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Abstract: This study investigated the effect of locally available bulking agents on the faecal sludge
(FS) composting process and quality of the final FS compost. Dewatered FS was mixed with sawdust,
coffee husk and brewery waste, and composted on a pilot scale. The evolution of physical and
chemical characteristics of the composting materials was monitored weekly. Results indicate that
bulking agents have a statistically significant effect (p < 0.0001) on the evolution of composting
temperatures, pH, electrical conductivity, nitrogen forms, organic matter mineralisation, total organic
carbon, maturity indices, quality of the final compost and composting periods during FS composting.
Our results suggest reliable maturity indices for mature and stable FS compost. From the resource
recovery perspective, this study suggests sawdust as a suitable bulking agent for co-composting
with FS—as it significantly reduced the organic matter losses and nitrogen losses (to 2.2%), and
improved the plant growth index, thus improving the agronomic values of the final compost as a soil
conditioner. FS co-composting can be considered a sustainable and decentralised treatment option
for FS and other organic wastes in the rural and peri-urban communities, especially, where there is a
strong practice of reusing organic waste in agriculture.

Keywords: carbon losses; nitrogen losses; compost maturity indices; nutrients recovery; heavy
metals; micro; and macro-nutrients; faecal sludge composting

1. Introduction
Globally, faecal sludge management is a growing challenge, especially in the low- and

middle-income countries, where delivery of sanitation services in terms of sustainable faecal
sludge (FS) treatment facilities is largely still lacking [1]. Consequently, FS is collected from
the on-site sanitation systems and re-used in agriculture or indiscriminately disposed of into
the environment without any treatment, leading to severe public health and environmental
risks [2,3].

Composting is one of the most acceptable and economically viable ways of treating FS
both in rural and peri-urban communities, with the potential for critical nutrient recovery
and reuse as an added advantage. However, its current operation is associated with
large nitrogen (N) and carbon (C) losses, which reduces the agronomic value of the final
compost [4–6]. Selecting the right bulking agent for co-composting with FS is essential for
a successful composting process and reduction of nutrient losses such as nitrogen through
ammonia volatilization [7]. In the same vein, bulking agents deserve special consideration
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during FS composting, because of their essential role in (i) adjusting the carbon to nitrogen
(C/N) ratio, (ii) absorbing the excess moisture content and odour, and (iii) improving
the physical characteristics and support structure of the composting material to provide
favourable conditions for successful aerobic composting activities [8–10]. However, there
are few scientific FS composting studies that have investigated the effect of different bulking
agents on nutrient losses and compost quality.

The composting rate and quality of the final compost can be influenced by the char-
acteristics of the sludge and bulking agent type used [10]. Several studies have been
conducted on co-composting of sludge and/or organic waste with bulking agents to ex-
amine the effect of bulking agent type on the composting process and compost quality,
however, contradictory results have been published [7,10–16]. For example, Yuan, et al. [11]
reported that composting sewage sludge with cornstalk reduces the production of leachate
and improves the compost quality [11]. Chang and Chen [12] showed that the composting
rate and moisture content absorption capacity increased as the acidification and compost-
ing periods shorten, because of increasing the quantities of sawdust during composting
of food waste. During the composting of sewage sludge, Paredes, et al. [14] observed a
significant effect of bulking agent type on mineralisation and stabilisation of organic matter.
Yañez, et al. [15] showed that the bulking agent types had a significant influence on the
key composting parameters as well as the final compost quality, during the composting of
sewage sludge. However, Doublet, et al. [13] found the bulking agent types to have very
little effect on the rate of organic matter stabilisation and nitrogen in the final compost.
Similarly, Tang and Katayama [16] found the bulking agents to have no effect at all on
the microbial succession and composting process, especially during the early stage of
co-composting cattle manure with several bulking agents (vermiculite, rice straw, waste
paper, and sawdust). Therefore, further research studies are needed to clarify and update
the existing literature on FS composting with bulking agents.

Further, although studies have investigated the feasibility of FS co-composting with
different bulking agents [5–8,17–24]; few attempts have been made to systematically assess
FS composting process of three bulking agents in a single research to understand the effect of
the different bulking agents on the evolution of organic matter, carbon, and nitrogen forms,
key maturity indices, and quality of the final compost. Moreover, carbon, organic matter,
and nitrogen transformation during co-composting of FS with different bulking agents
using an open-air composting system is not yet well understood. Our study, therefore,
investigated the effect of locally available bulking agents (i.e. sawdust, coffee husks and
brewery waste) on the quality of the final compost (i.e., macro and micronutrients, and
toxic elements/heavy metals), and evolution of composting temperatures, pH, EC, organic
matter, carbon, Nitrogen forms, and maturity indices (i.e., carbon dioxide (CO2-C), Plant
Growth Index, C/N ratio, NH4

+-N/NO3
�-N ratio) during FS composting using open-air

composting system. This study findings will provide insights for decentralised treatment
and sustainable management of FS and other organic wastes such as sawdust, coffee
husks and brewery waste in low-and-middle-income countries, especially in the rural and
peri-urban areas where there is a strong practice of reusing organic waste in agriculture.

2. Materials and Methods
2.1. Composting Materials

This study was conducted at the National Water and Sewerage Corporation (NWSC)
FS treatment facility at Lubigi, Kampala, Uganda (geographical coordinates 0�18058.18” N
latitude, 32�34055” E longitude, and elevation of 1223 m above sea level). The FS used in
this study was collected from on-site sanitation systems (i.e., pit latrines and septic tanks) in
Kampala informal settlements, and this was mixed (in a ratio of 1:2 v/v; pit latrine sludge:
septic tank sludge) and dewatered on sand drying beds to about 20–35% total solids content,
before being composted [25]. Sawdust, brewery waste, and coffee husks were the bulking
agents tested in this study. Details for why these bulking agents were selected and used
in this study are presented in our previous work [9]. Sawdust was collected from Bwaise
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sawmill while brewery waste and coffee husks were taken from Parambot breweries and
Kyagalanyi coffee processing plant, respectively. All the collected bulking agents were
sorted to remove any non-biodegradable items, prior to construction of the composting
piles. Table 1 presents the key physical and chemical characteristics of the raw materials
used in our study.

Table 1. Chemical Characteristics of raw material used ‡.

Parameters Dewatered FS Sawdust Coffee husk Brewery Waste

pH 1:10 7.96 ± 0.15 5.66 ± 0.44 6.53 ± 0.33 6.10 ± 0.42
EC 27 �C

(Sm/cm) 1:10 2.12 ± 0.42 0.40 ± 0.09 3.17 ± 0.78 1.09 ± 0.15

Moisture (%) 68.71 ± 3.80 31.20 ± 5.94 11.40 ± 2.40 67.55 ± 8.14
Bulky Density

(kg/m3) 1066.67 ± 61.10 283.00 ± 21.21 272.00 ± 53.74 356.00 ± 33.94

Organic matter *
(%) 62.17 ± 3.75 94.30 ± 2.97 87.00 ± 7.07 40.07 ± 2.12

Total organic
carbon * (%) 33.83 ± 1.41 51.44 ± 2.08 52.24 ± 2.03 24.50 ± 3.54

Nitrate-N *
(mg/kg) 0.05 ± 0.03 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00

Ammonium-N *
(mg/kg) 0.53 ± 0.39 0.00 ± 0.01 0.02 ± 0.01 0.02 ± 0.00

C/N 10.11 ± 4.94 132.25 ± 69.90 17.13 ± 5.74 6.84 ± 4.81
Macro and

micronutrients
Total Kjeldah
nitrogen * (%) 3.35 ± 0.29 0.39 ± 0.03 3.05 ± 0.35 3.58 ± 0.74

