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Abstract

Documenting languages helps to prevent the extinction of endangered dialects – many of which are otherwise expected to dis-

appear by the end of the century. When documenting oral languages, unsupervised word segmentation (UWS) from speech is

a useful, yet challenging, task. It consists in producing time-stamps for slicing utterances into smaller segments corresponding

to words, being performed from phonetic transcriptions, or in the absence of these, from the output of unsupervised speech

discretization models. These discretization models are trained using raw speech only, producing discrete speech units that can

be applied for downstream (text-based) tasks. In this paper we compare five of these models: three Bayesian and two neural

approaches, with regards to the exploitability of the produced units for UWS. For the UWS task, we experiment with two

models, using as our target language the Mboshi (Bantu C25), an unwritten language from Congo-Brazzaville. Additionally,

we report results for Finnish, Hungarian, Romanian and Russian in equally low-resource settings, using only 4 hours of speech.

Our results suggest that neural models for speech discretization are difficult to exploit in our setting, and that it might be

necessary to adapt them to limit sequence length. We obtain our best UWS results by using Bayesian models that produce high

quality, yet compressed, discrete representations of the input speech signal.

Keywords: unsupervised word segmentation, speech discretization, acoustic unit discovery, low-resource settings

1. Introduction

Popular models for speech processing still rely on the

availability of considerable amounts of speech data and

their transcriptions, which reduces model applicabil-

ity to a limited subset of languages considered high-

resource. This excludes a considerable number of low-

resource languages, including many from oral tradi-

tion. Besides, learning supervised representations from

speech differs from the unsupervised way infants learn

language, hinting that it should be possible to develop

more data-efficient speech processing models.

Recent efforts for zero-resource processing (Glass,

2012; Jansen et al., 2013; Versteegh et al., 2016; Dun-

bar et al., 2017; Dunbar et al., 2019; Dunbar et al.,

2020) focus on building speech systems using limited

amounts of data (hence zero resource), and without

textual or linguistic resources, for increasingly chal-

lenging tasks such as acoustic or lexical unit discov-

ery. Such zero resource approaches also stimulated in-

terest for computational language documentation (Be-

sacier et al., 2006; Duong et al., 2016; Godard et al.,

2018; Bird, 2021) and computational language acqui-

sition (Dupoux, 2018).

In this paper we address the challenging task of un-

supervised word segmentation (UWS) from speech.

This task consists of outputting time-stamps delimiting

stretches of speech, associated with class labels corre-

sponding to word hypotheses, without access to any

supervision. We build on the work presented in Go-

dard et al. (2018): they proposed a cascaded model for

UWS that first generates a discrete sequence from the

speech signal using the model from Ondel et al. (2016),

and then segments the discrete sequence into words us-

ing a Bayesian (Goldwater, 2007) or a neural (Boito

et al., 2017) approach. Since then, much progress has

been made in automatic speech discretization: efficient

Bayesian models for acoustic unit discovery (AUD)

emerged (Ondel et al., 2019; Yusuf et al., 2021), and

self-supervised models based on neural networks – typ-

ically made of an auto-encoder structure with a dis-

cretization layer – were also introduced (van den Oord

et al., 2017; Baevski et al., 2020a; Chorowski et al.,

2019).

Therefore, in this work we revise and extend Godard et

al. (2018) by empirically investigating the exploitabil-

ity of five recent approaches for speech discretization

for the UWS task in a rather low-resource scenario, us-

ing approximately 4 hours of speech (roughly 5k sen-

tences). More precisely, we train three Bayesian speech

discretization models (HMM (Ondel et al., 2016),

SHMM (Ondel et al., 2019) and H-SHMM (Yusuf et

al., 2021)), and two neural models (VQ-VAE (van den

Oord et al., 2017) and vq-wav2vec (Baevski et al.,

2020a)). We extract discrete speech units from them

using only 4 hours of speech, and we perform UWS

from the sequences produced. Our pipeline targets the

Mboshi language (Bantu C25), an unwritten language
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from Congo-Brazzaville. Additionally, we perform ex-

periments in equal data settings for Finnish, Hungar-

ian, Romanian and Russian. This allows us to assess

the language-related impact in our UWS pipeline.

