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ABSTRACT

The affordable, accurate, and generalizable prediction of spectroscopic observables plays a key role in the analysis of increasingly complex
experiments. In this article, we develop and deploy a deep neural network—XANESNET—for predicting the lineshape of first-row transition
metal K-edge x-ray absorption near-edge structure (XANES) spectra. XANESNET predicts the spectral intensities using only information
about the local coordination geometry of the transition metal complexes encoded in a feature vector of weighted atom-centered symmetry
functions.We address in detail the calibration of the feature vector for the particularities of the problem at hand, and we explore the individual
feature importance to reveal the physical insight that XANESNET obtains at the Fe K-edge. XANESNET relies on only a few judiciously
selected features—radial information on the first and second coordination shells suffices along with angular information sufficient to separate
satisfactorily key coordination geometries. The feature importance is found to reflect the XANES spectral window under consideration and
is consistent with the expected underlying physics. We subsequently apply XANESNET at nine first-row transition metal (Ti–Zn) K-edges. It
can be optimized in as little as a minute, predicts instantaneously, and provides K-edge XANES spectra with an average accuracy of ∼±2%–4%
in which the positions of prominent peaks are matched with a >90% hit rate to sub-eV (∼0.8 eV) error.
© 2022 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0087255

I. INTRODUCTION

Wherever there are valuable data to be predicted, processed,
labeled, or mined, one is guaranteed to find machine learning mod-
els working autonomously and leveraging recent advances in the
accessibility of hardware and software optimized for the task at hand.
Highly effective machine learningmodels that are able to extract and
learn patterns represented in data without hand-coded heuristics
continue to transform what we can do and the way we do it across
the physical sciences1—as they have in chemistry for quite some
time.2

The trajectory of machine learning in chemistry inclines
steeply upward, and applications continue to grow at pace.3 In the
chemical research and development domain, applications include

the design and discovery of new materials,4–9 catalysts,10–13 and
drugs14–16 as well as chemical reaction prediction and synthesis
planning.17–25 In the domain of ab initio computational chemistry,
interest in the disruptive potential of machine learning is surging
too.26–33 Here, there have been significant successes with machine
learning models that redress the accuracy/affordability balance of
atomistic modeling—from parametric force-fields34–38 to accurate
quantum mechanical properties obtained from low-cost electronic
structure calculations39–43 and accelerated excited-state molecular
dynamics.44–55

It ought to be of no great surprise that spectroscopy—already
in renaissance following fast-paced developments in method-
ology and instrumentation, especially at high-brilliance light
sources56–60—should also be simultaneously transformed by
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machine learning.61 Indeed, the two are a natural pairing; machine
learning is similarly grounded in linear mathematics (e.g., least-
squares regression) and probability (e.g., maximum-likelihood
parametric estimation)—concepts that are familiar to experimental
spectroscopists. With the popularity of emergent spectroscopies
on an upward trajectory, resulting increasingly in situations
where new methods and new users are brought together, machine
learning offers a route to affordable and accurate “out-of-the-box,”
“limited-expertise-required” analyses.

In spectroscopic applications, machine learning models are
typically assigned one of the two tasks: either carrying out “forward”
(structure-to-spectrum) or “reverse” (spectrum-to-structure or
spectrum-to-property, alternatively “inverse”) mappings. There are
now many examples of machine learning models for “reverse”
mappings in the literature although comparatively fewer for
“forward”mappings. These collectively encompass infrared (IR),62,63

ultraviolet/visible (UV/vis),49–51,64–67 Raman scattering,68 neutron
scattering,69 nuclear magnetic resonance (NMR),70 and x-ray
techniques.71–97 The focus of this article is on a “forward” map-
ping approach in the domain of x-ray absorption spectroscopy
(XAS).

The prediction of spectroscopic observables—a paradigmatic
“forward” mapping—is a central objective of computational chem-
istry for spectroscopists as it serves as a conduit between experiment
and theory. Achieving a detailed understanding of the properties
of a molecule/material on the atomic level via simulations is often
the key to understanding and explaining experimentally observed
phenomena; ultimately, it is also the key to harnessing them in
practical applications. The challenge lies in making the calculations
capable of capturing satisfactorily the complexity of the phenomena
while simultaneously accurate, affordable, and generally applicable
enough to appeal to users. It transpires—unsurprisingly—that this
is a tall order indeed!

From the perspective of “forward” mapping methodologies,
there are three distinct approaches: (i) focusing on a spectral window
(e.g., a “fingerprint” window sensitive to a particular property or
observable) and developing a machine learning model to predict
directly the resonances within this window;48,49,98–103 (ii) represent-
ing the resonances via a Hamiltonian matrix associated with a closed
set of secular equations and developing a machine learning model to
predict the Hamiltonian matrix elements;27,39,41,42,50 and (iii) devel-
oping a machine learning model to predict directly the spectral
lineshapes.71–74,104,105 The latter approach, which we adopt in this
article and elsewhere where we have worked with machine learning
models for XAS in theoretical71 and practical73,74 settings, circum-
vents the formidable challenge of predicting the huge number of
resonances around the x-ray absorption edge.106 Sitting alongside
the well-developed theory for XAS (e.g., multiple scattering theory,
multiplet theory, and Bethe–Salpeter k-space approaches plus exten-
sions of popular ab initio quantum chemical strategies),106 machine
learning models for fast “forward” XAS mappings are well placed
to unlock affordable analyses in particularly challenging cases, e.g.,
coupling to ultrafast dynamics simulations107–118 and describing
accurately disordered/amorphous materials.119–124 In these cases,
many configurations need to be sampled to simulate XAS with
even qualitative accuracy, but the time- and resource-intensiveness
of the individual computational calculations presently makes such
treatments challenging.106

FIG. 1. A schematic of the XANESNET DNN and workflow detailed in this arti-
cle. The local geometries around first-row transition metal x-ray absorption sites
(I, “samples,” Sec. II A) are inputs, and the corresponding theoretically calcu-
lated K-edge XANES spectra (II, “labels,” Sec. II C) are outputs. The samples
are encoded as descriptive feature vectors (III; Sec. II B 2) and associated with
their labels to construct reference datasets from which the DNN (IV, Sec. II B 1)
discovers a “forward” structure-to-spectrum mapping via iterative optimization of
the internal weights (V). We start in the familiar territory at the Fe K-edge and then
extend the DNN across the first row of transition metals (Ti–Zn, VI).