Total
phosphorus (TP)

* (g/kg)
26.9 ± 7.9 0.12 ± 0.01 0.9 ± 0.0 28.7 ± 1.4

Total potassium
(TK) * (g/kg) 4.4 ± 0.3 2.0 ± 0.1 3.3 ± 0.3 3.2 ± 0.4

Calcium (Ca) *
(mg/kg) 11,596.3 ± 2352.2 1445.3 ± 741.6 1433.7 ± 934.1 1667.2 ± 367.8

Magnesium Mg *
(mg/kg) 4074.2 ± 729.1 575.4 ± 89.9 1292.5 ± 122.8 1654.2 ± 194.6

Iron (Fe) *
(mg/kg) 6333.6 ± 888.2 983.4 ± 83.6 1746.7 ± 170.5 1021.3 ± 140.7

Manganese (Mn)
* (mg/kg) 399.5 ± 249.7 7.8 ± 0.3 8.9 ± 0.6 8.0 ± 0.0

Sodium (Na) *
(g/kg) 1.7 ± 0.1 0.5 ± 0.0 0.7 ± 0.1 2.2 ± 0.1

Toxic Ele-
ments/Heavy

metals
Copper (Cu) *

(mg/kg) 113.7 ± 41.1 8.8 ± 1.2 11.0 ± 3.6 7.6 ± 0.6

Zinc (Zn) *
(mg/kg) 448.7 ± 151.9 31.3 ± 0.6 43.4 ± 5.2 63.8 ± 3.3

Lead (Pb) *
(mg/kg) 73.3 ± 29.9 8.8 ± 2.0 17.6 ± 0.9 1.2 ± 0.5

Nickel (Ni) *
(mg/kg) 15.3 ± 6.8 13.9 ± 0.6 12.0 ± 0.3 14.5 ± 2.3

Chromium (Cr) *
(mg/kg) 46.9 ± 36.2 13.2 ± 2.4 27.9 ± 18.2 32.6 ± 4.1

Cadmium (Cd) *
(mg/kg) 0.9 ± 0.4 0.3 ± 0.3 0.7 ± 0.1 0.8 ± 0.1

‡ Mean ± Standard deviation (SD) of triplicates; * dry base.
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2.2. Composting Process and Sampling
Dewatered FS of about 20–35% total solids was thoroughly mixed with different

sorted bulking agents. Three types of compost static piles with a volume of 3 m3 each, were
constructed in duplicates: (i) SSD (1:2 v/v; dewatered sludge: Sawdust); (ii) SCH (1:2 v/v;
dewatered sludge: Coffee husks); (iii) SBW (1:2 v/v; dewatered sludge: Brewery waste).
The composting piles were aerobically composted and subjected to manual turning using a
3–7 days turning frequency. The piles were monitored for a period of 21 weeks, between
April and September (relative humidity: 69–80%; air temperature: 19–26 �C), and these
were protected from the rain using a composting shade roofed with clear polycarbonate
roofing sheets. The moisture of all the composting piles was monitored regularly and piles
were wetted as required to maintain the recommended moisture content limits of 50–65%
for effective aerobic composting conditions throughout the entire composting process. The
temperature within the composting piles was monitored daily at the: top (ca. 750 mm from
the pile base), middle (400 mm from pile base), and bottom (200 mm from pile base), using
a TFA (D-Wertheim, Model 19.2008, Sandy, UK) stainless steel body compost thermometer.

2.3. Sample Collection
A representative sample of approximately 1 kg was collected from each composting

pile (See Manga, et al. [26] for a detailed procedure for collecting a representative sample
from composting piles). The collected sample was then split into two equal portions where
one was air-dried, ground, sieved through a <2 mm mesh sieve and used in analyses
for total Kjedhal nitrogen (TKN), total organic carbon (TOC), micro and macro elements
(total potassium (TK), total phosphorus (TP), magnesium (Mg), calcium (Ca), sodium
(Na), iron (Fe), manganese (Mn)) and toxic heavy metals (copper (Cu), nickel (Ni), lead
(Pb), cadmium (Cd), chromium (Cr), and zinc (Zn)). While the other portion of the fresh
sample was preserved at 4 �C and analysed within <4 h for pH, EC, moisture content,
ammonium-nitrogen (NH4

+-N), nitrates (NO3
�-N), plant growth index (PGI) and CO2-C

respiration rate [27,28]. Compost samples were collected on day 0 and weekly, until the end
of the composting period, and these were taken to Bugolobi NWSC central laboratory and
Makerere University, School of Agriculture’s Soil Science Laboratory, Kampala, Uganda
for analysis.

2.4. Analytical Methods
Moisture content was computed from the difference in the sample initial and final

(after oven drying at 105 �C for 24 h) weights, following the procedure stipulated in
Okalebo, et al. [27]. The oven dried samples (at 105 �C for 24 h) were then ashed in a
muffle furnace for 8 h at 550 �C to quantify the total organic matter content, which was
the difference between sample weight before and after combustion [27]. The pH and EC
measurements were conducted in water-soluble extract of 1:10 (w/v) ratio, using a pH
electrode and EC probe of HACH multi-meter (sensION MM374), respectively. Compost
samples were analysed for organic carbon by oxidation using potassium dichromate [27,29].
Nitrogen content was analysed following the kjeldahl method for TKN [27,30], while
NO3

�-N and NH4
+-N were extracted with 0.5 K2SO4 in 1:10 (w/v) from fresh compost

samples and determined by spectrophotometric methods according to procedures reported
in the literature [27,31]. organic matter (OM), nitrogen, and TOC losses were computed
according to Equations (1)–(3) [32]:

OM loss (%) = 100 � 100[X1(100 � X2)]/[X2(100 � X1)] (1)

NT loss (%) = 100 � 100[(X1Nf)/(X2/Ni)] (2)

TOC loss (%) = 100 � 100[(X1TOCf)/(X2/TOCi)] (3)
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where X1 and X2 are the initial and final ashes content (%); Ni and Nf are the initial and
final content of total nitrogen (TKN + NO3

�-N). TOCi and TOCf are the initial and final
content of TOC.

The microbial respiratory activity in compost samples was measured based on CO2-C
evolution rate conducted in closed bottles according to Öhlinger [33] soil respiration tech-
niques, but with some modifications made to techniques based on similar soil respiration
procedures reported in the literature [34,35]. CO2-C was trapped in an alkaline solution
(KOH), which was then titrated with a HCl solution (0.5M). CO2-C production rate was
assessed and expressed as mg CO2-C per mass of organic matter (as Volatile Solids–VS)
per day [35]. Air-dried samples for toxic elements/heavy metals (Cu, Ni, Pd, Cd, Cr, and
Zn) analysis were digested using mixed acid digestion (HClO4 + HNO3 + H2SO4), and the
wet-digest was used in determining the concentrations of each element using an atomic
absorption spectrophotometer [27,36]. Samples for macro and micronutrients (K, TP, Mg,
Ca, Na, Fe, Mn) analysis were digested using sulphuric acid-hydrogen peroxide [27,36]
and the wet-digest was used in determining concentrations of Mg, Ca, Mn, and Fe content
using atomic absorption spectrophotometer (Agilent 240Z AA (200 series AA) with PSD 120
and GTA 120, model, AA-01-0400, Agilent Technologies, Mississauga, ON, Canada), and K
and Na concentrations using flame photometer (model 420 flame photometer, Sherwood
Scientific, Cambridge, UK). However, total phosphorus was determined on the wet digests
using ascorbic acid method [27]. Table S1 in the supplementary information presents a
summary of the analytical methods and laboratory instruments used in the analysis.

