
QoS-Aware Co-Scheduling for Distributed
Long-Running Applications on Shared Clusters

Jianyong Zhu, Renyu Yang ,Member, IEEE, Xiaoyang Sun, Tianyu Wo ,Member, IEEE, Chunming Hu ,

Hao Peng, Junqing Xiao, Albert Y. Zomaya , Fellow, IEEE, and Jie Xu,Member, IEEE

Abstract—To achieve a high degree of resource utilization, production clusters need to co-schedule diverse workloads – including both

batch analytic jobs with short-lived tasks and long-running applications (LRAs) that execute for a long time frame from hours to months

– onto the shared resources. Microservice architecture advances the manifestation of distributed LRAs (DLRAs), comprising multiple

interconnectedmicroservices that are executed in long-lived distributed containers and servemassive user requests. Detecting and

mitigatingQoS violation become evenmore intractable due to the network uncertainties and latency propagation across dependent

microservices. However, current resourcemanagers are only responsible for resource allocation among applications/jobs but agnostic to

runtimeQoS such as latency at application level. The state-of-the-art QoS-aware scheduling approaches are dedicated for monolithic

applications, without considering the temporal-spatio performance variability across distributedmicroservices. In this paper, we present

TOPOSCH, a new scheduling and execution framework to prioritize theQoS of DLRAswhilst balancing the performance of batch jobs and

maintaining high cluster utilization through harvesting idle resources. TOPOSCH tracks footprints of every single request acrossmicroservices

and uses critical path analysis, based on the end-to-end latency graph, to identifymicroservices that have high riskof QoS violation. Based

onmicroservice and node level risk assessment, we intervene the batch scheduling by adaptively reducing the visible resources to batch

tasks and thus delaying their execution to give way toDLRAs.We propose a prediction-basedvertical resource auto-scalingmechanism,

with the aid of resource-performancemodeling and fine-grained resource inference and access control, for prompt recovery of QoS

violation. A cost-effective task preemption is leveraged to ensure a low-cost task preemption and resource reclamation during the

auto-scaling. TOPOSCH is integrated with Apache YARN and experiments show that TOPOSCH outperforms other baselines in terms of

performance guarantee of DLRAs, at an acceptable cost of batch job slowdown. The tail latency of DLRAs is merely 1.12x of the case of

executing alone on average in TOPOSCH with a 26% JCT increase of Spark analytic jobs.

Index Terms—Resource scheduling, cluster management, QoS, tail latency, datacenters

Ç

1 INTRODUCTION

PRODUCTION clusters are increasingly consumed by vari-
ous workloads mainly including batch jobs for data

analytics [1], [2], [3], [4] and long-running applications
(LRAs) for online cloud services (e.g., Storm [5], Flink [6],
HBase [7], MongoDB [8], Tensorflow [9], etc.) for

transaction analytics, streaming process, and data store and
query. By co-managing diverse workloads onto the same
host server, workload co-location has become a common
practice in improving resource utilization and cost effi-
ciency. As opposed to batch analytic jobs that usually con-
sist of a large number of short-lived tasks and are
measured by the end-to-end job completion time, LRAs
have now become another mainstream workloads in pro-
duction clusters (Google [10], Microsoft [11], Alibaba [12]).
LRAs are latency-critical – the stringent quality-of-service
(QoS) such as response latency and throughput is of the
upmost criticality and must be met to deliver the business
promise in the face of network jitters or load spikes. For
example, the 95th percentile of requests need to complete
within a latency threshold.

Microservice architecture is an approach to constructing
a single application as a set of small interconnected services.
Each microservice runs individually and communicates
with each other mostly using remote procedure calls (RPC)
[13]. In this context, a Distributed Long Running Application
(DLRA) is referred to as the microservice-based application
with microservices executed in the long-lived distributed
containers. Compared to monolithic applications, request
latency is prone to any network turbulence that will coher-
ently affect massive communications in the DLRA. Pin-
pointing the QoS violation (e.g., mean or tail latency over a
threshold) is ever-increasingly intricate because the latency

� Jianyong Zhu is with the Beihang University, Beijing 100083, China, and
also with the Department of Computing, North China Electric Power Uni-
versity, Baoding 071003, China. E-mail: zhujy@ncepu.edu.cn.

� Renyu Yang, Xiaoyang Sun, and Jie Xu are with the School of Computing,
University of Leeds, LS2 9JT Leeds, U.K.
E-mail: {r.yang1, scxs, j.xu}@leeds.ac.uk.

� TianyuWo, Chunming Hu, and Hao Peng are with the BeihangUniversity,
Beijing 100083, China. E-mail: {woty, hucm, penghao}@act.buaa.edu.cn.

� Junqing Xiao is with the Alibaba Group, Hangzhou, Zhejiang 311121,
China. E-mail: junqing.xjq@alibaba-inc.com.

� Albert Y. Zomaya is with the University of Sydney, Camperdown, NSW
2006, Australia. E-mail: albert.zomaya@sydney.edu.au.

Manuscript received 16 December 2021; revised 3 August 2022; accepted 23
August 2022. Date of publication 29 August 2022; date of current version 26
September 2022.
This work was supported in part by MIIT of China under Grant 2105-370171-
07-02-860873, in part by the S&T Program of Hebei under Grant 20310101D,
in part by Fundamental Research Funds for the Central Universities under
Grant 20226941, and in part by UK EPSRC under Grant EP/T01461X/1, Alan
Turing Pilot Project and Alan Turing PDEAProgram.
(Corresponding author: Tianyu Wo.)
Recommended for acceptance by B. Veeravalli PhD.
Digital Object Identifier no. 10.1109/TPDS.2022.3202493

4818 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 12, DECEMBER 2022

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0001-6334-4925
https://orcid.org/0000-0001-6334-4925
https://orcid.org/0000-0001-6334-4925
https://orcid.org/0000-0001-6334-4925
https://orcid.org/0000-0001-6334-4925
https://orcid.org/0000-0002-5331-3364
https://orcid.org/0000-0002-5331-3364
https://orcid.org/0000-0002-5331-3364
https://orcid.org/0000-0002-5331-3364
https://orcid.org/0000-0002-5331-3364
https://orcid.org/0000-0002-9502-3955
https://orcid.org/0000-0002-9502-3955
https://orcid.org/0000-0002-9502-3955
https://orcid.org/0000-0002-9502-3955
https://orcid.org/0000-0002-9502-3955
https://orcid.org/0000-0002-3090-1059
https://orcid.org/0000-0002-3090-1059
https://orcid.org/0000-0002-3090-1059
https://orcid.org/0000-0002-3090-1059
https://orcid.org/0000-0002-3090-1059
mailto:zhujy@ncepu.edu.cn
mailto:r.yang1@leeds.ac.uk
mailto:scxs@leeds.ac.uk
mailto:j.xu@leeds.ac.uk
mailto:woty@act.buaa.edu.cn
mailto:hucm@act.buaa.edu.cn
mailto:penghao@act.buaa.edu.cn
mailto:junqing.xjq@alibaba-inc.com
mailto:albert.zomaya@sydney.edu.au

in a single microservice can promptly propagate across all
dependent microservices and ultimately result in the entire
performance slowdown [13].

However, traditional cluster managers [3], [14], [15], [16]
are originally designated for short-running batch jobs. The
central resource manager (RM) is only responsible for
resource allocation among applications/jobs, yet leave all
application-specific logic to application managers (AMs).
This means that RM is completely unaware of the runtime
QoS requirements of the interactive and latency-sensitive
applications. Other workload co-location solutions either
diminish the performance interference through resource
partition and isolation [17], [18], [19] or minimize the perfor-
mance interference when co-locating different workloads
[20], [21], [22]. Nevertheless, they are exclusively devised
for monolithic applications and cannot be directly applied
to tackle the sophisticated component dependencies and
latency variations when substantial and dynamic requests
manifest in the constituent microservices of the DLRA.

