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Abstract

Recent prompt-based approaches allow pre-

trained language models to achieve strong per-

formances on few-shot finetuning by reformu-

lating downstream tasks as a language mod-

eling problem. In this work, we demon-

strate that, despite its advantages on low data

regimes, finetuned prompt-based models for

sentence pair classification tasks still suffer

from a common pitfall of adopting inference

heuristics based on lexical overlap, e.g., mod-

els incorrectly assuming a sentence pair is of

the same meaning because they consist of the

same set of words. Interestingly, we find

that this particular inference heuristic is sig-

nificantly less present in the zero-shot evalu-

ation of the prompt-based model, indicating

how finetuning can be destructive to useful

knowledge learned during the pretraining. We

then show that adding a regularization that pre-

serves pretraining weights is effective in mit-

igating this destructive tendency of few-shot

finetuning. Our evaluation on three datasets

demonstrates promising improvements on the

three corresponding challenge datasets used to

diagnose the inference heuristics.1

1 Introduction

Prompt-based finetuning has emerged as a promis-

ing paradigm to adapt Pretrained Language Models

(PLM) for downstream tasks with limited number

of labeled examples (Schick and Schütze, 2021a;

Radford et al., 2019). This approach reformulates

downstream task instances as a language modeling

input,2 allowing PLMs to make non-trivial task-

specific predictions even in zero-shot settings. This

in turn, provides a good initialization point for data

efficient finetuning (Gao et al., 2021), resulting in

1The code is available at https://github.com/

UKPLab/emnlp2021-prompt-ft-heuristics
2E.g., appending a cloze prompt “It was [MASK]” to a

sentiment prediction input sentence “Delicious food!”, and
obtaining the sentiment label by comparing the probabilities
assigned to the words “great” and “terrible”.

a strong advantage on low data regimes where the

standard finetuning paradigm struggles. However,

the success of this prompting approach has only

been shown using common held-out evaluations,

which often conceal certain undesirable behaviors

of models (Niven and Kao, 2019).

One such behavior commonly reported in down-

stream models is characterized by their preference

to use surface features over general linguistic in-

formation (Warstadt et al., 2020). In the Natu-

ral Language Inference (NLI) task, McCoy et al.

(2019) documented that models preferentially use

the lexical overlap feature between sentence pairs

to blindly predict that one sentence entails the other.

Despite models’ high in-distribution performance,

they often fail on counterexamples of this inference

heuristic, e.g., they predict that “the cat chased the

mouse” entails “the mouse chased the cat”.

At the same time, there is a mounting evidence

that pre-training on large text corpora extracts rich

linguistic information (Hewitt and Manning, 2019;

Tenney et al., 2019). However, based on recent

studies, standard finetuned models often overlook

this information in the presence of lexical overlap

(Nie et al., 2019; Dasgupta et al., 2018). We there-

fore question whether direct adaptation of PLMs us-

ing prompts can better transfer the use of this infor-

mation during finetuning. We investigate this ques-

tion by systematically studying the heuristics in a

prompt-based model finetuned across three datasets

with varying data regimes. Our intriguing results

reveal that: (i) zero-shot prompt-based models are

more robust to using the lexical overlap heuristic

during inference, indicated by their high perfor-

mance on the corresponding challenge datasets; (ii)

however, prompt-based finetuned models quickly

adopt this heuristic as they learn from more labeled

data, which is indicated by gradual degradation of

the performance in challenge datasets.

We then show that regularizing prompt-based

finetuning, by penalizing the learning from up-
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dating the weights too far from their original pre-

trained values, is an effective approach to improve

the in-distribution performance on target datasets,

while mitigating the adoption of inference heuris-

tics. Overall, our work suggests that while prompt-

based finetuning has gained impressive results on

standard benchmarks, it can has a negative impact

regarding inference heuristics, which in turn sug-

gests the importance of a more thorough evaluation

setup to ensure meaningful progress.

2 Inference Heuristics in Prompt-based

Finetuning

Prompt-based PLM Finetuning In this work,

we focus on sentence pairs classification tasks,

where the goal is to predict semantic relation y

of an input pair x = (s1, s2). In a standard finetun-

ing setting, s1 and s2 are concatenated along with

a special token [CLS], whose embedding is used

as an input to a newly initialized classifier head.