The plant growth index (PGI) experiment was performed in a greenhouse of the
department of soil science at Makerere University, Kampala, Uganda. The PGI test was
conducted using a mixture of compost and peat in ratios of 0%, 25%, 50%, 75% and 100%
(v/v). The mixture was placed in 1 litre plastic pots. About 10 tomato seeds (Nuru F1
hybrid Lycopersicon esculentum) were evenly planted in each pot at a depth of about 10 mm
in the mixtures and then well moistened. All experiments were conducted in triplicates.
The pots were covered with a transparent plastic film, which was removed after 3–4 days
when 50% of the sown seeds in the growing medium had emerged through the surface.
The pots treated with 0% compost (100% peat) were used as the control. In the greenhouse,
the ambient temperature ranged between 18–26 �C, with natural daylight of 12 h during
the experiment period. Every 1–2 days, the plants were checked and watered with an equal
volume of distilled water. The plant growth experiment was conducted for 21 days. At the
end of the experiment, the germinated seedlings were harvested by cutting the shoot close
to the substrate surface. The harvested shoots were then oven-dried to a constant weight
at 70 �C for 72 h and weighed (accuracy ± 0.01 g). The PGI value was then expressed
as the ratio of the mean of the total shoot weight of the treatments (25%, 50%, 75%, and
100% of compost) to the mean of the weight of the control samples (0% of compost) using
Equation (4) [37,38].

PGI(%) =
Mean total dried shoot weight of the germinated seeds in the treated
Mean total dried shoot weight of the germinated seeds in the Control

⇥ 100 (4)

2.5. Statistical Analysis
The results were reported as average values ± standard deviation of duplicates and

subjected to statistical analysis using IBM SPSS version 21.0 software (IBM, New York, NY,
USA). Data were analysed using the non-parametric Friedman test for testing the signifi-
cance of differences amongst the mean values, with a 95% confidence level. Spearman’s
rho test was used for evaluating the relationships between variables. p < 0.05 was set as the
statistical significance.
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3. Results and Discussion
3.1. Temperature Evolution

The temperature evolution of the three bulking agent composting piles is shown
in Figure 1. As is common with all composting processes, we observed three different
temperature phases in our study. Firstly, an initial mesophilic phase (27–44 �C), which lasted
in the SCH, SBW and SSD composting piles for about five, 12, and 10 days, respectively,
followed by a thermophilic phase (45–72 �C), which lasted for about 97 days (SCH), 29 days
(SBW) and 59 days (SSD) in the composting piles. The thermophilic phase is referred
to as the active stage, characterised by intense microbial activities, presence of readily
degradable carbon, high temperatures, and rapid degradation rates of organic matter [39].
We further observed a second mesophilic and/or curing phase which immediately followed
the thermophilic phase once the supply of readily available carbon became limited. This
phase was characterised by mesophilic conditions with low temperatures (<45 �C) and
low rates of mineralisation and humification of organic matter. The SSD and SBW piles
exhibited longer initial mesophilic phase than SCH piles, and this might have been due to
the shortage of easily available biodegradable carbon sources.
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Figure 1. Temperature evolution during composting of faecal sludge-FS with: (a) brewery waste-SBW;
(b) coffee husks-SCH; and (c) sawdust-SSD. In (a–c) error bars represent the standard deviation of the
bottom, centre, left side, and right-side pile temperatures.
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In our study, we observed that SSD and SCH piles recorded longer thermophilic phase
duration than SBW piles (See Figure 1a–c). This was probably due to their water retention
capacity, high carbon content, and availability of higher specific surface for microbial
attack, which all support microbial activities for a prolonged period. Such a finding was
also observed by Leconte, et al. [40] during the co-composting of sawdust with poultry
manure. Irrespective of the longer thermophilic phase in SSD and SCH piles, the SBW
piles exhibited the highest composting temperatures in all sections of the composting piles
(67–70.2 �C) during the thermophilic phase (See Figure 1b); however, these thermophilic
conditions were short-lived. This response can be explained by the intensive microbial
activities during early composting stages, which might have contributed to the faster
consumption and depletion of the easily biodegradable carbon in the SBW piles than in
other composting piles, thus a drop in the microbial activities and temperatures during the
later stages. Previous researchers have similarly found microbial activities to be regulated
by the presence of easily biodegradable carbon sources during composting [28,41].

In our study, the composting process was considered complete once the composting
temperatures reached the ambient temperature, and SBW piles exhibited the shortest
composting period of 57 days compared to SSD (with 109 days) and SCH (with 136 days)
(Figure 1a–c). A detailed discussion on the temperature evolution of these composting
piles is presented in a separate note elsewhere [9]. We observed evidence that bulking
agent types have a statistically significant effect (p = 0.0001) on the evolution of composting
temperatures of FS. All the composting piles attained and sustained the optimum conditions
recommended for effective and complete sanitization of the composting material.

3.2. pH Evolution
SSD, SCH, and SBW composting piles exhibited an initial increase in pH values, reach-

ing peak values of 7.9, 9.1, and 8.5 at 14, 21, and 28 days; followed thereafter by a gradual
decrease as the composting process progressed but with slight fluctuations, reaching final
values of 7.4, 6.3 and 6.5, respectively, by the end of the composting process (See Figure 2A).
The final pH values attained in this study are comparable to those reported in the litera-
ture [40,42]. The increase in the pH values observed especially during the thermophilic
phase may be explained by ammonia production, which is linked to the decomposition of
proteins within the composting material, mineralisation, and ammonification of organic
N, as well as NH3-N solubilisation. This hypothesis was confirmed by a significant posi-
tive correlation between the evolution of pH and NH4

+-N during the composting of SSD
(p = 0.006, R2 = 0.32), SCH (p = 0.001, R2 = 0.42), SBW (p = 0.012, R2 = 0.28) piles. A similar
observation was reported by Sánchez-Monedero, et al. [43] and Eklind and Kirchmann [44]
during the composting of similar feedstock.
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Figure 2. Evolution of: (A) pH; and (B) electrical conductive (EC) during the composting of Faecal
Sludge-FS with Brewery waste-SBW, Coffee husks-SCH, and Sawdust-SSD with different bulking
agents. Error bars represent the standard error of n = 2.
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We observed that all composting piles exhibited decreases in pH values during the
thermophilic phase (See Figure 2A). This behaviour may be explained by ammoniacal
nitrogen volatilisations and precipitation of carbonate in the form of calcium carbonate [44].
In this study, SSD piles exhibited generally lower pH values than SCH and SBW piles
throughout the composting process. This may be because they contained a high proportion
of sawdust which is generally acidic in nature. Similar observations have been reported by
Huang, et al. [45] during the composting of pig manure with sawdust. Our study results
indicate that the three bulking agents tested have a significant effect (p = 0.0001) on the pH
evolution during FS composting.

3.3. Electrical Conductivity (EC)
In composting, EC values reflect the salinity of compost, and some authors have

suggested it as an index for evaluating the composting process efficiency as well as the
compost maturity or stability [28]. In our study, the initial average EC values of the SSD
(0.87 mS/cm), SCH (1.94 mS/cm), and SBW (1.88 mS/cm) composting piles gradually
increased but with fluctuations, especially in the thermophilic phase to final EC values
of 0.98, 2.35 and 2.12 mS/cm, respectively, at the end of the composting process. These
increases in EC values may be attributed to the mineralisation of organic matter and the
concentration effect of soluble salt resulting mainly from the net weight loss. This behaviour
was also observed by Cáceres, et al. [41] and Fang and Wong [46] during the composting of
the solid fraction of cattle slurry and sewage sludge with lime amendment, respectively.