In this paper we present TOPOSCH, a QoS-centric resource
management and runtime execution framework that can pri-
oritize the QoS of DLRAswhilst balancing the performance of
batch jobs and maintaining high cluster utilization. TOPOSCH

encompasses two coherent stages to tackle the QoS violation:
(i) In QoS violation containment phase, we first exploit the
instrumentation to trace footprints of each request across dif-
ferent microservices to localize the QoS violation. We take
into account timing information – including sojourn time on
individual microservice and transmission time between
microservices – to establish a latency graph, and periodically
perform the critical path analysis to ascertain the chain of
invocations with the longest end-to-end latency. The micro-
services on the critical path are recognized as the victim
microservices with higher risks of QoS violation. Based on
microservice-level and node-level risk assessment, a risk-
aware mechanism is proposed for adjusting the resource res-
ervation for DLRAs and the visibility to batch tasks. We can
therefore intervene the scheduling of batch tasks by prevent-
ing packing excessive batch tasks onto saturated nodes with-
out exacerbating the QoS violation of DLRAs. (ii) In QoS
violation mitigation phase, we perform prediction-based vertical
auto-scaling by learning the QoS sensitivity of long-running
containers – particularly those risky microservices such as
core databases or data streaming components in the DLRAs –
to multi-resources and devising low-cost task preemption
and resource reclamation. We infer the proper resource to be
vertically scaled based on the QoS-resource model to reach
the targeted QoS of the victim microservices. Multi-dimen-
sional resource isolation (CPU cores, caches, main memory,
memory bandwidth, etc.) is enforced to precisely control the
resource binding and runtime usage. As opposed to the man-
datory kill-based preemption that lead to substantial termina-
tion of running tasks, we propose a new task preemption
mechanism for gradual resource reclamation from low-prior-
ity opportunistic batch tasks and leverage multiple pluggable
preemption strategies to determine the tasks to be preempted.

TOPOSCH is integrated with the Resource Manager and
NodeManager ofHadoopYARN. Experiments showTOPOSCH

outperforms other baselines inQoS assurance. The tail latency
of DLRAs when co-locating with Spark-based batch jobs is
merely 1.12x of the case of executing alone on average and

batch jobs experience 26% JCT increase on averagewhen com-
pared with the case of running in native YARN. If the QoS-
driven auto-scaling mechanism is disabled, the tail latency of
the variant TOPOSCH-n is 1.27x – with less QoS assurance – but
the JCT is only increased by 17%. This indicates a performance
balance when the proposed auto-scaling design comes
into effect. Additionally, the proposed gradual preemption
schemes can reduce the JCT by 26.3% and 15.1% as opposed
to the kill-based scheme and the least-preempted scheme.

This paper makes the following contributions:

� proposing a mechanism for QoS violation assess-
ment based on critical path analysis which is con-
ducted upon the breakdown of end-to-end request
latency among constituent microservices of DLRAs.

� devising an adaptive co-scheduling approach that
delays the scheduling of batch tasks according to the
runtime risk of QoS violation.

� developing a newmechanism for mitigating QoS vio-
lation through prediction-based resource inference
and cost-effective auto-scaling of keymicroservices.

We expand upon our previous work [23] that only
focused on the basic scheduling and QoS protection strategy
in the containment phase, by (1) scheduling framework
redesign to underpin co-scheduling (centralized and decen-
tralized) of DLRAs, batch tasks and opportunistic tasks; (2)
significantly augmented scheduling framework to support
prediction-based and on-demand mitigation phase, with
the particular aid of an enhanced node agent for precise
QoS prediction and runtime multi-resource inference and
management, and a new resource autoscaler in the DLRA
Master for cost-effective QoS recovery and resource recla-
mation; (3) more comprehensive experimental study with
an additional set of workload co-location compositions and
with different preemption strategies and the state-of-the-art
approaches for comparison.

Organization. Background and solution overview are pre-
sented in Section 2 and Section 3. We show the technical
details in Section 4 and Section 5 before the evaluation in
Section 6. We discuss related work in Section 7 and con-
clude the paper in Section 8.

2 BACKGROUND

2.1 Resource Management for Shared Clusters

Cluster scheduling systems typically separate the resource
management layer from the job-level logical execution
plans. YARN[24] and Fuxi[3] share the following compo-
nents: Resource Manager (RM) is the centralized resource
manager, tracking resource usage, node aliveness, enforcing
resource quotas among tenants through either capacity or
fairness control. Application Master (AM) is an application-
level scheduler which coordinates the logical plan of a sin-
gle job by requesting resources from the RM, generating a
plan from received resources, and coordinating task execu-
tion. Node Manager (NM) is a daemon process within each
cluster node and responsible for managing task life-cycle
and monitoring node information. Traditional workloads in
clusters include the data batch analytic jobs (abbr. batch jobs)
[1], [2], [3], [4] – with short-lived tasks typically in the order
of seconds – and the long-running applications (LRAs):

ZHU ETAL.: QOS-AWARE CO-SCHEDULING FOR DISTRIBUTED LONG-RUNNING APPLICATIONS ON SHARED CLUSTERS 4819

LRAs are instantiated by long-standing containers or
executors to enable iterative computations in memory or
unceasing request-response. Examples of LRAs include
applications using streaming processing frameworks (Storm
[5], Flink [6], Kafka streams [25]), latency-sensitive database
applications (HBase [7] and MongoDB [8]), and data-inten-
sive in-memory computing framework (Tensorflow [9]).
Response latency and throughput are the key performance
indicators and applications must meet strict QoS.

For the batch workloads, there are typically two classes:
regular jobs/tasks and opportunistic jobs/tasks (aka. best-
effort or speculative in other systems [10], [16], [26], [27]).
Regular tasks are submitted and managed by the central-
ized resource scheduler, while the opportunistic tasks are
managed in a decentralized manner and used for resource
oversubscription and high resource utilization – they are
submitted to fill in the slack left by LRAs and regular tasks.

2.2 Distributed Long-Running Applications (DLRAs)

In the nature of component decoupling and distributed exe-
cution, a DLRA typically comprises multiple microservices,
which are deployed on multiple nodes subject to their
resource requirements. Multiple transactions within a DLRA
have strong dependencies across multiple microservices.
However, temporal-spatio load variability manifests over
time and across nodes [28], [29], [30], [31]. A user request
(e.g., an application request, a database query, a file access
operation) will transverse a collection of microservices before
being responded. Therefore, end-to-end (E2E) response
latency is broadly used to indicate the execution time of any
operation to complete. Fig. 1 exemplifies a typical DLRA for
online e-commerce store [13] which consists of nine business
microservices (ranging from account related services to order
management services) and sevendatawarehousemicroservi-
ces. The arrow represents the calling dependency. After log-
ging in the system, users can browse the inventory through
catalogue or add items into the cart before finishing an order.
Shipping service will also be connected with the order service
so that one can check the shipping status of a given order. All
information needs to be queried and fetched fromunderlying
database services.

2.3 End-to-End (E2E) Latency in DLRAs

We use PiggyMetrics [32], a financial advisor app built upon
microservice-based architecture, to showcase how an
increase of end-to-end latency can break down into, and
attribute to, the individual microservices.

Motivating Example. Fig. 2a shows a test case that covers
microservices associated with account and statistics. The

detailed calling chain is as follows: a user first launches a
request to the system, and the request is then reversely
routed to the Account-service (AcS) via the Gateway (GW). AS
is largely dependent upon the authentication in Authentica-
tion-service (AuS) to complete the account verification. To
obtain the relevant account information, it needs to access
the local database service Account-mongodb (ADb). Once
logged in, the user can then obtain the required statistics by
initializing another requests to the Statistics-service (SS) and
querying the back-end database Statistics-mongodb (SDb).

Latency Increase and Its Breakdown. Failing to handle spikes
of users and requests is one of the common root causes to the
latency increase. To emulate this scenario, we conduct a case
study by ramping up the number of users.We track the holis-
tic request processing chain and measure the 95 percentile
latency increase ratio of each individual microservice. As
depicted in Fig. 2b, different microservices exhibit different
sensitivity to the growing number of users. Noticeably, two
database microservices are the dominating factor to the E2E
latency, while GW and SS are scalable to, and less prone to
the changing system loads.