The K-edge x-ray absorption near-edge structure (XANES)
spectra of first-row transition metals—the focus of the present
article—are characterized by two distinct regions: the pre- and post-
edge. The former contains features corresponding to the promotion
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of core electrons into unoccupied orbitals at energies just below the
ionization potential. These features provide information about the
valence orbital character of the system under study although 3d ← 1s
electronic transitions are dipole forbidden, and consequently, these
features tend to have low intensity. The latter contains above-
ionization-potential resonances that occur due to the interference
of the electron wave(s) originating from the x-ray absorption site
with the electron wave(s) scattered back from the potential of the
neighboring atoms. The low electron kinetic energies (<50 eV) asso-
ciated with the XANES window of the XAS spectrum mean that
these features are dominated by the interference of electron wave
scattering pathways involving multiple nearest-neighbor atoms. The
XANES window encodes highly detailed geometric (e.g., coordina-
tion number and distance) and electronic (e.g., oxidation and spin
state) information.

In this article, we build on our earlier proof-of-principle
work in Ref. 71 to develop and deploy a deep neural net-
work (DNN)125—XANESNET (Fig. 1)—for predicting the lineshape
of first-row transition metal K-edge x-ray absorption near-edge
structure (XANES) spectra. XANESNET predicts the K-edge
XANES spectral intensities using only information about the local
coordination geometry of the transition metal complexes. We
address in detail the calibration of the feature vector that encodes
this information for the particularities of the problem at hand, and
we explore the individual feature importance to reveal the physical
insight that XANESNET provides at the Fe K-edge.We subsequently
transfer XANESNET to nine first-row transition metal (Ti–Zn)
K-edges, where we benchmark predictive power and performance.

II. TECHNICAL DETAILS

A. Datasets

Our reference datasets comprise x-ray absorption site geome-
tries (“samples”) of first-row transition metal (Ti–Zn) complexes
harvested from the transition metal Quantum Machine (tmQM)
dataset.126,127 The dataset for each first-row transition metal com-
prised all of the structures from the tmQM dataset containing
that element, as extracted from the 2020 release of the Cambridge
Structural Database (CSD) and subsequently optimized at the
GFN2-xTB level of theory. The tmQMdataset was initially generated
by applying seven filters to exclude: (i) all structures except those
containing a single transition metal; (ii) all structures not containing
a minimum of one C and one H atom (allowing only these other ele-
ments: B, Si, N, P, As, O, S, Se, F, Cl, Br, and I); (iii) the structure of
all extraneous molecular components beyond that of the transition
metal complex (e.g., counter-ions); (iv) all polymeric structures; (v)
all structures without three-dimensional coordinates; (vi) all struc-
tures with disordered atoms; and (vii) all structures with charges
greater than +1 and less than −1. Full details of the construction and
composition of the tmQM dataset can be found in Ref. 127.

K-edge XANES spectra (“labels”) for these structures were
calculated using multiple scattering theory (MST) as implemented
in the FDMNES128,129 package (Sec. II C). We have developed nine
independent reference datasets, one for each first-row transition
metal (Ti–Zn) x-ray absorption edge; the number of samples con-
tained in the reference datasets scales from as few as ∼1100 (V) to
∼8660 (Ni). A summary of the number of samples contained in the

reference datasets is given in the supplementary material (Table S1).
We have made the reference datasets publicly available (see our Data
Availability Statement for details).

250 samples from each reference dataset were isolated at
random to form “held-out” testing datasets (evaluated post-
optimization only, Sec. III D). The remaining samples comprised
the training and validation datasets used during optimization
(Secs. III A–III C). The training and validation subsets were
constructed “on-the-fly” throughout via repeated K-fold cross-
validation with five repeats and five fold, i.e., a five-times-repeated
80:20 split.

B. Deep neural network

1. Architecture

The architecture of the XANESNET DNN used in this
article is based on the deep multilayer perceptron (MLP) model
and comprises an input layer, two hidden layers, and an output
layer. All layers are dense, i.e., fully connected, and each hidden
layer performs a nonlinear transformation using the rectified linear
unit (relu) activation function. The input layer comprisesN neurons
(to accept a feature vector of length N encoding the local envi-
ronment around an x-ray absorption site, Sec. II B 2), the hidden
layers each comprise 512 neurons, and the output layer comprises
226 neurons from which the discretized K-edge XANES spectrum
is retrieved after regression, i.e., XANESNET is a multi-output MLP
with each output neuron corresponding to the spectral intensity at a
given energy grid point. The architecture of the XANESNET DNN
is ∥N × 512 × 512 × 226∥.

The internal weights, W, are optimized via iterative feed-
forward and backpropagation cycles to minimize the empirical loss,
J(W), defined here as the mean-squared error (MSE) between the
predicted, μpredict , and target, μtarget , K-edge XANES spectra over

the reference dataset, i.e., an optimal set of internal weights, W∗, is
sought that satisfies argmin

W

(J(W)).
Gradients of the empirical loss with respect to the internal

weights, δJ(W)/δW, were estimated over minibatches of 32 sam-
ples and updated iteratively according to the Adaptive Moment
Estimation (ADAM)130 algorithm. The learning rate for the ADAM
algorithm was set to 1 × 10−4. The internal weights were initially set
according to the He131 uniform distribution. Unless explicitly stated
in this article, optimization was carried out over 512 iterative epochs.