In Figure 2B, SBW composting piles exhibited the highest average EC values
(1.44–3.18 mS/cm) especially during the thermophilic phase, followed by SCH piles
(1.25–2.35 mS/cm) and SSD piles (0.63–0.98 mS/cm) with the lowest. This response can
be attributed to the active decomposition phase, which may have contributed to the sig-
nificant release of ions bound to the organic matter into water-soluble form during these
composting periods [38]. In our study, we noted that SSD piles exhibited the lowest EC
values throughout the composting process (Figure 2B). This behaviour is thought to have
been due to the dilution effect of EC values in the FS since sawdust is characterised by
considerably low EC values.

Our results indicate that the studied bulking agent types have a statistically signif-
icant effect (p = 0.0001) on the EC values during FS co-composting. The final EC values
(0.98–2.35 mS/cm) achieved in this study compare well with those published in the lit-
erature [46,47]. We observed that the final EC values of our FS compost were below the
threshold value of 3.0 mS/cm at which no adverse effect can be exerted on the growth of
slightly salt-tolerant plant species [48].

3.4. Changes in Total Organic Carbon and Organic Matter
In Figure 3B, SBW, SSD and SCH organic matter decreased from the initial average

values of 85.6%, 75.8% and 81.4% to 45.8%, 51.6% and 47.6% after 21 weeks of composting,
signifying OM losses of 87.8%, 65.7% and 79.2% of the initial OM, respectively, (See Supple-
mentary Information Figure S1). Similar trends were observed in the evolution of average
TOC decomposition with the SBW, SSD, and SCH composting piles recording a final TOC
average value of 26.9%, 28.6%, and 25.6%, respectively, at the end of the composting period
(Figure 3A). The substantial reduction in TOC and OM content observed in this study
indicates that significant mineralisation of organic carbon and organic matter occurred, and
thus a reduction in volume and weight of the composting piles.
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Figure 3. Changes in: (A) total organic carbon; (B) organic matte; (C) carbon dioxide rate per organic
matter (CO2-C/TVS); and (D) cumulative carbon dioxide per organic matter during the composting of
faecal sludge-FS with brewery waste-SBW, coffee husks-SCH, and sawdust-SSD. Error bars represent
the standard error of n = 2.

In our study, we noted that during the composting of SBW, SCH and SSD feedstock,
TOC of about 197 kg, 199 kg, and 120 kg was converted to CO2-C, and this represents
TOC loss of approximately 85.8%, 79.2%, and 65.7%, respectively. These results indicate
that high proportions of organic carbon were lost in the form of carbon dioxide during the
co-composting of FS with different bulking agents. This fact was confirmed by a very strong
negative correlation between the evolution of TOC and CO2-C respiration rate during the
composting of SSD (p = 0.0001, R2 = 0.755), SCH, (p = 0.0001, R2 = 0.841), SBW (p = 0.0001,
R2 = 0.828) composting piles.

SBW piles and SCH piles exhibited higher TOC and OM losses than SSD piles during
composting (See Supplementary Information Figure S1). A similar observation was made
by Dias, et al. [49] during the composting of poultry manure with coffee husks or sawdust.
This might have been because the SBW and SCH feedstock contained more proportions
of easily biodegradable organic substances than SSD feedstock. Alternatively, the higher
organic matter losses exhibited by such piles can be attributed to the chemical composition
of coffee husks and brewery waste. For example, Pandey, et al. [50] reported coffee husks
to contain a considerable amount of Proteins (9.2%) and carbohydrates (57.8%), of which
about 18–25% by weight - of this coffee husks carbohydrates can be easily hydrolysed
as glucose [51]. Therefore, high organic matter losses exhibited by piles containing such
wastes may be attributed to the high temperatures and intense microbial activities which
may have facilitated the hydrolysis of some complex polysaccharides present in such
wastes [49].

In the same vein, we noted that SSD piles recorded higher organic matter and TOC
content than SCH and SBW throughout the entire composting period, which implies that
significantly low OM decomposition occurred in such piles. This might be because the SSD
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piles might have contained large proportions of more recalcitrant decomposable carbon
compounds such as lignin, and cellulose, which are not easily biodegraded by microbial
during composting and thus resulting into lower TOC and OM decomposition rates. This
observation has also been documented by several researchers [49].

Our study results indicate that the tested bulking agent types have a significant effect
on the organic matter losses (p = 0.0001) and the composting period during FS composting.
We observed that the OM and TOC content in SBW piles stabilised faster (after 8 weeks)
than in SSD and SCH piles (after 14 weeks), and this correlated with the composting
temperatures profiles (Figure 1a–c). This study findings suggest that co-composting of FS
with brewery waste, would reduce the composting period by 6 weeks.

3.5. Evolution of Carbon Dioxide (CO2-C)
In this study, SBW, SSD, and SCH piles exhibited a gradual decrease in the CO2-C

respiration rate as the composting process progressed, reaching stable low average values
of 0.83, 0.6 and 0.84 mg CO2-C gVS�1day�1 within a composting period of eight, 21, and
10 weeks, respectively (Figure 3C). These low average respiration rates reached in all the
monitored piles towards the end of the composting process indicate that the compost was
generally stable. The CO2-C concentrations attained in the current study are in agreement
with those published by other researchers [52].

As seen in Figure 3C, all composting piles exhibited considerably high CO2-C respira-
tion rates during the first two weeks of composting. This response can perhaps be attributed
to the presence of fresh organic substances or a high quantity of easily biodegradable or-
ganic carbon at the beginning of the composting process, which facilitated significant
growth and activities of microorganisms within piles. Although, some previous stud-
ies [15,47] have reported a significant association between the CO2-C respiration rate and
the composting temperature, we never observed this in our study. This can perhaps be
attributed to the heat accumulation phenomenon within the composting solid material,
which eventually results in a further rise in the composting temperatures, yet the microbial
activities measured by CO2-C respiration rate are already decreasing [53].

As seen in Figure 3D, SBW piles exhibited higher cumulative CO2-C respiration rates
than SCH and SSD piles. This implies that SBW piles contained considerably higher quanti-
ties of easily biodegradable organic carbon and favorable conditions, which supported the
greater growth and activities of micro-organisms in such piles. This also correlated well
with higher composting temperatures recorded in these piles. In our study, we observed
increases in the CO2-C respiration rate as the composting process progressed, especially
in the SSD composting piles. This response can be attributed to the degradation of hardly
biodegradable organic carbon sources. A similar phenomenon was observed by other
researchers [54].

Previous authors have identified CO2-C evolution as a sensitive and reliable indicator
for assessing the efficiency of the composting process as well as the compost maturity since
it is directly connected to aerobic biological activities [53]. Studies have documented <2 mg
CO2-C gVS�1day�1 and <1 mg CO2-C gVS�1day�1 as CO2-C threshold values for very
mature compost [55,56]. According to such criterion, SBW piles reached maturity after
a composting period of 8 weeks, followed by SCH and SSD piles with 10 and 21 weeks,
respectively. This result suggests that bulking agent types influence the composting periods
of FS. In the same vein, our results indicate that the studied bulking agent types have a
statistically significant effect (p = 0.0001) on the CO2-C evolution during the composting
of FS.