The result implicates tracking and analyzing the response
latency is of great importance in QoS assurance for the long-
running services and applications. Unawareness of such
application-level latency at runtime could lead to higher per-
formance interference among co-located workloads. It is
thus highly imperative to localize such key components and
take necessary actions of restricting andmitigating the mani-
festation of performance degradation.

3 OUR APPROACH

3.1 QoS-Aware Co-scheduling

We enforce two distinct QoS management stages onto the
cluster scheduling in the face of QoS violation:

� Containment: A QoS violation of a single microservice
may propagate and lead to cascading violations across
the entire system. We therefore locally restrict such
propagation once the QoS measures are observably

Fig. 1. An e-commerce DLRA for online clothing store [13].

Fig. 2. Latency increase in individual microservices in PiggyMetrics.

4820 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 12, DECEMBER 2022

degraded within a compute node. We then delay the
procedure of scheduling more batch tasks onto the
node to maintain the current level of co-location and
thus giveway to the existingDLRAs. This intervention
aims to contain the spectrum of influence and dimin-
ish the aggravation of the QoS violation.

� Mitigation: As opposed to the delay-execution policy
used in the containment stage, it is also desirable to
proactively and dynamically adjust the existing
resource allocations (aka. vertical auto-scaling), most
notably for latency-sensitive core DLRA components
such as databases or data stream operators, in the
event of transient but severe QoS degradation. The
best-effort tasks that harvest idle resources need to
be properly reclaimed.

To fulfill the two-stage QoS management for the diverse
workload co-location, we need to answer the following
research questions: [Q1] How to localize the performance
hotspots from DLRAs and identify the most vulnerable
microservices? [Q2] How to isolate the victim microservices
from the co-located batch tasks? [Q3] How to effectively
auto-scale the containers of the risky microservices with a
proper resource adjustment to ensure the required perfor-
mance recovery? [Q4] How to minimize the cost of pre-
empting the running batch tasks during the auto-scaling?

3.2 System Architecture

Overview. TOPOSCH is built based on the state-of-the-art open
source resource management platform YARN [24] to co-
schedule both latency-sensitive containers of DLRAs and
tasks of batch jobs. TOPOSCH encompasses both a centralized
resource manager, for high-quality resource allocation with
fairness and capacity guaranteed, and a decentralized sched-
uling with distributed resource oversubscription extended
from [16], [27] to support high job throughput and high clus-
ter utilization.

Fig. 3 describes the overall architecture of TOPOSCH and it
comprises three main components: the central resource
scheduler Resource Manager (RM), the per-DLRA manager
DLRA Master and the per-node agent TOPOSCH-PAG1, a co-
resident module with the native Node Manager (NM). Fur-
thermore, batch jobs in TOPOSCH will be separately managed
according to their priority – The regular batch job will be
managed by native per-job Job Master (JM). The JMs and

DLRAMs are responsible for negotiating resources with the
centralized RM, i.e., submitting resource requests and coor-
dinating the resource allocation after obtaining the resource
response fromRM. By contrast, the opportunistic jobs will be
directly submitted for improving utilization and the pertain-
ing opportunistic tasks will be executed onto the nodes with-
out a need of resource grant fromRM.

DLRAMaster (DLRAM). To align with the design of AM in
YARN, we devise a specific programming framework to
launch a DLRA consisting of microservices, request resources
from the central RM, and provide standard functionalities of
performance tracing and inter-component communication
(e.g., RPC). The working mechanism is similar to the AM of
DAG jobs; users can outline the topological relationships
among microservices and specify the resource amount in the
configuration file. At the core of DLRAM are QoS Analyzer
and Resource Autoscaler:

� QoSAnalyzer is the key component to track the request
footprints generated within a certain time frame and
build a weighted DAG that depicts the calling rela-
tionship. To tackle [Q1], TOPOSCH exploits instrumen-
tation to trace the footprints of all requests through
each microservice. We can then monitor, extract and
calculate keymeasures – the average sojourn (process-
ing) time on individual microservice and average
transmission time. TOPOSCH periodically constructs a
request calling graph based on the microservice
dependencies and localize the microservices based on
critical path analysis (Section 4.1). Those components
are regarded as QoS victims and have higher risks of
further slowdown and failures. The risk information
will be passed on to RM to perform preventive delay-
scheduling of batch tasks (Section 4.2).

� Resource Autoscaler is the controller to infer and verti-
cally adjust the resource allocation to each microser-
vice container on demand to keep upwith the varying
QoS. In response to [Q3], the aim is to work out a
proper (just-enough) slice of resources, to dynami-
cally rescuing the degraded performance whilst
minimizing the impact on the neighboring jobs. To
conduct the resource inference, we need a predictor to
understand the sensitivity of the DLRA container to
the multiple resources, i.e., the relationship between
the resource allocation and the resultant QoS. TOP-

OSCH pre-trains an initial predictor in an offline
manner, and the parameters will be synchronized
to the autoscaler periodically when the resource
usage on-the-fly is leveraged to tweak and update
the model. We take as inputs the current resource
allocation, system loads and target performance,
and yield a new resource plan that can deliver a
specific performance recovery. The resource change
will be used for notifying the corresponding node
agent and determining the detailed plans of task
preemption (Section 5.2).

Resource Manager (RM). To raise the awareness of DLRA-
level latency, RM differentiates the available nodes by the
level of co-resident victim microservices. To cope with [Q2],
once node’s risk of performance degradation is perceptible,
TOPOSCH recalculates and throttles the resource amount

Fig. 3. Architecture overview of TOPOSCH.

1. PAG represents Performance prediction based node Agent.

ZHU ETAL.: QOS-AWARE CO-SCHEDULING FOR DISTRIBUTED LONG-RUNNING APPLICATIONS ON SHARED CLUSTERS 4821

visible to YARN capacity scheduler – according to the cur-
rent risk assessment on per-node basis – so that only a frac-
tion of real available resources can be assigned to batch
tasks, thereby delaying their execution (Section 4.2).

Node Agent (TOPOSCH -PAG). We inherit the main func-
tionalities of default NM for container management and sta-
tus update. We devise a multi-resource manager to control
the access of a variety of resources such as CPU, memory,
LLC and MBW among different containers. We employ
Docker containers to fulfill an isolated execution environ-
ment for the tasks. Upon receiving the request for launching
a new task or DLRA container, the container executor will
then launch a docker container (Section 5.1). In addition, as
opportunistic tasks are submitted and executed in a distrib-
uted manner, such queueable tasks are allocated by the
YARN distributed schedulers [33], without going through
the central RM, and managed by the local queue manager
of each node. In response to [Q4], Preemption Manager is
devised to determine which opportunistic tasks to be pre-
empted and perform a graceful resource reclamation, upon
receiving the updated information of allocation changes
from the Resource Autoscaler (Section 5.3).

4 QOS-AWARE WORKLOAD CO-SCHEDULING

This section presents how we co-schedule the microservi-
ces of DLRAs and batch tasks by pinpointing the vulnera-
ble microservices (Section 4.1) and scheduling intervention
of low-priority batch tasks based on risk assessment
(Section 4.2).

4.1 Pinpointing Vulnerable Microservices

Request Instrumentation and End-to-End Latency Tracing. To
obtain as many footprints as possible, we aim to record
per-request and per-microservice latency at RPC granular-
ity. We instrument the incoming requests and output
responses by tracking information including endpoints
destination, inbound/outbound timestamp and request
status. We use a set of identifiers to depict the information
of each RPC call including url, requestID, serviceID, even-
tType, nextServiceID, timestamp, statusCode (see Table 1).
We can infer the elapsed latency of a specific request
within a microservice. Those traces will be aggregated into
a centralized database,e.g.redis (https://redis.io).
TOPOSCH integrates the database with DLRA’s AM to
ensure effective data access whilst reducing the memory
consumption of RM.

