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ABSTRACT
Machine learning (ML) is the most advanced field of predictive modelling and incorporating it into process-

based crop modelling is a highly promising avenue for accurate predictions of plant growth, development and yield. 
Here, we embed ML algorithms into a process-based crop model. ML is used within GLAM-Parti for daily pre-
dictions of radiation use efficiency, the rate of change of harvest index and the days to anthesis and maturity. The 
GLAM-Parti-ML framework exhibited high skill for wheat growth and development in a wide range of temperature, 
solar radiation and atmospheric humidity conditions, including various levels of heat stress. The model exhibited less 
than 20 % error in simulating the above-ground biomass, grain yield and the days to anthesis and maturity of three 
wheat cultivars in six countries (USA, Mexico, Egypt, India, the Sudan and Bangladesh). Moreover, GLAM-Parti 
reproduced around three-quarters of the observed variance in wheat biomass and yield. Existing process-based crop 
models rely on empirical stress factors to limit growth potential in simulations of crop response to unfavourable 
environmental conditions. The incorporation of ML into GLAM-Parti eliminated all stress factors under high-tem-
perature environments and reduced the physiological model parameters down to four. We conclude that the combi-
nation of process-based crop modelling with the predictive capacity of ML makes GLAM-Parti a highly promising 
framework for the next generation of crop models.

K E Y W O R D S :   Crop model; GLAM-Parti; heat stress; machine learning; model development; SEMAC.

1 .   I N T R O D U C T I O N
Climate change brings higher frequency and intensity of drought and 
heat extremes and there has been particular focus on evaluating the 
representation of these stresses into the crop models. Studies have 
conducted model inter-comparisons with the aim to reveal the best-
performing methods, algorithms or models to simulate the impact of 
high temperature and/or limited water availability on plant growth, 
development and productivity (e.g. Asseng et al. 2013; Eitzinger et al. 
2013; Rosenzweig et al. 2013; Bassu et al. 2014; Fleisher et al. 2017; 
Maiorano et al. 2017; Müller et al. 2017). However, the high complex-
ity of weather/plant interactions and the diverse methodologies used 
to build and calibrate the crop models do not easily allow the selection 

of ‘optimal’ methods or models. Asseng et al. (2015) and Wallach et al. 
(2018) showed that in their model inter-comparison studies, the way 
to optimize the model prediction performance was by considering an 
ensemble instead of relying on any particular crop model.

Major factors affecting the skill of crop models include the choice 
of equations and the way that they are structured in the prediction 
algorithm (Challinor et al. 2009). Equations that fail to represent the 
modelled processes and/or inconsistencies in the model structure are 
common problems that limit performance considerably (Martre et al. 
2015). This is particularly true in the representation of crop growth and 
development under environmental stress conditions, where the com-
plexity of the modelled system increases. For instance, process-based 
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crop models use stress factors to represent abiotic stresses that limit 
growth and modify phenological development (Ewert et al. 2015). The 
choice of the threshold above which these factors are activated and the 
way that these factors interact in respect to multi-stress environments 
are not always clear and modellers may rely on calibration of certain 
parameters or switch-off optional subroutines to improve the model fit 
to the observations (e.g. Seidel et al. 2018; Wallach et al.,2021b). As a 
result, the internal model consistency may be disrupted and the evalu-
ation of processes that are most limiting for the model skill becomes a 
difficult task, thus impeding further model development.

Recently, machine learning (ML) methods have been applied for 
crop yield prediction to overcome the limitations of process-based 
crop models. Various studies have shown the potential of ML for crop 
yield prediction (e.g. Crane-Droesch 2018; Cai et al. 2019; Leng and 
Hall 2020; Shahhosseini et  al. 2020; Newman and Furbank 2021; 
Lischeid et al. 2022), but also their limitations. A main obstacle is that 
the ML algorithms do not usually incorporate an understanding of the 
processes that lead to the observed yield level, but instead relate generic 
growth indices (e.g. monthly/seasonal/annual average temperature, 
rainfall, solar radiation, soil moisture, etc.) to crop productivity (e.g. 
Jeong et al. 2016; Folberth et al. 2019). Thus, the time evolution of the 
crop response to the environment is not fully represented and this can 
be limiting for the algorithm’s performance and suitability.

The combination of process-based crop modelling with ML can 
potentially optimize the model performance by taking advantage of 
the process understanding of the former approach and the predictive 
power of the latter. Feng et  al. (2019) incorporated output variables 
from the APSIM (Agricultural Production Systems sIMulator) crop 
model into Random Forests (RF) and showed that the hybrid model 

(crop model + RF) advanced by 33  % in explaining the variance in 
Australian wheat yield compared to the baseline crop model. Similarly, 
Shahhosseini et al. (2021) applied the APSIM crop model for predic-
tion of US maize productivity and used output variables as inputs into 
ML. The study showed that the prediction error of maize yield can 
decrease by up to 20 % in comparison with a baseline ML model with 
no process-based crop model features in it.

The above modelling studies introduce output variables from pro-
cess-based crop models as inputs into ML algorithms, which are then 
used for crop yield prediction. A more integrated approach is the incor-
poration of ML into a process-based crop model. Here, we embed ML 
algorithms into the process-based crop model, GLAM-Parti (Fig. 1). 
We use ML to estimate variables that regularly escape the crop model’s 
predictive capacity with traditional methods. ML is applied for the 
prediction of radiation use efficiency (RUE) and the rate of change of 
harvest index (dHI/dt) in daily time step, as well as the days to anthesis 
and maturity. The aim is to create a new crop modelling/ML frame-
work with high performance in the representation of crop response to 
a wide range of environments, including stress conditions. The derived 
crop model does not use stress factors for the simulation of abiotic 
stresses and the embedded ML algorithms reduce the physiological 
model parameters down to four. Ultimately, the yield predictions are 
derived from the process-based crop model, thus incorporating the 
understanding of the within-season crop/environment interactions.

2 .   M AT E R I A L S  A N D   M ET H O D S
2.1  Data sets

For the assessment of our framework, we initially used data from the 
‘Hot Serial Cereal Experiment’ for wheat (HSC) (Martre et al. 2018). 