Our experiments show that neural models for speech

discretization are difficult to exploit for UWS, as they

output very long sequences. In contrast to that, the

Bayesian speech discretization approaches from Ondel

et al. (2019) and Yusuf et al. (2021) are robust and gen-

eralizable, producing high quality, yet compressed, dis-

crete speech sequences from the input utterances in all

languages. We obtain our best results by using these se-

quences for training the neural UWS model from Boito

et al. (2017).

This paper is organized as follows. Section 2 presents

related work, and Section 3 details the speech dis-

cretization models we experiment with. Section 4

presents our experimental setup, and Section 5 our ex-

periments. Section 6 concludes our work.

2. Related Work

The work presented here revises the UWS model from

speech in low-resource settings presented in Godard et

al. (2018). Boito et al. (2019) complemented that work

by tackling different neural models for bilingual UWS,

but they did not address the discretization portion of the

pipeline, working directly from manual phonetic tran-

scriptions. In Kamper and van Niekerk (2021), the au-

thors propose constraining the VQ-VAE model in order

to generate a more exploitable output representation for

direct application to the UWS task in English. Different

from that, in this work we focus on providing an em-

pirical comparison of recent discretization approaches,

extending Godard et al. (2018) and providing results in

low-resource settings, and in five different languages.

This work falls into the category of computational lan-

guage documentation approaches. Recent works in

this field include the use of aligned translation for im-

proving transcription quality (Anastasopoulos and Chi-

ang, 2018), and for obtaining bilingually grounded

UWS (Duong et al., 2016; Boito et al., 2017). We

find pipelines for obtaining manual (Foley et al., 2018)

and automatic (Michaud et al., 2018) transcriptions,

and for aligning transcription and audio (Strunk et al.,

2014). Other examples are methods for low-resource

segmentation (Lignos and Yang, 2010; Goldwater et

al., 2009), and for lexical unit discovery without textual

resources (Bartels et al., 2016). Finally, direct speech-

to-speech (Tjandra et al., 2019) and speech-to-text (Be-

sacier et al., 2006; Bérard et al., 2016) architectures

could be an option for the lack of transcription, but it

remains to be seen how exploitable these architectures

can be in low-resource settings.

Lastly, we highlight that recent models based on self-

supervised learning (Schneider et al., 2019; Baevski et

al., 2019; Wang et al., 2020; Liu et al., 2020; Baevski

et al., 2020b; Hsu et al., 2021) provide an interesting

novel option for reducing the amount of labeled data

needed in downstream tasks such as automatic speech

recognition and speech translation. In this work we

experiment with the vq-wav2vec model, a predeces-

sor of the popular wav2vec 2.0 (Baevski et al., 2020b).

We however, do not extend our investigation to the lat-

ter, or to models such as HuBERT (Hsu et al., 2021).

This is because, while these models do produce a cer-

tain discretization of the speech (for wav2vec 2.0 via

quantization module, for HuBERT via clustering of

MFCC features), we judge this discretization to be in-

sufficiently exploitable for downstream text-based ap-

proaches due to their excessive length.1 We do, how-

ever, find promising the integration of self-supervised

speech features into Bayesian AUD models as in On-

del et al. (2022).

3. Unsupervised Speech Discretization

Models

Speech discretization consists in labeling the speech

signal into discrete speech units, which can correspond

or not to the language phonetic inventory. This prob-

lem can be formulated as the learning of a set of U dis-

crete units with embeddings H = {η1, . . . ,ηU} from

a sequence of untranscribed acoustic features X =
[x1, . . . ,xN ], as well as the assignment of frame to unit

z = [z1, . . . , zN ]. Depending on the approach, neu-

ral (Section 3.1) or Bayesian (Section 3.2), the assump-

tions and the inference regarding these three quantities

will differ.

3.1. Neural (VQ-based) models

VQ-VAE. It comprises an encoder, a decoder, and

a set of unit-specific embeddings H. The encoder

is a neural network that transforms the data into a

continuous latent representation V = (v1, . . . ,vN ).
Each frame is then assigned to the closest embedding

in the Euclidean sense (Equation 1). The decoder

transforms the sequence of quantized vectors into

parameters of the conditional log-likelihood of the

data p(xn|z), and the network is trained to max-

imize this likelihood. Since the quantization step

is not differentiable, the encoder is trained with a

straight through estimator (Bengio et al., 2013). In

addition, a pair of ℓ2 losses are used to minimize

the quantization error, and the overall objective func-

tion that is maximized is presented in Equation 2,

where sg[·] is the stop-gradient operator. We de-

fine the likelihood p(xn|zn) = N (xn;µ(η
zn), I).

