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Abstract

When used separately on the sensor data of the processes like nuclear reactors, the data reconciliation with fault detection and

isolation strategy gives noise-corrupted estimates, and the wavelet transformation gives erroneous inferences about the operating

point of the process under sensor fault conditions. Aiming to solve these challenging problems, a hybrid multi-scale data rec-

onciliation scheme that combines data reconciliation with the wavelet transform is proposed in this work. The proposed method

uses the steady-state data reconciliation framework under the assumption of consistent algebraic relationships among the wavelet

coefficient data. The role of multivariate techniques in obtaining the algebraic relationships, online detection and isolation of sensor

faults, orthogonal decomposition, and reconciliation of the wavelet coefficients data is demonstrated. It is shown that the reconciled

estimates obtained from this method very closely represent the true behavior of the process as problems with respect to random

noise, high-frequency components due to process faults, sensor faults, and the influence of sensor faults on the signal estimates are

alleviated. The effectiveness of this method is quantitatively established when applied to the ex-core neutron detector data of the

advanced heavy water reactor in various simulations.

Keywords: Advanced heavy water reactor (AHWR), Data reconciliation, Ex-core neutron detectors, Fault detection and isolation

(FDI), Ion chambers, Multiscale methods, Principal component analysis (PCA), Wavelets.

1. Introduction

In the operation of processes like nuclear reactors, safety,

economy, reliability, and higher availability are the crucial re-

quirements (Ma and Jiang, 2011). Control and protection sys-

tems deployed to meet these requirements act based on the mea-

surement data of the key physical variables obtained from the

sensors. For these systems to effectively perform their intended

functionalities, the sensor data should be free from the errors,

such as random errors or noise, and gross errors or faults (Li

et al., 2020; Narasimhan and Jordache, 2000). Random errors

contribute to the high-frequency components of the measured

signal. They are usually small in magnitude and are unavoid-

able. On the other hand, sensor faults, which are generally

large, bring in unwanted changes in the magnitude of signals.

Both the random errors and faults lead to the erroneous repre-

sentation of the operating state of the process being monitored.

They can harm the functionalities of the control and protection

systems. In the early stage of research, the random errors used

to be smoothened with analog and digital filters, which intro-

duce unwanted delay and spikes in the filtered response and

require complicated tuning (Rhinehart, 1991; Weber, 1980; Op-

penheim et al., 1997). Faults were dealt with by limit checking
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and statistical quality control tests (Willsky, 1976; Maio et al.,

2013) on the measured data and on their rate of change. These

tests, however, give inaccurate outcomes when the steady-state

of the process is disturbed. One more shortcoming with the

early-stage methods is that they are applied separately on in-

dividual measurements, and thus, there is no scope for the uti-

lization of interrelationships among the variables to improve the

accuracy.

As a result of research in the past four to five decades, var-

ious data processing strategies and Fault Detection and Isola-

tion (FDI) schemes of sensors are now available for reducing

the effect of random errors and for the real-time monitoring of

sensors so that the faulty readings can be discarded (Isermann,

2006; Venkatasubramanian et al., 2003c,a,b). Data Reconcil-

iation (DR) is such a data processing strategy that achieves

random error reduction by forcing the measurements to sat-

isfy the interrelationships among the variables on which the

measurements are made, called the process constraint model

(Kuehn and Davidson, 1961; Narasimhan and Jordache, 2000).

In this process, DR also gives scope for the estimation of the un-

measured and faulty variables as presented in Vaclavek (1969);

Crowe et al. (1983) with the concept of projection matrix based

on Q-R factorization (Noble and Daniel, 1977). In spite of the

availability of the DR technique in linear, non-linear, steady-

state, and dynamic versions (Narasimhan and Jordache, 2000),

it can be stated from the results obtained in Yellapu et al.

(2015b) and Yellapu et al. (2017) that a linear steady-state DR

is sufficient for random error reduction for the cases in which
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the process is almost steady. This is due to the fact that the

linear relationships among the variables are not much violated

in nearly static processes. However, it should be noted that the

use of DR is limited only to the case of sensor data corrupted

with noise but not to the case of the data corrupted with sensor

faults. For the DR to be effective in the latter case also, an FDI

scheme should be used to know the source, time of occurrence,

and magnitude of the fault(s) so that the effect of the fault(s)

can be removed from the measurement data before feeding it to

the DR scheme (Narasimhan and Jordache, 2000).

In the FDI methods now available, the major difference is the

knowledge used for formulating the diagnostics. A model (ei-

ther quantitative or qualitative) based FDI method uses the first

principles for the generation of the residuals (Venkatasubrama-

nian et al., 2003c,a); a data-based method (multivariate) relies

on the process history (Venkatasubramanian et al., 2003b); and

a signal-based one (univariate) employs time domain and fre-

quency domain analysis on the signals (Venkatasubramanian

et al., 2003b). All the FDI methods compare the actual mea-

surements with the predicted measurements for the generation

of features, which are subsequently used for the detection and

diagnosis of faults. In general, the accuracy of FDI outcomes

from the model-based methods is largely proportional to the

complexity of the process knowledge, and sometimes it is not

guaranteed even with very detailed knowledge. On the other

hand, data-based and signal-based methods are easy to imple-

ment, less uncertain, and of no need for first principles’ mod-

els. These methods yield very good outcomes when deployed

in large processes such as large nuclear reactors, where a great

many variables are measured using sensors (Hashemian, 2011;

Uhrig and Tsoukalas, 1999; Upadhyaya et al., 2003; Yellapu

et al., 2017; Mandal et al., 2017). Particularly, the data-based

methods are quite suitable for sensor FDI as they can exploit the

sensor data for further improving the accuracy and consistency

through systematic data checking and treatment (Venkatasubra-

manian et al., 2003b).

The DR scheme is considered under either the model-based

FDI or the data-based FDI based on the way the interrelation-

ships among the variables (constraint model) to be embedded

in the DR are obtained. For model-based FDI, the constraint

model is obtained through the analysis of the process using

first principles, while for data-based one, it is obtained with

the empirical modeling using the process history. When there

are a large number of variables to be interrelated, the multivari-

ate statistical modeling technique named Principal Component

Analysis (PCA) has been extensively used to cash on the bene-

fits of the data-based methods (Kaistha and Upadhyaya], 2001;