Figure 1. (A) Crop modelling framework developed and applied in Shahhosseini et al. (2021); (B) GLAM-Parti-ML framework 
developed in this study. Ellipses represent transfer of information and respective arrows show direction across which information 
is transferred.
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The data set was chosen since it is designed for crop model develop-
ment and evaluation studies. HSC contains various experiments with 
spring wheat (cv. Yecora Rojo) grown in Maricopa, AZ, USA at regular 
time intervals (every 6 weeks) for a 2-year period (2007–09). The crop 
experienced a wide range of temperatures (−2 to 42 °C), solar radia-
tion and atmospheric humidity conditions, including exposure to heat 
stress. As a result, wheat yield varied from as low as 1.07 t ha−1 to as 
high as 8 t ha−1 (excluding the experiments where the crop was termi-
nated early due to extreme weather conditions).

Subsequently, we introduced a second data set, the International 
Heat Stress Genotype Experiment (IHSGE), to facilitate model 
evaluation on a larger spatial domain. IHSGE contains 28 field experi-
ments with two spring wheat cultivars (cv. Bacanora 88 and Nesser) 
grown in five low-latitude countries (Martre et al. 2017). The experi-
ments were conducted in Mexico (two locations: Ciudad Obregon 
and Tlaltizapan), Egypt (Aswan), India (Dharwar), the Sudan (Wad 
Medani) and Bangladesh (Dinajpur). All locations are considered as 
‘hot’ or ‘very hot’ and the grain yields ranged from 1.91 to 6.3 t ha−1 
(Martre et al. 2017).

The weather variables of this study are solar radiation (Srad, MJ m−2 
day−1), minimum, maximum and dew point temperature (Tmin, Tmax and 
Tdew, respectively, °C). All variables are provided in daily time step as 
part of the experimental data sets (Martre et al. 2017, 2018). Tmin, Tmax 
and Tdew are used for the calculation of vapour pressure deficit (VPD) 
according to the following formula (Castellvi et al. 1996):

VPD =
eo(Tmax) + eo(Tmin)

2
− eo(Tdew)� (1)

where eo(T) is saturation vapour pressure (kPa), calculated as follows:

eo(T) = 0.61078 · e17.27T/(T+237.3)
� (2)

We also computed accumulated solar radiation (Solrac) and thermal 
time (TT) as follows:

Solrac =
n∑

i=1

Sradi� (3)

TT =
n∑

i=1

Tmini + Tmaxi

2� (4)

where n is number of days after crop emergence.

2.2  Crop model
We slightly modified the GLAM-Parti crop model developed in 
Droutsas et al. (2019) and Droutsas et al. (2020) based on the SEMAC 
(Simultaneous Equation Modelling for Annual Crops) approach. The 
details of the model are described below:

The above-ground biomass (W) of wheat is separated into mass of 
leaves (ML), stems (MS) and ears, which are further divided into chaffs 
(i.e. the non-edible part of ear, (MC)) and grains (MG), such that:

W = ML +MS +MC +MG� (5)

MG relates to W under the harvest index (HI) approach:

MG = HI ·W
� (6)

Since wheat leaves and chaffs are the main contributors to canopy pho-
tosynthesis and growth (Merah and Monneveux 2015; Zhang et  al. 
2020), we consider them as photosynthetic organs (MP) as follows:

MP = ML +MC� (7)

We relate MS to MP under the allometric formula:

MS = a ·MP
b

� (8)

where a and b are empirical coefficients estimated using linear 
regression between log-transformed MS vs. MP [see Supporting 
Information—Fig. S1].

We re-write Equation (5) using Equations (6–8) as follows:

W =

Å
1

1−HI

ã
(MP + a ·MP

b)� (9)

The growth of biomass (dW/dt) is determined in daily time step under 
the RUE approach:

dW/dt = Io · RUE · (1− e−k·SLA·MP)
� (10)

where Io is incident solar radiation (MJ m−2 day−1 of photosynthetically 
active radiation (PAR)), RUE is radiation use efficiency (g MJ−1 PAR), 
k is light extinction coefficient and SLA is canopy specific leaf area. The 
parameter k for wheat is set to 0.7 (Ratjen and Kage 2016; Wang et al. 
2017) and SLA is 180 cm2 g−1 (Ratjen and Kage 2013; Ratjen et al. 2016).

For any given n day after crop emergence, we apply a simple mass 
balance equation as follows:

Wn − dW/dt −Wn−1 = 0
� (11)

and incorporate Equations (9) and (10) into Equation (11) to get:
Å

1
1−HI

ã
· (MP + a ·MP

b)− Io · RUE · (1− e−k·SLA·MP)−Wn−1 = 0

� (12)
Equation (12) is a function of MP, solved in daily time step from 
crop emergence to maturity. We implement the Newton–Raphson 
approach to find the root numerically by iteration. The method stops 
when convergence is achieved and the distance from the optimal solu-
tion is less than 10−2 t ha−1. The value of MP is then used to update the 
variables MG, MS and W in Equations (6), (8) and (9), respectively.

2.3  Integration of ML into GLAM-Parti
In process-based crop modelling, the simulated processes can be 
organized into three broad categories: those that describe crop growth, 
processes that are involved in phenological development and biomass 
partitioning-related procedures. If a crop model accurately describes 
all processes that fall into these three categories across the course of the 
crop growing season, then skilful biomass productivity and grain yield 
predictions are expected at end-of-season output. In accordance with 
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this, our framework incorporates ML into GLAM-Parti to achieve high 
performance in the prediction of the following:

- � RUE: the most representative variable affecting growth in 
process-based crop models (e.g. Jamieson et al. 1998; Jones et al. 
2003; Boote et al. 2013; Brown et al. 2019).

- � dHI/dt: commonly used measure to describe the partitioning of 
above-ground biomass to the grains (e.g. Challinor et al. 2005; 
Soltani et al. 2005; Ramirez-Villegas et al. 2017).

- � Days to anthesis and maturity: the most significant stages of crop 
phenological development and central to process-based crop 
models, since they signify the appearance, growth and maximum 
weight of grains (e.g. Wang and Engel 1998; Hussain et al. 2018; 
Ceglar et al. 2019).

2.3.1 ML algorithms. The ML models used in our framework are 
RF and Extreme Gradient Boosting (XGBoost). These are well-
established, state-of-the-art ML methods which have been previously 
developed, discussed in detail and used in the literature. Briefly, both 
RF (Breiman 2001) and XGBoost (Chen and Guestrin 2016) are 
tree-based algorithms, which create an ensemble of Classification and 
Regression Trees (CART) and make predictions after considering 
the output of all individual trees. RF uses bagging, a technique which 
builds each tree independently based on a random subset of the data 
set. XGBoost builds trees sequentially in a dependent manner with 
the use of weak tree learners. The algorithm applies gradient boosting, 

an iterative process by which each new tree learns and improves upon 
mistakes of previous trees. Both algorithms can be used for classifica-
tion as well as regression problems.