Regularization was implemented to minimize the propensity of
overfitting; batch standardization and dropout were applied at each
hidden layer. The probability, p, of dropout was set to 0.25.

The XANESNET DNN is programmed in Python 3 with the
TensorFlow132/Keras133 application programming interface (API)
and integrated into a scikit-learn134 (sklearn) data pre- and post-
processing pipeline via the KerasRegressor wrapper for scikit-learn.
The Atomic Simulation Environment135 (ASE) API is used to handle
and manipulate molecular structures. The code is publicly available
under the GNU Public License (GPLv3) on GitLab.136

2. Featurization

The local environments around x-ray absorption sites are
encoded via dimensionality reduction using the weighted atom-
centered symmetry function (wACSF) descriptor of Gastegger
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et al.,137 which builds on top of the generalized ACSF descriptor
introduced by Behler138,139 to overcome the unfavorable scaling as
the number of atom types in the dataset grows. The recent review
by Behler in Ref. 140 is strongly recommended to the unfamiliar
reader. The wACSF descriptor (or “feature vector,” Gi) for an arbi-
trary absorption site, i, is constructed via concatenation of a “global”
(G1) wACSF, n radial (G2, two-body) wACSFs, and m angular (G4,
three-body) wACSFs, i.e., it takes the form

Gi ≙ {G1
i ,G

2
i,1,G

2
i,2, . . . ,G

2
i,n,G

4
i,1,G

4
i,2, . . . ,G

4
i,m}, (1)

where n andm are chosen to cover satisfactorily the radial and angu-
lar space of the reference dataset and discriminate different atomic
environments.

The G1, G2, and G4 wACSF each takes the forms

G
1
i ≙∑

j≠i

fc(rij), (2)

G
2
i ≙∑

j≠i

Zj ⋅ fc(rij) ⋅ exp−η(rij−μ)2 , (3)

G
4
i ≙ 2

1−ζ∑
j≠i
∑
k≠i,j

ZjZk ⋅ (1 + λ cos(θjik))ζ ⋅ fc(rij) ⋅ fc(rik) ⋅ fc(rjk)

⋅ exp−η(rij−μ)
2

⋅ exp−η(rik−μ)
2

⋅ exp−η(rjk−μ)
2

, (4)

where i, j, and k are the index atomic sites, Zi is the atomic number
of the atom at the site i, rij is the interatomic distance between sites i
and j, and θjik is the interatomic angle between sites j, i, and k. fc is a
radial cutoff function (the cutoff set at some radial distance, rc) that
ensures that the wACSFs vary smoothly and, ultimately, go to zero
where rij ≥ rc; it take the form

fc(rij) ≙
⎧⎪⎪⎪⎨⎪⎪⎪⎩
0.5 × (cos(πrij

rc
) + 1) for rij ≤ rc,

0 for rij > rc.
(5)

The radial distance, rc, supplied to fc has to be sufficiently large
to include an appropriate number of nearest neighbors. From the
perspective of an absorbing atom in x-ray spectroscopy, rc has to
reflect the “field of view” (i.e., the maximum cutoff distance to which
XANES is sensitive); for this reason, rc ≙ 6.0 Å throughout.

η, μ, λ, and ζ are parameters that have to be calibrated. The
effects of η and μ on the radial resolution and extent and of λ
and ζ on the angular resolution and extent are illustrated in Fig. 2.
The calibration of these parameters can be achieved manually or
automatically—in the latter case, e.g., via an intelligent sampling/
Bayesian approach, decomposition, or principle component analysis
(PCA),141 or using a genetic algorithm.137 An alternative approach
designed to work “out-of-the-box” is given by the suggested
parameterization strategy of Gastegger et al., described in Ref. 137.
Here, one first defines an auxiliary radial grid, R, as a linearly
interpolated space of k points, r, between rmin. and rmax. and then

FIG. 2. Schematic of the effect of the η, μ, λ, and ζ parameters on the sym-
metry function forms. Upper panel: a “centered” parameterization scheme where
μ = 0.0 and η is varied; lighter-colored lines correspond to higher values of η.
Center panel: a “shifted” parameterization scheme where η is fixed and μ is var-
ied; lighter-colored lines correspond to higher values of μ. Lower panel: the effect

of the λ and ζ parameters on the angular component of a G4 symmetry function;
the solid and dashed lines correspond to λ = +1.0 and λ = −1.0, respectively,
and lighter-colored lines correspond to higher values of ζ.

obtains either “centered” (Fig. 2, upper panel) pairs of η and μ
parameters via setting μ to zero in all cases and setting η as

ηi ≙
1
2r2i

(6)

or “shifted” (Fig. 2, center panel) pairs of η and μ parameters via
setting μ to each point on the auxiliary radial grid and setting η as

η ≙
1

2(Δr)2 . (7)

In the former case [Eq. (6)], the wACSFs are centered at the x-
ray absorption site and differ in their radial extent. In the latter case
[Eq. (7)], their radial extent is constant, and their center shifts away
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from the x-ray absorption site, profiling the local environment in a
series of concentric “shells.”

G4 wACSFs additionally need to have λ and ζ parameters
defined. Every pair of η and μ parameters is typically repeated for
λ ≙ ±1.0 to obtain a full 360○ angular view, and each triple of η, μ,
and λ parameters can optionally be repeated for a series of values of
ζ to refine the angular resolution (Fig. 2, lower panel).

Unless explicitly stated in this article, all G2 wACSFs were
constructed according to the “shifted” scheme and all G4 wACSFs
were constructed according to the “centered” scheme.

C. XANES simulation

All first-row transition metal (Ti–Zn) K-edge XANES spectra
were calculated using MST as implemented in the FDMNES128,129

package. The spectral windows were set between −15.0 and +60.0 eV
(relative to the x-ray absorption edges; see Table S1), and the absorp-
tion cross sections were calculated in steps of 0.2 eV (i.e., 376 points).
A self-consistent muffin-tin potential with a cutoff radius of 6.0 Å
around the x-ray absorption site was used. The interaction with the
x-ray field was described by the electric quadrupole approximation,
and scalar relativistic effects were included.