Upadhyaya et al., 2003; Lu and Upadhyaya, 2005; Zhao and

Upadhyaya, 2006; Narasimhan and Shah, 2008; Razak et al.,

2012; Yellapu et al., 2015b, 2017). PCA splits the multidimen-

sional space spread by the process data into two subspaces that

account for the major and minor variabilities. This splitting is

helpful in knowing the onset of the faults through the use of T 2

and Squared Prediction Error (SPE) or Q statistics (MacGre-

gor et al., 1994; MacGregor and Kourti, 1995) as described in

Kaistha and Upadhyaya] (2001); Upadhyaya et al. (2003); Lu

and Upadhyaya (2005); Zhao and Upadhyaya (2006). However,

a more detailed diagnosis like fault isolation and estimation of

fault magnitude is possible based on the subspace representing

the minor variability when a constraint model is developed from

it and used in DR-based multivariate FDI framework (Yellapu

et al., 2015b, 2017). The DR-based multivariate FDI supports

the use of single fault identification strategies such as global (T,

1975), measurement (T, 1975), and nodal (Mah et al., 1976)

tests, and multiple fault identification ones that use a variety

of serial elimination and compensation strategies (Narasimhan

and Jordache, 2000). Multiple fault identification strategies are

more advantageous in terms of their ability to handle simulta-

neous faults in multiple locations. In this category, tests such as

iterative measurement test, principal component test, and Gen-

eralized Likelihood Ratio Test (GLRT) (Narasimhan and Jor-

dache, 2000; Yellapu et al., 2015c) are very popular. Of these,

GLRT has an additional ability to estimate the fault magnitude,

which can be further used for online fault correction. In spite of

these advancements, the nature of the faults decides the accu-

racy of the outcomes from the FDI, and the treatment of slowly

growing incipient faults is highly difficult as the faults in small

magnitudes are masked by the random noise. One more draw-

back of the DR-based FDI of sensors is that the reconciled es-

timates are not completely free from the measurement noise.

Making the situation in large processes like nuclear reactors

more complex, vibrations induced by the process-faults also

are superimposed on the measurement signals from the sensors

(Hashemian, 2011). This complicates the sensor FDI and leads

to erroneous outcomes from it. This necessitates the visualiza-

tion of the sensor data at multiple scales so that sensor faults

can be discriminated from the process faults.

There are various methods available in the literature for

process-mode visualization in multiple scales like Multiscale

PCA (MSPCA) (Bakshi, 1998), Multiscale Statistical Process

Monitoring (Ganesan et al., 2004), Multiscale Latent Variable

Regression (Nounou and Nounou, 2010), Multiscale Partial

Least Squares (Madakyaru et al., 2017), Multiscale System

Identification (Reis, 2009), and Multiscale Subspace Identifi-

cation (Vajpayee et al., 2018). They are much suitable to aid

in FDI in large systems with multiple simultaneously interact-

ing modes and time-frequency localized phenomena. These

techniques decompose the data into high-frequency and low-

frequency components that respectively represent the periodical

oscillations due to disturbances and process faults, and the true

values of the variables being monitored. Generally, due to their

very nature, signatures obtained from the high-frequency com-

ponents facilitate in detecting the vibration-induced accidents,

while those from the low-frequency components enable detec-

tion of the process changes and the sensor drifts (Dorr et al.,

1997). An MSPCA based FDI scheme integrating wavelet

transform with PCA (Jolliffe, 2002) for process and sensor-FDI

as described in Yellapu et al. (2019) is found to be very ef-

fective in detecting the process-fault induced vibrations using

the high-frequency detail coefficients and the sensor-faults us-

ing the low-frequency approximation coefficients with the help

of the Generalized Likelihood Ratio Test (GLRT) (Narasimhan

and Mah, 1987). The effectiveness of the scheme in Yellapu

et al. (2019) is due to the contribution from the wavelets to re-
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move the auto-correlation, and that from the PCA to remove

the cross-correlation among the sensor signals. The novel ap-

proach of conducting sensor-FDI based on wavelet coefficients

resulted in very good outcomes such as higher detection and

identification rates even for very small sensor degradation and

a very low Mean-Square Error (MSE) while estimating the fault

magnitude quite accurately. This merit was due to the effect of

random errors in the measurement data being very low in the

approximation coefficients, which represent the low-frequency

components of the measurement data averaged over a window

whose length is specified by the wavelet decomposition level.

This low-frequency phenomenon can be used to represent the

true values of the variables on which measurements are made

so that the control and protection of the process can be sub-

sequently practiced. However, the accuracy of the sensor data

corrupted by random errors and faults can be further enhanced

by combining the multiscale framework with a DR-based ap-

proach for FDI.

Hence, in this work, a Multiscale DR (MSDR) approach,

which is a hybrid scheme that combines the wavelet-based

multiscale process mode visualization methodology with the

steady-state DR plus the Q-R factorization is proposed. Sim-

ilar to the MSPCA based sensor FDI scheme of Yellapu et al.

(2019), the MSDR scheme of this work is also applied to the

wavelet coefficients data obtained with the selection of a suit-

able decomposition depth for meeting the objectives such as

differentiation of process faults from sensor faults and more

quick yet accurate FDI compared to the regular FDI performed

with single scale data. However, in contrast to the scheme of

Yellapu et al. (2019), the proposed MSDR scheme has the addi-

tional ability to meet the objectives such as further reduction of

the effect of random noise due to the DR, eliminating the effect

of sensor-faults in the data, and the estimation of the faulty sen-

sor signals. These features are unique to the proposed scheme

with respect to the other works in the literature that are also

based on the wavelet and GLRT-based FDI (Upadhyaya et al.,

2014; Botre et al., 2017; Sheriff et al., 2017). In the proposed

scheme, the FDI is done with GLRT due to its ace feature of es-

timation of the fault magnitude in addition to the fault isolation.

The DR-based estimation of healthy and faulty sensor signals is

done through Q-R factorization and the concept of the projec-

tion matrix. The constraint model, which acts as the backbone

to the proposed method is obtained from PCA owing to its sim-

plicity and its widespread use in the literature. With this frame-

work, in a given sensor fault scenario, the MSDR approach can

give higher detection and identification rates; and accurate es-

timates of the fault magnitudes, and those of the sensors even

for smaller magnitudes of sensor faults. It is to be noted that

though this approach can also handle the process-faults through

variations in the frequency spectra noticed in the detail coeffi-

cients obtained with multiscale representation, the focus in this

paper is laid only on the sensor faults.

The proposed MSDR scheme is applicable to systems in

which there are multiple simultaneously interacting modes,

time-frequency localized phenomena, and intermittent sensor

faults. The Advanced Heavy Water Reactor (AHWR), a 920

MW (thermal), vertical, pressure tube type, heavy-water mod-

erated, boiling light-water cooled, natural circulation type re-

actor (Sinha and Kakodkar, 2006), represents such a system.

The additional reasons for the suitability of the MSDR scheme

to the AHWR are as follows: In a nuclear reactor, it is indeed

the situation that all ex-core sensors will produce identical sig-

nals. One faulty ex-core sensor signal out of three sensor sig-

nals meant for one of the control and protection systems can be

discarded by appropriate majority voting logic (Knoll, 2010).