The prompt-based approach, on the other hand,

reformulates pair x as a masked language model

input using a pre-defined template and word-to-

label mapping. For instance, Schick and Schütze

(2021a) formulate a natural language inference in-

stance (s1, s2, y) as:

[CLS]s1?[MASK], s2[SEP]

with the following mapping for the masked token:

“yes”→ “entailment”, “maybe”→“neutral”, and

“no” → “contradiction”. The probabilities assigned

by the PLM to the label words at the [MASK] to-

ken can then be directly used to make task-specific

predictions, allowing PLM to perform in a zero-

shot setting. Following Gao et al. (2021), we fur-

ther finetune the prompt-based model on the avail-

able labeled examples for each task. Note that this

procedure finetunes only the existing pre-trained

weights, and does not introduce new parameters.

Task and Datasets We evaluate on three English

language datasets included in the GLUE bench-

mark (Wang et al., 2018) for which there are chal-

lenge datasets to evaluate the lexical overlap heuris-

tic: MNLI (Williams et al., 2018), SNLI (Bowman

et al., 2015), and Quora Question Pairs (QQP). In

MNLI and SNLI, the task is to determine whether

premise sentence s1 entails, contradicts, or is neu-

tral to the hypothesis sentence s2. In QQP, s1 and

s2 are a pair of questions that are labeled as either

duplicate or non-duplicate.

Original Input

Premise The actors that danced saw the author.
Hypothesis The actors saw the author.
Label entailment (support)

Premise The managers near the scientist resigned.
Hypothesis The scientist resigned.
Label non-entailment (against)

Reformulated Input

Premise The actors that danced saw the author?
[MASK], the actors saw the author.

Label word Yes

Premise The managers near the scientist resigned?
[MASK], the scientist resigned.

Label word No / Maybe

Table 1: Top: input examples of the NLI task that sup-

port or are against the lexical overlap heuristics. Bot-

tom: reformulated NLI instances as masked language

model inputs with the expected label words.

Researchers constructed corresponding chal-

lenge sets for the above datasets, which are de-

signed to contain examples that are against the

heuristics, i.e., the examples exhibit word overlap

between the two input sentences but are labeled as

non-entailment for NLI or non-duplicate for QQP.

We evaluate each few-shot model against its corre-

sponding challenge dataset. Namely, we evaluate

models trained on MNLI against entailment and

non-entailment subsets of the HANS dataset (Mc-

Coy et al., 2019), which are further categorized into

lexical overlap (lex.), subsequence (subseq.), and

constituent (const.) subsets; SNLI models against

the long and short subsets of the Scramble Test

challenge set (Dasgupta et al., 2018); and QQP

models against the PAWS dataset (Zhang et al.,

2019).3 We illustrate challenge datasets examples

and their reformulation as prompts in Table 1.

Model and Finetuning Our training and stan-

dard evaluation setup closely follow Gao et al.

(2021), which measure finetuning performances

across five different randomly sampled training

data of size K to account for finetuning instabil-

ity on small datasets (Dodge et al., 2020; Mos-

bach et al., 2021). We perform five data subsam-

pling for each dataset and each data size K, where

K ∈ {16, 32, 64, 128, 256, 512}. Note that K indi-

cates the number of examples per label. We use the

original development sets of each training dataset

for testing the in-distribution performance. We per-

3See appendix A for details of HANS, PAWS, and Scram-
ble Test test sets.
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Figure 1: In-distribution (bold) vs. challenge datasets (italic) evaluation results of prompt-based finetuning across

different data size K (x axis), where K = 0 indicates zero-shot evaluation. In all challenge sets, the overall

zero-shot performance (both blue and green plots) degrades as the model is finetuned using more data.

form all experiments using the RoBERTa-large

model (Liu et al., 2019b).