3.6. Changes in Nitrogen Forms
3.6.1. Total Nitrogen (TN) and Organic Nitrogen

The effect of the three bulking agent types was observed in the TN and organic N
dynamics throughout the composting process. In Figure 4A, the TN content of SBW, SSD
and SCH piles gradually increased but with significant fluctuations from original values of
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3.1%, 1.4%, and 2.9% to final values of 2.8%, 2.7%, 3.1%, respectively, at the end of 21 weeks
composting period; representing a 90.7% (SSD), 47.3% (SCH) and 4.4% (SBW) increase in the
TN concentrations on the initial dry weight. Similar trends were observed in the evolution
of organic nitrogen with the SBW, SSD, and SCH piles recording final average values of
2.8%, 2.7%, and 3.1%, respectively, at the end of the composting process (Figure 4B). This
increase in the TN and organic N concentrations on an initial dry weight basis might
be explained by the concentration effect resulting from the significant decomposition of
labile organic carbon compound, which may have led to a reduction in the dry weight and
volume of the composting material. This behaviour has also been documented in several
composting studies [54,57].
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Figure 4. Evolution of: (A) total Nitrogen (TN); (B) organic nitrogen; (C) ammonium-nitrogen (NH4
+-

N); and (D) nitrate-nitrogen (NO3
�-N) during the composting of faecal sludge-FS with brewery

waste-SBW, coffee husks-SCH, and sawdust-SSD. Error bars represent the standard error of n = 2.

As shown in Figure 4A,B, all composting piles exhibited some decreases in TN and
organic N concentrations during composting. This might be attributed to nitrogen mineral-
isation and transformation to NH4

+-N, especially during the thermophilic phase, and later
to NO3

�-N during the maturation phase. We observed evidence that the lowest organic
nitrogen concentrations exhibited by piles (especially in SBW piles) synchronised well with
the highest NH4

+-N concentration recorded (See Figure 4B,C), which confirms that some
fractions of organic nitrogen were mineralised to produce NH4

+-N. Similar, behaviour was
also found by other researchers [6,57].

Interestingly, N losses were noted from all piles when the TN increase was computed
on an ash content basis. The SBW, SCH and SSD piles recorded N-losses of about 72.5%,
48.2% and 2.2%, respectively (See Supplementary Information, Figure S1). The N-losses
exhibited by all composting piles in our study are thought to have been due to the strong
degradation of organic substances by intensive microbial activities. This hypothesis was
confirmed by a statistically significant negative association between evolution of CO2-C
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and N-loss throughout the composting process (SSD piles (p = 0.04, R2 = 0.19); SCH piles
(p = 0.0001, R2 = 0.46); SBW piles (p = 0.0001, R2 = 0.68)). Our results suggest that to a
certain extent the microbial activities are responsible for the N-losses during composting.
Benito, et al. [58] also observed a similar behaviour during the composting of pruning
waste. On the other hand, the higher temperatures (>40 �C) and pH (above 7) especially
during the thermophilic phase might also have partly enhanced this N-losses process
through NH3-N volatilisation [59].

We observed that SBW piles exhibited the highest initial average TN values (3.1%) and
N-losses (72.5%) followed by SCH and SSD piles. The higher nitrogen content and very
low C/N ratio (<20:1) observed in the SBW feedstock (Figure 5B) at the beginning of the
composting process is thought to have been responsible for the huge N-losses exhibited
by these piles, mainly in the form of NH3-N volatilisation. Similarly, several studies have
found the degree of N-losses during composting to mainly depend on the characteristics of
the starting feedstock, especially C/N ratio [60,61].

It is noteworthy that the SSD piles exhibited the lowest initial average TN value of
1.4% and N-losses of only 2.2% at the end of the composting process. This can be attributed
to the enhancement of N immobilisation in microbial biomass due to the use of the sawdust
(in the starting feedstock) that contains a high content of lignocellulosic material. This
phenomenon was also observed by Leconte, et al. [40] who found piles containing sawdust
to have conserved more nitrogen than rice hull piles.

This study results indicate that the bulking agent types have a statistically significant
effect (p = 0.0001) on the organic nitrogen mineralisation and TN evolution during FS
composting. Importantly, our results suggest that composting of FS with sawdust or coffee
husks reduces N-losses by 24–70%.

3.6.2. Ammonium-Nitrogen (NH4
+-N)

In Figure 4C, the NH4
+-N trends of the three types of bulking agent compost differed

significantly (p = 0.0001). The average NH4
+-N concentrations of SCH and SSD composting

piles were considerably low during the early composting periods, and these increased
reaching peak values after 2 and 1 weeks of composting; followed by a decrease thereafter
to a mean low value of 0.010 and 0.009 g/kg, respectively, at the end of the composting
process. Similarly, the NH4

+-N concentrations of the SBW piles increased rapidly from the
initial mean value to peak values within 2 weeks of composting, and this then decreased to
a mean low value of 0.310 g/kg after a composting period of 21 weeks. Our NH4

+-N final
concentrations and evolution trends align well with those published in the literature [62].

In Figure 4C, it can be noted that SCH piles did not exhibit an initial increase in the
NH4

+-N concentration until the 7th day. This can be explained by the delay in attaining
thermophilic temperatures in such piles, which clearly indicates delayed microbial and
decomposition activities as well as organic matter and nitrogen mineralisation. In our study,
we observed that all the composting piles exhibited an increase in NH4

+-N concentrations
during the early stages of composting. This response may be attributed to the formation of
NH3-N from organic nitrogen as the increase in NH4

+-N was observed to be coupled with
a slight decrease in organic N (Figure 4A,C).

As shown in Figure 4C, SBW piles exhibited considerably higher NH4
+-N content than

SSD and SCH piles throughout the composting process; and this might have been due to the
higher initial easily decomposable nitrogenous substances with a lower C/N in the starting
SBW feedstock. Surprisingly, during the composting of SSD piles, comparatively low
NH4

+-N concentrations of approximately 0.28 g/kg were recorded during the thermophilic
phase where the pH (was >7.0) and composting temperatures were considerably still high
(>40 �C), yet studies by Bishop and Godfrey [63] found high temperatures (>40 �C) and
high pH (>7.0) to have been responsible for the significant nitrogen losses via NH3-N
volatilization. This may probably have been due to the significant NH3-N losses from
the porous composting mixture to the atmosphere as the convective air flows through
the composting piles. It is likely that the SSD composting material may have lost its non-
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porousness physical structure and bulk density during intensive composting periods and
regular turning. This phenomenon was also observed by Changa, et al. [52] during the
composting of dairy manure with straw.

In all the composting piles, NH4
+-N concentration decreased to low mean values after

the composting temperatures had decreased to mesophilic conditions (<40 �C) (Figure 1a–c).
This behaviour can be attributed to the high rates of NH4

+-N losses via the nitrification
process (NO3

�-N) [64]. This observation was confirmed by a statistically significant and
meaningful negative correlation (SSD (p = 0.023, R2 = 0.23); SCH (p = 0.0001, R2 = 0.48);
and SBW (p = 0.0001, R2 = 0.64)) between the evolution of NH4

+-N and NO3
�-N content

during composting.
Previous studies have recommended the use of NH4

+-N as an indicator for assessing
the composting process efficiency as well as compost stability or maturity. In the same
vein, the threshold NH4

+-N value of <0.3 g/kg has been suggested for mature or stable
compost [65]. In our study, this threshold value was reached and surpassed by all piles
before the end of the composting process, which implies that the compost was mature.

3.6.3. Nitrate-Nitrogen (NO3-N)
In Figure 4C,D, we observed that as the concentrations of NH4

+-N decreased dur-
ing the composting of SBW, the NO3

—N concentrations increased gradually reaching an
average value of 2.32 g/kg on the 14th week, but this dropped to 2.16 g/kg by the end
of 21 weeks composting period. However, in SCH and SSD piles, NO3-N concentrations
gradually increased with fluctuations after 4 and 10 weeks of composting, reaching final
values of 2.7 g/kg and 0.79 g/kg, respectively, at the end of the composting period.