The calculated absorption cross sections were preprocessed
via convolution with a fixed-width Lorentzian function (the width,
Γi, depending on the x-ray absorption edge, see Table S1) and
resampled via interpolation into 226 points.

III. RESULTS AND DISCUSSION

We turn to the results and discussion here, which are broken
down as follows. In the first place, we parameterize a suitable Gi

feature vector (Sec. III A) and, subsequently, explore elements of
the data preprocessing pipeline (Sec. III B), assessing the perfor-
mance of the XANESNET DNN at the Fe K-edge. In the second
place, we explore what the XANESNET DNN takes into consid-
eration when predicting Fe K-edge XANES spectra (i.e., which
features matter and to what extent, Sec. III C). We subsequently
apply the XANESNET DNN to all nine of the first-row transi-
tion metal databases (Sec. III D), showcasing its broad applicability
across systems demonstrating a large variation of oxidation states
and chemistries.

A. Featurization and parameterization

In this section, we address the way in which the local envi-
ronments around the transition metal x-ray absorption sites are
introduced into the XANESNET DNN, i.e., we address the encod-
ing or “featurization,” of the Cartesian coordinates as parameterized
Gi vectors (Sec. II B 2). We initially focus on the Fe K-edge reference
dataset; results for the other eight reference datasets are, however,
included in the supplementary material.

In the first instance, we assess the performance of the “centered”
and “shifted” parameterization schemes (Sec. II B 2) for the G2

and G4 wACSFs. Figure 3 displays the relative performance of the
XANESNET DNN at the Fe K-edge where the local environments
around the x-ray absorption sites are featurized as Gi vectors of
length 97, i.e., containing a singleG1 wACSF and either 96G2 (Fig. 3,
left panel) or 96 G4 (Fig. 3, right panel) wACSFs.

FIG. 3. Performance at the Fe K-edge for the “centered” and “shifted” parameteri-
zation schemes. Performance is plot relative (in %) to the best performance in the
panel. Validation results; five-times-repeated fivefold cross-validation. Left Panel:
96 G2 wACSFs. Right Panel: 96 G4 wACSFs.

Reflecting the results presented in Ref. 137, we verify that the
G2 and G4 wACSFs benefit from a “shifted” and “centered” param-
eterization scheme, respectively. However, the performance penalty
for following the less-suitable of the two parameterization schemes
is much greater for the G4 wACSF in this work (−225%) compared
to Ref. 137 (−20%). In contrast, the performance penalty for the G2

wACSF in this work (−100%) is in line with the aforementioned
results (−75%). Acknowledging differences in the Gi vector length
and machine-learning model architecture, this result nonetheless
evidences that the extent to which the G4 wACSFs are parameter-
ized optimally is of comparably greater importance in this work as
they communicate comparably more information in the context of
the present problem. This reflects either (i) a more “direct” physi-
cal relationship between the inputs and outputs [i.e., a stronger link
between the local (angular) environment and the transition metal
K-edge XANES spectrum (cf. enthalpies in Ref. 137), which could
be expected as resonances in the post-edge are, after all, geometric in
origin] or (ii) the greater importance of the G4 wACSF, generally, in
discriminating between the diverse coordination geometries of the
transition metal complexes in the reference dataset(s). We return to
the latter point throughout this article.

Performance is predictably improved via mixing G2 and
G4 wACSFs. Figure 4 displays the relative performance of the
XANESNET DNN at the Fe K-edge as a function of the G2 : G4

composition of the (length 97) Gi vector. These data are displayed
for the other eight transition metal K-edge reference datasets in
the supplementary material (Fig. S1) and exhibit similar trends to
those shown in Fig. 4. Performance is optimal with 32 G2 and 64 G4

wACSFs and displays a heavy skew toward the inclusion of angular
information in a 2:1 G4 : G2 ratio.

Performance is modestly improved further via the inclusion of
higher values of ζ into theG4 wACSF. In order to keep the length and
composition (32 G2 and 64 G4 wACSFs) of the Gi vector constant
and considering that each triple of η, μ, and λ parameters is repeated
for each additional value of ζ by construction, sets of one {1},
two {1, 2}, four {1, 2, 4, 8}, and eight {1, 2, 4, 8, 16, 32, 64, 128}
additional values of ζ were trialed. Figure 5 displays the relative
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FIG. 4. Performance at the Fe K-edge as a function of the G2 : G4 composition
of the Gi vector. Performance is plot relative (in %) to the best performance in
the panel. Validation results; five-times-repeated fivefold cross-validation. 96 G2/4

wACSFs.

performance of the XANESNETDNN at the Fe K-edge as a function
of the greatest value of ζ, ζmax, included. These data are displayed
for the other eight transition metal K-edge reference datasets in the
supplementary material (Fig. S2). Figure 5 shows an improvement
in performance up to ζmax ≙ 128 compared to ζmax ≙ 1 (−10%). The
inclusion of higher values of ζ focuses the angular extent of the
G4 wACSF around 180○ (Fig. 2). This perhaps has limited utility
in machine learning applications using popular databases of small
organic systems (e.g., QM7 and QM9) where linear and right-angled
triples of atoms are infrequently encountered but is of consider-
able utility here where it apparently improves the ability of the
XANESNET DNN to discriminate between local transition metal
coordination environments as these angles are commonplace in
canonical coordination geometries, e.g., octahedral, square-planar,
square-base, and trigonal-(bi)pyramidal.

FIG. 5. Performance at the Fe K-edge as a function of the maximum value of ζ,
ζmax, used in the G4 wACSF. Values of ζ used are {1}, {1, 2}, {1, 2, 4, 8}, and {1, 2,
4, 8, 16, 32, 64, 128}. Performance is plot relative (in %) to the best performance
in the panel. Validation results; five-times-repeated fivefold cross-validation. 32 G2

wACSFs and 64 G4 wACSFs.