Under this assumption, the log-likelihood reduces

to the mean-squared error ||xn − µ(ηzn)||22.

zn = argmin
u

||vn − η
u||2. (1)

1For instance, wav2vec 2.0 trains on a joint diversity loss

for inciting the use of its discrete units. Their large codebook

of G = 8;V = 8 results in an upper-bound of 88 units.
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L =
1

N

N
∑

n=1

(

ln p(xn|zn)− k1|| sg[η
zn ]− vn||

2
2

− k2||η
zn − sg[vn]||

2
2

)

, (2)

vq-wav2vec. This model is composed of an en-

coder (f : X −→ Z), a quantizer (q : Z −→ Ẑ) and

an aggregator (g : Ẑ −→ C). The encoder is a CNN

which maps the raw speech input X into the dense fea-

ture representation Z. From this representation, the

quantizer produces discrete labels Ẑ from a fixed-size

codebook e ∈ R
V×d with V representations of size

d. Since replacing an encoder feature vector zi by a

single entry in the codebook makes the method prone

to model collapse, the authors independently quantize

partitions of each feature vector by creating multiple

groups G, arranging the feature vector into a matrix

z
′ ∈ R

G×(d/G). Considering each row as an integer

index, the full feature vector is represented by the in-

dices i ∈ [V ]G, with V being the possible number of

variables for a given group, and each element ij corre-

sponding to a fixed codebook vector (j ∈ |G|). For

each of the G groups, the quantization is performed

by using Gumbel-Softmax (Jang et al., 2017) or on-

line k-means clustering. Finally, the aggregator com-

bines multiple quantized feature vector time-steps into

a new representation ci for each time step i. The model

is trained to distinguish a sample k steps in the future

ẑi+k from distractor samples z̃ drawn from a distri-

bution pn. This is done by minimizing the contrastive

loss for steps k = {1, . . . ,K} as in Equation 3, where

T is the sequence length, σ(x) = 1/(1 + exp(−x)),
σ(ẑ⊺i+khk(ci)) is the probability of ẑi+k being the true

sample, and hk(ci) is the step-specific affine transfor-

mation hk(ci) = Wkci + bk. Finally, this loss is accu-

mulated over all k steps L =
∑K

k=1 Lk.

Lk =
T−k
∑

i=1

(

log σ(ẑ⊺i+khk(ci))

+ λEz̃∼pn
[log σ(−z̃

⊺hk(ci))]
)

(3)

Training. For VQ-VAE, the encoder has 4 Bi-LSTM

layers each with output dimension 128 followed by a

16-dimensional feed-forward decoder with one hidden

layer. The number of discovered units (quantization

centroids) is set to 50. This setting is unusually low

but it helps to reduce the length of the output sequence.

We set k1 = 2 and k2 = 4 (Equation 2), and train2 with

Adam (Kingma and Ba, 2015) with an initial learning

rate of 2 × 10−3 which is halved whenever the loss

stagnates for two training epochs.

For vq-wav2vec, we use the small model from

(Baevski et al., 2020a),3 but with only 64 channels,

2Implementation available at: https://github.

com/BUTSpeechFIT/vq-aud
3Implementation available at: https://

github.com/pytorch/fairseq/tree/master/

examples/wav2vec

residual scale of 0.2, and warm-up of 10k. For vocabu-

lary we set G = 2 and experimented with having both

V = 4, resulting in 16 units (VQ-W2V-V16), and V =
6, resulting in 36 units (VQ-W2V-V36). Larger vocab-

ularies resulted in excessively long sequences which

could not be used for UWS.4 We also experimented

reducing the representation by using byte pair encod-

ing (BPE) (Sennrich et al., 2016), hypothesizing that

phones were being modeled by a combination of dif-

ferent units. In this setting, BPE serves as a method

for identifying and clustering these patterns. Surpris-

ingly, we found that using BPE resulted in a decrease

in UWS performance. This hints that this model might

not be very consistent during its labeling process.

