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Abstract

Only a year ago, all state-of-the-art coref-

erence resolvers were using an extensive

amount of surface features. Recently,

there was a paradigm shift towards us-

ing word embeddings and deep neural net-

works, where the use of surface features

is very limited. In this paper, we show

that a simple SVM model with surface

features outperforms more complex neural

models for detecting anaphoric mentions.

Our analysis suggests that using general-

ized representations and surface features

have different strength that should be both

taken into account for improving corefer-

ence resolution.

1 Introduction

Coreference resolution is the task of finding dif-

ferent mentions that refer to the same entity in a

given text. Anaphoricity detection is an important

step for coreference resolution. An anaphoricity

detection module discriminates mentions that are

coreferent with one of the previous mentions. If a

system recognizes mention m as non-anaphoric, it

does not need to make any coreferent links for the

pairs in which m is the anaphor.

The current state-of-the-art coreference re-

solvers (Wiseman et al., 2016; Clark and Man-

ning, 2016a; Clark and Manning, 2016b), as well

as their anaphoricity detection modules, use deep

neural networks, word embeddings and a small set

of features describing surface properties of men-

tions. While it is shown that this small set of fea-

tures has significant impact on the overall perfor-

mance (Clark and Manning, 2016a), their use is

very limited in the state-of-the-art systems in com-

parison to the embedding features.

In this paper, we first introduce a new neu-

ral model for anaphoricity detection that consid-

erably outperforms the anaphoricity detection of

the state-of-the-art coreference resolver, i.e. deep-

coref introduced by Clark and Manning (2016a).

However, we show that a simple SVM model

that is adapted from our coreferent mention detec-

tion approach (Moosavi and Strube, 2016), signifi-

cantly outperforms the more complex neural mod-

els. We show that the SVM model also general-

izes better than the neural model on a new domain

other than the CoNLL dataset.

2 Discriminating Mentions for

Coreference Resolution

The recognition of various categories of men-

tions can be beneficial for coreference resolution.

The detection of the following categories is most

common in the literature: (1) non-referential, (2)

discourse-old, and (3) coreferent mentions. One

can also discriminate other categories of mentions

like mentions that are unlikely to be antecedents or

discourse-new mentions (Uryupina, 2009). How-

ever, they are not common in comparison to the

above categories.

2.1 Non-Referential Mentions

Non-referential mentions do not refer to an en-

tity. These mentions only fill a syntactic posi-

tion. For instance, “it” in “it is raining” is a non-

referential mention. The approaches proposed

by Evans (2001), Müller (2006), Bergsma et al.

(2008), Bergsma and Yarowsky (2011) are ex-

amples of detecting non-referential cases of the

pronoun it. Byron and Gegg-Harrison (2004)

present a more general approach for detecting non-

referential noun phrases.
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2.2 Discourse-Old Mentions

Each mention can be assessed from the point of

view of the discourse model (Prince, 1992). Ac-

cording to the discourse model, a mention may be

new, old or inferable. Mentions which introduce

a new entity into the discourse are discourse-new

mentions. A discourse-new mention may be a sin-

gleton or it may be the first mention of a corefer-

ence chain. For instance, The first “Plato” in Ex-

ample 2.1 is a discourse-new mention.

Example 2.1. Plato was a philosopher in Classi-

cal Greece. This philosopher is the founder of the

Academy in Athens. Plato died at the age of 81.

A discourse-old mention refers to an entity that

is already evoked in the discourse. Except for

first mentions of coreference chains, other coref-

erent mentions are discourse-old. For instance,

“this philosopher” and the second “Plato” in Ex-

ample 2.1 are discourse-old mentions.

A mention is inferable if the hearer can infer the

identity of the mention from another entity that has

already been evoked in the discourse. “the win-

dows” in Example 2.2 is an inferable mention.

Example 2.2. I walked into the room. The win-

dows were all open.

The detection of discourse-old mentions is com-

monly referred to as anaphoricity detection (e.g.

