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Abstract

Lexical features are a major source of in-

formation in state-of-the-art coreference

resolvers. Lexical features implicitly

model some of the linguistic phenomena

at a fine granularity level. They are es-

pecially useful for representing the con-

text of mentions. In this paper we in-

vestigate a drawback of using many lexi-

cal features in state-of-the-art coreference

resolvers. We show that if coreference

resolvers mainly rely on lexical features,

they can hardly generalize to unseen do-

mains. Furthermore, we show that the

current coreference resolution evaluation

is clearly flawed by only evaluating on a

specific split of a specific dataset in which

there is a notable overlap between the

training, development and test sets.

1 Introduction

Similar to many other tasks, lexical features are

a major source of information in current corefer-

ence resolvers. Coreference resolution is a set par-

titioning problem in which each resulting partition

refers to an entity. As shown by Durrett and Klein

(2013), lexical features implicitly model some lin-

guistic phenomena, which were previously mod-

eled by heuristic features, but at a finer level of

granularity. However, we question whether the

knowledge that is mainly captured by lexical fea-

tures can be generalized to other domains.

The introduction of the CoNLL dataset en-

abled a significant boost in the performance of

coreference resolvers, i.e. about 10 percent differ-

ence between the CoNLL score of the currently

best coreference resolver, deep-coref by Clark and

Manning (2016b), and the winner of the CoNLL

2011 shared task, the Stanford rule-based system

by Lee et al. (2013). However, this substantial im-

provement does not seem to be visible in down-

stream tasks. Worse, the difference between state-

of-the-art coreference resolvers and the rule-based

system drops significantly when they are applied

on a new dataset, even with consistent definitions

of mentions and coreference relations (Ghaddar

and Langlais, 2016a).

In this paper, we show that if we mainly rely

on lexical features, as it is the case in state-of-the-

art coreference resolvers, overfitting become more

sever. Overfitting to the training dataset is a prob-

lem that cannot be completely avoided. However,

there is a notable overlap between the CoNLL

training, development and test sets that encour-

ages overfitting. Therefore, the current corefer-

ence evaluation scheme is flawed by only evalu-

ating on this overlapped validation set. To ensure

meaningful improvements in coreference resolu-

tion, we believe an out-of-domain evaluation is a

must in the coreference literature.

2 Lexical Features

The large difference in performance between

coreference resolvers that use lexical features and

ones which do not, implies the importance of lex-

ical features. Durrett and Klein (2013) show that

lexical features implicitly capture some phenom-

ena, e.g. definiteness and syntactic roles, which

were previously modeled by heuristic features.

Durrett and Klein (2013) use exact surface forms

as lexical features. However, when word embed-

dings are used instead of surface forms, the use

of lexical features is even more beneficial. Word

embeddings are an efficient way of capturing se-

mantic relatedness. Especially, they provide an ef-

ficient way for describing the context of mentions.

Durrett and Klein (2013) show that the addi-

tion of some heuristic features like gender, num-
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MUC B
3 CEAFe CoNLL LEA

R P F1 R P F1 R P F1 Avg. F1 R P F1

CoNLL test set

rule-based 64.29 65.19 64.74 49.18 56.79 52.71 52.45 46.58 49.34 55.60 43.72 51.53 47.30

berkeley 67.56 74.09 70.67 53.93 63.50 58.33 53.29 56.22 54.72 61.24 49.66 59.17 54.00

cort 67.83 78.35 72.71 54.34 68.42 60.57 53.10 61.10 56.82 63.37 50.40 64.46 56.57

deep-coref [conll] 70.55 79.13 74.59 58.17 69.01 63.13 54.20 63.44 58.45 65.39 54.55 65.35 59.46

deep-coref [lea] 70.43 79.57 74.72 58.08 69.26 63.18 54.43 64.17 58.90 65.60 54.55 65.68 59.60

