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Abstract

There is a significant gap between the per-

formance of a coreference resolution system

on gold mentions and on system mentions.

This gap is due to the large and unbalanced

search space in coreference resolution when

using system mentions. In this paper we show

that search space pruning is a simple but effi-

cient way of improving coreference resolvers.

By incorporating our pruning method in one

of the state-of-the-art coreference resolution

systems, we achieve the best reported over-

all score on the CoNLL 2012 English test set.

A version of our pruning method is available

with the Cort coreference resolution source

code.

1 Introduction

Coreference resolution is the task of clustering refer-

ring expressions in a text so that each resulting clus-

ter represents an entity. It is a very challenging task

in natural language processing and it is still far from

being solved, i.e. the best reported overall CoNLL

score on the CoNLL 2012 English test set is 63.39

(Wiseman et al., 2015).

Text spans referring to an entity are called men-

tions. Mentions are the primary objects in a corefer-

ence resolution system. As with most previous work

on coreference resolution, we only consider men-

tions that are noun phrases. However, not all of the

noun phrases are mentions. A noun phrase may not

refer to any entity at all. The pronoun it in the sen-

tence it is raining is an example of a non-referential

noun phrase. Noun phrases which do refer to an en-

tity (mentions) can be further divided into two cat-

egories: mentions referring to entities which only

appear once in the discourse (i.e. singletons), and

mentions realizing entities that have been referred

to more than once in the text (i.e. coreferent men-

tions). Henceforth, we refer to both singletons and

non-referential phrases as non-coreferent mentions.

A large number of mentions that appear in a text

are non-coreferent. For instance, more than 80%

of mentions are singletons in the OntoNotes English

development set (Marneffe et al., 2015).

The latent ranking model is the best perform-

ing model for coreference resolution to date (Wise-

man et al., 2015; Martschat and Strube, 2015). If

we use gold mentions, the latent ranking model of

Martschat and Strube (2015) achieves an overall

score of 80% on the CoNLL 2012 English test set.

This result shows that once we have the ideal pruned

search space, the ranking model with the current set

of features is reasonably capable of finding corre-

sponding entities of mentions. The substantial gap

(17%) between the results of the gold mentions and

system mentions implies that search space pruning

is a promising direction for further improvements in

coreference resolution.

Marneffe et al. (2015) examine different search

space pruning methods that exist for coreference res-

olution. Among those, anaphoricity detection is the

most popular method (e.g. Ng and Cardie (2002),

Denis and Baldridge (2007), Ng (2009), Zhou and

Kong (2009), Durrett and Klein (2013), Martschat

and Strube (2015), Wiseman et al. (2015), Peng et al.

(2015), and Lassalle and Denis (2015)), while sin-

gleton detection is a more recent method (Recasens

et al., 2013; Ma et al., 2014; Marneffe et al., 2015).
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Anaphoricity detection examines whether a

phrase is anaphoric. Singleton detection examines

whether a phrase belongs to a coreference chain re-

gardless of being anaphor or antecedent. There-

fore, anaphoricity detection only prunes the search

space of anaphors while singleton detection prunes

the search space of both anaphors and antecedents.

Except for Clark and Manning (2015), all of

the state-of-the-art coreference resolvers explicitly

model anaphoricity detection (Martschat and Strube,

2015; Wiseman et al., 2015; Peng et al., 2015).

Therefore, modeling search space pruning as single-

ton detection can provide additional information for

the state-of-the-art coreference resolution systems.

In this paper we propose a simple but efficient sin-

gleton detection model. We first perform intrinsic

evaluations and show that our simple model signifi-

cantly improves the state-of-the-art results in single-

ton detection by a large margin. We then evaluate

our singleton model extrinsically on coreference res-

olution showing that search space pruning improves

different coreference resolution models.

2 Simple but Efficient Singleton Detection

In this section we show that pruning the coreference

resolution search space is not a very difficult task.

By using a simple set of features and a standard

classifier, we achieve new state-of-the-art results for

classifying coreferent and non-coreferent mentions.