2.3.2 Time series of biomass and yield. The incorporation of ML into 
GLAM-Parti was performed according to the steps shown in Fig. 2. 
Initially, we used the flexible sigmoid function of Yin et al. (2003) to 
produce daily time series of above-ground biomass (W) and grain 
yield (Y) in the experiments as follows:

W = Wmax

Å
1+

te − t
te − tm

ãÅ
t
te

ã te
te−tm

� (13)

where t is time after emergence (in days), Wmax is above-ground bio-
mass at crop maturity, tm is time of maximum growth rate and te is total 
number of days from emergence to maturity. Wmax and te are reported 
in the experiments, whilst tm is the day of maximum growth rate, which 
is defined as:

tm = f · te� (14)

where f is a multiplication factor within the (0, 1) range (since 0 < tm 
< te). For the estimation of f, we appended values with iteration (0.05 
time step) within the acceptable limits and developed time series of 
biomass with Equation (13). For each crop treatment, we selected the 
value of f that minimized root mean squared error (RMSE) between 
observed and simulated biomass. A graphical example of the f optimi-
zation is given in Supporting Information—Fig. S2.

Figure 2. Methodology for integration of ML into GLAM-Parti. The data set is split into training and testing treatments. Crop 
data from the training treatments are used for fitting time series of biomass and yield, which then derive the target variables RUE 
and dHI/dt for training of RF and XGBoost. The test treatments are used in the evaluation of GLAM-Parti with RF and XGBoost, 
respectively.
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The same sigmoid function was applied for the determination of 
the time series of yield (Equation (13)). Wmax was replaced by Ymax 
(grain yield at crop maturity), t is now time after anthesis (in days) and 
te is total number of days from anthesis to maturity. For each crop treat-
ment, the optimal value of f (Equation (14)) was selected to minimize 
RMSE between observed and simulated yield.

2.3.3 Feature selection and derivation of target variables. The weather 
inputs are the following variables: Tmin, Tmax, VPD, TT, Srad and Solrac. 
Since all treatments of this study were fully irrigated and fertilized, we 
did not consider features of soil water and nutrient content or precipi-
tation in ML. All details of the feature selection and the derivation of 
the target variables are described below and summarized in Table 1.

2.3.3.1  RUE. The fitted time series of above-ground biomass and 
grain yield (Equation (13)) allowed the calculation of HI and MP 
with Equations (6) and (9), respectively. Subsequently, Equation (10) 
derived the response variable, RUE, in daily time step from crop emer-
gence until maturity was reached.

Temperature, solar radiation and VPD are the most significant 
weather determinants of wheat growth for irrigated, well-fertilized 
conditions (Zhao et al. 2017; Ferrante and Mariani 2018; Rashid et al. 
2018). Consequently, the weather drivers of RUE are Srad, Tmin, Tmax 
and VPD. In addition, the rate of crop growth varies with the phe-
nological stage (e.g. the rate of increase in biomass declines with the 
onset and progression of plant senescence) and the amount of photo-
synthetic organs (proxy for leaf and chaff area) defines the level of crop 
growth. Thus, we also added the ratio of photosynthetic organ mass 
to total above-ground biomass (MPratio = MP/W) for the estimation of 
RUE in daily time step.

2.3.3.2 Days to anthesis and maturity. For the prediction of the num-
ber of days to anthesis and maturity, we derive the target variable iphen 
which consists of three classes:

0—crop is in pre-anthesis stage (starting at crop emergence)
1—crop is between anthesis and maturity
2—crop has been harvested

The main weather drivers of plant phenological development are tem-
perature, photoperiod and solar radiation, which have been extensively 
used in crop modelling for predicting the days to anthesis and matu-
rity (e.g. Challinor et al. 2004; Craufurd and Wheeler 2009; Ottman 
et al. 2013; Wang et al. 2017; Baumont et al. 2019). Here, photoper-
iod and vernalization were disregarded, since the wheat cultivars of 
this study are not sensitive to them (Asseng et al. 2015; Martre et al. 

2017). Daily temperature is considered in terms of Tmin, Tmax and TT 
and solar radiation is considered in terms of Srad and Solrac. Foulkes 
et al. (2011) showed that phenology relates to partitioning and there 
is a lower threshold of stem:above-ground biomass (MSratio) before 
the wheat crop reaches anthesis (around 0.48 in modern cultivars). 
Consequently, we also included the variable MSratio into the list of pre-
dictors for iphen.

The consideration of all predictors only for the period from crop 
emergence to maturity would create a highly imbalanced data set, since 
class 2 of iphen would be represented by only one data point (i.e. the 
day that the crop reaches physiological maturity). In order to ensure 
enough observations of class 2, we use equal number of anthesis-to-
harvest (class 1) and post-harvest (class 2) data points in the training 
of ML. For instance, treatment 14C reached maturity 44  days after 
anthesis; thus, the corresponding inputs start at crop emergence until 
44 days post-harvest.

2.3.3.3 Rate of change of harvest index. The time course of HI exhibits 
three distinct phases: an initial lag phase directly after anthesis where 
low grain dry matter accumulation occurs, which progresses into a lin-
ear phase—where most of the grain growth happens—followed by a 
maturation phase, where the growth rate of HI is steadily falling to zero 
at crop maturity (Moot et al. 1996). We used ML for the prediction of 
the rate of change of harvest index (dHI/dt) in daily time step. Since 
the crop was fully irrigated and fertilized, we only used temperature 
(Tmin and Tmax) and solar radiation (Srad) as weather inputs for dHI/dt. 
Temperature was selected since it modifies the duration of grain filling, 
as well as the rate of dry matter accumulation into the grains (Dias and 
Lidon 2009). Solar radiation affects the rate of increase in grain weight, 
with low light levels decreasing yield under wet conditions (Shimoda 
and Sugikawa 2020). Finally, since the time series of HI exhibits the 
three distinct phases described above, we also used the lag of HI (HIn − 1)  
to increase the predictive capacity of ML.