But faults masked by random errors, and simultaneous faults

in multiple sensors, cannot be detected in this approach. The

voting logic is helpful for reactive maintenance when the fault

grows by a large value but not for the proactive one that can be

done after the onset of the faults and before they develop as se-

rious ones that can lead to a permanent outage of the sensors. In

addition, the signal reconstruction for error reduction is not pos-

sible in the voting logic approach. On the other hand, the DR-

based FDI is quite good at the detection and isolation of slowly

developing faults with the help of the constraint model devel-

oped from the correlation among the sensor signals. Moreover,

the accuracy of the reconciled estimates increases when more

variables (sensor signals) are involved in the reconciliation pro-

cess. The increased number of variables also allows handling

multiple simultaneous faults in the sensors, which is not possi-

ble in the case of the voting logic-based approach for FDI. In

this context, the role of the DR-based FDI system in monitor-

ing the health of sensors while overcoming the issues with the

voting logic is very much significant. Hence, the demonstra-

tion of the proposed MSDR approach for sensor fault detection

is carried out on the simulated ex-core ion chamber (neutron

sensor) signals of the AHWR. Different scenarios that combine

events such as steady-state operation, abrupt and incipient faults

in sensors, and a process change are considered, and the effec-

tiveness of the proposed approach is numerically established.

The rest of the paper is organized as follows: Section 2

briefly discusses the key theoretical concepts such as the DR,

PCA, GLRT, and the Q-R factorization. Section 3 gives the de-

tails of the MSDR and FDI based on the wavelet coefficients.

Section 4 demonstrates the application of the proposed method

to AHWR for the FDI of the ex-core ion chambers. Section 5

presents the results and discussion when the proposed method is

applied to the ion chamber signals of the AHWR. Finally, con-

clusions are drawn in Section 6. Appendix Appendix A gives

some mathematical insight regarding the reconciled estimates

of the approximation coefficients.

2. Data Reconciliation, Principal Component Analysis,

Generalized Likelihood Ratio Test, and Q-R Factoriza-

tion

2.1. Data Reconciliation

When measurements are made on some physical variables

xk belonging to a real-valued n−dimensional space R
n at a

time instant k, random natured measurement errors εk ∈ R
n

are inevitable. The measurement vector can be written as

yk = xk + εk ∈ R
n, when the measuring devices or sensors

are assumed to be fault-free. DR technique reduces the effects
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of random errors in the measurements yk by forcing them to be

consistent with the known relationships about the process. In

the case of the steady-state DR, the measurements are forced

to obey the relationships among the variables xk embedded in a

matrix A, called the constraint model, as in

Axk = 0, (1)

and they are more accurate than the original measurements pro-

vided that the measurements are free from the sensor faults. The

reconciled estimates are then given by

x̂k = yk − ΣεAT (AΣεAT )−1 Ayk, (2)

where Σε is the covariance matrix of the random errors εk.

However, when the DR is performed in the presence of sen-

sor faults, estimates obtained from (2) will be erroneous be-

ing influenced by the fault magnitude. Hence, one of the sta-

tistical quality control tests or an FDI algorithm like GLRT

(Narasimhan and Mah, 1987; Yellapu et al., 2019) must be used

as a first step so that faulty measurements are eliminated from

the DR problem and thus the effect of faults are reduced. It

may also be noted that the model A in (1) and (2) needs to be

known beforehand either through the first-principles analysis of

the process or through a data-based method like PCA (Yoon and

MacGregor, 2004).

2.2. Principal Component Analysis

PCA identifies the model A using the dependencies of a few

variables in xk on the remaining variables. Generally, in any

large process that involves many physical variables, it is com-

mon that some of the variables in yk made on physical vari-

ables of the process xk are redundant and are strongly corre-

lated with the rest in yk. It is possible to estimate the values of

the redundant variables from the measurements made on the

other variables using the analytical redundancy (Narasimhan

and Jordache, 2000). When the data collected on the variables

in xk are placed as a cloud in R
n, the major variability can be

observed only in the (n − m) orthogonal directions, where m

(m < n) is the number of dependent variables in x. DR-based

FDI of sensors very much requires the m number of other or-

thogonal directions, the projection of the data onto which gives

some negligible values, called the residuals, which are centered

around the origin 0 ∈ R
n. With PCA, space R

n can be de-

composed into the (n − m) number of directions of major vari-

ability, called the principal component subspace, and m number

of directions of insignificant variability that span the so-called

residual subspace. This job is done by decomposing the data

into eigenvalue and eigenvector pairs such that the magnitude

of an eigenvalue shows the amount of variability along its cor-

responding eigenvector. When PCA is applied on the data col-

lected on n × N dimensional data matrix X = [x1 x2 . . . xN],

where xk,∀ k = 1, 2, ...,N, represents the true-data vector, the

eigenvectors corresponding to zero-valued eigenvalues spread

the residual subspace. The ordered set of such eigenvectors

qualifies as the matrix A in the relation (1).

However, X is unknown but its approximately equivalent

matrix Y = [y1 y2 . . . yN] is known, where yk ∈ R
n,∀ k =

1, 2, ...,N. The matrix Y is decomposed in PCA as subspaces

with major and minor variabilities based on the magnitude of

the eigenvalues. In other words, the eigenvector matrix V is par-

titioned as V = [P B], where P = [v1 v2 . . . vn−m] represents the

principal component subspace and B = [vn−m+1 vn−m+2 . . . vn]

represents the residual subspace. This can separate the deter-

ministic variation (due to change in process) in Y from the

stochastic variation (due to noise). However, such projection

requires the order of the residual subspace m, called the model

order. Once it is known, the sample data vector at an instant

k can be decomposed into the signal vector x̂k and the noise

vector êk with the help of matrices P and B as follows:

yk = PPT yk + BBT yk = x̂k + êk. (3)

The amount of disagreement of the data with the algebraic re-

lationships among the sensors placed in the columns of B are

given by the constraint residuals vector rk ∈ Rm as in

rk = BT yk = Ayk, (4)

which has a mean value of 0, i.e., E[rk] ≃ 0,∀ i = 1, 2, ...,N. In

(4), the matrix BT is taken equivalent to the constraint model A

that holds the relationships among the variables in the vector y,

since (4) resembles the relation (1) (Yellapu et al., 2015b).

2.3. FDI with the Generalized Likelihood Ratio Test

SPE or Q statistics (Lu and Upadhyaya, 2005; Misra et al.,

2002) at any instant k can be computed based on the disagree-

ment of the data yk with the relations in A as given by

Qk = yT
k (I − PPT )yk. (5)

The SPE statistics in (5) can be used to take decisions about

the sensor faults. For a false alarm probability α, the threshold

value to be set for the SPE statistic for declaring a sensor fault

can be computed as (Botre et al., 2017)

Qα = gχ2
α,h, (6)

where g =
variance(Q)

2 ×mean(Q)
and χ2

α,h
is the value of chi-square dis-

tribution at a significance level of α with degrees of freedom

given by h =
2 ×mean(Q)2

variance(Q)
. In online FDI of sensors, a fault

is declared if Qk computed from (5) exceeds the threshold Qα.

However, the faulty sensor indices out of n variables in yk and

the magnitude of faults can be investigated through the tech-

niques such as GLRT that work based on the likelihood ratio

of residuals and their probability distributions (Narasimhan and

Jordache, 2000; Mandal et al., 2017; Yellapu et al., 2019; Botre

et al., 2017).