We will consequently carry forward a (length 97) Gi vector
comprising the G1 wACSF and 32 and 64 G2 and G4 wACSF, respec-
tively, with G4 wACSFs up to ζmax ≙ 8 to balance the performance
gain attainable by adding higher values of ζ against the cost of sac-
rificing pairs of μ and η parameters expressly and, consequently,
limiting flexibility.

B. Optimization and performance

The Gi vector parameterized in Sec. III A now delivers strong
performance at the Fe K-edge, yet it is still—in a sense—suboptimal
as it is likely to contain low-variance features and feature-to-feature
correlations as a by-product of its construction that are (in the
best case) redundant or (in the worst case) an obstacle to noise-
free learning. Using variance and correlation threshold filters in the
data preprocessing pipeline, redundant (low-variance and/or highly
correlated) features in the Gi vectors are able to be eliminated.

Figure 6 displays the relative performance of the XANESNET
DNN at the Fe K-edge as a function of the percentage of features
eliminated via action of a variance threshold filter. These data are
displayed for the other eight transition metal K-edge reference
datasets in the supplementary material (Fig. S3). It is possible
to eliminate up to 25% of features (performance penalty < − 1%)
from the Gi vector without consequence and, potentially, up to
50% of features without incurring a wholly unacceptable perfor-
mance penalty (−10%), should exceptionally compact Gi vectors be
required.

Erring on the side of caution and eliminating 25% of features
from the Gi vector yield a truncated Gi vector of length 71 (with
the G1 wACSF retained and otherwise comprising 28 G2 and 42 G4

wACSFs). The reduced dimensions of the truncated Gi vec-
tor coupled with the compact ∥N × 512 × 512 × 226∥ architecture
(Secs. II B 1 and II B 2) reduce the number of internal weights in
the XANESNET DNN to 414 208 (cf. >3 000 000 in our earlier work,
Ref. 71), lowering the propensity for overfitting, accelerating

FIG. 6. Performance at the Fe K-edge as a function of the percentage of features
eliminated via action of a variance threshold filter. Performance is plot relative
(in %) to the best performance in the panel. Validation results; five-times-repeated
fivefold cross-validation. 32 G2 wACSFs and 64 G4 wACSFs.
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FIG. 7. Performance at the Fe K-edge as a function of the number of feedfor-
ward/backpropagation epochs and the elapsed time in seconds (optimized using
an NVIDIA RTX 3070). Performance is plot relative (in %) to the best performance
in the panel. Validation results; five-times-repeated fivefold cross-validation.
28 G2 wACSFs and 42 G4 wACSFs.

optimization, and opening up the opportunity to investigate com-
putationally intensive feature selection algorithms (Sec. III C).

Figure 7 displays the relative performance of the XANESNET
DNN at the Fe K-edge as a function of the number of feedforward/
backpropagation epochs and the elapsed time in seconds taken
to carry out the optimization. These data are displayed for the
other eight transition metal K-edge reference datasets in the
supplementary material (Fig. S4). With the reference datasets
used in this article, the XANESNET DNN takes advantage of its
simple and compact MLP architecture; it can be optimized to
convergence in ∼512–1024 feedforward/backpropagation epochs—a
process that can be completed in as little as a minute using an
off-the-shelf commercial-grade central processing unit (CPU)
(AMD Ryzen Threadripper 3970X, 3.7–4.5 GHz) or graphics
processing unit (GPU) (NVIDIA RTX 3070, 5888 CUDA cores,
1.5–1.7 GHz).

C. Feature importance and selection

In this section, we carry forward the Gi vector parameterized
in Sec. III A with 25% of the features eliminated through the action
of the variance filter as in Sec. III B. We turn our attention toward
addressing a different question: what is the XANESNET DNN
taking into consideration when predicting K-edge XANES spec-
tra (i.e., which features matter, and to what extent?) and can it be
considered physical?

The relative inference feature importance of each of the features
comprising theGi vector has been assessed via scrambling the values
of theGi vectors featurewise over the reference dataset and assessing
the performance penalty in each instance at inference time. The
objective of this feature importance experiment is to identify how
reliant the XANESNET DNN is on each feature for the purpose
of producing accurate predictions: the greater the performance
penalty when the feature is scrambled, the greater the reliance on
that feature the model expresses. Figure 8 displays the results of the

feature importance experiment on the XANESNET DNN at the Fe
K-edge, evaluated on the validation datasets constructed “on-the-fly”
via five-times-repeated fivefold cross-validation. The feature impor-
tance of each of the G2 (Fig. 8, center panel) and G4 (Fig. 8, lower
panel) wACSFs, using the relative performance as a proxy, is plot rel-
ative to the optimal baseline performance. These data are displayed
for the other eight transition metal K-edge reference datasets in the
supplementary material [Figs. S5 (G2) and S6 (G4)].