3.2. Bayesian Generative Models

For generative models, each acoustic unit embedding

ηi represents the parameters of a probability distribu-

tion p(xn|ηzn , zn) with latent variables z. Discovering

the units amounts to estimating the posterior distribu-

tion over the embeddings H and the assignment vari-

ables z given by:

p(z,H|X) ∝ p(X|z,H)p(z|H)
U
∏

u=1

p(ηu). (4)

From this, we describe three different approaches.

HMM. In this model each unit is a 3-state left-to-

right HMM with parameters η
i. Altogether, the set

of units forms a large HMM analog to a “phone-loop”

recognition model. This model, described in Ondel et

al. (2016), serves as the backbone for the two subse-

quent models.

SHMM. The prior p(η) in Equation 4 is the prob-

ability that a sound, represented by an HMM with pa-

rameters η, is an acoustic unit. For the former model, it

is defined as a combination of exponential family dis-

tributions forming a prior conjugate to the likelihood.

While mathematically convenient, this prior does not

incorporate any knowledge about phones, i.e. it con-

siders all possible sounds as potential acoustic units. In

Ondel et al. (2019), they propose to remedy this short-

coming by defining the parameters of each unit u as

in Equation 5, where e
u is a low-dimensional unit em-

bedding, W and b are the parameters of the phonetic

subspace, and the function f(·) ensures that the result-

ing vector ηu dwells in the HMM parameter space. The

subspace, defined by W and b, is estimated from sev-

eral labeled source languages. The prior p(η) is defined

over the low-dimensional embeddings p(e) rather than

η directly, therefore constraining the search of units

in the relevant region of the parameter space. This

model is denoted as the Subspace HMM (SHMM).

η
u = f(W · eu + b) (5)

4For instance, the dpseg original implementation only

processes sequences shorter than 350 tokens.
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H-SHMM. While the SHMM significantly improves

results over the HMM, it also suffers from an unrealis-

tic assumption: it assumes that the phonetic subspace

is the same for all languages. Yusuf et al. (2021) relax

this assumption by proposing to adapt the subspace for

each target language while learning the acoustic units.

Formally, for a given language λ, the subspace and the

acoustic units’ parameters are constructed as in Equa-

tion 6-8, where the matrices M0, . . . ,MK and vec-

tors m0, . . . ,mK represent some “template” phonetic

subspace linearly combined by a language embedding

α
λ = [αλ

1 , α
λ
2 , . . . , α

λ
K ]⊤. The matrices Mi and the

vectors mi are estimated from labeled languages –

from multilingual transcribed speech dataset for in-

stance. The acoustic units’ low-dimensional embed-

dings {ei} and the language embedding α are learned

on the target (unlabeled) speech data. We refer to this

model as the Hierarchical SHMM (H-SHMM).

W
λ = M0 +

K
∑

k=1

αλ
kMk (6)

b
λ = m0 +

K
∑

k=1

αλ
kmk (7)

η
λ,u = f(Wλ · eλ,u + b

λ) (8)

Inference. For the three generative models, the pos-

terior distribution is intractable and cannot be esti-

mated. Instead, one seeks an approximate posterior

q({ηi}, z) = q({ηi})q(z) that maximizes the varia-

tional lower-bound L[q]. Concerning the estimation

of q(z), the expectation step is identical for all mod-

els and is achieved with a modified forward-backward

algorithm described in Ondel et al. (2016). Estimation

of q(η), the maximization step, is model-specific and

is described in Ondel et al. (2016) for the HMM, in

Ondel et al. (2019) for SHMM models, and in Yusuf et

al. (2021) for the H-SHMM model. Finally, the output

of each system is obtained from a modified Viterbi al-

gorithm that uses the expectation of the log-likelihoods

with respect to q({ηi}), instead of point estimates.

Training. The models are trained with 4 Gaussians

per HMM state and using 100 for the Dirichlet pro-

cess’ truncation parameter. SHMM and H-SHMM use

an embedding size of 100, and H-SHMM models have

a 6-dimensional language embedding. For the methods

that use subspaces estimation (SHMM and H-SHMM),

this estimation uses the following languages: French,

German, Spanish, Polish from the Globalphone cor-

pus (Schultz et al., 2013), as well as Amharic (Abate et

al., 2005), Swahili (Gelas et al., 2012) and Wolof (Gau-

thier et al., 2016) from the ALFFA project (Besacier et

al., 2015). We use 2-3 hours subsets of each, for a total

of roughly 19 hours.