In GLRT, the fault signature vectors f j = Ae j are formed for

each sensor index j, where e j is the unit vector with 1 at posi-

tion j. If g number of sensor faults are hypothesized, the fault

signature matrix that holds the signature vectors as its columns

4



can be expressed as (Narasimhan and Jordache, 2000)

Fi =







































Aei1 , i1 = 1, ..., n;

A(ei1 , ei2 ), ∀i1, i2 = 1, ..., n, i1 6= i2; ...;

A(ei1 , ei2 , ..., eig ), ∀i1, i2, ..., ig = 1, ..., n,

i1 6= i2 6= ... 6= ig,

(7)

where the subscript i refers to the set of combinations in

which i1, i2, ..., ig are chosen to exhaustively consider all possi-

ble combinations of number of simultaneous sensor-faults from

1, 2, ..., g. According to this, the residuals in (4) have a mean

of 0 and Fibk in the presence of no and g faults respectively,

where bk is a column vector of unknown magnitudes of faults.

The Generalized Likelihood Ratio of the m-variate residuals

given by (4) can be written as

λ(r) = sup
p(r|H1)

p(r|H0)
, (8)

where p(.) denotes the probability density function, H0 repre-

sents the null hypothesis stating that no fault is present, and H1

is the alternative hypothesis claiming that faults are present in

one or more signals. When the residuals are assumed to follow

a Gaussian probability density function, (8) can be written as

λ(r) = sup
i,bk

exp
{

− 1
2
̺

T
i,k
Σ
−1
r ̺i,k

}

exp
{

− 1
2

rT
k
Σ
−1
r rk

} , (9)

where ̺i,k = rk − Fibk, and Σr = AΣεA
T is the covariance

matrix of the residuals. The maximum likelihood estimates of

the fault magnitudes b̂k are obtained by defining a variable L =

2 ln λ(r) = supi Li,k, where

Li,k = rT
k Σ
−1
r rk − sup

bk

̺
T
i,kΣ
−1
r ̺i,k, (10)

and by equating the first derivative of (10) with respect to bk to

zero. The estimates of the fault magnitudes so obtained are

b̂k = (FT
i Σ
−1
r Fi)

−1(FT
i Σ
−1
r rk), (11)

and the corresponding test statistics are

Li,k = (FT
i Σ
−1
r rk)T (FT

i Σ
−1
r Fi)

−1(FT
i Σ
−1
r rk). (12)

The false alarm probabilities for each of the Li,k are

αi,k = p(χ2
g,α ≥ Li,k), (13)

where χ2
g,α is a random variable following a chi-square distribu-

tion with g degrees of freedom. The combination i chosen out of

{i1 = 1, ..., n; i1, i2 = 1, ..., n, i1 6= i2; ...; i1, i2, ..., ig = 1, ..., n, i1 6=
i2 6= ... 6= ig} corresponding to the minimum false alarm prob-

ability gives the number and locations of faults and the fault

magnitudes.

2.4. DR with Q-R factorization

For the reconciled estimates in (2) to accurately represent the

true values xk of the same, the measurements from faulty sen-

sors in yk are to be eliminated before DR is performed. The

Q−R factorization (Noble and Daniel, 1977; Allaire and Kaber,

2008) with the help of a projection matrix constructed from the

columns of A corresponding to faulty sensors is useful in doing

this (Narasimhan and Jordache, 2000). In this method, the over-

all estimation problem is divided into two sub-problems: one is

the reconciliation of fault-free measurements and the other is

the estimation of faulty signals, which are eliminated from the

DR problem. The procedure is as follows:

If q out of n number of variables in xk are declared as faulty

by an FDI method like GLRT, the vector xk can be decomposed

into p = (n − q) number of healthy variables, denoted by xh,k,

and q number of faulty variables, denoted by x f ,k, and the con-

straint equation can be written as

Ahxh,k + A f x f ,k = 0, xh,k ∈ Rp, x f ,k ∈ Rq, (14)

where Ah and A f are the columns of A corresponding to xh,k

and x f ,k, respectively. Q−R decomposition is performed on the

matrix A f , and matrices Q f , R f , and Π f are obtained such that

A fΠ f = Q f R f , (15)

where Π f is the permutation matrix whose columns are per-

muted columns of a q−dimensional identity matrix such that

Π
T
f x f ,k =

[

x f1,k ∈ Rr f

x f2,k ∈ R(q−r f )

]

, (16)

where r f is the rank of matrix A f . Expressing

Q f = [Q f1
Q f2

], Ru =

[

R f1 R f2

0 0

]

, (17)

where Q f1
, Q f2

, R f1 and R f2 are m× r f , m× (q− r f ), r f × r f and

r f × (q − r f ) matrices respectively, (14) can be written as

Ahxh,k + [Q f1
Q f2

]

[

R f1 R f2

0 0

] [

x f1,k

x f2,k

]

= 0. (18)

By pre-multiplying the above equation by QT
f , the following

relations are obtained:

QT
f1

Ahxh,k + R f1 x f1,k + R f2 x f2,k = 0, (19)

QT
f2

Ahxh,k = Ghxh,k = 0, (20)

where QT
f2

is the projection matrix and Gh = QT
f2

Ah is the re-

duced constraint model of the healthy measurements. From

(20), the reconciled estimates of xh,k are obtained as

x̂h,k = yh,k − Σεh
GT

h (GhΣεh
GT

h )−1Ghyh,k, (21)

where yh,k is the measurement vector from the healthy sensors

and Σεh
is the covariance matrix of yh,k. When x̂h,k from (21)

is substituted for xh,k in (19), the estimates of signals from the
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Figure 1: Online implementation of the proposed MSDR scheme

faulty sensors are obtained as

x̂ f1,k = −R−1
f1

QT
f1

Ah x̂h,k − R−1
f1

R f2 x̂ f2,k. (22)

The solution for x̂ f1,k is based on two possible cases: If the

rank of R f1 = r f = q, R f2 and x̂ f2,k in (22) do not exist, all

healthy and faulty variables are estimable, and a unique solu-

tion is possible. However, if r f < q, a non-unique solution

for x̂ f1,k can be possible when the variables x̂ f2,k are specified.

In this work, estimates for x̂ f2,k are taken as the corresponding

reconciled values in (2). In either of these two cases, the vector

of reconciled estimates x̂k is obtained by suitably coupling the

solutions for each variable from x̂h,k and x̂ f ,k.

3. Multiscale Data Reconciliation for On-line FDI

MSDR for on-line FDI involves different sequential opera-

tions on the multi-variate data: multiscale decomposition of

measurement data using wavelets, the projection of the wavelet

coefficients data onto the principal components for sensor FDI,

DR and inverse wavelet transformation to get back the pro-

cessed measurements (Bakshi, 1998; Yellapu et al., 2015b,

2017). These sequential operations are graphically illustrated

in Fig. 1.

Since the wavelet function and the maximum depth of de-

composition, denoted by J, play an important role in the ef-

fective implementation of wavelet-based techniques, they are

selected as per the description given in Yellapu et al. (2019).