In the first place, we focus on the feature importance of the
G2 wACSF (Fig. 8, center panel); these mirror the radial distribution
of atomic sites around the x-ray absorption site (Fig. 8, upper panel).
The greatest feature importance is found for the first coordination
shell around the x-ray absorption site [windows I, II (coordination
with light, first-row elements, e.g., C, N, O, and F) and III (coordina-
tion with heavier, second-row-and-above elements, e.g., Si, P, S, Cl,
Br, and I), Fig. 8, upper panel] with decreasing feature importance
found for the second (windows IV and V) and third (window VI
and beyond) coordination shells. The feature importance approxi-
mately reflects the density of atomic sites at the distance at which the
G2 wACSF is centered on the radial distribution, i.e., at the associ-
ated value of the μ parameter (Sec. II B 2) although this is not without
exception. For example, the G2 wACSFs centered around 1.5–1.6 Å
(μ ≙ 1.47 and 1.63 Å) have among the highest feature importance
in the Gi vector, yet there are very few atomic sites located at this
distance in the radial distribution (window I). Leakage of feature
importance from the most important G2 wACSF (μ ≙ 1.8 Å, win-
dow II, which encodes the first coordination shell) is a contributing
factor as the Gaussians centered here overlap on account of their
full-widths-at-half-maxima (FWHM ∼0.3 Å), and if one feature is
scrambled, the radial information lost can be recovered partially
from neighboring features. However, the values of the G2 wACSFs
centered around 1.5–1.6 Å are also strongly indicative of a particu-
lar class of the coordination complex in the reference dataset—the
transition metal hydride—as no other atomic sites are as close to the
x-ray absorption site as H in these coordination complexes. In this
sense, these G2 wACSFs act as useful yet rudimentary “classifiers”
and are allocated a higher feature importance than one would other-
wise expect, given the low density of atomic sites at this distance in
the radial distribution.

In the second place, we focus on the feature importance of the
G4 wACSF (Fig. 8, lower panel). Each white/shaded block repre-
sents G4 wACSF constructed with a fixed value of ζmax (Sec. II B 2)
from the set employed ({1, 2, 8, 128}, Sec. III A), and the trend of
increasing feature importance (i.e., increasing performance) with
increasing value(s) of ζ supports our earlier results. Within each
white/shaded block, the same trend or pattern recurs. There are two
peaks in feature importance that appear as if merged into a single
peak where ζmax ≙ 1.0 and that separate as ζmax is increased and
the angular resolution is refined (Fig. 2). These correspond to the
two key types of local angular environment around x-ray absorp-
tion sites: the linear (180○) and right-angled (90○) coordination
geometries, e.g., octahedral and square-planar, among others, and
the tetrahedral (105○–115○) coordination geometries. It is interest-
ing to note that while the feature importance of the G4 wACSF for
the other eight transition metal K-edge reference datasets (Fig. S6)
shows similar trends, Ni and Zn have comparably greater G4 fea-
ture importance than one would otherwise expect. We associate
this with the greater number of four-coordinate transition metal
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FIG. 8. Feature importance for G2 and G4 wACSFs at the Fe K-edge. Upper panel: histogram of the radial distribution of atomic sites around the x-ray absorption site in the
Fe K-edge reference dataset. Center panel: feature importance for G2 wACSF. Performance is plot relative (in %) to the baseline. Triangular markers indicate G2 wACSFs
selected via sequential feature selection (SFS). Lower panel: feature importance for G4 wACSF. Performance is plot relative (in %) to the baseline. Triangular markers
indicate G4 wACSFs selected via SFS. 28 G2 wACSFs and 42 G4 wACSFs.

complexes contained in the Ni and Zn reference datasets127—in par-
ticular, the prevalence of tetrahedral and square-planar coordination
geometries—and the utility of the G4 wACSF for discriminating
between them.

In Fig. 9, we alternatively assess the feature importance of the
G2 wACSF in two different regions of the XANES spectrum; a lower-
energy region in the neighborhood of the x-ray absorption edge
spanning −3.0→ +3.0 eV and a higher-energy region in the post-
edge spanning +50.0→ +56.0 eV (relative to the x-ray absorption
edge). Figure 9 displays the difference feature importance obtained
by subtracting the relative feature importance in the latter from the
former.

The first coordination shell is of approximately equal impor-
tance to the accurate prediction of the XANES spectrum in each
of the two regions. However, G2 wACSFs with lower and higher
values of μ (encoding atomic sites closer to and further from,
respectively, the x-ray absorption site) are relatively more and
less important, respectively, in the higher-energy region. Figure 9

indicates a shift from a balanced reliance on all of the G2 wACSFs in
the lower-energy region near the x-ray absorption edge to increased
reliance on only those G2 wACSFs with lower values of μ that
encode atomic sites in the first coordination shell as the energy
is increased. Importantly, this mirrors the expected physics: core
photoelectrons excited close to the x-ray absorption edge (i.e., in
the lower-energy region) have low kinetic energy and, by exten-
sion, longer wavelengths—consequently, this region of the x-ray
absorption spectrum is more sensitive to the structure further away
from the x-ray absorption site. However, in the higher-energy
region, the greater kinetic energy of the core photoelectrons—which,
consequently, have shorter wavelengths —results in a reduced “field
of view,” limiting the structural sensitivity to the immediate locality
of the x-ray absorption site. Indeed, resonances with energy >50 eV
above the x-ray absorption edge are usually classified as belonging to
the extended x-ray absorption fine structure (EXAFS) region, which
is well understood to exhibit structural sensitivity only to the first
coordination shell around the x-ray absorption site.142
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FIG. 9. Difference (high-energy region − low-energy region) feature impor-
tance for G2 wACSF. The high-energy region of the XANES spectrum spans
+50.0→ +56.0 eV, and the low-energy region of the XANES spectrum spans
−3.0→ +3.0 eV (relative to the x-ray absorption edge). Fe K-edge. Valida-
tion results; five-times-repeated fivefold cross-validation. 28 G2 wACSFs and
42 G4 wACSFs.

Armed with what we now know about feature importance,
we can use the carried-forward Gi vector to construct a further-
truncated Gi vector from the ground up including only the most
important features, i.e., following a “select-from-model” strategy.
Figure 10 displays the performance of the XANESNET DNN as
a function of the percentage of features included in this further-
truncatedGi vector. Only about 60% of the features from the original
carried-forward Gi vector are required to obtain performance that
converges to the baseline. Including only these features yields a
compact Gi vector of length 43 containing only the most impor-
tant information: the G1 wACSF and 12 and 30 G2 and G4 wACSFs,
respectively. The composition is displayed pictorially in the inset
pie chart on Fig. 10—again, the G4 wACSFs are overweighted

FIG. 10. Performance at the Fe K-edge as a function of the percentage
of features included via a “select-from-model” strategy targeting high fea-
ture importance. Performance is plot relative (in %) to the baseline. Valida-
tion results; five-times-repeated fivefold cross-validation. 28 G2 wACSFs and
42 G4 wACSFs.

compared to the G2 wACSF in an approximate 1:2 ratio, indicative
of their importance in discriminating between the diverse coordina-
tion geometries of the transition metal complexes in the reference
dataset.