2.4  GLAM-Parti model runs
The application of the ML models, the GLAM-Parti code and runs 
and the production of results and figures (package ‘ggplot2’, Wickham 
2016) were implemented in R programming language (R Core Team 
2022). The package ‘tidymodels’ (Kuhn and Wickham 2020) was used 
to fit the ML models into the GLAM-Parti code. RF and XGBoost 
were run with the packages ‘ranger’ (Wright and Ziegler 2017) and 
‘xgboost’ (Chen and Guestrin 2016), respectively. Both ML mod-
els were applied for the prediction of the three target variables: RUE 
(regression), dHI/dt (regression) and iphen (classification). Each of 
the three algorithms was optimized by tuning the model hyperparam-
eters. In RF, we optimized the hyperparameters ‘trees’ (total number 

Table 1.  Target variables and respective inputs of the three ML algorithms embedded into GLAM-Parti. RF and XGBoost were 
applied for prediction of RUE, the rate of change of harvest index (dHI/dt) and the phenological stage (iphen).

Target variable Type Features ML models 

iphen Categorical Srad, Solrac, Tmin, Tmax, TT, MSratio RF, XGBoost
RUE Numerical Srad, Tmin, Tmax, VPD, MPratio RF, XGBoost
dHI/dt Numerical Srad, Tmin, Tmax, HIn − 1 RF, XGBoost
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of decision trees in ensemble), ‘mtry’ (number of input variables ran-
domly selected for splitting at each node) and ‘min_n’ (minimum 
number of data points required to split a node further). In XGBoost we 
optimized the hyperparameters ‘trees’ (same as above), ‘mtry’ (same 
as above) and tree_depth (maximum depth of tree). For the hyperpa-
rameter tuning, we used Bayesian search with 10-fold cross-validation 
in 10 iteration setting (implemented in R package ‘tidymodels’).

Since RF is one of the most popular ML algorithms and repeatedly 
used in crop yield prediction (e.g. Shahhosseini et al. 2019; Vogel et al. 
2019; Prasad et al. 2021), it was considered as the baseline ML model 
for the initial GLAM-Parti runs. In Section 3.1, we selected six treat-
ments of the HSC data set for the training of RF (50 % of data) and the 
remaining six treatments were used for the testing of GLAM-Parti. The 
selection of treatments was done randomly with the ‘set.seed’ function 
of R. In Equation (8), the parameters a, b were computed using linear 
regression between log-transformed MS vs. MP only for the treatments 
selected in the training sample (for reference, the same linear regres-
sion but for all treatments is given in Supporting Information—Fig. 
S1). The skill of GLAM-Parti was evaluated against the observed end-
of-season above-ground biomass and grain yield, as well as the days to 
anthesis and physiological maturity in the test treatments.

In Section 3.2, we evaluate GLAM-Parti against a wide range of frac-
tions of the HSC data used for ML training, ranging from low (three 
treatments; around 25 % of data) to high number of observations (nine 
treatments; 75 % of data). The selection of the treatments exhibits con-
siderable effect on the performance of the model. For instance, when 
only three treatments are used for the training of ML—if these are the 
three lowest crop yielding experiments—the model is not expected to 
show good skill against the unseen data. In order to reduce the impact 
of treatment selection, we evaluated GLAM-Parti with 10 different 
training samples in each subset (3–9 training treatments). In each 
training sample, the parameters a, b of Equation (8) were computed 
using linear regression of log-transformed MS vs. MP. RF and XGBoost 
were trained on the three target variables (iphen, RUE and dHI/dt), 
with Bayesian search optimizing the model hyperparameters. Next, we 
run GLAM-Parti with the optimized ML algorithms and compare the 
model output to the observations only for the treatments that were not 
included in the training sample. We test the model performance for 
above-ground biomass and grain yield, as well as the days to anthe-
sis and maturity. Supporting Information—Figure S3 is a graphical 
illustration of the above steps for the generation of the training sam-
ples, the optimization of ML and the evaluation of GLAM-Parti.

In Section 3.3, we assess the contribution of ML on the perfor-
mance of GLAM-Parti. The model is compared to its predecessor, 
GLAM, a well-established—non-ML—process-based crop model 
with subroutines designed to capture the impact of high temperature 
on crop yield (Challinor et al. 2004, 2005). GLAM has been previously 
calibrated and run for the 12 HSC experiments (Maiorano et al. 2017). 
For GLAM-Parti, we use the run of Section 3.1, where RF was trained 
on 50 % of the experiments. For the model comparison, it should be 
noted that GLAM has been calibrated with 100 % of the HSC data (all 
12 experiments), whilst GLAM-Parti has only seen 50 % of the data 
(six experiments) during ML training.

In Section 3.4, we evaluate GLAM-Parti on a larger spatial domain. 
We introduce IHSGE, which is a global network of spring wheat field 

experiments (Martre et  al. 2017). IHSGE is combined with six ran-
domly selected HSC treatments to ensure a balanced sample between 
all locations. The derived data set is comprised of six experiments in 
Maricopa, AZ, USA with a single cultivar (Yecora Rojo), 14 experi-
ments in Mexico with two locations and two cultivars (Bacanora  
88 and Nesser) and a total of 14 experiments in Egypt, India, the Sudan 
and Bangladesh with single locations and two cultivars (Bacanora 88 
and Nesser). More details about the field experiments are given in 
Supporting Information—Table S1.

We randomly selected 50  % of the experiments for the training 
of RF and XGBoost (three out of six HSC and 14 out of 28 IHSGE 
treatments) [see Supporting Information—Table S1]. Six IHSGE 
experiments (the late-sown treatments of Obregon, Mexico (1991 and 
1993) and the experiments in Aswan, Egypt) were excluded from the 
training sample, since no within-season biomass values were reported 
for the computation of the parameter tm in Equation (13). In addi-
tion, the IHSGE experiments did not report within-season values of 
grain mass; thus, the parameter tm for biomass was also used in the 
flexible sigmoid function describing the time series of grain mass in 
Equation (13).

Since the new data set contains three different cultivars, we intro-
duced the input ‘Cultivar’ in the feature space of all ML algorithms 
(Table 1), which consists of three classes as follows:

1—cv. Yecora Rojo
2—cv. Bacanora 88
3—cv. Nesser

For the ML hyperparameter tuning (target variables: iphen, RUE, 
dHI/dt) we used Bayesian search as described above. The parameters 
a, b (Equation (8)) were computed using linear regression between 
the log-transformed MS vs. MP for the treatments of the HSC training 
sample.