Zhou and Kong (2009), Ng (2009), Wiseman et

al. (2015), Lassalle and Denis (2015), inter alia)

while the task of anaphoric mention detection,

based on its original definition, is of no use for

coreference resolution. Mentions whose interpre-

tations do not depend on previous mentions are

called non-anaphoric mentions (van Deemter and

Kibble, 2000). For example, both ”Plato”s in Ex-

ample 2.1 are non-anaphoric.

For consistency with the coreference literature,

we refer to the task of discourse-old mention de-

tection as anaphoricity detection.

Currently, all the state-of-the-art coreference re-

solvers learn anaphoricity detection jointly with

coreference resolution (Wiseman et al., 2015;

Wiseman et al., 2016; Clark and Manning, 2016a).

The approaches proposed by Ng and Cardie

(2002), Ng (2004), Ng (2009), Zhou and Kong

(2009), Uryupina (2009) are examples of indepen-

dent anaphoricity detection approaches.

2.3 Coreferent Mentions

Marneffe et al. (2015) discriminate mentions as

coreferent vs. non-coreferent. Coreferent men-

tions are those mentions that appear in a corefer-

ence chain. A non-coreferent mention therefore

can be a non-referential noun phrase or a referen-

tial noun phrase whose entity is only mentioned

once (i.e. singleton). The proposed approaches of

Recasens et al. (2013), Marneffe et al. (2015), and

Moosavi and Strube (2016) discriminate mentions

for coreference resolution this way.

3 Anaphoricity Detection Models

Anaphoricity detection is the most common ap-

proach for discriminating mentions for a corefer-

ence resolver. All of the state-of-the-art corefer-

ence resolvers use anaphoricity detection. In this

paper, we compare three different anaphoricity de-

tection approaches: two approaches using neu-

ral networks and word embeddings, and one us-

ing an SVM model and surface features. Clark

and Manning (2016a) introduce the first neural

model. Since Clark and Manning (2016a) train

their anaphoricity model jointly with the corefer-

ence model, we refer to this model as the joint

model. We introduce a new anaphoricity detection

model as the second neural model using a Long-

Short Term Memory (LSTM) network (Hochreiter

and Schmidhuber, 1997). The third approach is

adapted from our state-of-the-art coreferent men-

tion detection (Moosavi and Strube, 2016).

3.1 Joint Model

As one of the neural models for anaphoricity de-

tection, we consider the anaphoricity module of

deep-coref1, the state-of-the-art coreference reso-

lution system introduced by Clark and Manning

(2016a). This model has three layers for encoding

different types of information regarding a mention.

The first layer encodes the word embeddings of the

head, first, last, two previous/following words, and

the syntactic parent of the mention. The second

layer encodes the averaged word embeddings of

the five previous/following words, all words of the

mention, sentence words, and document words.

The third layer encodes the following features of

a mention: type, length, position and whether it

is embedded in another mention. The outputs of

these three layers are combined into one vector

and then get passed through a network with two

hidden layers. This anaphoricity model is trained

1Available at https://github.com/clarkkev/

deep-coref
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jointly with the deep-coref coreference model.

3.2 LSTM Model

In this section we propose a new neural model for

anaphoricity detection. Apart from the properties

of the mention itself, we consider a limited number

of surrounding words. We first generalize the con-

text of a mention by removing the mention from

the context and replacing it with a special place-

holder. In our experiments, we consider the 10

previous and following words of a mention. We

concatenate the mention tokens and the head token

to the generalized word sequence. We separate the

head and mention tokens in the concatenated se-

quence using two different placeholders.

The word embeddings of the above sequence

are encoded using a bidirectional LSTM. LSTMs

show convincing results on generating meaning-

ful representations for various NLP tasks (e.g.

Sutskever et al. (2014) and Vinyals et al. (2014)).

We also incorporate a set of surface features

that contains (1) mention type (proper, nominal

(definite, indefinite), pronouns (he, I, it, she, they,

we, you)), (2) string match in the text, (3) string

match in the previous context, (4) head match in

the text, (5) head match in the previous context,

(6) contains tokens of another mention, (7) con-

tains tokens of a previous mention, (8) contained

in another mention, (9) contained in a previous

mention, and (10) embedded in another mention.