That is, Haar wavelet is chosen, while J is selected using the

concepts of Fourier transform and noise floor level (Reis, 2009;

Vajpayee et al., 2018), as explained in Yellapu et al. (2019). Af-

ter this, wavelet coefficients yw comprised of approximation (at

scale J + 1) and details (at scales j = 1, 2, . . . , J) are computed

from the time-series data ȳ ∈ R2J×1, as in

yw
=

[

yT
J+1

yT
J

yT
J−1

· · · yT
1

]T
=Wȳ. (23)

In (23), W is the wavelet operator given by

W =

[

J

Π
j=1

HT
j GT

J

J−1

Π
j=1

HT
j GT

J−1

J−2

Π
j=1

HT
j ··· GT

1

]T

,

=

[

H̃
T

J G̃
T

J G̃
T

J−1 ··· G̃
T

1

]T
, (24)

where H̃J

(

1 × 2J
)

and G̃J

(

2J− j × 2J
)

are matrices of wavelet

filter coefficients.

Based on these coefficients, the objectives of the MSDR-

based FDI are met by a one-time executed off-line algorithm

and a continuously running online one for every new observa-

tion (Yoon and MacGregor, 2004). The off-line algorithm is for

obtaining the PCA-based constraint model, SPE thresholds (Qα
computed from (6)), and the error covariance matrices. Once

these are obtained, the online implementation is as follows (see

Fig. 1): SPE statistics on the wavelet coefficients data are com-

puted as in (5). When the SPE statistic on the approximation

coefficients exceeds the threshold, a sensor fault is detected.

For further diagnosis, the GLRT is executed whose outcomes

are the faulty sensor index and the fault estimate. The GLRT

outcomes are provided to the DR stage where the approxima-

tion coefficients are reconciled after the elimination of the faulty

sensor from the estimation problem as explained in Section 2.4.

It may be noted that a similar analysis on all the detail coeffi-

cients is prone to errors due to the fact that the detail coefficients

carry noise dominated high-frequency information. Because of

this, the constraint models developed on the noisy details can

be misleading. Hence, the fault detection and isolation and the

subsequent data reconciliation has been performed only on the

approximation coefficients data. Nevertheless, the detail coef-

ficients serve as indicators of process faults. Hence, significant

detail coefficients (Vajpayee et al., 2018) i.e. detail coefficients

that contain useful signal information are considered in the re-

construction of the signal to retain the useful high-frequency

signal information.

For the evaluation of the proposed MSDR based scheme, the

following indices are computed (Yellapu et al., 2015b):

1. Overall Detection Rate (ODR): It is the percentage of de-

tection of one or more faults or rejection of H0 out of the

total number of trials. It involves detection, even during

the cases where H0 is true. During the sensor faults, ODR

is desirable to be close to 100% (Yellapu et al., 2015b).

2. Overall Power (OP): It is the percentage of trials when one

or more faults are correctly identified for a true H1. OP

should be close to 100% during the sensor faults (Yellapu

et al., 2015b).

3. Mean-Square Error (MSE): It is a measure of error in the

estimate of fault magnitude b̂k in a sensor, defined as

√

∑

k∈C(bk − b̂k)T (bk − b̂k)

NC

,

where C is the set of instants at which the faults are cor-

rectly identified, NC is the cardinality of C and bk is the

actual magnitude of the fault (Razak et al., 2012).

4. Average Error Reduction (AER): Defining E1 =
∑N f

j=1
(
∑n

i=1|yi j − xi j|) and E2 =
∑N f

j=1
(
∑n

i=1|x̂i j − xi j|), the

AER (Narasimhan and Mah, 1987) in percentage is given

by

AER =
(E1 − E2)

E1

× 100, (25)
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Figure 2: Implementation of the proposed MSDR-based method for sensor FDI in the AHWR.

where N f is the number of observations in the data win-

dow with a sensor fault, yi j, xi j and x̂i j are respectively the

measurement, true and reconciled values of ith sensor sig-

nal in the jth observation.

4. Application of MSDR-based FDI to Ion Chambers of

AHWR

The application of MSDR-based FDI scheme to the AHWR

(Sinha and Kakodkar, 2006; Yellapu et al., 2013) is discussed

in this section. AHWR, being a large reactor, requires a large

number of in-core and a good number of ex-core neutron de-

tectors. Ion chambers are used as the ex-core neutron detec-

tors, which are located in the vault water surrounding the re-

flector. There are nine ion chambers, out of which three ion

chambers (namely, ion chambers-1, 2, and 3) are used for Re-

actor Regulating System (RRS) that controls and monitors the

reactor, three ion chambers (namely, ion chambers-4, 5, and 6)

are meant for Shut Down System-1 (SDS-1), and the remain-

ing three (namely, ion chambers-7, 8 and 9) are for Shut Down

System-2 (SDS-2). The linear amplifiers of the ion chambers

produce a current signal, in the range of 4-20 mA, based on

the magnitude of flux leaking into the vault water that is di-

rectly proportional to the core average flux. The online MSDR

scheme is applied to the ion chamber signals obtained from

their associated linear amplifiers.

The linear amplifier of an ion chamber -l produces a current

signal given by (when the frequency components induced by

the process faults are not present)

il = Kφl + εl + bl + 4 mA, l = 1, 2, · · · , 9, (26)

where K = 10.667 is the product of detector sensitivity and the

gain of the amplifier stages and φl denotes the per-unit (p.u.)

value of the local neutron flux at the lth ion chamber location. In

(26), εl is the random noise, and bl is the sensor fault magnitude,

if any, in the lth ion chamber signal.

When il is arranged as the lth element of the data vector yk,

as discussed in Section 2.1, εl becomes the lth element of the

random noise vector ε. The noise ε observed in ion chamber

signals is generally independent being derived from a Gaus-

sian distribution with the following properties (Yellapu et al.,

2015a):

E[ε] = 0, E[εkε
T
l ] = Rδk,l,

where R is the covariance matrix of the measurement uncer-

tainties, and δk,l is the Kronecker delta.

As stated before, the aim of the proposed MSDR-based

scheme is to reduce the ill effects of random errors and faults

in an online fashion. Hence, its application to ion chambers

of AHWR has to reduce or possibly eliminate the effects of

εl, and bl components from the ion chamber signal given by

(26) so that it is possible to track the true value of the core-

average flux closely. For this, the online MSDR-based scheme

is implemented for FDI in AHWR as depicted in Fig. 2. The

current signal data from the linear amplifiers of all the nine ion-

chambers at an observation (before being fed to their respec-

tive control and protection systems) are supplied to the wavelet

transformation and are decomposed into the approximation and

detail coefficients. These coefficients are projected onto their

respective PCA models so that SPE statistics are generated as

in (5). The SPE statistics are tested against the threshold com-

puted from (6). If the SPE doesn’t exceed the threshold, the ap-

proximation coefficients are reconciled to smoothen the random

errors. On the other hand, if SPE exceeds the threshold, GLRT

is applied on the approximations to know the indices of the

faulty ion chambers and the corresponding fault magnitudes.

The reconciled estimates of the faulty and non-faulty ion cham-

bers are obtained from the concepts of the Q-R factorization and

the reduced DR. To obtain the MSDR-processed signals in the

measurement space, the reconciled approximations and the sig-

nificant details are subsequently inverse-wavelet transformed.