Unlike Marneffe et al. (2015) who use both sur-

face (i.e. part-of-speech and n-gram based) features

and a large number (123) of carefully designed lin-

guistic features, we select a simple and small set of

shallow features:

1. lemmas of all words included in the mention;

2. lemmas of the two previous/next words be-

fore/after the mention;

3. part-of-speech tags of all words of the mention;

4. part-of-speech tags of the two previous/next

words before/after the mention;

5. complete mention string;

6. length of the mention in words;

7. mention type (proper, nominal, pronominal);

8. whether the whole string of the mention ap-

pears again in the document;

9. whether the head of the mention appears again

in the document.

We use an anchored SVM (Goldberg and Elhadad,

2007) with a polynomial kernel of degree two for

classification. When only few features are available,

anchored SVMs generalize much better than soft-

margin-SVMs (Goldberg and Elhadad, 2009). In our

experiments, we use a count threshold for discard-

ing vary rare lexical features that occur fewer than

10 times.

Similar to Marneffe et al. (2015), we use three

different configurations for evaluation. The Surface

configuration only uses the shallow features. The

Combined configuration uses the surface features

plus the linguistic features introduced by Marneffe

et al. (2015). The linguistic features of Marneffe et

al. (2015) also include some pairwise combinations

of the single features. Since our SVM with a poly-

nomial kernel of degree two implicitly models fea-

ture pairs, we only include the single features in our

Combined configuration. When removing mentions

that are classified as non-coreferent during prepro-

cessing, precision matters more than recall in order

not to over prune coreferent mentions. To achieve

higher precision, the Confident configuration uses

high confidence predictions of SVM (i.e. classify-

ing a mention as non-coreferent if the SVM output

is less or equal to -1, and as coreferent if the output

is greater or equal to +1). We use the same set of

shallow features as Surface for Confident. However,

Marneffe et al. (2015) use their combined feature set

for Confident.

2.1 Results

Table 2 shows the results of our singleton detec-

tion model in comparison to that of Marneffe et al.

(2015). We train our model on the CoNLL 2012

English training set and evaluate it on the develop-

ment set using recall, precision, F1 measure and ac-

curacy for both coreferent and non-coreferent men-

tions. Unlike Marneffe et al. (2015) that also use

some gold annotations for their features, we extract

all of our surface features from ’auto_conll’

files. Therefore, only predicted annotations are used.

The incorporation of linguistic features in Marn-

effe et al. (2015) improves the classification of both

coreferent and non-coreferent mentions by about 1
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Non-Coreferent Coreferent

#Features R P F1 R P F1 Accuracy

Surface 73,393 80.2 79.9 80.0 75.3 75.6 75.4 78.0

Marneffe et al. Confident 73,516 56.0 89.8 69.0 48.2 90.7 62.9 52.2

Combined 73,516 81.1 80.8 80.9 76.4 76.6 76.5 79.0

Surface 8,331 89.37 87.08 88.21 80.32 83.59 81.92 85.73

This work Confident 8,331 65.08 94.44 77.06 55.14 93.55 69.38 61.08

Combined 8,446 89.48 87.16 88.30 80.45 83.76 82.07 85.85

Table 1: Results on the the CoNLL 2012 English development set.

percent in comparison to the Surface results. How-

ever, in our case, the linguistic features only improve

the results by about 0.1 percent.

As the results show, by only using shallow fea-

tures, we achieve a new state-of-the-art performance

for singleton detection that improves the results of

Marneffe et al. (2015) by a large margin for classi-

fying both coreferent and non-coreferent mentions.

2.2 Error Analysis

For a singleton detector, precision errors (classify-

ing a coreferent mention as non-coreferent) are more

harmful than recall errors. If a coreferent mention is

classified as non-coreferent, the recall of the coref-

erence resolver that uses the singleton detector will

decrease. On the other hand, recall errors only af-

fect the singleton detector itself and not coreference

resolvers.

The precision error ratios of our Surface and Con-

fident systems for proper name (NAM), nominal

(NOM) and pronominal (PRO) mentions are listed

in Table 2. For each mention type, Table 2 also

shows the precision error ratio by mention type re-

lated to the mentions that are first mentions of their

corresponding entities. For example, in the Confi-

dent system 73.45% of the nominal mentions that

are incorrectly classified as non-coreferent are first

mentions of their corresponding entities. As can be

seen, many of the precision errors in both Surface

and Confident systems are errors in which the first

mention of an entity is detected as non-coreferent.