To demonstrate that this ground-up construction based on
feature importance is not biased by including only the features with
high evaluated feature importance when taken together, i.e., from
the feature importance experiment with the whole carried-forward
Gi vector exposed to the XANESNET DNN, we have also carried
out another ground-up construction and top-down deconstruction
using “forward” and “backward” sequential feature selection (SFS),
respectively. The SFS experiment involves adding (in the “forward”
formulation) or eliminating (in the “backward” formulation) fea-
tures sequentially to/from the Gi vector; the choice of feature to add
or eliminate from the pool of available features is made to max-
imize the performance of the machine-learning model, and each
feature addition or elimination is trialed independently. SFS is con-
sequently a computationally intensive feature selection algorithm
and can require hundreds to thousands of iterations for a DNN,
depending on the target length of the desired Gi vector.

The plots displaying the feature importance of the G2 (Fig. 8,
center panel) and G4 (Fig. 8, lower panel) wACSF are decorated
with triangular markers above the features that were selected via
“forward” SFS (the “backward” SFS result was not materially differ-
ent) to obtain a further-truncated Gi vector of length 33. All of the
G2 wACSFs covering the first coordination shell (windows I, II, and
III, Fig. 8, upper panel) were selected as were G2 wACSFs with high
feature importance in the second coordination shell (windows IV
and V). Of the G4 wACSFs, those with highest feature importance
were not all selected although high-importance features were still
selected more often than not, and more features were selected from
high-ζ blocks.

The Gi vector constructed via “forward” SFS comprised the G1

wACSF and 10 G2 wACSFs and 22 G4 wACSFs, i.e., it converged
toward a similar composition and, incidentally, toward similar per-
formance by comparison with the longer Gi vector constructed via
the “select-from-model” strategy.

D. Extension to transition metal K-Edges

The XANESNET DNN demonstrably needs very little judi-
ciously selected information to deliver accurate and affordable
predictions of Fe K-edge XANES spectra for arbitrary Fe x-ray
absorption sites; radial information on the first (and to a lesser
extent, the second) coordination shell suffices with angular informa-
tion sufficient to separate satisfactorily key coordination geometries
(Sec. III C). Although the exact composition of the Gi vector is
dataset-dependent (one of the themes we have explored in this
article with respect to the coordination complexes in the tmQM
dataset and the particularities of the problem at hand), the cali-
bration carried out here is extensible across the first-row transition
metal (Ti–Zn) reference datasets as coordination distances are not
greatly different on average and canonical coordination geometries
are found consistently. In this section, we demonstrate the perfor-
mance of the XANESNET DNN at predicting the K-edge XANES
spectra of the nine “held-out” transition metal test datasets (Ti–Zn,
250 samples each, Sec. II A).
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Figure 11 displays histograms of the median percentage error,
Δμ, between target, μtarget, and predicted, μpredict, first-row transition
metal K-edge XANES spectra; key properties of these distributions
(medians, upper and lower quartiles, and skewness coefficients) are
tabulated in Table I. Across the nine first-row transition metal refer-
ence datasets, themedianΔμ is typically sub–5% (∼4.3%, on average)
with the lower and upper quartiles situated symmetrically ∼2%–3%
under and above, respectively, presenting a tight interquartile range
of ∼3%–5% that testifies to the balanced performance of the XANES-
NET DNN. Coupled with the high positive skewness coefficients
(>1.0) across the reference datasets that place predictions squarely

toward the higher-performance end of these figures, we are con-
fident that the XANESNET DNN delivers accurate and affordable
predictions that generalize well across this block of the Periodic
Table. Figure S7 shows the median percentage error as a function
of energy for each of the reference datasets with the lower and upper
quartiles and the 5th and 95th percentiles indicated. Figures S8–S16
show illustrative example K-edge XANES spectra for each of the ref-
erence datasets, presenting examples drawn from around themedian
(45th–55th percentile) and the lower (20th–30th percentile) and
upper (70th–80th percentile) quartiles to showcase the performance
that one would expect from the XANESNET DNN.

FIG. 11. Histograms of the median percentage error, Δμ, between target, μtarget, and predicted, μpredict, first-row transition metal K-edge XANES spectra. Evaluated on nine

“held-out” transition metal test datasets (Ti–Zn) containing 250 randomly selected samples each (Sec. II A). 28 G2 wACSFs and 42 G4 wACSFs.
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TABLE I. Summarya of the median percentage errors, Δμmedian (%), upper and lower
quartiles, and skewness coefficients for the Δμ distribution histograms (Fig. 11).

Edge Δμmedian Upper quart. Lower quart. Skew.

Ti 5.5 (3.8) 7.7 (5.7) 4.0 (2.3) 1.898
V 5.2 (3.2) 8.6 (6.0) 2.9 (1.9) 1.625
Cr 3.8 (2.5) 6.9 (4.7) 2.5 (1.5) 1.926
Mn 4.3 (2.8) 6.7 (4.8) 2.9 (1.9) 2.242
Fe 4.7 (3.1) 7.2 (4.8) 3.1 (2.0) 1.607
Co 4.3 (2.8) 6.3 (4.3) 3.1 (1.9) 2.058
Ni 4.1 (2.6) 6.0 (4.0) 2.8 (1.7) 1.286
Cu 4.0 (2.7) 5.6 (4.2) 2.8 (1.7) 2.007
Zn 3.2 (2.2) 4.9 (3.5) 2.2 (1.5) 3.005

aValues in parenthesis are after arctangent broadening; Table S1.