The aggregated requests/responses over a period of time
constitute the latency trace graph (LTG). Formally, LTG ¼
ðV; E;fÞ comprises a set of microservice vertices V and a set
of edges E denoting the interconnection links between
microservices, i.e., f : E ! ðsi; sjÞjðsi; sjÞ 2 V2 ^ si 6¼ sj where
an incidence function maps each edge to an ordered pair of
distinct microservices. There are a number of hierarchical
execution entities in the system. A microservice provides
multiple access points via RPC or RESTful APIs. TOPOSCH

estimates the average sojourn time per request on microser-
vices and transmission time between microservices.

Critical Path Analysis on the LTG. To be precise, the Mean
Sojourn Time (MST) is the amount of time that a user
request spends on average in each microservice; the length
of MST is equal to the mean waiting time plus the mean ser-
vice time. As a microservice may provide its clients multiple
APIs, hundreds of thousands of requests are performed and
aggregated through the API gateway before routing to spe-
cific microservices.

Through the latency instrumentation and tracing, we can
easily obtain the entry and exit timestamps of a given
request into a microservice. t and t represent the inbound
and outbound timestamp. For a given request, the sojourn
latency of a request i within microservice sk and the trans-
mission latency of a request j between microservice sk and
sl can be measured by using two adjacent timestamps:

STi
k ¼ btik � tik;

TT j
k;l ¼ tjl �

b
tjk: (1)

At the core of generating LTG is to set the weight for ver-
tices and edges. We assign the edge weight as the mean
transmission latency TTk;l among all requests:

TTk;l ¼
P

j2Gk;l
ðtjl �

b
tjkÞ

jGk;lj
; (2)

whereGk;l is the set of requests between microservice sk and
sl, and the size is denoted by jGk;lj. Notably, we do not dif-
ferentiate the latency among different endpoints here based
on the assumption of uniform RPC communication between
two microservices2. Similarly, we assign the weight of a sin-
gle vertex as the mean sojourn latency of all requests pass-
ing through the microservice sk.

STk ¼
P

i2Gk
ðbtik � tikÞ
jGkj

; (3)

where Gk is the set of requests to the microservice sk.
We then divide the vertices into two distinct categories:

functional vertices and auxiliary vertices to embed the mean
sojourn latency STk and mean transmission latency TTk;l,
respectively. To facilitate the graph algorithms, we retain

TABLE 1
Definitions of Identifiers

Parameter Meaning

url the endpoint of a DLRA-level API
serviceID The microservice name in DLRA
requestID The unique identifier of the request, i.e.,

UUID in DLRA
nextServiceID The down-streaming microservice of the

request
timestamp Timestamp of event occurrence
eventType Event type (i.e., send or receive)
statusCode Event status (i.e., success or failure)

2. It is a common practice to only adopt one type of standard RPC
library such as gRPC, Apache Dubbo, Apache Thrift, etc. rather than
using multiple RPC libraries. This means all requests within a DLRA
will use the same underlying RPC library, and thus the latency graph
can simply depend upon the mean transmission time without involving
the variation due to RPC frameworks by different DLRAs and even
their cross-language performance.

4822 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 12, DECEMBER 2022

https://redis.io

main attributes including the service_id, relevant microservi-
ces upstream_id/downstream_id, and the timing information.
We exploit Bellman-Ford [34] to find the longest path of
LTG as the critial path. For clarity, notations used in this
paper are summarized in Table 2.

4.2 Batch Scheduling Intervention

4.2.1 Risk Assessment of QoS Violation

Microservice-Level Risk Assessment. The goal of microservices
risk assessment is to quantitatively estimate the victim
microservices on the critical path. We mainly take into
account the following factors:

� Request sojourn time. Longer request latency indicates
the pertaining microservice is prone to QoS viola-
tion, as the increased latency from the microservice
would be amplified and cascaded to the whole criti-
cal path.

� API call frequency. Any QoS violation in the microser-
vice with higher API call frequency will involve
more requests and intrinsically influence a wider
range of users.

� Request failure rate. Higher failure rate indicates a
reduced reliability of request handling of the micro-
service. Without further resource adjustment, those
microservices have higher risks of QoS violation.

To combine the first two factors, we consider both inter-
API and intra-API request sojourn time. We calculated the
weighted average sojourn time among different APIs
because of the unbalanced number of requests coming into
different APIs:

WSTk ¼
P

u2Uk
vu

fST ðuÞkP
u2Uk

vu
; (4)

where vu is the proportion, taken up by uth API url of the
microservice k, of the total requests and fST ðuÞk denotes the
intra-API averaging measure of uth API url. Particularly,
we use the geometric mean of all requests pertaining to the
url to mitigate the impact of outliers and smooth the aver-
age calculation. We then calculate the weighted sojourn pro-
portion (WSP) to indicate the proportion and importance of

the targeted microservice in the whole critical path:

WSPk ¼
WSTkP
i2S WSTi

; (5)

where S is the microservice collection on the critical path.
We involve the request failure rate into the risk assessment,
through the weighted request failure proportion (WFP):

WFPk ¼
jEkj
jGkj

; (6)

where the ratio of error requests are calculated. We inte-
grate them into the risk assessment by setting a configurable
weight a, which indicates a balance between sojourn latency
and failure rate.

rk ¼ a �WSPk þ ð1� aÞ �WFPk: (7)

Node-Level Risk Assessment. TOPOSCH infers the risk level of
QoS violation on a per-node basis, and thus we need to
aggregate the risk score of each microservice i.e.,

Rn ¼
X
k2Mn

rk; (8)

whereMn is the microservice set running on the node n and
then forming the node-level risk Rn by normalizing the
overall risk level (e.g., using min-max normalization)
among all running nodes. The node risk measures over a
fixed time frame are maintained within RM. RM then trans-
forms the obtained risk information into a dynamic resource
adjustment, in terms of both available resources for batch
tasks and reserved resources exclusively for DLRAs.

4.2.2 Resource Reservation and Scheduling

Intervention

Risk-Aware Slack Resource Reservation for DLRAs. TOPOSCH

aims to achieve a dynamic and healthy co-existence of
DLRAs and batch jobs with balanced performance among
different forces – trading the performance of batch jobs to
some extent for prioritizing the runtime latency of interac-
tive DLRAs. Intuitively, a node with higher risk level need
to reserve more slack resource for DLRAs from its available
resource pool. In this context, this piece of slack resource is
only visible to DLRAs and cannot be used for batch tasks
for a period of time. Namely, the visible resource to batch
tasks adapts to the on-the-fly risk level, according to the esti-
mation based on Eq. 5 to Eq. 7. This intervention mechanism
can avoid unnecessary batch task placement onto the node,
thereby reducing the performance interference in-between.

In practice, we use a simple yet effective linear model
with a reservation coefficient n to determine the resource
reservation for DLRAs on a specific node. n represents the
relationship between the risk level and the resource reserva-
tion. A higher value indicates that the amount of resource
reservation is more sensitive to the change of risk level, and
vice versa. The extreme case of zero n means no dedicated
slack resource for the DLRAs, i.e., completely switch-off of
TOPOSCH with default YARN scheduler enabled. Corre-
spondingly, the ratio of visible resources to batch tasks can

TABLE 2
Main Symbol Notations

Symbol Descriptions

sk the kth microservice in the DLRA
tik inbound timestamp of the request i in sk
btik outbound timestamp of request i in sk

S the collection of microservices on the critical path
ST i

k the sojourn time of the request i in sk
TT i

k;l the transmission time of the request i between sk and sl

fST ðuÞk the intra-API average sojourn time of uth url in sk
Gk;l the set of requests between sk and sl
Gk the set of requests sent to sk
Ek the set of error requests sent to sk
Mn the set of microservices running on node n
rk; Rn the risk of a microservice sk and a node n
� the mini step size of resource reclamation

ZHU ETAL.: QOS-AWARE CO-SCHEDULING FOR DISTRIBUTED LONG-RUNNING APPLICATIONS ON SHARED CLUSTERS 4823

be calculated by 1� nRn. To make the value always valid, n
is set to be ensure nRn between 0 and 1.