In this study, SBW and SCH piles exhibited higher NO3-N content than SSD piles at
the end of the composting process (Figure 4D). This might have been due to the higher
initial TN concentration that was present in the SBW and SCH feedstock. During the
early composting stages, the rate of nitrification was generally low in all the composting
piles (Figure 4D). This might probably be because of high ammonia concentrations, high
temperatures, and pH values observed during the thermophilic phase, which might have
impeded the growth and activities of nitrifying bacteria. This observation was supported
by a significant negative correlation between the evolution of pH and NO3-N concentration
during the composting of SSD piles (p = 0.007, R2 = 0.31), SCH piles (p = 0.048, R2 = 0.18)
and SBW piles (p = 0.022, R2 = 0.24); and a strong negative correlation between the evolution
of NH4

+-N and NO3-N (see the NH4
+-N section). Previous composting studies have also

found the high temperatures (>40 �C), high ammonia concentrations and high pH to have
strongly hindered the growth and activities of the nitrifying bacteria (nitrification process),
especially during the thermophilic phase [66]

As shown in Figure 3D, we observed some decreases in the NO3
�–N concentrations

during the early composting periods, especially in the SCH piles. This might have been due
to NO3

�-N losses via microbial denitrification from NO3
�-N to NO, N2O, and N2; and this

may have occurred in some isolated zones within the composting material, which may have
turned or become anaerobic. This is in agreement with Tiquia and Tam [57] who found
microbial denitrification to have been responsible for NO3

�-N losses - as considerably high
denitrifying bacteria populations were observed during early composting periods.

Our study results demonstrate that the bulking agent types have a statistically sig-
nificant effect (p = 0.0001) on NO3

�-N evolution during the composting of FS. The final
NO3

�-N concentrations observed in this study conform very well with 1.746–3.019 g/kg
and 0.9–3.03 g/kg published in Paredes, et al. [32] and Leconte, et al. [40]. Fuchs, et al. [65]
recommended a NO3

�-N threshold value of 0.066 g/kg TS or 0.04 g/kg FS for compost ap-
plication in the garden, and the final NO3

�-N values attained in this study were greater than
this threshold value. This implies that compost was mature and safe for use in agriculture.
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3.7. Compost Maturity
3.7.1. Plant Growth Index (PGI)

In Figure 5A, SSD and SBW piles exhibited a decrease in the initial PGI value from
49% and 49.3% to the lowest values of 32.5% and 27.3% on day 28 and 14, respectively. This
was then followed by a gradual increase but with slight fluctuations, reaching final values
of 87.2% and 81.0%, respectively, by the end of the composting process. On the contrary,
SCH piles showed an initial increase in the PGI values within the first week, followed by a
decrease reaching the lowest value of 48.7%; then a gradual rise thereafter to the final value
of 95.3% at the end of the composting process (Figure 5A). It was noted that the lowest PGI
values recorded synchronised with the high NH4

+-N concentration (Figures 4C and 5A).
Our study findings demonstrate that PGI values of the three bulking agents compost-

ing piles, generally increased as the composting process progressed. This response can be
explained by the decomposition of phytotoxic compounds (such as NH4

+-N, short chain
volatile fatty acids) present in the composting material. In Figure 5A, significant decreases
in the PGI values were observed in all composting piles, especially during the early stages
of composting. This may have been due to the release of high NH4

+-N concentration during
the active stages of composting. This observation was supported by a strong negative rela-
tionship observed in all composting (SSD (p = 0.002, R2 = 0.40), SCH (p = 0.0001, R2 = 0.48),
SBW (p = 0.0001, R2 = 0.54)) between evolution of PGI and NH4

+-N concentrations. A
similar phenomenon was observed by Tiquia, et al. [67] during the composting of spent
pig-manure sawdust litter, who found NH4

+-N to have been the major factor responsible
for the phytotoxicity of plant species studied. On the other hand, the decrease in the PGI
may also be linked to the degradation of organic matter, which results in the production or
release of short-chain organic acids (especially acetic, valeric and propionic acids) [39,68].
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Figure 5. Changes in: (A) plant growth index; (B) carbon/nitrogen (C/N); and (C) ammonium-
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�-N) during composting of faecal sludge-FS with brewery waste-
SBW, coffee husks-SCH, and sawdust-SSD. Error bars represent the standard error of n = 2.
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During the late stages of composting, all the composting piles exhibited a significant
increase in the PGI values, which implied that the phytotoxic substance had disappeared,
and the compost was generally phytotoxic free and mature. The literature has documented
the germination index/plant growth index as one of the most reliable and sensitive in-
dicators for evaluating compost phototoxicity and maturity [68]. PGI threshold value of
�80% has been suggested for phytotoxic-free and mature compost [69]. In the present
study, this threshold value was reached and exceeded after a composting period of 8 weeks
by SSD and SCH piles. However, the compost was still immature at this stage since fur-
ther fluctuations (drops) in PGI values below the threshold value were observed as the
composting process progressed, until 14 and 21 weeks, respectively, when they stabilised.
Similarly, the SBW composting piles reached the threshold value after a composting period
of 21 weeks and this implied that the compost was mature. It is very interesting to note
that according to this PGI threshold value criterion, the SBW compost reached maturity
after 21 weeks composting period, yet the composting temperature and other maturity
indices had indicated that the SBW compost had stabilised or matured about 4 weeks
earlier. This result suggests that there is no single index that can be used solely for accessing
the efficiency of the composting process and compost maturity. However, the delay of
the SBW piles in reaching the PGI threshold value can be attributed to the high NH4

+-N
concentrations observed in such piles, which may have inhibited plant growth. The PGI
results also suggest that the bulking agent types had a significant effect (with p = 0.016) on
the composting period of FS.

The final PGI values of 81.0–95.3% recorded in this study are in line with those
published by other authors [68]. However, these PGI values are higher than the 60% GI
values (open cress) reported by Cofie, et al. [6] during the composting of a similar feedstock.
This discrepancy in the PGI values results could have been due to the differences in the
methodologies used as well as the type and characteristics of the soil used for the control
samples. In the present study, peat soil was used for the control samples while in the latter,
steamed sterilised soil (for 3 h at 100 �C) stored for one year was used.

3.7.2. C/N Ratio
In this study, SSD piles recorded the highest mean initial C/N ratio that gradually

declined from 28.9 to 10.8 after 21 weeks of composting. Similarly, in SCH piles, the initial
C/N ratio dropped gradually from 21.84 to 7.57 within the composting period of 21 weeks.
However, the SBW piles recorded a relatively low mean initial C/N ratio of 15.0, which
decreased to 9.55 by the end of the composting process (Figure 5B).

Although the three bulking agent compost types recorded a significant difference in
the C/N ratio values (p = 0.0001), they all exhibited a similar C/N ratio evolution pattern,
with a gradual decrease as the composting process progressed. The gradual decrease in
the C/N ratio has been well documented in the literature and attributed to the decrease in
organic carbon and increase in total nitrogen as the composting process progresses [60,68].
However, the exhibited significant difference in the C/N ratio values of the three bulking
agent compost types may probably have been due to the difference in the proportions of
easily biodegradable carbon sources within the composting feedstock.