2.5  Evaluation metrics
The following metrics are used for the evaluation of the GLAM-Parti 
model performance:

- � Mean bias error (MBE)

MBE =
1
n

n∑
i=1

(Pi − Oi)� (15)

- � Root mean squared error (RMSE)

RMSE =

Ã
1
n

n∑
i=1

(Oi − Pi)
2

� (16)

- � normalized root mean squared error (nRMSE)

nRMSE (%) = 100 · RMSE
Ō� (17)
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-  Coefficient of determination (R2)

R2 =




∑n
i=1 (Oi − Ō)(Pi − P̄)»∑n

i=1 (Oi − Ō)2
∑n

i=1 (Pi − P̄)2



2

� (18)

where Pi and Oi are predictions and observations, respectively, P̄  and Ō 
are mean values, and n equals the number of observations.

MBE computes the mean of the residuals and ranges between 
(−∞, +∞). Negative MBE values show that the model tends to 
under-predict, while positive values reveal over-prediction compared 
to the observations. Thus, MBE shows the direction of the bias, with 
values close to zero signifying low model under-/over-prediction. 
RMSE measures the magnitude of the model error by squaring the 
residuals and penalizing large deviations between predictions and 
observations. It ranges between [0, +∞) and values close to zero 
reveal good model fit to the observations. nRMSE divides RMSE by 
the mean of the observations to normalize the metric across variables 
with different scales. It ranges between [0, +∞) and nRMSE < 10 %, 
10 % < nRMSE < 20 %, 20 % < nRMSE < 30 % are considered as ‘excel-
lent’, ‘good’ and ‘fair’, respectively, in crop modelling ( Jamieson et al. 
1991). R2 measures the proportion of the variation in the observed 
variable that is captured by the model. It ranges between [0, 1], with 
values closer to 1 indicating that high percentage of the measured vari-
ance is reproduced within the simulations. Detailed discussion of the 
evaluation metrics is given in Bennett et al. (2013).

3 .   R E S U LT S
3.1  GLAM-Parti performance with 50 % of HSC data 

for training of RF
Figure 3 illustrates the performance of GLAM-Parti when six HSC 
treatments are used for the training of ML and the remaining six treat-
ments for model evaluation. GLAM-Parti successfully reproduced the 
observed patterns of above-ground biomass and grain yield, as well as 
the days to anthesis and maturity in the training treatments (Fig. 3; left 
of red line in A–D). The model also exhibited high skill in the simula-
tions against the test treatments. GLAM-Parti reproduced 98 % of the 
variance in end-of-season biomass and grain yield (Fig. 3A and B; right 
of red line) and the respective RMSE (nRMSE) was 2.15 (17.06 %) 
and 1.06 (19.87 %) t ha−1. Nevertheless, the model exhibited a nega-
tive bias in the prediction of both variables and MBE for above-ground 
biomass and grain yield was −1.76 and −1.02 t ha−1, respectively (more 
details about model bias in Figs 4 and 5).

With regards to phenology, GLAM-Parti exhibited good skill in the 
simulation of the observed days to anthesis and maturity in the test 
treatments (Fig. 3C and D; right of red line) and the variance explained 
by the model was 99 and 98 %, respectively. Neverthelesss, the model 
underestimated the onset of both phenological stages, thus predicting 
anthesis and maturity earlier than observed (5.5 days earlier for anthe-
sis and 5  days earlier for maturity). RMSE (nRMSE) was 6.49  days 
(10.5 %) for anthesis and 6.38 days (6.82 %) for maturity. Overall, the 
above results show good model skill, revealing the power of our meth-
odology, which benefits from the combination of process understand-
ing in crop modelling with the predictive capacity of ML.

3.2  GLAM-Parti performance with different  
fractions of HSC data for training of ML

RF and XGBoost were trained against various fractions of the HSC data 
(i.e. different numbers of treatments) and the skill of GLAM-Parti was 
compared to the end-of-season measurements of above-ground biomass 
and grain yield, as well as the days to anthesis and maturity in the test 
treatments (Fig. 4). We present the results of the model performance 
based on the median values of the evaluation metrics, unless otherwise 
stated. Supporting Information—Tables S2–S5 contain all informa-
tion discussed below and illustrated in the boxplots of Fig. 4. In addition 
to the end-of-season analysis, limited mid-season above-ground biomass 
and grain mass measurements were available for model testing. The 
results of the model performance against the mid-season biomass and 
grain mass observations are illustrated in Supporting Information—
Fig. S4 and discussed in Supporting Information.

With regards to the prediction of the end-of-season above-ground 
biomass, the use of 3 out of the 12 treatments for training of ML (i.e. 
25  % of data) equipped GLAM-Parti with the ability to reproduce 
84/82  % (RF/XGBoost) of the observed variance in the test treat-
ments (Fig. 4). R2 increased to 91/89  % (RF/XGBoost) at six and 
95/96  % (RF/XGBoost) at nine training treatments. The applica-
tion of RF resulted in biomass error of 2.83 t ha−1/23.03 % (RMSE/
nRMSE) at three training treatments, which decreased to 1.76 t 
ha−1/14.57 % at six and 1.55 t ha−1/12.72 % at nine training treatments. 
For XGBoost, the equivalent error was 2.84 t ha−1/24.43  % at three 
training treatments, 1.78 t ha−1/15.45 % at six and 1.76 t ha−1/14.32 % 
at nine training treatments. In addition, both ML models exhibited low 
bias against all training settings, with XGBoost resulting in the high-
est underestimation at three training treatments (−0.64 t ha−1) and the 
largest overestimation at nine training treatments (0.64 t ha−1).

With regards to grain yield, GLAM-Parti reproduced 79/73 % (RF/
XGBoost) of the observed variance, when three treatments were used 
for the training of ML. R2 increased with the addition of more data and 
the crop model reproduced 84/83 % (RF/XGBoost) of the observed 
variance at six training treatments and 94/92 % (RF/XGBoost) at nine 
training treatments. Similarly, RMSE started at 1.44/1.75 t ha−1 (RF/
XGBoost) at three training treatments, decreased to 1.16/0.98 t ha−1 
(RF/XGBoost) at six training treatments and a minimum of 0.96/0.89 
t ha−1 (RF/XGBoost) at nine training treatments. This translated to 
a relative error (nRMSE) of 28.31/36.49  % (RF/XGBoost) at three 
training treatments, which reduced to 22.31/18.3  % (RF/XGBoost) 
at six and 18.31/17.19 % (RF/XGBoost) at nine training treatments. 
Moreover, GLAM-Parti exhibited a relatively small bias in yield predic-
tion. XGBoost resulted in the highest underestimation at three training 
treatments (−0.33 t ha−1), as well as the largest overestimation at nine 
training treatments (0.63 t ha−1).