The processed data closely represents the true data and it is then

used for the control, protection, and monitoring purposes of the

reactor.
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Figure 3: Ion chamber signals (true data without noise) during the transient

corresponding to the demand power change.

5. Results and Discussion

The 17-node model developed for AHWR in Yellapu et al.

(2013) is utilized in this work for the generation of the ion

chamber signal data and thereby for the numerical illustration

of the proposed MSDR approach for sensor FDI. The results

obtained with the MSDR approach when applied to the ion

chamber data during a demand power change transient are pre-

sented. It is assumed that the steady-state prevails in the reactor

before the commencement of the demand power transient (Yel-

lapu et al., 2013). The true values of the ion chamber signals

are simulated for 140 s with a sampling time of 0.02 s, leading

to the generation of 7000 observations on nine ion chambers. It

is assumed that the demand power changes from 1.0 p.u. to 0.9

p.u. at the sampling instant k = 5000 so that ion chamber sig-

nals vary to follow this change representing a process change

of the reactor. The true values of all the nine ion chamber sig-

nals during this transient are as shown in Fig. 3. To make this

data in Fig. 3 represent a realistic situation that prevails in an

operating real-time reactor, a random noise derived from the

Gaussian distribution with a standard deviation of 2% of the

steady-state value of the ion-chamber signals (14.67 mA), i.e.

0.02 × 14.67 = 0.2933 mA is considered (Yellapu et al., 2019;

Yellapu et al., 2015b).

It may be noted that the decomposition depth, J, to be used

for wavelet decomposition is computed as explained in Yellapu

et al. (2019). Noisy signal data of ion chamber-1 available at the

steady-state (the first 5000 samples) are chosen for this purpose.

From the magnitude of the Fourier transform and the noise floor

level, the maximum scale for decomposition is selected as J =

6. Accordingly, the wavelet transformation matrix W for J = 6

is built and the corresponding wavelet coefficients are used in

the analysis.

It may also be noted that the first 1000 observations on all the

nine ion chamber signals are used for off-line modeling. This

is due to the process being at a fault-free steady-state, which

is the required condition for error-free off-line modeling. As a

part of off-line modeling, at all scales from J = 1, ..., 6, wavelet

coefficients are obtained from which the descriptive statistics,

the PCA-based constraint model, and the SPE thresholds are
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Figure 4: The magnitude of the sensor-fault magnitude (mA) in ion chamber-1.
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Figure 5: Ion chamber signals during the transient, when corrupted by the ran-

dom noise and the sensor fault in ion chamber-1.

computed. These outcomes are subsequently used for online

data processing and FDI.

In the demonstration of the working of the online MSDR

scheme, sensor faults of abrupt and incipient nature are con-

sidered. The results obtained from the scheme in these two

cases are presented of which the first case comprises a single-

sensor fault (abrupt) case and the second one covers a double-

sensor fault (one of abrupt and the other of incipient nature)

case. These two cases also include scenarios of steady-state

and the process change induced by the demand power change

in common.

5.1. Single-sensor fault case

The ion chamber-1 is considered as the faulty sensor in this

case. The fault is assumed to commence at observation index

k = 2001 with an abrupt nature. A bias of 10% of the nomi-

nal value of the signal at steady-state (14.67 mA) is considered

as the fault magnitude as shown in Fig. 4. Due to the sensor

fault, the ion chamber-1 signal abruptly deviates from the one

that would have been obtained with no sensor fault. With this

setup, the first 2000 samples are neither affected by any pro-

cess change nor a sensor fault, samples from 2001 to 5000 are

corrupted with the sensor fault of magnitude 1.46 mA and the

remaining samples from 5001 to 7000 are under the influence

of both the process change and the sensor fault. The simulated

measurement data of ion chamber-1 corrupted by both the noise

and the sensor fault is as shown in Fig. 5. This data is fed to the

online MSDR-based system to obtain the wavelet coefficients
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Figure 6: Unprocessed wavelet coefficients of ion chamber-1 in the single-

sensor fault case: (a) approximation coefficients at level-6, (b) detail coeffi-

cients at level-6, (c) detail coefficients at level-5, (d) detail coefficients at level-

4, (e) detail coefficients at level-3, (f) detail coefficients at level-2, and (g) detail

coefficients at level-1.

at scales J = 1, 2, ..., 6. The wavelet coefficients of the ion

chamber-1 data are as shown in Fig. 6. A peak in the wavelet

coefficients around sample number 2000 indicates the abrupt

variation in the signal. The SPE statistics generated from the
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Figure 7: Single-sensor fault case: SPE computed from (a) approximation co-

efficients at level-6, (b) detail coefficients at level-6, (c) detail coefficients at

level-5, (d) detail coefficients at level-4, (e) detail coefficients at level-3, (f)

detail coefficients at level-2, and (g) detail coefficients at level-1.

projection of the wavelet coefficients on their respective PCA

model are as shown in Fig. 7. From Figs. 6 and 7, it can be

noted that the details at levels 5 and 6 contain significant signal

information, and hence those levels are preserved for further

processing in addition to the approximations. On the violation
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of the SPE of wavelet coefficients near k = 2001, a fault is

detected. Subsequently, fault isolation by GLRT is initiated to

obtain the faulty sensor index and the fault magnitude. Based

on the GLRT outcomes, the variable that is declared as faulty is

eliminated from the DR problem with the help of Q-R factor-

ization leading to a reduced DR problem. The reconciled ap-

proximation coefficients and the thresholded detail coefficients

of ion chamber-1 data are as shown in Fig. 8. The reconciled

estimates of the signals are shown in Fig. 9.

From Figs. 3 and 9, it is evident that the reconstructed data

of the wavelet coefficients reconciled with FDI closely repre-

sent the true data of the ion chambers. The technical aspects

that played a vital role in achieving this, i.e., FDI outcomes

namely index of the faulty sensor (ion chamber), and the esti-

mate of the fault magnitude obtained with the approximation

coefficients data, are as shown in Fig. 10. The SPE and the

FDI outcomes obtained from the classical DR-based FDI on

the other hand (performed on the original measurement data of

Fig. 5) are as shown in Fig. 11. On comparing the Fig. 7(a)

and Fig. 11(a), it becomes obvious that the abrupt nature of the

sensor fault in ion chamber-1 is able to make the SPE exceed

the threshold as soon as its commencement, in both the MSDR

and the classical DR methods. This lead to the quick detec-

tion of the sensor fault and its eventual isolation with GLRT in

both methods. But the accuracy in the fault estimate obtained

with the MSDR approach outperformed that with the classical

DR approach as evident from Fig. 10(b) and Fig. 11(c). It

can also be noted that the accuracy in the fault estimate with

the MSDR approach is persistent even when there is a process

change from the 5001st observation. The indices for the evalua-

tion of the proposed MSDR approach (refer to Sec. 3), namely

ODR, OP, MSE, and AER, are also quantified and given for the

cases of DR and MSDR methods in Table 1. These indices are

computed for all the three sections of the data, i.e. steady-state

(the first 2000 samples), steady-state with a sensor fault (sam-

ples from 2001 to 5000), and process change with a sensor fault

(samples from 5001 to 7000). The superiority of the MSDR

approach over the classical one for sensor FDI can be clearly

observed from these indices as well. To describe, since no sen-

sor fault is present in the steady-state, ODR, OP, and MSE are

to be low, as is the case with the MSDR approach against the

classical one. AER, which refers to the reduction of the effect

of random errors in the reconciled data, is quite higher with the

MSDR approach. In the data sections named as ‘steady-state

with a sensor fault’ and ‘process change with a sensor fault’,

since there is a sensor fault, the ODR and OP are required to

be high, while the MSE in the fault estimate is to be low. AER

is always required to be high in any case. All these require-

ments are met with the MSDR approach quite superiorly to the

classical DR approach.