Several researchers have suggested C/N threshold values for stable and mature
compost. In the same vein, an optimum C/N value of <12 was proposed by Iglesias
Jiménez and Pérez García [70] for compost with a good grade of maturity. This threshold
value was reached by SSD, SCH, and SBW piles after a composting period of 21, 21 and
14 weeks, respectively. This implied that the compost was mature and therefore, can be
reused in agriculture. Our study results indicate that the bulking agent types have a
statistically significant effect (p = 0.0001) on the compost maturity and composting periods
of FS. The C/N ratio values attained in our study are in line with those published in the
literature [71].
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3.7.3. NH4
+-N/NO3

�-N Ratio
Figure 5C presents the evolution of NH4

+-N/NO3
�-N ratio during the composting of

FS with three bulking agent types. In this study, the NH4
+-N/NO3

�-N ratio of SSD, SCH,
and SBW composting piles decreased gradually as the composting process progressed,
reaching relatively low and stable values of 0.011, 0.003 and 0.15, respectively, by the
end of the composting period (Figure 5C). This response can be attributed to the drop
in NH4

+-N concentrations because of NH4
+-N loss via NH3-N volatilisation, and the

rapid increase in NO3
�-N content due to the high nitrification rate, especially during

the maturation period. In Figure 5C, SBW composting piles exhibited the highest NH4
+-

N/NO3
�-N ratio throughout the composting process. This may be attributed to the

presence of higher degradable nitrogenous substances in the starting feedstock and higher
NH4

+-N concentrations recorded in such piles. Our study results revealed that the bulk
agent types have a statistically significant effect (p = 0.0001) on the evolution of NH4

+-
N/NO3

�-N values during FS composting.
The NH4

+-N/NO3
�-N ratio has been reported by several composting studies as

one of the most important compost stability or maturity indicator [39]. For instance,
Bernal, et al. [72] suggested a threshold NH4

+-N/NO3
�-N ratio value of <0.16 for mature

or stable compost. Interestingly, in this study, the recommended threshold value was
reached and even exceeded by SSD piles after a very short composting period of 6 weeks
(Figure 5C). However, the compost for such piles was neither mature nor stable as the
composting temperatures were considerably still high, implying an active composting
process. Thereafter, both temperature and NH4

+-N/NO3
�-N values stabilised after a

composting period of 14 weeks with a NH4
+-N/NO3

�-N value of 0.02, which implied
that the compost was then mature or stable. Surprisingly, the SCH and SBW piles attained
the suggested NH4

+-N/NO3
�-N threshold value after a composting period of 10 and

14 weeks, which implied that the compost was mature since the composting temperatures
were also relatively stable during these composting periods.

The NH4
+-N/NO3

�-N values recorded in this study for mature or stable compost
compare well with 0.02–0.38, 0.003–5 and 0.01–20.6 published by Bernal, et al. [72], Francou,
et al. [71] and Forster, et al. [73], respectively. We noted that the bulking agent types had a
statistically significant effect (p = 0.0001) on the stability of NH4

+-N/NO3
�-N values and

the composting period of FS. Based on NH4
+-N/NO3

�-N ratio maturity index, our study
findings suggest that composting of FS with SBW piles reduces the composting periods of
FS by 4 weeks.

3.8. Compost Trace Elements and Heavy Metals
The presence of high heavy metals concentrations in mature compost is one of the

major concerns for recycling compost in agriculture since they have adverse effects on the
plant growth and health, human health, and soil microorganisms and properties. Therefore,
in our study, it was important to evaluate the concentrations of heavy metals in the initial
feedstock and final compost, and these results are presented in Table 2. It can be noted
in Table 2 that on a dry weight basis, all composting piles exhibited an increase in some
heavy metals (Zn, Pb, Cr, Cu) and macro as well as micronutrients (Na, Mn, Mg, Ca, TP,
TK) concentrations by the end of the composting process. Similar behaviour was observed
by Yañez, et al. [15]. This increase in the nutritional aspects and heavy metals content is
thought to have been due to the concentration effect resulting from significant degradation
of matter, thus a net loss of dry weight. Surprisingly, on an ash content basis, SSD, SCH,
and SBW piles exhibited a significant decrease in the concentrations of heavy metals as
well as macro and micronutrients of about 12–55%, 42–74% and 51–89%, respectively, by
the end of the composting process. This decrease can be attributed to the loss of heavy
metals and nutrient content through leaching. During composting, a significant quantity of
leachate was observed to drain from SBW piles than SSD and SCH piles. This is anticipated
to have been the major reason for the significant heavy metals and nutrient content losses
observed in such piles.
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Table 2. Nutrient and heavy metals concentrations of initial feedstock and mature compost of FS
with different bulking agents.

Compost
Characteristics

SSD SCH SBW
EU Range (2000)

Initial Final Initial Final Initial Final

Bulky Density
(kg/m3)

486.0 ± 0.0 448.0 ± 17.0 482.6 ± 2.2 485.0 ± 7.1 489.0 ± 5.7 387.5 ± 46.0 –

Organic matter (%) 75.8 ± 2.0 51.6 ± 1.2 81.4 ± 3.4 47.6 ± 0.8 85.6 ± 1.4 45.8 ± 0.5 –
Total organic
carbon (%) 40.6 ± 1.2 28.6 ± 1.1 45.5 ± 2.1 25.6 ± 0.2 46.6 ± 1.0 26.9 ± 0.6 –

Total nitrogen (%) 1.4 ± 0.0 2.7 ± 0.3 2.1 ± 0.1 3.1 ± 0.3 2.7 ± 0.1 2.8 ± 0.3 –
Nitrate-N

(NO3
�-N) (mg/kg) 53.6 ± 22.9 787.0 ± 114.9 81.3 ± 13.5 2740.4 ± 259.0 82.0 ± 8.0 2162.7 ± 123.4 –

Ammonium-N
(NH4

+-N) (mg/kg) 322.1 ± 31.2 8.6 ± 0.2 205.4 ± 3.2 9.4 ± 2.2 1125.6 ± 70.4 305.3 ± 189.4 –
Macro and

micronutrients

Total phosphorus
(TP) (g/kg) 6.7 ± 2.8 10.8 ± 2.4 8.8 ± 0.4 11.9 ± 2.2 21.8 ± 3.4 23.8 ± 2.2 –

Total potassium
(TK) (g/kg) 2.8 ± 0.2 7.1 ± 1.2 3.2 ± 0.7 5.6 ± 1.8 3.0 ± 0.9 5.0 ± 0.9 –

Calcium (Ca)
(g/kg) 6.7 ± 1.6 7.4 ± 0.4 5.2 ± 1.5 6.0 ± 1.1 5.7 ± 2.0 6.3 ± 0.4 –

Magnesium (Mg)
(g/kg) 2.3 ± 0.7 2.7 ±0.5 2.8 ± 0.3 2.9 ± 0.1 2.0 ± 0.4 2.2 ± 0.3 –

Iron (Fe) (mg/kg) 2175.1 ± 421.7 2955.7 ± 48.2 2974.8 ± 774.6 3146.2 ± 374.9 2641.1 ± 900.8 2094.6 ± 395.9 –
Manganese (Mn)

(mg/kg) 109.5 ± 9.7 204.3 ± 12.0 180.0 ± 52.8 364.0 ± 11.4 114.9 ± 46.2 201.3 ± 30.4 –
Sodium (Na)

(g/kg) 1.0 ± 0.0 1.4 ± 0.1 0.9 ± 0.2 1.1 ± 0.3 0.8 ± 0.2 1.2 ± 0.1 –
Toxic

Elements/Heavy metals

Copper (Cu)
(mg/kg) 30.8 ± 6.6 41.9 ± 15.0 47.4 ± 2.8 53.9 ± 15.7 35.6 ± 4.3 48.4 ± 7.4 70–600

Zinc (Zn) (mg/kg) 245.3 ± 91.0 349.4 ± 12.7 200.7 ± 72.3 337.6 ± 30.5 231.6 ± 78.5 313.5 ± 4 3.8 210–4000
Lead (Pb) (mg/kg) 39.5 ± 4.7 38.3 ± 7.7 33.3 ± 11.1 44.6 ± 4.2 46.4 ± 6.9 41.1 ± 7.4 70–1000

Nickel (Ni)
(mg/kg) 8.1 ± 0.8 12.8 ± 0.0 10.8 ± 4.3 9.1 ± 2.6 13.7 ± 3.5 12.0 ± 3.0 20–200

Chromium (Cr)
(mg/kg) 39.5 ± 1.7 54.2 ± 0.7 56.2 ± 35.7 58.5 ± 15.9 52.6 ± 22.7 63.2 ± 11.2 70–200

Cadmium (Cd)
(mg/kg) 0.51 ± 0.35 0.5 ± 0.1 0.57 ± 0.09 0.4 ± 0.1 0.8 ± 0.4 0.6 ± 0.1 0.7–10

Compost of faecal sludge with Brewery waste-SBW, Coffee husks-SCH, and Sawdust-SSD.