With regards to phenological development, GLAM-Parti repro-
duced at least 97  % of the observed variance in the days to anthesis 
and maturity with both RF and XGBoost, under all fractions of treat-
ments used for ML training. The model error for anthesis (expressed 
as RMSE) was 4.45/3.55 days (RF/XGBoost) at three training treat-
ments and decreased to 3.84/3.08 days (RF/XGBoost) at nine train-
ing treatments. Similarly, RMSE for maturity started at 7.63/7.78 days 
(RF/XGBoost) with three training treatments and minimized at 
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5.36/4.88 days (RF/XGBoost) with nine training treatments. In terms 
of percentage error, nRMSE remained lower than 10  % for anthesis 
and maturity, using both RF and XGBoost in the total range of train-
ing treatments (3–9 treatments; 25–75 % of training data). Also, both 
ML models exhibited a negative bias in the prediction of anthesis 
against low training data (3–5 treatments). As a result, GLAM-Parti 
underestimated the days to anthesis by 1.31/1.21 days (RF/XGBoost; 
median values), with a maximum underestimation of 5/6 days (RF/
XGBoost). For six or more training treatments, the model exhibited a 
change to positive bias in most runs. RF and XGBoost overestimated 
the days to anthesis by 0.83/0.5 days (RF/XGBoost; median values), 
with a maximum MBE of 5.2/4.83  days (RF/XGBoost). Finally, 
GLAM-Parti underestimated the days to maturity with both RF and 

XGBoost against almost all settings (with the exception of nine train-
ing treatments). For RF, the highest underestimation was seen at four 
training treatments (−2.62 days), whilst XGBoost resulted in the larg-
est negative bias at three training treatments (−2.72 days).

3.3  Comparison between GLAM and GLAM-Parti
Table 2 compares GLAM and GLAM-Parti in the HSC experiments. 
Moreover, Supporting Information—Fig. S5 presents the outputs 
of both models against the observations. GLAM was calibrated with 
12 experiments, whilst GLAM-Parti used only six experiments for 
ML training. Nevertheless, GLAM-Parti exhibited lower RMSE for 
biomass (1.96/1.79 t ha−1), grain yield (1.40/0.87 t ha−1), the days to 
anthesis (6.34/4.59  days) and maturity (6.45/4.51  days) (GLAM/

Figure 3. Barplots of observed and predicted (GLAM-Parti) end-of-season above-ground biomass (A), grain yield (B), days 
from emergence to anthesis (C) and days from emergence to maturity (D) for the wheat treatments of the ‘Hot Serial Cereal 
Experiment’ (HSC). Vertical lines separate the treatments used for training of RF (left of vertical line) and the treatments used for 
model testing (right of vertical line). Top right corner shows the evaluation metrics (coefficient of determination (R2), root mean 
squared error (RMSE), normalized root mean squared error (nRMSE) and mean bias error (MBE)), which are computed only 
for the test treatments (right of vertical line). Error bars in (A) and (B) show standard errors in measurements of above-ground 
biomass and grain yield, respectively.
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GLAM-Parti) in the simulations. In addition, R2 of GLAM-Parti was 
higher for grain yield (0.83/0.88), the days to anthesis (0.92/0.96) 
and maturity (0.96/0.98), while GLAM has higher R2 for biomass 
(0.93/0.9) (GLAM/GLAM-Parti). On the other hand, GLAM-Parti 
showed larger MBE in the prediction of biomass (0.12/−0.96), grain 
yield (−0.42/0.49), the days to anthesis (0.17/−2.75) and maturity 
(−0.5/−2.5) (GLAM/GLAM-Parti). According to the above results, 
GLAM-Parti exhibits similar or improved performance compared to 
GLAM using half of the data for model training.

3.4  GLAM-Parti performance with global data set
Figure 5 illustrates the performance of GLAM-Parti in simulating the 
above-ground biomass, grain yield and the days to anthesis and matu-
rity of three spring wheat cultivars in six countries [see Supporting 
Information—Table S1]. Since RF and XGBoost resulted in 

similar model skill, we only present the results of GLAM-Parti using 
RF. Supporting Information—Figures S6 and S7 show barplots of 
model performance in each experiment of the data set with RF and 
XGBoost, respectively.

The model exhibited good skill in the prediction of the end-of-sea-
son above-ground biomass and reproduced 73 % of the variation (R2) 
across locations and cultivars. RMSE (nRMSE) for biomass was 1.61 
t ha−1 (14.93 %) and no significant bias was observed (MBE = −0.19 
t ha−1). Similarly, R2 for grain yield was 0.76 and RMSE (nRMSE) was 
0.68 (16.02 %). No systematic error was observed in the simulation of 
grain yield (MBE = 0.06 t ha−1). With regards to the crop phenologi-
cal development, GLAM-Parti was more skilful in predicting the days 
to maturity (R2  =  0.79) compared to anthesis (R2  =  0.66). RMSE 
(nRMSE) was 8.95 days (13.15 %) for anthesis and 10.26 days (9.89 %) 
for maturity, respectively. Moreover, there was a negative bias in the 

Figure 4. Boxplots of GLAM-Parti model performance for end-of-season above-ground biomass, grain yield, the days to anthesis 
and maturity using RF and XGBoost. Both ML models were trained on 3 to 9 out of 12 treatments of the ‘Hot Serial Cereal 
Experiment’ for wheat (HSC) and GLAM-Parti was evaluated against the unseen data. Evaluation metrics are coefficient of 
determination (R2), root mean squared error (RMSE), normalized root mean squared error (nRMSE) and mean bias error (MBE).
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prediction of both phenological stages. GLAM-Parti estimated the days 
to anthesis and maturity earlier than observed with a systematic error 
of −3.41 and −5.29 days, respectively. The above results reveal that the 
model is better in simulating wheat biomass and yield, while improve-
ment in the prediction of crop phenology is needed to decrease the sys-
tematic error in the progression of the phenological stages.