4. Experimental Setup

From the discrete speech units produced by the pre-

sented speech discretization models, we produce seg-

mentation in the symbolic domain by using two UWS

#Types #Tokens
Avg Token

Length

Avg #Tokens

per Sentence

MB-FR
MB* 6,633 30,556 4.2 6.0

FR 5,162 42,715 4.4 8.3

MaSS

FI* 12,088 70,226 6.0 13.2

HU* 12,993 69,755 5.9 13.1

RO* 6,795 84,613 4.5 15.9

RU* 10,624 67,176 6.2 12.6

FR 7,226 94,527 4.1 17.8

Table 1: Statistics for the datasets, computed over the

text (FR), or over the phonetic representation (*).

HMM SHMM H-SHMM

R
A

W

# Units 77 (+9) 76 (+8) 49 (-19)

Avg #Units

per sequence
27.5 (+8.7) 24.0 (+5.2) 21.7 (+2.9)

Max Length 68 (+17) 69 (+18) 63 (+12)

+
S

IL

# Units 75 (+7) 75 (+7) 47 (-21)

Avg #units

per sequence
20.9 (+2.1) 19.9 (+1.1) 19.4 (+0.6)

Max Length 69 (+18) 62 (+11) 60 (+9)

VQ-VAE VQ-W2V-16 VQ-W2V-36

R
A

W

# Units 50 (-18) 16 (-52) 36 (-32)

Avg #units

per sequence
65.2 (+46.4) 81.7 (+62.9) 111.0 (+92.2)

Max Length 217 (+166) 289 (+238) 361 (+310)

+
S

IL

# Units 50 (-18) 16 (-52) 36 (-32)

Avg #units

per sequence
43.4 (+24.6) 52.6 (+33.8) 76.2 (+57.4)

Max Length 143 (+92) 229 (+178) 271 (+220)

Table 2: Statistics for the discrete speech units pro-

duced for the Mboshi, with the difference between the

produced and reference representation between paren-

theses. RAW is the original output from speech dis-

cretization models, +SIL is the result after silence post-

processing. Other languages follow the same trend.

models. A final speech segmentation is then inferred

using the units’ time-stamps and evaluated by using

the Zero-Resource Challenge 2017 evaluation suite,

track 2 (Dunbar et al., 2017)5. We now detail the UWS

models used in this work, which are trained with the

same parameters from Godard et al. (2018). We also

detail the datasets and the post-processing for the dis-

crete speech discrete units.

Bayesian UWS approach (monolingual). Non-

parametric Bayesian models (Goldwater, 2007; John-

son and Goldwater, 2009) are statistical approaches for

UWS and morphological analysis, known to be robust

in low-resource settings (Godard et al., 2016). In these

models, words are generated by a unigram or bigram

model over an infinite inventory, through the use of a

Dirichlet process. In this work, we use the unigram

model from dpseg (Goldwater et al., 2009)6, which

was shown to be superior to the bigram model in low-

resource settings (Godard, 2019).

Neural UWS approach (bilingual). We follow the

bilingual pipeline from Godard et al. (2018). The dis-

crete speech units and their sentence-level translations

are fed to an attention-based neural machine transla-

5Resources are available at http://zerospeech.

com/2017
6Implementation available at http://homepages.

inf.ed.ac.uk/sgwater/resources.html
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Figure 1: Heatmaps for the soft-alignment probability

matrices generated by the neural UWS models (bilin-

gual) trained on different discrete speech units, for the

same French-Mboshi sentence. The darker the square,

the higher the pair probability. The rows present the

automatically generated units from the different dis-

cretization models, informed in the bottom.

tion system that produces soft-alignment probability

matrices between source and target sequences. For

each sentence pair, its matrix is used for clustering to-

gether (segmenting) neighboring phones whose align-

ment distribution peaks at the same source word. Ex-

amples of these matrices are provided in Figure 1. We

refer to this model as neural.