Detecting whether a mention will be referred to later,

is indeed very hard and requires more context infor-

mation. Features (8) and (9) from our feature set are

designed to address the correct detection of the first

mentions of entities to a limited degree. These fea-

tures only address first mentions of entities that are

NAM NOM PRO

Surface
Error rate 23.17 70.61 6.22

First mentions 57.68 65.54 20.19

Confident
Error rate 23.52 74.70 1.78

First mentions 62.63 73.45 33.33

Table 2: Precision error ratio.

NAM NOM PRO

Surface 30.48 34.07 35.45

Confident 23.65 58.25 13.50

Table 3: Recall error ratio.

referred to by later mentions with head or complete

string match. More features considering properties

of other mentions, rather than the examined mention

itself, are required in order to improve the correct

detection of the first mentions of entities.

Table 3 shows the ratio of recall errors for each

mention type. For our Surface system, this ratio is

more or less the same for different mention types.

However, Confident’s main source of recall errors is

the detection of non-coreferent nominal mentions.

2.3 Discussion

Our results significantly outperform the results of

Marneffe et al. (2015) who use both surface features

and a set of hand-engineered features targeting dif-

ferent linguistic phenomena related to the task. Our

findings are mirrored by Durrett and Klein (2013)’s

work on the coreference resolution task. Durrett and

Klein (2013) show that a coreference resolution sys-

tem that uses surface features can outperform those

using hand-engineered linguistic features.

Linguistic features like syntactic nearness (on

which Hobbs’ algorithm (Hobbs, 1978) is based),

morpho-syntactic and semantic agreement (e.g.

number, gender and semantic class agreements), re-
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MUC B3 CEAFe Avg.

R P F1 R P F1 R P F1 F1

Stanford

Baseline 64.58 63.65 64.11 49.53 55.21 52.22 53.06 44.82 48.59 54.97

+Stanford Singleton 64.26 65.19 64.72 49.09 56.84 52.68 52.54 46.55 49.37 55.59

+Preprocess Pruning 64.27 69.01 66.56 48.65 60.32 53.86 48.71 51.48 50.06 56.83

Cort
Pairwise 68.46 71.01 69.71 54.02 59.47 56.61 51.88 52.17 52.02 59.45

+Preprocess Pruning 68.19 73.38 70.69 53.62 62.02 57.52 51.42 55.07 53.18 60.46

Latent Ranking 68.55 77.22 72.63 54.64 66.78 60.11 52.85 60.3 56.33 63.02

+Pruning Feature 68.81 78.37 73.28 55.46 66.9 60.65 52.07 62.23 56.7 63.54

Wiseman et al. (2015) 69.31 76.23 72.60 55.83 66.07 60.52 54.88 59.41 57.05 63.39

Table 4: Results on the English test set. All the improvements made by our singleton detection models are statistically significant.

cency, focus (Grosz and Sidner, 1986), and center-

ing (Brennan et al., 1987) are examples of useful

linguistic features for coreference resolution which

have the additional benefit of being applicable to dif-

ferent languages. For example, Hobbs’ algorithm

and agreement features are being used successfully

in the Stanford system (Lee et al., 2013). How-

ever, apart from features like these, a large number

of linguistically motivated features have been pro-

posed which either do not have a significant impact

or are only applicable to a specific language or do-

main. Therefore, designing general linguistic fea-

tures which provide information that is not captured

by surface features deserve more attention in order

to gain higher recall and better generalization.

We combine a simple set of surface features with

a standard machine learning model that can handle a

large number of surface features. This leads to a new

state-of-the-art singleton detection with high preci-

sion that can easily be incorporated in a coreference

resolution system for pruning non-coreferent men-

tions.

3 Pruning = Better Coreference Resolvers

In this section, we investigate the effect of search

space pruning on coreference resolution. We choose

the Stanford rule-based system (Lee et al., 2013) and

the Cort1 system (Martschat and Strube, 2015) as

our baselines for coreference resolution. Wiseman

et al. (2015) is the best performing coreference res-

olution system to date. However, we choose Cort as

our learning-based baseline because Cort is a frame-

work that allows evaluations on various coreference

1http://github.com/smartschat/cort

resolution models, i.e. ranking, antecedent trees, and

pairwise. The pairwise model is the most commonly

used model in coreference resolution, and latent

ranking is the best performing model for coreference

resolution to date (Wiseman et al., 2015; Martschat

and Strube, 2015).