For the sake of comparison and for appreciating the role of

the MSDR-based approach, various versions of ion chamber-

1 data are plotted in Fig. 12. These versions are the noise-

free true data, measurement data corrupted with noise and sen-

sor fault, reconciled data obtained from the classical DR-based

FDI, processed measurement data from the MSDR-based FDI

based on the approximations coefficients only, and processed
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Figure 8: Processed wavelet coefficients of ion chamber-1 in the single-sensor

fault case: (a) approximation coefficients at level-6, (b) detail coefficients at

level-6, (c) detail coefficients at level-5, (d) detail coefficients at level-4, (e)

detail coefficients at level-3, (f) detail coefficients at level-2, and (g) detail co-

efficients at level-1.

measurement data from the MSDR-based FDI based on the ap-

proximations and significant details coefficients. From Fig. 12,

it can be said that the proposed MSDR approach could esti-

mate the faulty signal very close to its true value even in the
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Figure 9: Single-sensor fault case: The processed data obtained with the reten-

tion of the significant scale details.
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Figure 10: MSDR-based FDI scheme in single-sensor fault case: (a) Faulty

sensor index, and (b) Estimate of the fault magnitude (mA).
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Figure 11: Classical DR-based FDI outcomes in single-sensor fault case: (a)

SPE, (b) Faulty sensor index, and (c) Estimate of the fault magnitude (mA).

presence of random noise, sensor fault, and the process change.

This means that the quality and accuracy of the measurement

data has been very much enhanced with the proposed MSDR

approach for sensor FDI.

5.2. Double-sensor fault case

The working of the MSDR scheme under more challenging

conditions like sensor faults of both abrupt and incipient na-

ture and a double-sensor fault scenario within and outside the

steady-state process operation is demonstrated in this section.

For this, while the rest of the conditions like an abrupt fault in

ion chamber 1 and a process change are intact, an incipient sen-

sor fault in ion chamber 5 is additionally considered whose time

profile is as shown in Fig. 13. The ramp-natured incipient fault

initiates at k = 3001 or time t = 60 s and sustains for the entire

simulation. The fault magnitude changes with a monotonically

increasing growth rate of 0.2% of the nominal value of the sig-

nal at steady-state (14.67 mA) per second. That is, the fault

grows by a value of 2.934 A for every 100 s as shown in Fig.

13. With this, the first 2000 sample represent the steady-state,

samples from 2001 to 3000 contain a sensor fault in ion cham-

ber 1 data, those from 3001 to 5000 represent a double-sensor

fault scenario (simultaneous faults in ion chambers 1 and 5),

and those from 5001 to 7000 exhibit the double-sensor fault

case along with a process change commencing at k = 5001.

The ion chamber signals, in this case, are as shown in Fig. 14.

The processing of the signal shown in Fig. 14 is carried out

in the same manner as explained in Section 5.1. The wavelet

coefficients of the ion chamber-1 that would have been obtained

if the MSDR-based FDI were not implemented are more or less
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Table 1: Single-sensor fault case: ODR (%), OP (%), MSE, and AER (%) in various data windows

Method Index Steady-state
Steady-state with a sensor

fault

Process change with a

sensor fault

Classical DR-based FDI

ODR 3.20 100 100

OP 3.20 100 100

MSE 0.08 0.09 0.09

AER 66.67 88.98 88.71

MSDR-based FDI

ODR 0.05 100 100

OP 0.05 100 100

MSE 0.01 0.01 0.01

AER 86.81 97.85 89.94
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Figure 12: Single-sensor fault case: Various versions of ion chamber-1 data.
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Figure 13: The growth of the sensor fault magnitude (mA) in ion chamber-5.
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Figure 14: Ion chamber signals during the transient, when corrupted by the

random noise and the sensor faults in ion chambers 1 and 5.

the same as those shown in Fig. 6. Those of ion chamber 5 are

as shown in Fig. 15 in which the effect of the incipient fault in

ion chamber 5 is seen in the high scale details 5 and 6. This

result is not surprising as the fault in ion chamber 5 is slowly

varying and thus it introduces only a lower frequency content

in the details than the highest frequency contents added by the

fast varying abrupt fault in ion chamber 1. The SPE profiles

of the wavelet coefficients for this case are as shown in Fig.

16. The gradual departure of the SPE of the approximation

coefficients from around k = 3001 is due to the presence of the

incipient fault in ion chamber 5. However, it is worth noting

that the SPE of details at levels 5 and 6 are not responsive to

the incipient fault, while they are to the abrupt one near k =

2001. The MSDR-based FDI processed wavelet coefficients of

ion chamber 5 are shown in Fig. 17.

The SPE profile and the FDI outcomes obtained from the

classical DR, in this case, are as shown in Fig. 18. The identifi-

cation of the abrupt fault in ion chamber-1 is as prompt as its on-

set (at k = 2001). But that of the incipient one in ion chamber-5

is delayed by around 500 samples from its onset (at k = 3001)

due to the overlapping effect of the random errors on the sensor

fault. Contrastingly, the FDI outcomes from the MSDR scheme

based on the SPE shown in Fig. 16(a) are as shown in Fig. 19

from which it can be said that the MSDR scheme has beaten

the classical DR scheme in terms of speed of detection and the

accuracy in the fault estimate. The superior performance of the

proposed scheme can also be appreciated from the numerical

values given in Table 2 as well. As before, various versions of

ion chamber-1 and ion chamber-5 data in this case of double-

fault scenario are plotted in Fig. 20 and Fig. 21 respectively.

From Table 2, Fig. 20 and Fig. 21, it can be observed that the

proposed MSDR approach could estimate the signals quite ac-

curately despite the random noise, process change and sensor

faults in two signals.