Inference heuristics across data regimes We

show the results of the prompt-based finetun-

ing across different K in Figure 1. For the in-

distribution evaluations (leftmost of each plot), the

prompt-based models finetuned on MNLI, SNLI,

and QQP improve rapidly with more training data

before saturating at K = 512. In contrast to

the in-distribution results, we observe a different

trajectory of performance on the three challenge

datasets. On the Scramble and HANS sets, prompt-

based models show non-trivial zero-shot perfor-

mance (K = 0) that is above its in-distribution

counterpart. However, as more data is available,

the models exhibit stronger indication of adopting

heuristics. Namely, the performance on examples

subset that support the heuristics increases, while

the performance on cases that are against heuris-

tics decreases. This pattern is most pronounced on

the lexical overlap subset of HANS, where the me-

dian accuracy on non-entailment subset drops to be-

low 10% while the entailment performance reaches

100%. The results suggest that few-shot finetun-

ing can be destructive against the initial ability of

prompt-based classifier to ignore surface features

like lexical overlap. Finetuning appears to over-

adjust model parameters to the small target data,

which contain very few to no counter-examples to

the heuristics (Min et al., 2020; Lovering et al.,

2021).

3 Avoiding Inference Heuristics

Here we look to mitigate the adverse impact of

finetuning by viewing the issue as an instance of

catastrophic forgetting (French, 1999), which is

characterized by the loss of performance on the

original dataset after subsequent finetuning on new

data. We then propose a regularized prompt-based

finetuning based on the Elastic Weight Consoli-

dation (EWC) method (Kirkpatrick et al., 2017),

which penalizes updates on weights crucial for

the original zero-shot performance. EWC iden-

tifies these weights using empirical Fisher matrix

(Martens, 2020), which requires samples of the

original dataset. To omit the need of accessing the

pretraining data, we follow Chen et al. (2020) that

assume stronger independence between the Fisher

information and the corresponding weights. The

penalty term is now akin to the L2 loss between

updated weights θi and the original weights θ∗
i
,

resulting in the following overall loss:

LrFT = αLFT + (1− α)
λ

2

∑

i

(θi − θ∗i )
2

where LFT is a standard cross entropy, λ is a

quadratic penalty coefficient, and α is a coefficient

to linearly combine the two terms. We use the

RecAdam implementation (Chen et al., 2020) for

this loss, which also applies an annealing mecha-

nism to gradually upweight the standard loss LFT

toward the end of training.4

4See Appendix A for implementation details.
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MNLI (acc.) QQP (F1) SNLI (acc.)
In-dist. HANS avg. In-dist. PAWS avg. In-dist. Scramble avg.

Prompt-based

zero-shot #0 51.1 62.6 56.8 35.4 51.8 43.6 49.7 64.7 57.2

FT #512 84.3 54.8 69.5 82.1 29.6 55.8 88.1 50.1 69.1

rFT #512 82.7 60.2 71.5 81.5 37.1 59.3 87.6 55.4 71.5

FT-fix18 #512 76.5 61.6 69.1 78.6 35.6 57.1 84.5 45.3 64.9
FT-fix12 #512 83.5 54.3 68.9 81.9 35.3 57.1 87.1 50.5 68.8

FT-fix6 #512 84.2 52.9 68.5 82.1 32.7 57.4 87.9 50.1 68.9

Classifier head

FT #512 81.4 52.6 67.0 80.9 26.8 53.8 86.5 49.8 68.1

Table 2: Results of different strategies for finetuning prompt-based model (using #k examples). Models are evalu-

ated against the in-distribution set and corresponding challenge sets. The zero-shot row indicates prompting results

before finetuning. The avg columns report the average score on in-distribution and challenge datasets.

Baselines We compare regularized finetuning

with another method that also minimally update the

pretraining weights. We consider simple weight

fixing of the first n layers of the pretrained model,

where the n layers are frozen (including the token

embeddings) and only the weights of upper layers

and LM head are updated throughout the finetun-

ing. In the evaluation, we use n ∈ {6, 12, 18}. We

refer to these baselines as FT-fixn.