Datasets. We use the Mboshi-French parallel cor-

pus (MB-FR) (Godard et al., 2018), which is a 5,130

sentence corpus from the language documentation pro-

cess of Mboshi (Bantu C25), an oral language spo-

ken in Congo-Brazzaville. We also report results us-

ing an extract from the MaSS corpus (Boito et al.,

2020), a multilingual speech-to-speech and speech-to-

text dataset. We use the down-sampling from Boito et

al. (2020), which results in 5,324 aligned sentences.

We exclude French and Spanish, as these languages

are present in the subspace prior from SHMM and H-

SHMM models, and we exclude English as it was used

as to tune the hyperparameters of the subspace models

and the VQ-VAE. We also exclude Basque, as the se-

quences produced were too long for UWS training. The

final set of languages is: Finnish (FI), Hungarian (HU),

Romanian (RO) and Russian (RU). In all cases, the

French (FR) translations are used as supervision for

the neural UWS approach. Statistics are presented in

Table 1.

Discrete Speech Units Post-processing. We exper-

iment with reducing the representation by removing

units predicted in silence windows. For this, we use the

gold references’ silence annotations. Removing these

allow us to focus the investigation on the quality of the

units generated in relevant portions of the speech. We

see in Table 2 that removing windows that we know

correspond to silence considerably reduces the num-

ber of units generated by all models. Before UWS

evaluation, the silence windows are reintroduced to en-

sure that their segmentation boundaries are taken into

dpseg neural

RAW +SIL RAW +SIL

1 HMM 32.4 59.9 35.1 61.2

2 SHMM 43.7 61.4 41.4 64.7

3 H-SHMM 45.3 61.4 44.8 63.9

4 VQ-VAE 39.0 52.7 32.1 60.1

5 VQ-W2V-V16 37.4 52.2 32.0 50.6

6 VQ-W2V-V36 - 48.0 - 49.8

7 True Phones - 77.1 - 74.5

Table 3: UWS Boundary F-scores for the MB-FR

dataset.

account. This approach is justified because a silence

detector is an inexpensive resource to obtain. For in-

stance, popular software such as Praat (Boersma, 2006)

are able to handle this task in any language. Figure 2

exemplifies the discrete speech units discovered by the

models before applying this post-processing.

5. Experiments

We first present our results for the MB-FR dataset, the

language which corresponds to the true low-resource

scenario that we are interested in. Table 3 presents

UWS Boundary F-scores for UWS models (dpseg and

neural) trained using different discrete speech units

for the MB-FR dataset. We include results for both

the direct output (RAW) and the post-processed ver-

sion (+SIL). The RAW VQ-W2V-V36 is not included

as its output sequences were excessively large for train-

ing our UWS models (Table 2).

We observe that in all cases, post-processing the dis-

crete speech units with the silence information (+SIL)

creates easier representations for the UWS task. We

believe this is due to the considerable reduction in av-

erage length of the sequences (Table 2). For Bayesian

models, we also observe a reduction in the number of

units, meaning that some units were modelling silence

windows, even though these models already produce an

independent token for silence, which we remove before

UWS training.

Looking at the results for UWS models trained using

the output of VQ-based models (rows 4-6), we see that

the best segmentation result is achieved using the one

with the smallest average sequence length (VQ-VAE).

In general, we believe that all VQ-based models under-

perform due to the excessively long sequences pro-

duced, which are challenging for UWS. Figure 2 illus-

trates this difference in representation length, by pre-

senting the discrete speech units produced by Bayesian

and neural models for a given utterance: the latter pro-

duce considerably more units.

Overall, we find that UWS models trained using the

discrete speech units from Bayesian models produce

better segmentation, with models trained with SHMM

and H-SHMM presenting the best results. In Yusuf et

al. (2021) both systems showed competitive results

for the AUD task. A noticeable difference between

these two models is the compression level: H-SHMM
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(a) HMM

(b) SHMM

(c) H-SHMM

(d) VQ-VAE

(e) VQ-W2V-V16

(f) VQ-W2V-V36

Figure 2: Speech discrete units produced by the five

models for the same Mboshi sentence. Black lines de-

note the true boundaries, while dashed white lines de-

note the discovered units boundaries. For each exam-

ple, discrete speech units (top) and reference (bottom).