These features are concatenated with the output

of the bidirectional LSTM and get passed through

one more layer that generates the output.

We also experiment with a more complex model

including two different LSTMs for encoding men-

tions and their surrounding words. We consider

longer sequences of previous words and an atten-

tion mechanism for processing the long sequence.

However, the performance did not improve upon

the LSTM model while it considerably increased

the training time.

3.2.1 Implementation Details

Hyperparameters are tuned on the CoNLL 2012

development set. We minimize the cross entropy

loss using gradient-based optimization and the

Adam update rule (Kingma and Ba, 2014). We

use minibatches of size 50. A dropout (Hinton et

al., 2012) with a rate of 0.3 is applied to the output

of LSTM. We initialize the embeddings with the

300-dimensional Glove embeddings (Pennington

et al., 2014). The size of LSTM’s hidden layer is

set to 128. The model is trained in only one epoch.

3.3 SVM Model

Our SVM model introduced in Moosavi and

Strube (2016), achieves state-of-the-art results for

coreferent mention detection. This model uses the

following set of features: lemmas and POS tags of

all words of a mention, lemmas and POS tags of

the two previous/following words, mention string,

mention length, mention type (proper, nominal,

pronoun, list), string match in the text, and head

match in the text. We use a similar SVM model for

anaphoricity detection. In addition to the features

we used for coreferent mention detection, we also

add the following features for anaphoricity detec-

tion: string match in the previous context, head

match in the previous context, mention words are

contained in another mention, mention words are

contained in a previous mention, mention contains

words of another mention, mention contains words

of a previous mention. Similar to Moosavi and

Strube (2016), we use an anchored SVM (Gold-

berg and Elhadad, 2007) with a polynomial kernel

of degree two and remove feature-values that oc-

cur less than 10 times. The use of an anchored

SVM with pruning helps the model to general-

ize better on new domains (Goldberg and Elhadad,

2009).

4 Performance Evaluation

We evaluate the anaphoricity models on the

CoNLL 2012 dataset. It is worth noting that all

of the examined anaphoricity detectors in this sec-

tion use the same mention detection module and

results are reported using system detected men-

tions. The performance of the mention detection

module is of crucial importance for anaphoricity

detection. Therefore, it is important that the com-

pared anaphoricity detectors use the same mention

detection.

Non-Anaphoric Anaphoric

R P F1 R P F1

joint - - - 81.81 77.18 79.43

LSTM 90.71 92.64 91.66 85.00 81.48 83.20

LSTM∗ 90.51 87.31 88.88 72.64 78.64 75.52

SVM 92.42 92.61 92.51 84.66 84.30 84.48

Table 1: Results on the CoNLL 2012 test set.

The LSTM model that is described in Sec-

tion 3.2 is denoted as LSTM in Table 1. In or-

der to investigate the effect of the used surface
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features, we also report the results of the LSTM

model without using these features (LSTM∗).

The following observations can be drawn from

the results of Table 1: (1) our LSTM model outper-

forms the joint model while using less features and

being trained independently, (2) the results of the

LSTM∗ model is considerably lower than those of

LSTM, especially for recognizing anaphoric men-

tions, and (3) the simple SVM model outperforms

the neural models in detecting both anaphoric and

non-anaphoric mentions.

4.1 Generalization Evaluation

In order to investigate the generalization on new

domains, we evaluate the LSTM and SVM models

on the WikiCoref dataset (Ghaddar and Langlais,

2016). The WikiCoref dataset is annotated ac-

cording to the same annotation guideline as that

of CoNLL. Therefore, it is an appropriate dataset

for performing out-of-domain evaluations when

CoNLL is used for training. For the experiments

of Table 2, all models are trained on the CoNLL

2012 training data and tested on the WikiCoref

dataset.