Results We evaluate all the considered finetun-

ing strategies by taking their median performance

after finetuning on 512 examples (for each la-

bel) and compare them with the original zero-shot

performance. We report the results on Table 2,

which also include the results of standard classifier

head finetuning (last row). We observe the follow-

ing: (1) Freezing the layers has mixed challenge

set results, e.g., FT-fix18 improves over vanilla

prompt-based finetuning on HANS and PAWS, but

degrades Scramble and all in-distribution perfor-

mances; (2) The L2 regularization strategy, rFT,

achieves consistent improvements on the challenge

sets while only costs small drop on the correspond-

ing in-distribution performance, e.g., +6pp, +8pp,

and +5pp on HANS, PAWS, and Scramble, respec-

tively; (3) Although vanilla prompt-based finetun-

ing performs relatively poorly, it still has an ad-

vantage over standard classifier head finetuning by

+2.5pp, +2.0pp, and +1.0pp on the average scores

of each in-distribution and challenge dataset pair.

Additionally, Figure 2 shows rFT’s improvement

over vanilla prompt-based finetuning across data

regimes on MNLI and HANS. We observe that the

advantage of rFT is the strongest on the lexical

overlap subset, which initially shows the highest

MNLI

Lex-overlap (ent)

Lex-overlap (non)
Const. (ent)

Const. (non)

Subseq. (ent)

Subseq. (non)

512

256

128

64

32

16

-1.60 -2.68 25.56 -3.18 17.88 -8.70 9.82

-2.41 -2.38 27.28 -6.52 7.76 -3.42 8.52

-3.65 -2.54 36.26 -2.90 7.76 1.22 11.48

-6.40 -11.96 39.10 -11.68 17.84 -7.32 20.34

-5.63 -15.26 41.26 -2.64 17.24 -10.12 19.12

-3.34 -9.42 32.72 -2.94 15.02 -9.14 8.94

MNLI / HANS

40

20

0

20
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Figure 2: Relative difference between median accuracy

of prompt-based finetuning across data regimes (y axis)

with and without regularization on MNLI and HANS.

zero-shot performance. The results also suggest

that the benefit of rFT peaks at mid data regimes

(e.g., K = 32), before saturating when training

data size is increased further. We also note that our

results are consistent when we evaluate alternative

prompt templates, or finetune for varying number

of epochs.5 The latter indicates that the adoption

of inference heuristics is more likely attributed to

the amount of training examples rather than the

number of learning steps.

4 Related Work

Inference Heuristics Our work relates to a large

body of literature on the problem of “bias” in the

training datasets and the ramifications to the result-

ing models across various language understanding

tasks (Niven and Kao, 2019; Poliak et al., 2018;

Tsuchiya, 2018; Gururangan et al., 2020). Previ-

5See Appendix B for the detailed results.
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ous work shows that the artifacts of data annota-

tions result in spurious surface cues, which gives

away the labels, allowing models to perform well

without properly learning the intended task. For

instance, models are shown to adopt heuristics

based on the presence of certain indicative words

or phrases in tasks such as reading comprehension

(Kaushik and Lipton, 2018), story cloze completion

(Schwartz et al., 2017; Cai et al., 2017), fact verifi-

cation (Schuster et al., 2019), argumentation min-

ing (Niven and Kao, 2019), and natural language

inference (Gururangan et al., 2020). Heuristics

in models are often investigated using constructed

“challenge datasets” consisting of counter-examples

to the spurious cues, which mostly result in incor-

rect predictions (Jia and Liang, 2017; Glockner

et al., 2018; Naik et al., 2018; McCoy et al., 2019).

Although the problem has been extensively stud-

ied, most works focus on models that are trained

in standard settings where larger training datasets

are available. Our work provides new insights in

inference heuristics in models that are trained in

zero- and few-shot settings.