WikiCoref

rule-based 60.42 61.56 60.99 43.34 53.53 47.90 50.89 42.70 46.44 51.77 38.79 48.92 43.27

berkeley 68.52 55.96 61.61 59.08 39.72 47.51 48.06 40.44 43.92 51.01 - - -
cort 70.39 53.63 60.88 60.81 37.58 46.45 47.88 38.18 42.48 49.94 - - -
deep-coref [conll] 58.59 66.63 62.35 44.40 54.87 49.08 42.47 51.47 46.54 52.65 40.36 50.73 44.95

deep-coref [lea] 57.48 70.55 63.35 42.12 60.13 49.54 41.40 53.08 46.52 53.14 38.22 55.98 45.43

deep-coref− 55.07 71.81 62.33 38.05 61.82 47.11 38.46 50.31 43.60 51.01 34.11 57.15 42.72

Table 1: Comparison of the results on the CoNLL test set and WikiCoref.

ber, person and animacy agreements and syntactic

roles on top of their lexical features does not result

in a significant improvement.

deep-coref, the state-of-the-art coreference re-

solver, follows the same approach. Clark and

Manning (2016b) capture the required information

for resolving coreference relations by using a large

number of lexical features and a small set of non-

lexical features including string match, distance,

mention type, speaker and genre features. The

main difference is that Clark and Manning (2016b)

use word embeddings instead of the exact surface

forms that are used by Durrett and Klein (2013).

Based on the error analysis by cort (Martschat

and Strube, 2014), in comparison to systems that

do not use word embeddings, deep-coref has fewer

recall and precision errors especially for pro-

nouns. For example, deep-coref correctly recog-

nizes around 83 percent of non-anaphoric “it” in

the CoNLL development set. This could be a di-

rect result of a better context representation by

word embeddings.

3 Out-of-Domain Evaluation

Aside from the evident success of lexical features,

it is debatable how well the knowledge that is

mainly captured by the lexical information of the

training data can be generalized to other domains.

As reported by Ghaddar and Langlais (2016b),

state-of-the-art coreference resolvers trained on

the CoNLL dataset perform poorly, i.e. worse than

the rule-based system (Lee et al., 2013), on the

new dataset, WikiCoref (Ghaddar and Langlais,

2016b), even though WikiCoref is annotated with

the same annotation guidelines as the CoNLL

dataset. The results of some of recent coreference

resolvers on this dataset are listed in Table 1.

The results are reported using MUC (Vilain

et al., 1995), B3 (Bagga and Baldwin, 1998),

CEAFe (Luo, 2005), the average F1 score of

these three metrics, i.e. CoNLL score, and LEA

(Moosavi and Strube, 2016).

berkeley is the mention-ranking model of Dur-

rett and Klein (2013) with the FINAL feature set

including the head, first, last, preceding and fol-

lowing words of a mention, the ancestry, length,

gender and number of a mention, distance of two

mentions, whether the anaphor and antecedent are

nested, same speaker and a small set of string

match features.

cort is the mention-ranking model of Martschat

and Strube (2015). cort uses the following set of

features: the head, first, last, preceding and fol-

lowing words of a mention, the ancestry, length,

gender, number, type, semantic class, dependency

relation and dependency governor of a mention,

the named entity type of the head word, distance of

two mentions, same speaker, whether the anaphor

and antecedent are nested, and a set of string

match features. berkeley and cort scores in Table 1

are taken from Ghaddar and Langlais (2016a).

deep-coref is the mention-ranking model of

Clark and Manning (2016b). deep-coref incorpo-

rates a large set of embeddings, i.e. embeddings of

the head, first, last, two previous/following words,

and the dependency governor of a mention in ad-

dition to the averaged embeddings of the five pre-

vious/following words, all words of the mention,

sentence words, and document words. deep-coref

also incorporates type, length, and position of a

mention, whether the mention is nested in any

other mention, distance of two mentions, speaker

features and a small set of string match features.