4 .   D I S C U S S I O N
Three ML algorithms were embedded into the process-based crop 
model GLAM-Parti to estimate variables that play a pivotal role in the 
determination of crop biomass and grain yield. The first target variable, 
RUE, drives crop growth in many crop models—including GLAM-
Parti—under a well-established light interception approach (Equation 

Figure 5. Comparison between observed and GLAM-Parti simulated end-of-season above-ground biomass (A), grain yield (B), 
days from emergence to anthesis (C) and days from emergence to maturity (D). The field experiments used to derive the plots are 
reported in Supporting Information—Table S1. In each panel, grey points are experiments used for ML training and black points 
are experiments used for GLAM-Parti model testing. Evaluation metrics are coefficient of determination (R2), root mean squared 
error (RMSE), normalized root mean squared error (nRMSE) and mean bias error (MBE). The linear regression (solid line) and 
all evaluation metrics are computed only for the experiments used in model testing (black points). The dashed line is the 1:1 line.
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(10)). In the HSC experiment, the wheat crop was planted in regular 
time intervals during a 2-year period, resulting in a wide range of tem-
perature, solar radiation and VPD conditions. Both RF and XGBoost 
exhibited high efficiency in learning the patterns between inputs and 
RUE during the course of the growing season. This resulted in good 
model performance in the prediction of crop biomass with both ML 
models. GLAM-Parti reproduced at least 82  % of the observed vari-
ance in wheat biomass (Fig. 4; median values) and the model error 
(expressed as nRMSE) was less than 20  % (Fig. 4; median values), 
when four treatments (i.e. 33 % of data) were used for the training of 
ML. Moreover, the evaluation of GLAM-Parti in the extended data set 
(HSC + IHSGE) revealed good performance for the three wheat cul-
tivars in six countries. The model error for above-ground biomass and 
grain yield was less than 20  % and GLAM-Parti reproduced around 
three-quarters of the observed variance in both variables (Fig. 5).

Stress factors are the most common approach to limit growth 
potential in process-based crop models (e.g. Ewert and Porter 2000; 
Asseng et  al. 2011; Jin et  al. 2016; Brown et  al. 2018). These factors 
do not usually describe plant processes explicitly, but instead consist 
of a convenient way to modify the crop response to unfavourable 
environmental conditions. In this study, the incorporation of ML into 
GLAM-Parti eliminates the use of stress factors in high-temperature 
environments. This is a novel and significant improvement in crop 
modelling, since crops in the field are usually impacted by multiple 
environmental stresses (e.g. heat stress combined with drought/high 
VPD/limited soil nitrogen/air pollution, etc.) (Mittler 2006), thus 
requiring the simultaneous use of many stress factors. In such cases, 
the high complexity of crop/environment interactions may not allow 
a clear way of combining stress factors in a crop model, since the over-
all plant response cannot be derived directly from the sum of plant 
responses to individual stresses (Barnabás et  al. 2008; Parent et  al. 
2017; Rashid et al. 2018). We instead apply ML to reveal the signals 
between weather conditions (temperature, solar radiation and VPD—
including multiple extremes) and crop growth and development. In 
other words, we do not attempt to prescribe the plant response to the 
environment through mechanistic, stress-factor-based equations, but 
instead learn those interactions from data using state-of-the-art ML 
methods. Hence, we take advantage of the predictive power of ML to 
deal with complexity that is otherwise extremely difficult to handle.

Our framework differs from existing ML models for crop yield 
prediction, as it does not exclusively rely on ML. Purely ML-based 
crop yield algorithms deal with a large, complex feature space, since 
the weather data often exist in different temporal resolution from 

the target variable (i.e. daily weather features vs. end-of-season crop 
yield). In order to deal with this issue, modellers post-process the 
weather inputs by averaging them in weekly/monthly/annual time 
step (e.g. Folberth et al. 2019; Shahhosseini et al. 2021; Srivastava et al. 
2022). As a result, information may be lost (e.g. extreme weather val-
ues) and the dimensionality increases significantly (e.g. the weather 
variable ‘daily temperature’ can become up to 12 variables if averaged 
monthly). In GLAM-Parti, the weather predictors are in the same tem-
poral resolution (i.e. daily time step) as the three target variables (i.e. 
RUE, dHI/dt and iphen), thus allowing the use of observations with-
out post-processing.

The HSC and IHSGE data sets consist of 40 seasonal yield observa-
tions available for ML training. This is a far too small sample for training 
and evaluation of a pure ML model. However, the consideration of the 
same experiments in terms of daily observations comprises a signifi-
cantly larger sample size. In this study, the 40 field experiments make 
approximately 4000 daily observations (i.e. 40 experiments × average 
100 days from crop emergence to maturity per experiment). Hence, in 
the GLAM-Parti framework, the selection of output variables with daily 
time step results in an adequately large sample for ML model develop-
ment. In other words, the relatively small number of field experiments 
provides an adequate sample of daily crop growth, development and 
partitioning data. ML is used for the prediction of daily changes in crop-
related processes, which are then incorporated into GLAM-Parti for 
biomass and yield estimations. Thus, the GLAM-Parti framework con-
sists of a possible avenue for the use of ML in data sets with a small num-
ber of field experiments (i.e. limited end-of-season yield observations).

With regards to the crop phenological development, the model 
predicted the days to anthesis and physiological maturity earlier than 
observed, leading to a negative bias in the simulations (Figs 3 and 5). 
One possible explanation is the relatively small training sample of this 
study. Additional field experiments can lead to the development of 
more skilful ML models. Another reason for the systematic error could 
be the omission of relevant explanatory variables. The weather inputs 
used for phenology are radiation (Srad, Solrac) and temperature-based 
(Tmin, Tmax, TT). Most significantly, TT was computed in the simplest 
form, summing only the mean of Tmin and Tmax (Equation (4)). We 
did not attempt to incorporate a more complex temperature response 
curve (e.g. Wang and Engel 1998), since we wanted to test the model 
performance with minimal number of parameters. Nevertheless, the 
use of a simple sum of degree days for phenology often leads to lower 
performance than more complex process-based algorithms (Wallach 
et  al. 2021a). Wang et  al. (2017) make skilful predictions with a 

Table 2.  Performance of GLAM and GLAM-Parti in the ‘Hot Serial Cereal Experiment’ for wheat (HSC). Evaluation metrics are 
coefficient of determination (R2), root mean squared error (RMSE), normalized root mean squared error (nRMSE) and mean 
bias error (MBE).

 R2 RMSE nRMSE (%) MBE

GLAM GLAM-Parti GLAM GLAM-Parti GLAM GLAM-Parti GLAM GLAM-Parti 

Biomass 0.93 0.9 1.96 1.79 16 15 0.12 −0.96
Yield 0.83 0.88 1.40 0.87 28 17 −0.42 −0.49
Anthesis 0.92 0.96 6.34 4.59 10 7 0.17 −2.75
Maturity 0.96 0.98 6.45 4.51 7 5 −0.5 −2.5 D
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curvilinear temperature response function based on a minimum, opti-
mum and maximum cardinal temperature for wheat. In the future, the 
introduction of a feature of thermal time accumulation with a more 
complex, wheat-based function could increase the ML skill and may 
decrease the bias in the simulations for the progression of the crop 
phenological stages.