Heuristics Mitigation Significant prior work at-

tempt to mitigate the heuristics in models by im-

proving the training dataset. Zellers et al. (2019);

Sakaguchi et al. (2020) propose to reduce artifacts

in the training data by using adversarial filtering

methods; Nie et al. (2020); Kaushik et al. (2020)

aim at a similar improvement via iterative data col-

lection using human-in-the-loop; Min et al. (2020);

Schuster et al. (2021); Liu et al. (2019a); Rozen

et al. (2019) augment the training dataset with

adversarial instances; and Moosavi et al. (2020a)

augment each training instances with their seman-

tic roles information. Complementary to this, re-

cent work introduces various learning algorithms to

avoid adopting heuristics including by re-weighting

(He et al., 2019; Karimi Mahabadi et al., 2020;

Clark et al., 2020) or regularizing the confidence

(Utama et al., 2020a; Du et al., 2021) on the training

instances which exhibit certain biases. The type of

bias can be identified automatically (Yaghoobzadeh

et al., 2021; Utama et al., 2020b; Sanh et al., 2021;

Clark et al., 2020) or by hand-crafted models de-

signed based on prior knowledge about the bias.

Our finding suggests that prompted zero-shot mod-

els are less reliant on heuristics when tested against

examples containing the cues, and preserving this

learned behavior is crucial to obtain more robust

finetuned models.

Efficiency and Robustness Prompting formula-

tion enables language models to learn efficiently

from a small number of training examples, which

in turn reduces the computational cost for training

(Le Scao and Rush, 2021). The efficiency bene-

fit from prompting is very relevant to the larger

efforts towards sustainable and green NLP mod-

els (Moosavi et al., 2020b; Schwartz et al., 2020a)

which encompass a flurry of techniques includ-

ing knowledge distillation (Hinton et al., 2015;

Sanh et al., 2019), pruning (Han et al., 2015),

quantization (Jacob et al., 2018), and early exiting

(Schwartz et al., 2020b; Xin et al., 2020). Recently,

Hooker et al. (2020) show that methods improv-

ing compute and memory efficiency using pruning

and quantization may be at odds with robustness

and fairness. They report that while performance

on standard test sets is largely unchanged, the per-

formance of efficient models on certain underrep-

resented subsets of the data is disproportionately

reduced, suggesting the importance of a more com-

prehensive evaluation to estimate overall changes

in performance.

5 Conclusion

Our experiments shed light on the negative impact

of low resource finetuning to the models’ overall

performance that is previously obscured by stan-

dard evaluation setup. The results indicate that

while finetuning helps prompt-based models to

rapidly gain the in-distribution improvement as

more labeled data are available, it also gradually

increases models’ reliance on surface heuristics,

which we show to be less present in the zero-shot

evaluation. We further demonstrate that applying

regularization that preserves pretrained weights dur-

ing finetuning mitigates the adoption of heuristics

while also maintains high in-distribution perfor-

mances.
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A Experimental Details

Manual templates and mapping We use the

following prompt templates and word-to-label map-

ping for the three tasks we evaluate on:

Template Label Words

MNLI (manual): entailment, neutral, contradiction

s1?[MASK], s2 Yes, Maybe, No

SNLI (manual): entailment, neutral, contradiction

s1?[MASK], s2 Yes, Maybe, No

QQP (manual): duplicate, non-duplicate

s1[MASK], s2 Yes, No

MNLI (auto): entailment, neutral, contradiction

s1.[MASK], you are right , s2 Fine, Plus, Otherwise
s1.[MASK], you’re right , s2 There, Plus, Otherwise
s1.[MASK] ! s2 Meaning, Plus, Otherwise

Table 3: Templates and label words used to finetune

and evaluate on MNLI, SNLI, and QQP.

The last 3 rows are automatically generated tem-

plates and label words that are shown by Gao et al.

(2021) to improve the few-shot finetuning further.

Note that we use the corresponding task’s template

when evaluating on the challenge datasets.

Challenge datasets We provide examples from

each challenge datasets considered in our evalua-

tion to illustrate sentence pairs that support or are

against the heuristics. Table 4 shows examples for

HANS, PAWS, and Scramble Test. Following Mc-

Coy et al. (2019), we obtain the probability for the

non-entailment label by summing the probabilities

assigned by models trained on MNLI to the neutral

and contradiction labels. We use the same-type sub-

set of Scramble Test (Dasgupta et al., 2018) which

contain examples of both entailment (support) and

contradiction (against) relations.