For deep-coref [conll] the averaged CoNLL

score is used to select the best trained model on the

development set. deep-coref [lea] uses the LEA
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genre

bc bn mz nw pt tc wb

train+dev

43% 50% 51% 45% 77% 38% 39%

train

41% 49% 39% 44% 76% 37% 38%

Table 2: Ratio of non-pronominal coreferent men-

tions in the test set that are seen as coreferent in

the training data.

metric (Moosavi and Strube, 2016) for choosing

the best model. It is worth noting that the results

of deep-coref ’s ranking model may be slightly dif-

ferent at various experiments. However, the per-

formance of deep-coref [lea] is always higher than

that of deep-coref [conll].

We add WikiCoref’s words to deep-coref ’s dic-

tionary for both deep-coref [conll] and deep-coref

[lea]. deep-coref− reports the performance of

deep-coref [lea] in which WikiCoref’s words are

not incorporated into the dictionary. Therefore,

for deep-coref−, WikiCoref’s words that do not

exist in CoNLL will be initialized randomly in-

stead of using pre-trained word2vec word embed-

dings. The performance gain of deep-coref [lea]

in comparison to deep-coref− indicates the bene-

fit of using pre-trained word embeddings and word

embeddings in general. Henceforth, we refer to

deep-coref [lea] as deep-coref.

4 Why do Improvements Fade Away?

In this section, we investigate how much lexical

features contribute to the fact that current improve-

ments in coreference resolution do not properly

apply to a new domain.

Table 2 shows the ratio of non-pronominal

coreferent mentions in the CoNLL test set that also

appear as coreferent mentions in the training data.

These high ratios indicate a high degree of overlap

between the mentions of the CoNLL datasets.

The highest overlap between the training and

test sets exists in genre pt (Bible). The tc (tele-

phone conversation) genre has the lowest over-

lap for non-pronominal mentions. However, this

genre includes a large number of pronouns. We

choose wb (weblog) and pt for our analysis as two

genres with low and high degree of overlap.

Table 3 shows the results of the examined coref-

erence resolvers when the test set only includes

one genre, i.e. pt or wb, in two different settings:

(1) the training set includes all genres (in-domain

evaluation), and (2) the corresponding genre of the

test set is excluded from the training and develop-

ment sets (out-of-domain evaluation).

berkeley-final is the coreference resolver of

Durrett and Klein (2013) with the FINAL feature

set explained in Section 3. berkeley-surface is the

same coreference resolver with only surface fea-

tures, i.e. ancestry, gender, number, same speaker

and nested features are excluded from the FINAL

feature set.

cort−lexical is a version of cort in which no

lexical feature is used, i.e. the head, first, last, gov-

ernor, preceding and following words of a mention

are excluded.

For in-domain evaluations we train deep-coref ’s

ranking model for 100 iterations, i.e. the setting

used by Clark and Manning (2016a). However,

based on the performance on the development set,

we only train the model for 50 iterations in out-of-

domain evaluations.

The results of the pt genre show that when

there is a high overlap between the training and

test datasets, the performance of all learning-based

classifiers significantly improves. deep-coref has

the largest gain from including pt in the training

data that is more than 13% based on the LEA score.

cort uses both lexical and a relatively large num-

ber of non-lexical features while berkeley-surface

is a pure lexicalized system. However, the differ-

ence between the berkeley-surface’s performances

when pt is included or excluded from the train-

ing data is lower than that of cort. berkeley uses

feature-value pruning so lexical features that occur

fewer than 20 times are pruned from the training

data. Maybe, this is the reason that berkeley’s per-

formance difference is less than other lexicalized

systems in highly overlapping datasets.