Importantly, the concentrations of all toxic metals (Cd, Cr, Ni, Pb and Zn) in mature
compost were far below the maximum limits (see Table 2) suggested by European Union
states [74]. Further, all composting piles exhibited considerably high micro and macronu-
trients in the final compost, with SSD and SCH piles recording the highest (Table 2). In
the present study, SSD, SCH, and SBW piles recorded NPK values of 2.7:1.1:0.7, 3.1:1.2:0.6
and 2.8:2.4:0.5, respectively, in the final compost. Such nutrient concentrations are quite
sufficient for plant growth since Central Public Health and Environment Engineering Or-
ganization [75] suggested NPK content of >1% for each element in the final compost to
be sufficient.

3.9. Implication of Study Findings
Given the compact nature and low C/N ratio of dewatered FS, optimisation of its

composting process requires an understanding and selection of the suitable bulking agent
for co-composting with it. We investigated the effect of different bulking agents on the
FS composting process. In this study, bulking agent types had a statistically significant
effect on the evolution of composting temperatures, pH, EC, nitrogen forms, organic matter
mineralisation, organic matter and nitrogen losses, maturity indices and quality of the final
compost. Importantly, we observed that co-composting of FS with sawdust reduces the
nitrogen losses to 2.2% and improves the plant growth index to more than 80%. N losses
associated with SSD piles were considerably lower than those exhibited by coffee husks
(48.2%) and brewery waste piles (72.5%). From the resource recovery perspective, our study
findings suggest sawdust as a suitable bulking agent for co-composting with FS since it
enhanced nutrient recovery (especially nitrogen) than other tested bulking agents.
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In our study, temperature, organic matter, C/N, NH4
+-N/NO3

�-N, plant growth
bioassay, NH4

+-N, and CO2-C evolution, parameters were used for assessing the FS com-
post maturity and stability. Based on the maturity indices suggested in the literature for
these parameters, overall, the brewery waste piles reached maturity after 8 weeks, while
the coffee husks and sawdust piles required more than 6 weeks of composting to reach
maturity. However, this study results suggest that there is no single maturity index that
can be used for assessing the composting process efficiency as well as the compost maturity
since discrepancies were observed in the composting periods required to reach the maturity
of the suggested indices. Therefore, it is important that more than one maturity index
is used for assessing the compost maturity or stability. Based on the evolution of the
physical and chemical parameters of the tested bulking agents, our study findings suggest
a C/N ratio value of 9.6; NH4

+-N/NO3
�-N ratio of 0.02; CO2-C of 0.84 mg CO2-C

gVS�1day�1 and PGI values of �81.0% as the reliable threshold values for mature and
stable FS compost.

We observed at the end of the composting period, that all piles generated pathogen-
free compost (detailed results reported in a separate note elsewhere [9]) with high micro
and macro-nutrient content as well as low heavy metals concentrations, which qualifies
the mature FS compost attained in this study as first-class compost, according to standards
suggested by European Commission [76]. These study findings are of remarkable signifi-
cance as they provide insights for decentralised treatment and sustainable management
of FS and other organic wastes such as sawdust, coffee husks and brewery waste in the
low-and-middle income countries, especially in the rural and peri-urban communities
where there is a strong practice of reusing organic waste in agriculture. Further, the results
have proved that in some African communities, co-composting of FS with locally available
bulking agents such as sawdust, or coffee husks may be a viable option for FS treatment at
a household level or small scale. However, in such cases or scenarios, the sizes of the piles
might be increased to enhance self-thermal insulation and also prolong the thermophilic
phase for effective pathogen inactivation [9]. The heating up of the piles can also be en-
hanced by covering up the composting piles with mature compost or screen to reduce on
heat losses during composting.

4. Conclusions
This research study aimed at investigating the effect of locally available bulking agents

(i.e., sawdust, coffee husks and brewery waste) on the faecal sludge (FS) composting process
and the properties of the final FS compost. The following conclusion can be drawn based
on the findings obtained:
i. Irrespective of the different bulking agents used, all composting piles attained the

optimum temperatures (>55 �C) and conditions suggested for effective pathogen
inactivation and organic matter decomposition during composting;

ii. The bulking agent types have a statistically significant effect (p = 0.0001) on the
composting periods and evolution of composting temperatures, pH, EC, organic
matter mineralisation, total organic carbon, nitrogen forms, and maturity indices
(i.e., Carbon dioxide (CO2-C), Plant Growth Index, C/N ratio, NH4

+-N/NO3
�-N

ratio) and quality of the final compost (i.e. micro and macro-nutrients (i.e. Ca, Mg,
Fe, Mn, Na) and toxic elements/heavy metals (i.e. Cu, Zn, Pb, Ni, Cr, and Cd))
during FS composting;

iii. From the perspective of nutrient recovery, especially nitrogen, sawdust is the most
suitable bulking agent for composting with FS - as it exhibited the lowest nitrogen
losses of only 2.2% compared to coffee husk (48.2%) and brewery waste (72.5%)
and lowest organic matter losses, thus improving the agronomic values of the final
compost as a soil conditioner;

iv. There is no single maturity index that can be used for assessing the composting
process efficiency and compost maturity – as in our study discrepancies were
observed in the composting periods required to reach the maturity of the suggested
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indices. Therefore, it is important that more than one maturity index is used for
assessing compost maturity. Our study findings suggest a C/N ratio value of 9.6;
NH4

+-N/NO3
�-N ratio of 0.02; CO2-C of 0.84 mg CO2-C gVS�1day�1 and PGI

values of �81.0% as the reliable threshold values for mature and stable FS compost;
v. Co-composting of FS with sawdust, coffee husk or brewery waste using seven days

turning frequency, can generate first-class mature and stable FS compost for reuse
in agriculture, within a composting period of 14 weeks. However, co-composting
of FS with brewery waste can reduce the FS composting periods from 14 weeks to
eight weeks;

vi. FS co-composting can be considered a sustainable and decentralised treatment
option for FS and other organic wastes such as sawdust, coffee husks and brewery
wastes in rural and peri-urban communities, especially where there is a strong
practice of reusing organic waste in agriculture.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/ijerph191710592/s1, Table S1: Summary of composting temperatures recorded from piles
section during the composting of FS with different bulking agents. Figure S1: Changes in (A) Ash
content, (B) Total organic carbon losses, (C) Nitrogen Losses and (D) Organic matter losses during
the composting of Faecal Sludge-FS with Brewery waste-SBW, Coffee husks-SCH, and Sawdust-SSD.
Table S2: Analytical methods and laboratory instruments used for analyzing compost samples for
physical and chemical properties. Supporting Data. References [27,29–31,33–36,58] are cited in the
supplementary materials.
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