5.3. Discussion

The effectiveness of the proposed method is devoted to

wavelets for removing the auto-correlation among the sensor

signals, PCA for removing the cross-correlation, DR for further

reduction of the effects of random errors in the wavelet coef-

ficients, and FDI in eliminating the effects of faults. It should

also be noted that the DR is based on the assumption that the

measurement errors obey a known statistical distribution. In

this work, a normal distribution is assumed for these errors bas-

ing on the central limit theorem, which states that the distribu-

tion of sample approximates a normal distribution as the sample

12



Table 2: Case of 2 sensor faults: ODR (%), OP (%), MSE, and AER (%) in various data windows

Method Index Steady-state
Steady-state with single

sensor fault

Steady-state with two sensor

faults

Process change with two

sensor faults

Classical DR-based FDI

ODR 3.2 100 100 100

OP 3.2 0 50.05 100

MSE 0.09 0.08 0.09 0.09

AER 66.28 89.32 72.72 46.66

MSDR-based FDI

ODR 0.05 99.80 100 100

OP 0.05 0 97.20 100

MSE 0.004 0.01 0.01 0.01

AER 87.15 97.72 98.23 94.72

size becomes larger (Johnson and Wichern, 2002). The MSDR

method can handle up to a maximum number of m (model or-

der) sensor faults. This is due to the m being the degree of

spatial redundancy, which acts as the backbone of the recon-

ciliation (Romagnoli and Sanchez, 1999). Hence, the scheme

can work successfully in all scenarios of multiple simultaneous

faults whose number is less than m.

It is worth mentioning that the computation for a single ob-

servation on a computer with medium performance (1.6 GHz,

Intel Core i5 quad-core CPU with 8 GB of RAM) took around

0.018 s, which is less than the considered sampling time of 0.02

s. Hence, the online implementation is ensured on certainly

more performing dedicated machines mounted in the industrial

control systems. In addition to this, since it is always possible to

increase the sampling time in case of any online computational

difficulty, it can be concluded that it is feasible to implement

the proposed scheme online.

In ex-core sensor FDI applications of the proposed method,

it should be noted that the ex-core sensors detect the core av-

erage flux, hence they produce identical signals with consistent

correlation patterns among each other. The PCA-based con-

straint model is thus applicable to any other transient for which

the same correlation pattern persists, as shown in Yellapu et al.

(2015b). Hence, the superiority of the proposed MSDR scheme

can be generalized for other transients like momentary pertur-

bation of the control rods, refueling operation, and the like,

though its working is illustrated under one transient involv-

ing demand power change. However, it should also be noted

that it may not be possible to share the ion chamber signals

from different systems meant for control and protection under

the present operational and safety guidelines and practices fol-

lowed by nuclear power plants. Hence, at the present juncture,

the proposed scheme might be of use mainly at the supervisory

level for operator decision support as well as for maintenance

support.

6. Conclusion

An online MSDR scheme for reducing the effects of random

errors and sensor faults from the measurement data of processes

has been proposed. The scheme combines the multiscale fea-

tures in the data with the constrained weighted-least-squares

minimization problem for achieving this objective. The PCA

is performed to identify the residual subspace and thus to ar-

rive at the constraint model for the wavelet coefficients. Sen-

sor faults are detected when the SPE statistics exceed the pre-

defined threshold, followed by the GLRT for the sensor fault

isolation. DR with fault elimination is subsequently performed

to obtain the reconciled estimates of the wavelet coefficients on

which the inverse wavelet transformation is performed to get

back the processed data. The MSDR scheme is numerically il-

lustrated when applied to the ion chamber data of the AHWR.

It has been revealed that the MSDR scheme is very effective

in reducing the effects of random errors and sensor faults. FDI

outcomes such as fault identification and fault estimate are also

very good, even for very small fault magnitudes. The MSDR

is also proved to be better in achieving its objectives than the

classical DR scheme.
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Appendix A. The reconciled estimates of the approxima-

tion coefficients in fault-free case

The approximation coefficients obtained from the time series

data of the measurements are given by the vector

āk = H̄J ȳk ∈ Rn (A.1)

in which H̄J ∈ R
n×2Jn is a matrix to obtain the approxima-

tion coefficients corresponding to each measured variable, and

ȳk ∈ R
2Jn×1 is a vector holding the data of all the n measured

variables. H̄J can be mathematically represented as

H̄J =



































H̃J 0̃ . . . 0̃

0̃ H̃J . . . 0̃
...

...
...

...

0̃ 0̃ . . . H̃J



































, (A.2)

where H̃J is the vector corresponding to the approximation

coefficients in the wavelet operator W, and 0̃ is a null vector

∈ R1×2J

. The measurement vector ȳk in (A.1) is given by

ȳT
k =

[

ỹT
1

ỹT
2
. . . ỹT

n

]

, (A.3)

where ỹi ∈ R
2J×1,∀i = 1, 2, . . . n, is the time-series data of ith

measured variable.
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Figure 15: Unprocessed wavelet coefficients of ion chamber-5 in the double-

sensor fault case: (a) approximation coefficients at level-6, (b) detail coeffi-

cients at level-6, (c) detail coefficients at level-5, (d) detail coefficients at level-

4, (e) detail coefficients at level-3, (f) detail coefficients at level-2, and (g) detail

coefficients at level-1.

If a Haar wavelet function is chosen, the vector H̃J for a cho-

sen decomposition level J is

H̃J =

[

1
√

2J

1
√

2J
. . .

1
√

2J

]

. (A.4)
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Figure 16: Double-sensor fault case: SPE computed from (a) approximation

coefficients at level-6, (b) detail coefficients at level-6, (c) detail coefficients

at level-5, (d) detail coefficients at level-4, (e) detail coefficients at level-3, (f)

detail coefficients at level-2, and (g) detail coefficients at level-1.

Since the approximations are the weighted average of the

time series data, their mean and variance get increased by√
2J times their respective values of the time-series data

(Lemons et al., 2002). Hence, their probability distribution is

N(
√

2Jµ,
√

2JΣε). The reconciled estimates of the approxima-
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Figure 17: Processed wavelet coefficients of ion chamber-5 in the double-sensor

fault case: (a) approximation coefficients at level-6, (b) detail coefficients at

level-6, (c) detail coefficients at level-5, (d) detail coefficients at level-4, (e)

detail coefficients at level-3, (f) detail coefficients at level-2, and (g) detail co-

efficients at level-1.
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Figure 18: Case of 2 sensor faults: Sensor-FDI outcomes with the classical

DR: (a) SPE, (b) Faulty sensor indices, and (c) Estimate of the fault magnitude

(mA).
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Figure 19: Case of 2 sensor faults: Sensor-FDI outcomes with MSDR: (a) SPE,

(b) Faulty sensor index, and (c) Estimate of the fault magnitude (mA).
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Figure 20: Case of 2 sensor faults: Various versions of ion chamber-1 data.

0 1000 2000 3000 4000 5000 6000 7000
Observations

13

13.5

14

14.5

15

15.5

16

C
ur

re
nt

 (
m

A
)

True data
Measurement data
Classical DR & FDI
MSDR & FDI based on approximations
MSDR & FDI with details added

Figure 21: Case of 2 sensor faults: Various versions of ion chamber-5 data.

tions are thus given by (Narasimhan and Jordache, 2000; Kuehn

and Davidson, 1961)

âk = H̄J ȳk − ΣεAT
A(AAΣεAT

A)−1 AAH̄J ȳk, (A.5)

where AA is the PCA-based constraint model obtained from ap-

proximation coefficients in the off-line modeling process. Ex-

panding the terms,

(A.6)

âk =
1
√

2J
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