The word dictionary that is used for the LSTM

model is built based on the CoNLL 2012 training

data. All words that are not included in this dictio-

nary are treated as out of vocabulary words with

randomly initialized word embeddings. We fur-

ther improve the performance of LSTM on Wiki-

Coref, by adding the words from the WikiCoref

dataset into its dictionary. The LSTM model

trained with this extended dictionary is denoted as

LSTM† in Table 2. LSTM† results are still lower

than those of the SVM model while SVM does not

use any information from the test dataset. Pruning

rare lexical features from the training data along

the incorporation of part of speech tags, which are

far more generalizable than lexical features, could

explain the generalizability of the SVM model on

the new domain.

Non-Anaphoric Anaphoric

R P F1 R P F1

LSTM 95.53 89.88 92.62 69.50 84.58 76.31

LSTM† 93.25 92.78 93.01 79.41 80.57 79.99

SVM 93.83 93.05 93.43 80.11 82.07 81.08

Table 2: Results on the WikiCoref dataset.

5 Analysis Based on Mention Types

We analyze the output of the LSTM and SVM

models on the CoNLL 2012 test set to see how

well they perform for different types of men-

tions. As can be seen from Table 3, there is

not much difference between the performance of

LSTM and SVM for recognizing anaphoric pro-

nouns. SVM detects anaphoric proper names bet-

ter while LSTM is better at recognizing anaphoric

common nouns.

We also analyze the output of LSTM∗. As can

be seen, the incorporation of surface features does

not affect the detection of anaphoric pronouns

very much while it mainly affects the detection of

anaphoric proper names by about 24 percent.

In order to see whether the same pattern holds

for coreference resolution, we compare the re-

call and precision errors of the best coreference

system that only uses surface features, i.e. cort

(Martschat and Strube, 2015) with singleton fea-

tures (Moosavi and Strube, 2016) 2, and the state-

of-the-art deep coreference resolver, i.e. deep-

coref (Clark and Manning, 2016a). The compar-

ison of the errors for the CoNLL 2012 test set is

shown in Table 4. We use the error analysis tool

of cort introduced by Martschat and Strube (2014)

for the results of Table 4. As can be seen from Ta-

ble 4, while deep-coref is significantly better than

cort for resolving common nouns and specially

pronouns, its result does not go far beyond that of

cort when it comes to resolving proper names.

Anaphoric

R P F1 R P F1

Proper names Common nouns

LSTM 79.49 82.31 80.88 62.96 65.04 63.99

LSTM∗ 47.60 70.09 56.69 46.30 57.75 51.40

SVM 83.80 85.71 84.74 52.46 71.98 60.69

Pronouns Other

LSTM 94.67 85.60 89.91 29.11 63.88 40.00

LSTM∗ 92.67 86.01 89.22 10.13 34.78 15.69

SVM 95.59 86.29 90.71 32.91 76.47 46.02

Table 3: Anaphoricity results for each mention

type on the CoNLL 2012 test set.

6 Discussion

In this paper we analyze the effect of surface fea-

tures for anaphoricity detection, which is a small

but an important step for coreference resolution.

2Available at https://github.com/

ns-moosavi/cort/tree/singleton_feature
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Name Noun Pronoun

#Recall Errors

deep-coref 1110 1499 1537

cort 1145 1638 1655

#Precision Errors

deep-coref 713 672 1162

cort 738 747 1736

Table 4: Coreference error analysis.

Our analysis shows that surface features, as it was

known, are important. Based on our results, the ef-

fects of incorporating surface properties and gen-

eralized representations are different for different

types of mentions. These results suggest that apart

from a unified model, we should consider differ-

ent models or at least different features for pro-

cessing different types of mentions and do not put

all the burden on a single model to learn the dif-

ferences. The works by Lassalle and Denis (2013)

and Denis and Baldridge (2008) are examples of

models in which distinct models have been used

for various types of mentions. Besides, our analy-

sis shows the importance of surface features for

proper names. Word embeddings are very use-

ful for capturing semantic relatedness. A coref-

erence resolver that uses word embeddings has a

great advantage in better resolution of common

nouns and pronouns. However, the use of surface

features in current state-of-the-art coreference re-

solvers is very limited. Before going towards us-

ing more sophisticated knowledge sources, there

are still easy victories that can be achieved by in-

corporating more generalizable surface properties,

especially for proper names.
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