;m ≥ ΓH

PH

Im |Ea1

)

= E

[

e
− Γ

H

P
H
ᾱk;m

Im |Ea1

]

= e−βk;H,mN0

∏

k′ 6=k

φk′;m, (18)

where

φk′;m = E
[
e−βk;H,mαk′;mPLZk′;L,m |Ea1

]

= E

[
1

1 + βk;H,mᾱk′;mPLZk′;L,m
|Ea1

]

, (19)

where the second equality is obtained by taking the expectation

over αk′;m under the assumption of A1. Under the condition

of Ea1, we have

Zk′;L,m =

{
1, w.p.

xk′;L,m

1−xk′;H,m

0, w.p. 1− xk′;L,m

1−xk′;H,m
.

(20)

From (20), we can show that (19) becomes (12). Substituting

(16) and (18) into (15), we have (11), which completes the

proof.

APPENDIX B

PROOF OF LEMMA 2

For convenience, we decompose Eb2 into the following two

events: Eb2′) there is no user choosing (H,m); Eb2′′) there is

only one user choosing (H,m). We can find the probabilities

of (Eb1,Eb2′,Eb3) and (Eb1,Eb2′′,Eb3) separately so that

E[Wk;m] can be obtained as

E[Wk;m] = Pr(Eb1,Eb2′,Eb3)

= Pr(Eb1,Eb2′,Eb3) + Pr(Eb1,Eb2′′,Eb3),(21)

as Eb2′ and Eb2′′ as mutually exclusive. Noting that the

conditions of Eb1 and Eb2′ mean that the other users do not

choose channel m, we can easily show that

Pr(Eb1,Eb2′) =
∏

k′ 6=k

(1− xk′;m) (22)

and

Pr(Eb3 |Eb1,Eb2′) = Pr(SINRk(L,m) ≥ ΓL |Eb1,Eb2′)

= Pr

(
αk;mPL

N0
≥ ΓL

)

= e−βk;L,mN0 .

(23)

Thus, we have

Pr(Eb1,Eb2′,Eb3) = Pr(Eb3 |Eb1,Eb2′) Pr(Eb1,Eb2′)

= e−βk;L,mN0

∏

k′ 6=k

(1− xk′;m).

(24)

For the joint events of Eb1, Eb2′′, Eb3, consider another

user, denoted by user k′, where k′ 6= k, who chooses (H,m).

The BS can decode the signal from user k′ first and use SIC

to decode the signal from user k. Thus, we have

Pr(Eb1,Eb2′′,Eb3) =
∑

k′ 6=k

xk′;H,m

×




∏

j 6=k,k′

(1− xj;m)



 ζk,k′;m, (25)

where

ζk,k′;m = Pr

(
αk′;mPH

αk;mPL +N0
≥ ΓH,

αk;mPL

N0
≥ ΓL

)

. (26)

Since αk;m and αk′;m are independent exponential random

variable according to the assumption of A1, ζk,k′;m in (26)

can be expressed as

ζk,k′;m =

∫ ∞

a

∫ ∞

ay+b

e−xdxe−ydy =
e−(1+a)c−b

1 + a
, (27)

where a = ΓH

PLᾱk;m

PHᾱk′;m
, b = βk′;H,mN0, and c = βk;L,mN0.

After some manipulation, we can show that

Pr(Eb1,Eb2′′,Eb3) = e−βk;L,mN0

∏

k′ 6=k

(1− xk′;m)

×




∑

k′ 6=k

xk′;H,m

1− xk′;m

e
−Γ

H
(Γ

L
+1)N0

P
H
ᾱ
k′;m

1 + ΓH

PLᾱk;m

PHαk′;m



 . (28)

Substituting (24) and (28) into (21), we have (13).
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