Batch Scheduling Intervention. Algorithm 4.2.2 describes
the procedure of resource allocation for task scheduling.
YARN uses Container3 as the basic unit of resource allocation
in the scheduler of Resource Manager and then as resource
lease to run a task. A Container will be reclaimed when a
task is completed or killed. Unsatisfied Containers that rep-
resent the resource requests of the pending tasks will be
queued in the scheduler’s queue.

We select the Container from the waiting queue in a
descending order by the waiting time and filter out a node
list N where each node has sufficient capacity to meet the
task’s requirement (Lines 1-4). The scheduler will go
through all potential nodes and calculate each node’s visible
available resourceRvis

n against the real available resourceRreal
n

according to the risk-aware reservation for DLRAs (Lines
10-12) if the default QoS violation policy is enabled (zero-
violation policy will be discussed below).

Only if the visible resource is big enough to underpin the
requested amount, the current Container can be assigned to
the node by reusing Assign(), the default scheduling pro-
cedure of the native YARN (Lines 14-16). Otherwise, we
will hold up the Container from scheduling for a given num-
ber of times (e.g., setting maxRetryTime as 1 indicates the
delay only occurs once). This design is out of consideration
of performance trade-off – we can prioritize the QoS protec-
tion without too much delay of batch task executions. Once
a task petitions for resources more than maxRetryTime,
TOPOSCH attempts to allocate resources to its Container as
soon as possible. In this case, the Container with a data
locality requirement will be directly placed, despite the fact
of temporarily aggravating the QoS violation (Lines 18-21).
For the Container without a locality requirement, TOPOSCH

can relax the scope of node selection – the scheduler will
choose the node with the lowest risk level to reduce the
impact of co-location on the increased latency (Lines 22-26).

Parameter Setting. Finding a suitable system parameter
configuration is a non-trivial task. One common practice
based on our large-scale engineering experience is to ini-
tially set conservative n for validation in a small-scale test
system that has the same hardware configurations before
deploying into larger-scale production. This procedure can
significantly help to understand system behaviors in a con-
trolled manner. We can set a starting point, such as 1.0, and
gradually relax the parameter to allow for more co-located
batch tasks by a step of 0.1 while observing the latency var-
iations (e.g., slowdowns or failures) through daily regres-
sion tests. This procedure can help us gradually revise the
configuration with a small step until all regression tests
deliver stable outputs and achieve acceptable performance
level of both latency-sensitive applications and batch jobs.
Recent advancement in reinforcement learning can facilitate
the parameter auto-tuning which is beyond the scope of this
paper and will be left for future work.

Note thatwe also allow application-specific decisionmak-
ing to achieve a customized performance trade-off. Stricter
violation policy, e.g., zero violation, could be applied to dis-
allow any batch execution further and avoid worsening the
QoS of the existing components of DLRAs. This could be eas-
ily implemented by setting up a global binary flag variable in
the configuration file and allowing cluster administrators to
specify the specific targeted scenario. If zero violation is
enabled (Algorithm 4.2.2 Lines 6-8), all the available resour-
ces on a node will be entirely invisible to batch tasks until all
the targetedDLRA’s QoS recovered.

Algorithm 1. Batch Scheduling Algorithm

Input: Q: the waiting queue consisting of pending batch
Containers

1 whileQ.sort(waiting_time) is not empty do
2 c the head Container ofQ // filter out available nodes
3 N nodes with sufficient resources for c for n inN then
4 if Zero QoS violation is enabled then
5 // no resources visible to batch tasks
6 Rvis

n 0
7 else
8 // set the visible resources by removing reserved ones
9 Rn aggregate microservice-level risks via

Eq. 8Rvis
n Rreal

n ð1� nRnÞ
10 end
11 ifRvis

n >¼ c:resReq then
12 Assignðc; nÞ break
13 else if c:retry >¼ maxRetryTime then
14 // the task has a locality requirement to the node n
15 if HasLocalityðc; nÞ then
16 Assignðc; nÞ break
17 // the task has no locality requirement to the node n
18 else if ! HasLocalityðc; nÞ then
19 n̂ the node with the lowest risk inN Assign

ðc; n̂Þ break
20 end
21 end
22 end
23 c:retry += 1
24 end

5 QOS-AWARE AUTO-SCALING

This section addresses how to manage multi-dimensional
resources and isolate resources for a given task (Section 5.1),
how many resources to revoke for auto-scaling (Section 5.2),
and which batch tasks to be preempted in a cost-effective
manner (Section 5.3).

5.1 Multi-dimensional Resource Control

TOPOSCH-PAG mainly uses Linux control groups (cgroups)
and Intel RDT technology to achieve fine-grained software-
programmable control over the amount of resource alloca-
tion for different tasks.

We use cgroup cpuset subsystem to fulfill the CPU isola-
tion: we set the cpuset.cpus to indicate the CPU affinity
for different process group and allocate logical cores of the
same CPU slot, as much as feasible, to a given microservice
or batch task container. This can avoid frequent switches
between CPU cores and cache contention in hyper-

3. In YARN’s resource model, resource scheduler responds to a
resource request by granting a Container. Container is the logical bundle
of resources that grants rights to a Job Master to use a specific amount
of resource (e.g., 1 Core CPU, 2GB RAM, etc.) on a specific node.

4824 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 12, DECEMBER 2022

threading. We exploit cgroup memory subsystem for limiting
the amount of available memory to the LRA by setting mem-

ory.limit_in_bytes. Fig. 4 outlines how TOPOSCH agent
manages CPU andmemorywith the group hierarchy.

We adopt Intel RDT to monitor and control the access to
LLC ways and MBW to avoid resource starvation and con-
sequent performance degradation. We leverage Cache Allo-
cation Technology (CAT) to group different DLRAs and
batch jobs into different classes of service (CLOS) – seen as
resource control tags – and then assign different capacity
bitmasks (CBM) to show the amount of LLC available to
each CLOS. Similarly, we use Memory Bandwidth Alloca-
tion (MBA) to specify the portion of MBW that each CLOS
can access. TOPOSCH-PAG will predict the required cache
ways according to the result of runtime resource re-alloca-
tion. For example, assuming that there are currently two
resource control tags, CLOS1 and CLOS2. If the required
cache ways are estimated to be 4 and 8, respectively, TOP-

OSCH will set 0x000f for CLOS1 and 0x0ff0 for CLOS2.

5.2 QoS Prediction Engine

We investigate the relationship between multi-dimensional
resources and the QoS through systematic profiling and
prediction model. We can then use the model to infer how
much the QoS could be mitigated by a given plan of
resource re-allocation. We leverage Million Instructions Per
Second (MIPS) as the QoS indicator to guarantee the mea-
surement accuracy. Compared with Instructions Per Cycle
(IPC) or Cycles Per Instruction (CPI) [27], [35], MIPS is less
dependent upon the measure of CPU frequency and the
number of clock cycles in the event of frequency conversion
or over-clocking techniques, and thus more accurate when
an application experiences an interrupt IO.

Formally, the prediction engine take as input the normal-
ized multi-dimensional vector R of existing resource
allocation ðRCPU;Rmem; RLLC;RMBW ; iÞ for the profiled
microservice i, to estimate the targeted QoS Q (the MIPS
value). let F be the regression function trained and fitted on
the resource and resultant QoS. As F is microservice-spe-
cific, each key component of DLRA will be profiled by the
DLRA Master. We pre-train the prediction model in an off-
line training stage, similarly to existing approaches [18],
[36], [37], based on a set of workload benchmarking and
profiling, but will update the model parameters periodically
according to the on-the-fly resource usage.