3.1 Results

Table 4 shows the results of integrating singleton

detection into different coreference resolution ap-

proaches. We evaluate the systems on the CoNLL

2012 English test set using the MUC (Vilain et

al., 1995), B3 (Bagga and Baldwin, 1998), and

CEAFe (Luo, 2005) measures as provided by the

CoNLL coreference scorer version 8.01 (Pradhan et

al., 2014). According to the approximate random-

ization test (Noreen, 1989), all of the improvements

made by our singleton detection module are statisti-

cally significant (p < 0.05).

Baseline shows the result of the Stanford system

without using singleton detection. +Stanford Single-

ton is the result of the Stanford system including its

singleton detection module (Recasens et al., 2013).

+Preprocess Pruning is the result when our Confi-

dent model from Section 2 is used.

The singleton detection modules of Recasens et

al. (2013) and Marneffe et al. (2015) are incorpo-

rated in the Stanford system in a heuristic way: if

both anaphor and antecedent are classified as single-

ton, and none of them is a named entity, then those

mentions will be disregarded. However, since our

Confident model does have a high precision, we use

it for removing all non-coreferent mentions in a pre-

processing step. As shown in Table 4, our singleton

detection improves the overall score of the Baseline
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system by about 2 percent on the test set.

Cort uses a perceptron for learning. Therefore,

we use a perceptron in Cort while an anchored SVM

would have performed slightly better. We also in-

clude all the additional features that are used in Cort

for our Cort singleton detection model. SVM accu-

racy with surface features on the development set is

about 0.1 percent better than that of the perceptron

with Cort’s additional features.

For the pairwise model, singleton detection is per-

formed in a preprocessing step. The singleton detec-

tion module improves the overall performance of the

pairwise model by about 1 percent on the test set.

The Cort latent model already performs search

space pruning in the form of anaphoricity detection.

Additional pruning of potential anaphors in the pre-

processing step by the singleton model hurts the re-

call of the latent model. Therefore, we add the out-

put of the singleton model as a new feature for both

anaphor and antecedent. For obtaining these fea-

tures for training, we split the training data into two

halves and train a singleton perceptron separately on

each half. The values of the singleton feature for the

first half are computed based on the model that is

trained on the second half, and vice versa. This way,

the accuracy of singleton features on both training

and testing is similar. If we would train the singleton

model on the whole training data, we would over-

fit the model seriously. The values of the singleton

feature would be very accurate on the training data,

and the learner would overestimate the importance

of this feature.

The new feature improves the overall perfor-

mance of the latent ranking model by about 0.5

percent on the test set. This result is the best re-

ported overall score for coreference resolution on

the CoNLL 2012 English test set to date.

The singleton feature support is added to

the Cort source code. It is available at

http://github.com/smartschat/cort.

3.2 Discussion

Recent improvements in coreference resolution have

been made by exploring more complex learning and

inference strategies, a larger number of features,

and joint processing. There are also technically vi-

able solutions for improving the performance of a

coreference resolver which do not work in prac-

tice. For instance, since coreference resolution is a

set partitioning problem, entity-based models seem

to be more suitable for coreference resolution than

mention-pair models. However, entity-based mod-

els do not necessarily perform better than mention-

pair models (e.g. Ng (2010) and Moosavi and Strube

(2014)). The same is true for incorporating more

semantic-level information in a coreference resolu-

tion system (e.g. Durrett and Klein (2013)).

In this paper, we show that coreference resolution

can also simply be improved by performing search

space pruning. The significant gap between the per-

formance of the latent ranking model on gold men-

tions and on system mentions indicates that there is

still room for further improvements in search space

pruning.

4 Conclusions

We achieve new state-of-the-art results for singleton

detection by only using shallow features and simple

classifiers. We also show that search space pruning

significantly improves different coreference resolu-

tion models. The substantial gap between the per-

formance on gold mentions and on system mentions

indicates that there is still plenty of room for further

improvements in singleton detection. Therefore,

search space pruning is a promising direction for fur-

ther improvements in coreference resolution. The

proposed singleton detector as a feature for coref-

erence resolvers is implemented for the Cort coref-

erence resolver. It is available with the Cort source

code.
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