For a less overlapping genre, i.e. wb, the perfor-

mance gain of including the genre in the training

data is significantly lower for all lexicalized sys-

tems. Interestingly, the performance of berkeley-

final, cort and cort−lexical increases for the wb

genre when this genre is excluded from the train-

ing set. deep-coref, which uses a complex deep

neural network and mainly lexical features, has the

highest gain from the redundancy in the training

and test datasets. As we use more complex neu-

ral networks, there is more capacity for brute-force

memorization of the training dataset.

It is also worth noting that the performance

gains and drops in out-of-domain evaluations are
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CoNLL LEA CoNLL LEA

Avg. F1 R P F1 Avg. F1 R P F1

pt

in-domain out-of-domain

rule-based - - - - 65.01 50.58 65.02 56.90

berkeley-surface 69.15 58.57 65.24 61.73 63.01 46.56 62.13 53.23

berkeley-final 70.71 60.48 67.29 63.70 64.24 47.10 65.77 54.89

cort 72.56 61.82 70.70 65.96 64.60 46.85 67.69 55.37

cort−lexical 69.48 54.26 70.33 61.26 64.32 45.63 68.51 54.77

deep-coref 75.61 68.48 73.70 71.00 66.06 52.44 63.84 57.58

wb

in-domain out-of-domain

rule-based - - - - 53.80 45.19 44.98 45.08

berkeley-surface 56.37 45.72 47.20 46.45 55.14 45.94 44.59 45.26

berkeley-final 56.08 44.20 50.45 47.12 57.31 50.33 46.17 48.16

cort 59.29 50.37 51.56 50.96 58.87 51.47 50.96 51.21

cort−lexical 56.83 51.00 47.34 49.10 57.10 51.50 47.83 49.60

deep-coref 61.46 48.04 60.99 53.75 57.17 50.29 47.27 48.74

Table 3: In-domain and out-of-domain evaluations for a high and a low overlapped genres.

Anaphor
Antecedent Proper Nominal Pronominal

Proper
seen 80% 85% 77%

all 3221 261 1200

Nominal
seen 75% 93% 95%

all 69 1673 1315

Pronominal
seen 58% 99% 100%

all 85 74 4737

Table 4: Ratio of links created by deep-coref for

which the head-pair is seen in the training data.

not entirely because of lexical features, as the per-

formance of cort−lexical also drops significantly

in pt out-of-domain evaluation. The classifier may

also memorize other properties of the seen men-

tions in the training data. However, in compari-

son to features like gender and number agreement

or syntactic roles, lexical features have the highest

potential for overfitting.

We further analyze the output of deep-coref on

the development set. The all rows in Table 4 show

the number of pairwise links that are created by

deep-coref on the development set for different

mention types. The seen rows show the ratio of

each category of links for which the (antecedent

head, anaphor head) pair is seen in the training set.

All ratios are surprisingly high. The most worri-

some cases are those in which both mentions are

either a proper name or a common noun.

Table 5 further divides the links of Table 4 based

on whether they are correct coreferent links. The

results of Table 5 show that most of the incorrect

links are also made between the mentions that are

both seen in the training data.

The high ratios indicate that (1) there is a high

Anaphor
Proper Nominal Pronominal

Antecedent Correct decisions

Proper
seen 82% 85% 78%

all 2603 150 921

Nominal
seen 76% 94% 96%

all 42 1058 890

Pronominal
seen 63% 98% 100%

all 49 44 3998

Incorrect decisions

Proper
seen 73% 85% 76%

a11 618 111 279

Nominal
sen 74% 92% 94%

all 27 615 425

Pronominal
seen 50% 100% 100%

all 36 30 739

Table 5: Ratio of links created by deep-coref for

which the head-pair is seen in the training data.

overlap between the mention pairs of the training

and development sets, and (2) even though that

deep-coref uses generalized word embeddings in-

stead of exact surface forms, it is strongly biased

towards the seen mentions.