HANS details HANS dataset is designed based

on the insight that the word overlapping between

premise and hypothesis in NLI datasets is spuri-

ously correlated with the entailment label. HANS

consists of examples in which relying to this corre-

lation leads to incorrect label, i.e., hypotheses are

not entailed by their word-overlapping premises.

HANS is split into three test cases: (a) Lexical

overlap (e.g., “The doctor was paid by the ac-

tor” → “The doctor paid the actor”), (b) Subse-

quence (e.g., “The doctor near the actor danced”

→ “The actor danced”), and (c) Constituent (e.g.,

“If the artist slept, the actor ran” → “The artist

HANS (McCoy et al., 2019)

premise The artists avoided the senators that
thanked the tourists.

hypothesis The artists avoided the senators.
label entailment (support)

premise The managers near the scientist resigned.
hypothesis The scientist resigned.
label non-entailment (against)

PAWS (Zhang et al., 2019)

S1 What are the driving rules in Georgia ver-
sus Mississippi?

S2 What are the driving rules in Mississippi
versus Georgia?

label duplicate (support)

S1 Who pays for Hillary’s campaigning for
Obama?

S2 Who pays for Obama’s campaigning for
Hillary?

label non-duplicate (against)

Scramble Test (Dasgupta et al., 2018)

premise The woman is more cheerful than the man.
hypothesis The woman is more cheerful than the man.
label entailment (support)

premise The woman is more cheerful than the man.
hypothesis The man is more cheerful than the woman.
label contradiction (against)

Table 4: Sampled examples from each of the challenge

datasets we used for evaluation.

slept”). Each subset contains both entailment and

non-entailment examples that always exhibit word

overlap.

Hyperparameters Following Schick and

Schütze (2021b,a), we use a fixed set of hyperpa-

rameters for all finetuning: learning rate of 1e−5,

batch size of 8, and maximum length size of 256.

Regularization implementation We use the

RecAdam implementation by Chen et al. (2020)

with the following hyperparameters. We set the

quadratic penalty λ to 5000, and the linear combi-

nation factor α is set dynamically throughout the

training according to a sigmoid function schedule,

where α at step t is defined as:

α = s(t) =
1

1 + exp(−k · (t− t0))

where parameter k regulates the rate of the sigmoid,

and t0 sets the point where s(t) goes above 0.5. We

set k to 0.01 and t0 to 0.6 of the total training steps.

B Additional Results

Standard CLS finetuning Previously, Gao et al.

(2021) reported that the performance of standard
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Figure 3: Results of prompt-based finetuning with varying number of epochs and fixed amount of training exam-

ples. Top: finetuning on 32 examples per label for epochs ranging from 10 to 50. Bottom: finetuning on 512

examples per label for 1 to 9 epochs. Both results show an immediate drop of non-entailment HANS performances

which later stagnate even after more training steps.
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Figure 4: Results of non-prompt finetuning.

non-prompt finetuning with additional classifier

head (CLS) can converge to that of prompt-based

counterpart after certain amount of data, e.g., 512.

It is then interesting to compare both finetuning

paradigm in terms of their heuristics-related behav-

ior. Figure 4 shows the results of standard fine-

tuning using standard classifier head across vary-

ing data regimes on MNLI and the 3 subsets of

HANS. We observe high instability of the results

when only small amount of data is available (e.g.,

K = 64). The learning trajectories are consistent

across the HANS subsets, i.e., they start making

random predictions on lower data regime and im-

MNLI (acc.)
IN HANS

manual 51.1 62.6
manual Ft-#512 84.3 54.8

template-1 46.3 62.0
template-1 Ft-#512 84.2 53.2

template-2 49.9 61.3
template-2 Ft-#512 83.9 52.7

template-3 44.5 61.7
template-3 Ft-#512 84.4 56.0

Table 5: Evaluation results of different MNLI tem-

plates provided by Gao et al. (2021). Models are evalu-

ated against both the in-distribution (IN) set and corre-

sponding challenge set of MNLI.

mediately adopt heuristics by predicting almost all

examples exhibiting lexical overlap as entailment.

We observe that standard prompt-based finetun-

ing still performs better than CLS finetuning, indi-

cating that prompt-based approach provides good

initialization to mitigate heuristics, and employ-

ing regularization during finetuning can improve

the challenge datasets (out-of-distribution) perfor-

mance further.