More specifically, we enumerate all possible amount of the
multiple resource vectors by going through the available
range of each individual resource and using a given step-size.
For example, the memory allocation starts from 256MB to 4G
while we increase the LLC cache ways by one way for each
step. To exemplify the procedure, we showcase how

prediction models are trained for a MongoDB microservice.
Diverse regressors are applied into the model training includ-
ing Linear Regression, k-Nearest Neighbor (KNN), Adaboost,
ElasticNet and Gradient Boost Regression Tree (GBRT), etc.
Model accuracy is determined through the RootMean Square
Error (RMSE) – an establishedmeasure of regression accuracy
when the under-prediction error is enlarged.We also evaluate
metrics such as Mean Absolute Error (MAE), and R2 (coeffi-
cient of determination) to indicate the measurement effective-
ness. Table 3 shows that GBRT has the smallest RMSE and
highest R2, indicating its minimal prediction error. We also
observe a stable prediction effectiveness in GBRTwithmerely
1.2 RMSE deviation. This is not surprising simply due to the
ensemble nature of combining several base models to pro-
duce one optimal predictive model. Fig. 5 shows an example
of the resources-QoSmodel.

The learnt model will be periodically synchronized to the
corresponding DLRAM to conduct the resource re-allocation
plan that can help the victim component back to the targeted
QoS. AssumeR is the current resource allocation vector and r

is the reallocation to be enforced. Our goal is to ascertain r such
that the subsequent QoS could reach the targeted QoS as much
as possible, i.e., FðR þ rÞ ! ð1� "ÞQtgt where " is a small
number, e.g., 0.01 or 0.05. Practically, r can be determined by
starting from setting up the CPU steps followed by fine-tuning
thememory allocation. This stems from the fact that reclaiming
CPU is a much easier and dominant step – it could effectively
throttle disk reads and thus speed up the memory reclamation
[38]. Subsequently, a vector of memory, LLC andMBW can be
then finalized to achieve the approximatedQoS.

5.3 Low-cost Task Preemption

Key Idea. The eviction of running tasks is particularly expen-
sive.Many existing solutions such as the default YARNcapac-
ity or fair scheduler forcibly kill the preempted containers
without saving the task context, which would incur substan-
tial repeated task failover and re-submission. This inevitably

Fig. 4. Cgroup and CLOS based resource isolation.

TABLE 3
Model Accuracy Comparison for MongoDB microservice

Modeling Accuracy Indicators

Algorithm RMSE MAE R2

Linear Regression 48.20 44.67 0.918
KNN 81.53 59.30 0.374
Adaboost 44.46 39.59 0.920
ElasticNet 55.40 47.54 0.718
GBRT 14.09 19.32 0.983

Fig. 5. The relationship between multi-resources and QoS for a Mon-
goDB microservice.

ZHU ETAL.: QOS-AWARE CO-SCHEDULING FOR DISTRIBUTED LONG-RUNNING APPLICATIONS ON SHARED CLUSTERS 4825

results in non-negligible system cost and delays the job com-
pletion. We aim to minimize the cost of task preemption by
progressively reclaiming resources of opportunistic tasks,
keeping task containers alive instead of interrupting them
directly, without introducing noticeable performance degra-
dation. We uniformly preempt resources frommultiple tasks,
a simple yet effective means to amortize the reclamation
among tasks and affect each task as gently as possible. It can
avoid excessive resource withdraw from one single task
which may lead to dramatic execution slowdown or failures.
While elaborating the characteristics of batch tasks and for-
malizing the preemption as an optimization problem may
help to find the optimal solution to task preemption, it comes
with a prohibitive implementation cost of instrumentation
and profiling, and is not generally applicable (i.e., job-depen-
dent and the huge number of tasks).

At the core of the resource reclamation is to re-throttle
the resource upper limit. Reclaiming CPU can be achieved
simply by revoking CPU time slices and pinning them to
other tasks. We adopt pageable memory mechanisms for
assigning memory to applications. We use memory.lim-

it_in_bytes to reduce the upper memory limit and then
memory.memsw.limit_int_bytes to move the memory
parts beyond the limit into the swap space on disks, without
terminating the tasks.

Algorithm 2. Low-Cost Task Preemption

Input:m: The targeted microservice
T : Opportunistic tasks queued on the node,
QtgtðmÞ : Targeted QoS (MIPS) ofm,
c: A pre-defined amount of resource to preempt from each task
w: A mini step of resource reclaim for each task,

1 whileQtgtðmÞ is unsatisfied do
2 // get the resources to be preempted, from the autoscaler
3 r InferPreemptedResource()

// determine the number of preemption
4 K dr=ce // pick up K tasks to be preempted
5 T GetKPreemptedTasks(T ;B) for t in T do inparallel
6 // initialize the preemption plan for each task
7 s c // reclaim resource in mini-steps
8 while s > 0 do
9 // incrementally reclaim resource
10 s s � �

// reclaim the basic stepsize from the preempted task
11 rt rt � �

// task preemption with reduced runtime resource
12 Preemptðt; �Þ // check the task aliveness
13 if !AlivenessCheck(t) then
14 // blacklist the task to be exempted from selection
15 B B þ t break
16 end
17 end
18 end
19 end

Typically, memory management can be achieved in either
static (page-locked/pinned memory allocation) or dynamic
(pageable/unpinned memory allocation) policies, which have
their inherent advantages and limitations. While page-locked
memory can achieve higher efficiency of memory r/w opera-
tions without the need of communicating with the hard drive,

developers must be responsible for memory allocation and
free, which brings additional management overheads and
potential performance uncertainties due to misuse. On the
other hand, pageable memory is more widely-adapted in
modern operating systems to virtually enlarge the memory
capacity. It swaps the pageable segmentations between mem-
ory and hard drive based on page replacement algorithms; it
may, however, lead to performance jitter due to the variation
of swap availability. We adopted swapping-based dynamic
allocation, but leave the option of pinnedmemory to the devel-
opers, who can decide whether to transfer and store the data
from the pageable segmentation to the pinned memory based
on the application-specific requirement, e.g., r/w frequency.

QoS-Driven Gradual Resource Reclamation. Algorithm 5.3
depicts the procedure of low-cost task preemption. Upon
receiving the auto-scaling request – together with the
resource preemption update (r) – from the Autoscaler of
the corresponding DLRAM, Preemption Manager will
launch the iteration of task preemption by choosing K
opportunistic tasks from the node’s queue according to a
given preemption strategy and then reclaim resources from
multiple task containers evenly and simultaneously (Lines
1-5). We introduce several pluggable algorithms to imple-
ment GetKPreemptedTasksðÞ (detailed below). For each
individual task, we revoke the pre-defined amount of
resource c by multiple mini-steps to reduce the noticeable
performance degradation to the preempted task. Specifi-
cally, each step of the preemption will be performed by
merely depriving a certain amount � at once in PreemptðÞ
(Lines 8-11). The value of � is tuneable and should be set
moderately – a big step can ensure rapid performance recov-
ery for the DLRA but would lead to unexpected slowdown,
or even failure of the opportunistic tasks. In contrast, a
smaller value would delay the performance rescue and thus
not ideal for real-world settings.

To minimize the risk of task failover, we introduce an
aliveness checking process AlivenessCheckðÞ to ensure the
affected task can keep alive as much as possible. Once the
task is detected to lose its heartbeat or hanged due to mem-
ory shortage, we will instantly cease the resource claim and
add it in the blacklist to avoid any further task preemption
(Lines 13-15). The Autoscaler in DLRAM will measure and
check if the MIPS dropdown is mitigated, i.e., the targeted
QoS is satisfied. If not, another round of preemption will be
launched – Preemption Manager will petition for inferring
the amount of resource to be reclaimed from the Autoscaler,
and then the aforementioned procedure repeats.

Pluggable Preemption Strategies. The following plug-
gable preemption strategies are configured in TOPOSCH-PAG:

� Random Based Scheme (RB): Opportunistic tasks are
randomly selected for preemption.