We analyze the links that are created by Stan-

ford’s rule-based system and compute the ratio of

the links that exist in the training set. All corre-

sponding ratios are lower than those of deep-coref

in Table 5. However, the ratios are surprisingly

high for a system that does not use the training

data. This analysis emphasizes the overlap in the

CoNLL datasets. Because of this high overlap, it

is not easy to assess the generalizability of a coref-

erence resolver to unseen mentions on the CoNLL

dataset given its official split.

We also compute the ratios of Table 5 for the

missing links that are associated with the recall er-
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Anaphor
Antecedent Proper Nominal Pronominal

Proper
seen 63% 51% 75%
all 818 418 278

Nominal
seen 44% 73% 90%
all 168 892 538

Pronominal
seen 82% 90% 100%
all 49 59 444

Table 6: Ratio of deep-coref’s recall errors for

which the head-pair exists in the training data.

rors of deep-coref. We compute the recall errors

by cort error analysis tool (Martschat and Strube,

2014). Table 6 shows the corresponding ratios for

recall errors. The lower ratios of Table 6 in com-

parison to those of Table 4 emphasize the bias of

deep-coref towards the seen mentions.

For example, the deep-coref links include 31

cases in which both mentions are either proper

names or common nouns and the head of one of

the mentions is “country”. For all these links,

“country” is linked to a mention that is seen in the

training data. Therefore, this raises the question

how the classifier would perform on a text about

countries not mentioned in the training data.

Memorizing the pairs in which one of them is a

common noun could help the classifier to capture

world knowledge to some extent. From the seen

pairs like (Haiti, his country), and (Guangzhou,

the city) the classifier could learn that “Haiti” is

a country and “Guangzhou” is a city. However, it

is questionable how useful word knowledge is if it

is mainly based on the training data.

The coreference relation of two nominal noun

phrases with no head match can be very hard to

resolve. The resolution of such pairs has been re-

ferred to as capturing semantic similarity (Clark

and Manning, 2016b). deep-coref links 49 such

pairs on the development set. Among all these

links, only 5 pairs are unseen on the training set

and all of them are incorrect links.

The effect of lexical features is also analyzed

by Levy et al. (2015) for tasks like hypernymy and

entailment. They show that state-of-the-art classi-

fiers memorize words from the training data. The

classifiers benefit from this lexical memorization

when there are common words between the train-

ing and test sets.

5 Discussion

We show the extensive use of lexical features bi-

ases coreference resolvers towards seen mentions.

This bias holds us back from developing more ro-

bust and generalizable coreference resolvers. Af-

ter all, while coreference resolution is an impor-

tant step for text understanding, it is not an end-

task. Coreference resolvers are going to be used

in tasks and domains for which coreference an-

notated corpora may not be available. Therefore,

generalizability should be brought into attention in

developing coreference resolvers.

Moreover, we show that there is a significant

overlap between the training and validation sets in

the CoNLL dataset. The LEA metric (Moosavi and

Strube, 2016) is introduced as an attempt to make

coreference evaluations more reliable. However,

in order to ensure valid developments on corefer-

ence resolution, it is not enough to have reliable

evaluation metrics. The validation set on which

the evaluations are performed also needs to be re-

liable. A dataset is reliable for evaluations if a con-

siderable improvement on this dataset indicates a

better solution for the coreference problem instead

of a better exploitation of the dataset itself.

This paper is not intended to argue against the

use of lexical features. Especially, when word em-

beddings are used as lexical features. The incorpo-

ration of word embeddings is an efficient way for

capturing semantic relatedness. Maybe we should

use them more for describing the context and less

for describing the mentions themselves. Pruning

rare lexical features plus incorporating more gen-

eralizable features could also help to prevent over-

fitting.

To ensure more meaningful improvements, we

ask to incorporate out-of-domain evaluations in

the current coreference evaluation scheme. Out-

of-domain evaluations could be performed by us-

ing either the existing genres of the CoNLL dataset

or by using other existing coreference annotated

datasets like WikiCoref, MUC or ACE.
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