Impact of prompt templates A growing num-

ber of work propose varying prompt generation

strategies to push be benefits of prompt-based pre-

dictions (Gao et al., 2021; Schick et al., 2020). We
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MNLI (acc.) QQP (F1) SNLI (acc.)
In. HANS avg. In. PAWS avg. In. Scramble avg.

zero-shot RoBERTa-large 51.1 62.6 56.8 35.4 51.8 43.6 49.7 64.7 57.2
FT #512 RoBERTa-large 84.3 54.8 69.5 82.1 29.6 55.8 88.1 50.1 69.1

zero-shot RoBERTa-base 48.2 58.1 53.15 37.3 41.5 39.4 48.8 56.4 52.6
FT #512 RoBERTa-base 74.4 49.9 62.15 79.0 26.9 52.9 83.7 48.5 66.1

zero-shot BERT-large-uncased 45.3 55.4 50.4 34.7 33.4 34.0 41.5 54.8 48.1
FT #512 BERT-large-uncased 70.9 50.0 60.4 77.3 26.3 51.8 79.9 49.5 64.7

zero-shot BERT-base-uncased 43.5 55.9 49.7 40.7 50.8 45.8 38.7 49.9 44.3
FT #512 BERT-base-uncased 63.2 50.1 56.65 73.9 29.1 51.5 74.5 42.6 58.5

Table 6: Evaluation results of different pretrained language models. Models are evaluated against both the in-

distribution (In.) set and corresponding challenge set.

QQP (dup)
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PAWS (dup)
PAWS (non)
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Figure 5: Relative difference between median accuracy

of prompt-based finetuning across data regimes (y axis)

with and without regularization on QQP / PAWS and

SNLI / Scramble Test.

therefore questions whether different choices of

templates would affect the model’s behavior re-

lated to lexical overlap. We evaluate the 3 top-

performing templates for MNLI that are obtained

automatically by Gao et al. (2021) and show the

results in Table 5. We observe similar behavior

from the resulting models over the manual prompt

counterpart, achieving HANS average accuracy of

around 62% and below 55% on zero-shot and fine-

tuning with 512 examples.

Impact of learning steps We investigate the

degradation of the challenge datasets performance

as the function of the number of training data

available during finetuning. However, adding

more training examples while fixing the number

of epochs introduces a confound factor to our find-

ing, which is the number of learning steps to the

model’s weights. To factor out the number of steps,

we perform similar evaluation with a fixed amount

of training data and varying number of training

epochs. On 32 examples per label, we finetune

for 10, 20, 30, 40, and 50 epochs. Additionally,

we finetune on 512 examples for 1 until 10 epochs

to see if the difference in learning steps results in

different behavior. We plot the results in Figure

3. We observe that both finetuning settings result

in similar trajectories, i.e., models start to adopt

heuristics immediately in early epochs and later

stagnate even with increasing number of learning

steps. For instance, finetuning on 32 examples for

the same number of training steps as in 512 ex-

amples finetuning for 1 epoch still result in higher

overall HANS performance. We conclude that the

number of finetuning data plays a more signifi-

cant role over the number of training steps. Intu-

itively, larger training data is more likely to contain

more examples that disproportionately support the

heuristics; e.g. NLI pairs with lexical overlap are

rarely of non-entailment relation (McCoy et al.,

2019).

Regularization across data regimes Figure 5

shows the results improvement of L2 weight regu-

larization over vanilla prompt-based finetuning on

QQP and SNLI. Similar to results in MNLI/HANS,

the improvements are highest on mid data regimes,

e.g., 32 examples per label.

Impact of pretrained model In addition to

evaluating RoBERTa-large, we also evalu-

ate on other commonly used pretrained lan-

guage models based on transformers such as

RoBERTa-base, BERT-base-uncased, and

BERT-large-uncased. The results are shown

in Table 6. We observe similar pattern across PLMs,

i.e., improved in-distribution scores come at the

cost of the degradation in the corresponding chal-

lenge datasets.