� Longest Tasks First (LTF): Opportunistic tasks with the
longest execution time aremost likely to be preempted.
This policy is based on the assumption the longest task
is likely to be a straggler [39], [40] compared with its
peer tasks. Reclaiming resources from a task that is
already slow may not incur substantial slowdown fur-
ther and even accelerate the straggler handling.

� Newest Tasks First (NTF): The latest tasks are most
likely to be preempted. The intuition is reclaiming

4826 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 12, DECEMBER 2022

partial resources could have limited impact on the
execution progress at an early execution stage.

� Non-locality Tasks First (NLTF): The tasks without
required data locally are most likely to be preempted.
This policy assumes that such tasks may resume
and execute faster in other nodes with data to be
processed.

To analyze the impact of preemptive scheduling on the
execution efficiency of co-located jobs, we also introduce a
preemption scheme which works against the even distribu-
tion of the reclaimed resources among tasks:

� Least Preempted Scheme (LP): The policy will select the
minimal number of tasks that can satisfy the require-
ment of resource reclaims. This policy is equivalent
to Most Resources First (MRF) [38] where tasks with
the most allocatable resources will be preempted.
The intuition behind this scheme is to reclaim
resource as fast as possible and reduce the scope of
the affected tasks.

6 EXPERIMENTS

6.1 Experiment Setup

Hardware and Software. TOPOSCH was deployed onto a 12-
machine cluster with each machine containing two 16-core
(32 logical cores) Intel-Xeon(R)-Silver 4110CPU@2.10GHz,
187GB RAM, 11MB LLC and 10 Gb Ethernet network. Each
node was installed with Debian 4.9.82. We have imple-
mented TOPOSCH in 5k+ lines of Java and fully integrated
with YARN 3.0-Beta1. The prediction engine is written in
Python and operates as a separate container. To submit a
DLRA, the topology of microservices was specified in a con-
figuration file DAG_SERVICE.xml, and all requests are
tracked and recorded in redis key-value database. Each
DRLAM periodically calculates microservices’ risk level at a
time interval such as 60s or 120s.

Workloads. We emulate a mixture of realistic workloads
in cloud datacenters.

� DLRAs. We adopt PiggyMetrics [32], a microservice
architecture based financial management applica-
tion, as the representative DLRA in our experiment.
It consists of 12 components and each of them is
encapsulated in a docker image. We embed the
instrumentation and tracing mechanisms detailed in
Section 4.1 into each component.We use JMeter [41] to
generate workloads to PiggyMetrics and emulate the
user behaviors via TPC-W [42]. There are two latency-
critical components each PiggyMetrics instance:
MongoDB serves as the primary database for each
microservice while Kafka is used to support publish-
subscribe model (pub-sub) and the messaging system
among differentmicroservices.

� Batch jobs.We employ Hibench [43] to generate batch
jobs using Spark-2.4.6. They include 8 MLworkloads:
logistic regression (lr), random forest (rf), Bayesian
classification (bayes), singular value decomposition
(svd), principal component analysis (pca), gradient
boosted trees (gbt), alternating least squares (als),
and kmeans. The default configuration for each job is:

spark.dirver.memory = 512M, spark.executor.memory =
6G, yarn.executor.cores = 4,map.parallelism = 12, shuffle.
parallelism = 8, hibench.yarn.executor.num = 60, based
on the profiling of internal traces and daily practice
used in Alibaba’s testing clusters.

Metrics. We measure the following metrics:

� Tail (95th Percentile) Latency of Piggymetrics, indi-
cates the average performance of DLRAs when han-
dling requests.

� Operations Per Second (OPS) indicates the throughput
of database transactions.

� Throughput of Kafka counts the number of messages
per second, indicating the runtime QoS of stream
messaging.

� Million Instructions per Second (MIPS) indicates, as an
operating system level counter, the performance of
both the database and Kafka streaming.

� Job Completion Time (JCT) denotes the entire comple-
tion time of a batch job.

Comparative Approaches andMethodology.Generally, to val-
idate the effect of QoS assurance, we generate and compare
two variants of TOPOSCH as an ablation study, by switching
on/off the procedure of performance prediction and auto-
scaling, and compare against the following two baselines:

� YARN: The native capacity scheduler of Apache
YARN used for default co-location [24].

� Run-Alone: The run-alone case where Piggy Metrics
or batch jobs are independently executed in an iso-
lated environment without the related interference.

� TOPOSCH-p: TOPOSCH with auto-scaling enabled with
performance-driven task preemption. Opportunistic
tasks are throttled to prioritize the latency-sensitive
components, driven by performance modeling and
prediction engine.

� TOPOSCH-n: TOPOSCH with auto-scaling disabled
without performance modeling and opportunistic
preemption.

We also compare our approach with other baselines, the
state-of-the-art performance-aware scheduling strategies for
co-locating LRAs with batch jobs in shared clusters. For a
fair comparison, we adapt their algorithms to the YARN set-
ting and conduct their scheduling and QoS control schemes
at the scheduler level:

� Quasar: A scheduling approach that uses collabora-
tive filtering to predict the performance of mono-
lithic workloads. We implemented it to guide the
placement of batch tasks and microservices [44].

� ROSE: A performance-aware scheduling approach
that harvests idle resource by opportunistic tasks
and guarantees the QoS of long-running applications
by tracking the application-specific performance
counters such as CPI and MPKI [27].

� Kube-auto: Autoscaling [45] is an industry standard
for elastically scaling allocations to acquire resources
on demand. We implement a utilization-based auto-
scaling policy adopted by Kubernetes, one of the
most appealing container management systems. It
triggers pod auto-scaling based on CPU or memory
utilization.

ZHU ETAL.: QOS-AWARE CO-SCHEDULING FOR DISTRIBUTED LONG-RUNNING APPLICATIONS ON SHARED CLUSTERS 4827

We mainly evaluate TOPOSCH in terms of the overall
effectiveness of workload co-scheduling, effectiveness of
autoscaling, and the individual contribution of each system
component. Specifically, the experiments are three-fold:

� We evaluate the performance balance of both DLRAs
and batch jobs. We compare two variants of TOPOSCH

with the baseline approaches and the ground truth
when running the DLRAs alone. (Section 6.2).

� We examine the effectiveness of auto-scaling with
different preemptive strategies. For comparison, we
evaluate our proposed schemes against the killing-
based mechanism adopted by native YARN (Kill)
and the Least Preempted scheme (LP) (Section 6.3).

� We perform several micro-benchmarks to demon-
strate the performance gains and system overhead.
We first evaluate the impact of multi-dimensional
resource control and isolation, particularly on the key
microservices. We mainly compare the proposed
method against the default isolation mechanism in
nativeYARNNodeManager (YARN) and the isolation
mechanism provided by cpu subsystem without LLC
and MBW control and isolation (CPU-SBS), typically
adopted by cluster management systems[3], [16], [26],
[27], [36]. We then analyze the parameter sensitivity,
time consumption of conducting critical path analysis,
and the overall system overhead. (Section 6.4)

Result Report. To minimize the noise, we repeat each
experiment 10 times independently and compute the aver-
age running time or performance.

6.2 Overall Scheduling Effectiveness

To emulate realistic production-level workloads, we submit
100 Spark ML jobs in several rounds. 30 of them are opportu-
nistic jobs, consisting of approximately 400 opportunistic
tasks, to improve the cluster utilization. 3 PiggyMetrics appli-
cation instances are initially launched. To further investigate
the impact of different workloads on the effectiveness, we
increase the submitted number of PiggyMetrics instances
with varying resource requirements, concurrent users, and

request distributions. Specifically, wemeasure the tail latency
of three types of requests including Log on, View, andUpdate
operations to the Account service as the performance indica-
tor of DLRAs.