The predicted K-edge XANES spectra can optionally be broad-
ened via an additional postprocessing step to account for diverse
effects on the spectral resolution including, although not limited
to, core-hole lifetime broadening, instrument response, and many-
body effects, e.g., inelastic losses. If this postprocessing step is carried
out [as is routine and typically with an energy-dependent arctangent
function, see Eq. (2) in Ref. 71], performance is improved apprecia-
bly (see the values in parentheses in Table I, arctangent broadening
parameters are tabulated in Table S1). Across the nine first-row tran-
sition metal reference datasets, the median Δμ is reduced to ∼3%
(2.8%, on average) and the interquartile range tightens further to
∼2%–3% post-broadening with the greatest improvements in the
finely structured edge region of the K-edge XANES spectra.

Figure 12 displays parity plots of the error in energy, ΔE,
between target, Etarget, and predicted, Epredict, peak positions in the

FIG. 12. Parity plots of target, Etarget, and predicted, Epredict, peak positions. Evaluated on nine “held-out” transition metal test datasets (Ti–Zn) containing 250 randomly

selected samples each (Sec. II A). 28 G2 wACSFs and 42 G4 wACSFs.
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TABLE II. Summary of the mean peak position errors, ΔEmean (eV), maximum peak
position errors, ΔEmax (eV), standard deviations, σ (eV), and R2 coefficients for the
peak position parity plots (Fig. 12).

Edge ΔEmean ΔEmax σ R2

Ti 0.86 4.01 1.12 0.996
V 0.54 3.96 0.81 0.999
Cr 0.65 3.55 1.08 0.997
Mn 0.76 3.91 1.04 0.997
Fe 0.83 3.81 1.11 0.996
Co 0.74 5.33 1.15 0.993
Ni 0.88 4.98 1.19 0.993
Cu 0.99 4.60 1.26 0.991
Zn 0.95 4.18 1.22 0.997

first-row transition metal K-edge XANES spectra (a key metric for
the experimental spectroscopist); key properties (means, maxima,
standard deviations, and R2 coefficients) are tabulated in Table II.
For completeness, Fig. S17 displays parity plots of the error in
intensity, Δμ, between target, μtarget, and predicted, μpredict, peak
intensities. The XANESNET DNN consistently predicts the posi-
tions of prominent peaks in the target K-edge XANES spectra to
sub-eV (∼0.80 eV, on average) accuracy across the nine first-row
transition metal reference datasets, reproducing >90% of identified
targets. The coefficients of determination, R2—which are for all
reference datasets, >0.99—evidence encouragingly strong linear
relationships between Etarget and Epredict.

IV. CONCLUSION

In this article, we have built on our earlier proof-of-principle
work in Ref. 71 and practical applications in Refs. 72 and 74 to
develop and deploy a new compact neural network—the XANES-
NET DNN—for predicting the line shape of transition metal K-edge
XANES spectra. The XANESNET DNN is >80% smaller, an order of
magnitude faster to optimize, and yet nonetheless displays improved
predictive power and an encouraging potential for generality across
the Periodic Table. We have extended the scope of our study beyond
the familiar Fe K-edge to the nine first-row transition metal (Ti–Zn)
K-edges and assessed the predictive power and generality of the
XANESNETDNNhere. Ourmodel is able to predict K-edge XANES
spectral intensities with an average accuracy of ∼±2%–4% across the
selected spectral windows (−15.0→ +60 eV relative to each x-ray
absorption edge) and to predict the positions of prominent peaks
with a >90% hit rate and sub-eV (∼0.80 eV) accuracy.

We have addressed in detail the calibration of the feature vector
(Gi) that encodes the information on the local environment around
the x-ray absorption site and carried out an assessment of the relative
importance of the individual features—particularly the radial (G2)
and angular (G4) components. We found that very little judiciously
selected geometric information is actually needed or, indeed, used to
map feature vectors onto the lineshape of the corresponding K-edge
XANES spectrum; radial information on the first (and to a lesser
extent, the second) coordination shells suffices alongside a quantity
of angular information sufficient to separate satisfactorily key classes
of coordination geometry. We found in addition that the relative

importance of the individual features differs depending on the
spectral window under consideration. In low-energy windows near
the x-ray absorption edge, all features are taken into account in a
balanced way, while in higher-energy windows in the post-edge,
features encoding radial information closer to the x-ray absorp-
tion site are ascribed higher importance, mirroring the expected
physics in the shift from multiple scattering to single scattering with
increasing energy.

Although the exact composition of the feature vector is dataset-
dependent (one of the themes explored in this article with respect
to the coordination complexes in the tmQM dataset and the par-
ticularities of our problem), the calibration carried out here has,
nonetheless, proved extensible across our first-row transition metal
(Ti–Zn) reference datasets.

While accuracy, affordability, and generality (with respect
to the identity of the absorption site) are no longer cardinal
challenges, there are, of course, new challenges to tackle and
opportunities to embrace which, most pressingly, include (i) the
incorporation of electronic information and (ii) dataset curation.
On the topic of (i), the XANESNET DNN currently consid-
ers only the local geometric environment around the x-ray
absorption site of interest—consequently, its ability to describe
charge-state-dependent spectral features remains uncertain. For (ii),
high-quality balanced training sets rivaling popular molecular
organic datasets have to be curated/constructed. Here, there is
a great potential for intelligent (guided) and/or combinatorial
strategies, which we expect to work well alongside advances in
high-throughput computing.

SUPPLEMENTARY MATERIAL

The supplementary material contains a summary of reference
datasets used for each of the nine first-row transition metals. It also
includes data analyzing the parameterization of the feature vector
associated with the eight (not Fe) first-row transition metal systems
not shown in the main text. Finally, percentage errors as a function
of energy for predicted XANES spectra, example spectra, and parity
plots for each transition metal are shown.
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