GLAM-Parti contains the following four physiological parameters: 
allometric coefficients a, b (Equation (8)); k and SLA (Equation (10)). 
Together with the ML model hyperparameters, they consist of the 
complete set of parameters. In this study, the only calibration process 
applied was the optimization of the ML hyperparameters for predicting 
RUE, dHI/dt and iphen. Also, it should be noted that ML is fully inte-
grated into GLAM-Parti, meaning that neither of the two pieces (the 
process-based part of GLAM-Parti or the ML models) can produce 
grain yield output individually. Hence, there is no baseline crop model 
without ML. Nevertheless, GLAM-Parti retains its process-based 
nature, thus providing information other than end-of-season grain yield 
(the model outputs daily estimations of crop biomass, individual organ 
mass, etc.). Therefore, the model can be used for applications other 
than end-of-season crop yield prediction. The model evaluation against 
within-season crop measurements revealed a significantly better skill in 
predicting mid-season above-ground biomass compared to grain mass 
[see Supporting Information—Fig. S4]. This points to the need of 
further model improvement in the representation of the time series of 
HI (for more details, see discussion in SI). Additionally, more mid-sea-
son observations of grain mass would be particularly useful to constrain 
and evaluate the crop model in the future.

GLAM and GLAM-Parti were compared against the HSC experi-
ments. Prior to the evaluation, GLAM was calibrated with 100 % of 
the data (all 12 experiments), whilst GLAM-Parti used only 50 % (six 
experiments) during ML training. Nevertheless, GLAM-Parti exhib-
ited 27.6–37.9  % lower RMSE for biomass, grain yield, the days to 
anthesis and maturity (Table 2). In addition, R2 of GLAM-Parti was 
higher for grain yield and the days to anthesis and maturity, whilst 
GLAM had higher R2 for biomass. On the other hand, GLAM-Parti 
exhibited larger MBE values for all variables tested. Nevertheless, 
GLAM-Parti was trained on 50 % of the data, while GLAM was cali-
brated with 100 % of the experiments, thus minimizing the systematic 
errors in the simulations. Overall, the above comparison reveals the 
benefit of the ML parameterizations in the GLAM-Parti framework, 
since the model shows similar or improved performance compared to 
its predecessor, GLAM, using only half of the data for model training.

Here, GLAM-Parti was tested with wheat treatments of well-irri-
gated and fertilized conditions. Thus, the variation in crop growth, 
development and yield was not driven by the availability of soil water 
and nutrient contents. Model application to a larger and more complex 
spatial domain (e.g. gridded regional runs) would require additional 
ML features to reproduce the spatio-temporal wheat yield variation. 
Even though this is out of the scope of this study, some ideas on how 
to incorporate additional inputs for model runs in larger domains are 
provided below:

- � Precipitation-related drivers: These can be incorporated into 
the model by using observed rainfall or cumulative sums at daily 
time step during the crop growing season.

- � Soil properties and water content: Soil moisture levels can be 
derived from time series of remote sensing data. Additionally, 
the most important soil properties can be taken into account in 
developing the ML model.

- � Management practices: Levels of irrigation and fertilizer 
application can be introduced into ML feature space.

The use of three ML algorithms (target variables: iphen, RUE, dHI/
dt) involves the challenge of selecting the correct models and fea-
tures in each one, as well as optimizing the model hyperparameters. 
Most importantly, feature selection is an essential element in build-
ing an ML model, since the use of incorrect drivers of plant growth 
and development can result in relationships that do not correspond 
to the underlying patterns of the real world. Hence, the remarkable 
predictive capacity of ML should be harnessed in close contact with 
the progress in plant science to develop models of increased utility, 
which provide the ability to explain patterns and interactions of the 
real world. Finally, an additional challenge of GLAM-Parti is the 
requirement of at least one in-season measurement of above-ground 
biomass and grain mass for the construction of the sigmoid curves 
(see Equation (13) and Fig. 2). Therefore, experiments like HSC and 
IHSGE provide ideal data sets, essential for achieving progress in crop 
modelling and we are very grateful to all the scientists and people who 
worked hard to create these data sets, leading to the model develop-
ment presented in this study.

5 .   C O N C LU S I O N
We integrated ML algorithms into the process-based crop model, 
GLAM-Parti. The new framework exhibited high skill in the predic-
tion of wheat growth, development and yield against a wide range of 
heat stress experiments. The incorporation of ML into GLAM-Parti 
eliminates stress factors under high temperature and decreases the 
physiological model parameters down to four (the full set of param-
eters includes ML hyperparameters too). Our methodology is highly 
data-driven, relying on the remarkable capacity of ML in picking up 
the signals between input (weather and crop) features and target 
variables. This leads to high model performance in wheat growth and 
development at daily time step against a wide range of environmen-
tal conditions. Here, GLAM-Parti was primarily tested for high tem-
perature; however, the model does not include any heat stress-focused 
procedures. Given the right data, GLAM-Parti should—in principle—
be similarly applied to other crop growing conditions. Finally, open-
source data sets such as Martre et  al. (2017, 2018) are of extremely 
high importance in taking advantage of ML techniques to develop 
novel methodologies in crop modelling, such as the one presented in 
this study.

S U P P O RT I N G  I N F O R M AT I O N
The following additional information is available in the online version 
of this article—
Section1 GLAM-Parti model performance for mid-season above-
ground biomass and grain mass
Table S1 HSC and IHSGE wheat field treatments used for ML train-
ing and GLAM-Parti model Evaluation
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Table S2 GLAM-Parti skill for above-ground biomass in the HSC 
treatments
Table S3 Same as above but for grain yield
Table S4 Same as above but for days from emergence to anthesis
Table S5 Same as above but for days from emergence to maturity
Figure S1 Log-transformed MS vs. MP for the HSC treatments
Figure S2 Time series of wheat biomass with sigmoid function
Figure S3 Methodology for selection of HSC wheat treatments for 
training of ML and GLAM-Parti model evaluation
Figure S4 GLAM-Parti model performance for predicting mid-season 
above-ground biomass and grain mass
Figure S5 Observed, GLAM and GLAM-Parti above-ground bio-
mass, grain yield, days from emergence to anthesis and days from 
emergence to maturity
Figure S6 GLAM-Parti model performance in the IHSGE treatments 
with RF
Figure S7 GLAM-Parti model performance in the IHSGE treatments 
with XGBoost
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