dpseg neural

FI HU RO RU FI HU RO RU

HMM 45.6 49.9 53.5 47.1 53.4 51.2 56.6 54.9

SHMM 49.0 52.3 53.5 50.5 56.0 53.9 57.7 57.7

H-SHMM 50.5 52.9 58.0 52.9 56.1 53.3 59.6 56.0

True Phones 87.1 83.3 88.0 85.9 68.4 63.4 75.7 68.4

Table 4: UWS Boundary F-scores for the MaSS dataset

using Bayesian models (+SIL only). Best UWS re-

sults from speech discrete units (bold) and from true

phones (underlined) are highlighted.

uses 27 fewer units than SHMM. Regarding type re-

trieval, the models scored 12.1% (SHMM), 10.7% (H-

SHMM), and 31% (topline). We also find that SHMM

models produced more types and fewer tokens, reach-

ing a higher Type-Token Ratio (0.63) compared to H-

SHMM (0.55).

Focusing on the generalization of the presented speech

discretization models, we trained our models using four

languages from the MaSS dataset. We observed that

due to the considerably larger average length of the

sentences (Table 1), the VQ-based models produced

sequences which we were unable to directly apply to

UWS training. This again highlights that these models

need some constraining, or post-processing, in order

to be directly exploitable for UWS. Focusing on the

Bayesian models, which performed the best for gen-

erating exploitable discrete speech units for UWS in

low-resource settings, Table 4 present UWS results.

We omit results for RAW, as we observe the same

trend from Table 3. Looking at the results for the four

languages, we again observe competitive results for

SHMM and H-SHMM models, illustrating that these

approaches generalize well to different languages.

Comparing the UWS results present in Ta-

ble 3 (Mboshi) and Table 4 (languages from MaSS),

we notice overall lower results for the languages from

the MaSS dataset (best result: 59.6) compared to

Mboshi (best result: 64.7). We believe this is due to

the MaSS data coming from read text, in which the

utterances correspond to verses that are consistently

longer than sentences (Table 1). This results in a more

challenging setting for UWS and explains the lower re-

sults. Lastly, our results over five languages show that

the neural UWS model produces better segmentation

results from discrete speech units than dpseg, which in

turn performs the best with the true phones (topline).

This confirms the trend observed by (Godard et al.,

2018). The neural UWS models have the advantage

of their word-level aligned translations for grounding

the segmentation process, which might be attenuating

the difficulty of the task in this noisier scenario,

with longer sequences and more units. Moreover, a

benefit of these models is the potentially exploitable

bilingual alignment discovered during training. Boito

et al. (2019) used these alignments for filtering the

generated vocabulary, increasing type retrieval.

6. Conclusion

In this paper we compared five methods for speech

discretization, two neural models (VQ-VAE, VQ-

WAV2VEC), and three Bayesian approaches (HMM,

SHMM, H-SHMM), with respect to their performance

serving as direct input to the task of unsupervised word

segmentation (UWS) in low-resource settings. Our mo-

tivation for such a study lies in the need of process-

ing oral and low-resource languages, for which obtain-

ing transcriptions is a known bottleneck (Brinckmann,

2009).

In our UWS setting, and using five different languages

(Finnish, Hungarian, Mboshi, Romanian and Russian),

we find that VQ-based methods are not a good fit for

our pipeline, as they output very long and inconsistent

sequences, which are difficult to treat. This was also

recently observed in Kamper and van Niekerk (2021).

In contrast to that, the Bayesian SHMM and H-SHMM

models perform the best, as they produced concise yet
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highly exploitable representations from just few hours

of speech. We believe this difference in performance

is due to HMM-based models explicitly performing

acoustic unit discovery. This means the discretiza-

tion produced by them aims not only to summarize

the speech signal, but to closely match the language’s

phonology. Moreover, the subspace estimation per-

formed by both SHMM and H-SHMM, might also play

a significant role. This is because these models are able

to learn from an additional 19 hours of data in differ-

ent languages. The other models (HMM and VQ-based

models) do not have access to any form of pretraining

or prior.

Finally, comparing the neural and Bayesian UWS ap-

proaches, we notice that the neural model is competi-

tive in the noisier setting, reaching better UWS bound-

ary scores working with the output of speech discretiza-

tion models. The Bayesian model is however better at

segmenting true phones (topline scenario). Conclud-

ing, this work updates Godard et al. (2018) by using

more recent speech discretization models, and present-

ing better UWS results for Mboshi.
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