Performance of DLRAs. Fig. 6 shows the tail latency
increase ratio against Run-Alone when the DLRAs are co-
scheduled with different Spark jobs. Overall, TOPOSCH-p out-
performs all baselines in all cases and the native YARN has
the worst effectiveness in assuring QoS. For example, over
all co-location scenarios, the tail latency of TOPOSCH-p is
merely 1.12x on average (1.05x�1.19x) compared with the
case of Run-Alone, and can be significantly reduced by 47%
on average when compared with the native YARN. This
observation derives from the synergetic effect of both the
batch intervention mechanism and the elastic auto-scaling
mechanism for prioritizing the QoS of latency-critical work-
loads over other Spark jobs. When the auto-scaling mecha-
nism is disabled, the tail latency of TOPOSCH-n increase to
1.27x of Run-Alone on average (1.1x�1.36x) due to the sin-
gle source of QoS protection by the scheduling intervention.

Regarding other baselines, Quasar ranks the second low-
est in guaranteeing QoS, in the midst of TOPOSCH-p and TOP-

OSCH-n, due to its elaborate mechanism in profiling and
performance modeling of co-located workload performance.
However, it is designated for monolithic applications and
thus lacks fine-grained end-to-end track of distributed com-
ponents and timely adjustment of resource allocation and
task scheduling at runtime.Wewill also demonstrate its infe-
rior effectiveness of batch JCTs and inflexibility of handling
task re-scheduling. Compared with TOPOSCH and Quasar,
Kube-auto has higher tail latency due to the low accuracy of
using straight-forward threshold-based control scheme to
trigger auto-scaling. ROSE relies on CPI and MPKI, high-
level and fluctuated performance counters, to throttle batch
tasks for monolithic long-running applications without auto-
scaling mechanism. This drawback limits the accuracy of
QoS assurance, leading to less competitive results than other
auto-scaling based approaches.

Fig. 7 depicts the corresponding cumulative distributed
function (CDF) of the absolute values of tail latency in three

Fig. 6. Tail latency increase of (a) Log on operation (b) View operation and (c) Update operation in Account service against run-alone. The submitted
PiggyMetrics instances are co-scheduled with different Spark jobs.

4828 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 12, DECEMBER 2022

types of requests, separately, when co-scheduling with all
these Spark jobs. Aligned with the observations in Fig. 6,
the curve of TOPOSCH-p is the closest to Run-Alone, followed
by the Quasar and TOPOSCH-n.

Performance of Batch Jobs. Fig. 8 illustrates the normalized
JCT of the Spark jobs when co-located with DLRA against
the jobs are executed alone. Overall, YARN and ROSE have
the shortest JCT unsurprisingly, due to their native focus on
batch job scheduling. Nevertheless, their capability of QoS
assurance is insufficient and thus are not ideal for co-loca-
tion of DLRAs and batch jobs. Compared with native
YARN, the adoption of TOPOSCH-n and TOPOSCH-p result in
an average increase of 17% and 26%, respectively. This phe-
nomenon conforms to the expectation of compromising the
performance of batch jobs for the QoS assurance of DLRAs.
By contrast, Quasar and Kube-auto have longer average
JCT because of the lack of low-cost resource reclamation
when making room for DLRAs.

The result shows the trade-off achieved in our design; con-
sidering the characteristics of offline processing, such an exe-
cution delay could be acceptable. Note that one can flexibly

tweak the performance balance between DLRA and batch
jobs by fine-tuning the parameter setting of the resource visi-
bility in the containment phase and re-setting up a moderate
QoSmodel in themitigation phase.

Impact of Different Size of Workloads. We increase the num-
ber of DLRA instances from 3 to 12 when co-scheduling
with Spark lr jobs. For generalization, the DLRA instances
are submitted with different resource requirements. Fig. 9
shows the increase of 95th percentile latency against the
case of DLRA run-alone. All the three types of requests
unexceptionally experience a upward trend. Our approach
consistently outperforms other baselines when the number
picks up. This indicates the performance gain of our
approach does not vary much, not particularly sensitive to
workload instances with different characteristics.

6.3 Autoscaling and Preemption Effectiveness

Effectiveness of Autoscaling. Our experimental study shows, as
opposed to other microservices in the DLRA, the database
microservices, e.g., statistics-mongo-service, usually exhibit
more latency fluctuations, particularly in the event of load

Fig. 7. The CDF of tail latency of (a) Log on operation (b) View operation and (c) Update operation in Account service when the submitted PiggyMet-
rics instances are co-located with Spark jobs.

Fig. 8. JCTof Spark jobs when co-scheduled with DLRAs.

Fig. 9. Latency increase of PiggyMetrics under different number of DLRA instances when co-scheduled with Spark lr jobs.

ZHU ETAL.: QOS-AWARE CO-SCHEDULING FOR DISTRIBUTED LONG-RUNNING APPLICATIONS ON SHARED CLUSTERS 4829

spikes, i.e., a surging increase in the user access. To instanti-
ate this, we emulate different numbers of concurrent users,
varying from 50 to 500, and measure the performance of
database and its co-resident batch neighbors.

Fig. 10 presents the relationship between the growth of
concurrent users, the observed OPS of the database compo-
nent and the corresponding JCT of jobs on the same node.
In TOPOSCH-n where the autoscaling mechanism is disabled,
the OPS starts to slowdown when user concurrency
becomes 200 and to drop gradually when the concurrency
reaches 400; meanwhile, the JCT also climbs up promptly
from the point of 200 concurrent users. By contrast, when
autoscaling is enabled, TOPOSCH-p can ensure more resour-
ces reallocated to the key database microservice and retain a
high service level. As a result, the OPS growth can be pro-
portionally maintained to match the increasing demand of
user access, without any performance degradation. Intrinsi-
cally, the JCT of co-resident Spark jobs will be enlarged
compared with TOPOSCH-n, simply because more resources
are deprived to prioritize the QoS of DLRAs.

Comparison of Difference Preemption Schemes. We investi-
gate how different preemption schemes perform in a con-
trolled execution environment. We create two representative
co-location settings with distinct system load – roughly 80%
(heavy load) and 40% (light load) utilization by placing dif-
ferent numbers of lr opportunistic jobs on the same node of
the MongoDB. 100 users are created in the PiggyMetrics and
concurrently access the internal microservices, particularly
theMongoDB service.

Fig. 11 and Table 4 shows an overall increase of JCT and
more tasks are involved in the preemption in the heavy load
environment compared with light load environment. This is
because DLRAs experience fiercer resource contention and
need to deprivemore resource from batch tasks to recover the
QoS target. We can also observe larger deviations of JCTs in
the heavy load cases, simply because a growing task-level
execution delay or rescheduling caused by resource reclama-
tionwill affect the job-level progress in amore stochasticman-
ner. Among all comparative schemes, the gradual preemption
based schemes (LTF, NTF, RB and NLTF) significantly out-
perform LP and Kill-based scheme. For instance, the JCT of
NTF can be reduced by 15.1% and 26.3%, respectively,

comparedwith LP and Kill-based scheme. This is because the
gradual preemption mechanism reclaims resource from mul-
tiple tasks and the mini-steps of resource reclaim can reduce
the perceived performance degradation compared with the
LP. Although less task containers are preempted in LP than
the uniform preemption among different tasks, the MRF pol-
icy in LP can causemandatory failover – the lowCPUoccupa-
tion or memory allocation sometimes fails the heartbeat
communication between the running containers and RM,
which eventually leads to substantial container restart.
Killed-based scheme directly evicts and restarts all relevant
tasks, and therefore has the longest JCT.

While gradual preemption based schemes have similar
JCTs, NTF consistently outperforms others in both light and
heavy load scenarios. This is because the impact on each
individual task in NTF will be limited although more tasks
are involved in the preemption in the heavy load scenario.
In fact, reclaiming a thin piece of resource, particularly the
CPU, from an early-stage task will have negligible impact
on the overall execution. Considering the CPU slack or
over-claiming is the norm rather than the exception in clus-
ter management, the residual resource is sufficient for
underpinning the task initialization and enabling the execu-
tion progress. By contrast, LTF and NLTF identify the lon-
gest tasks or the tasks without local data. However, the
resource reclaim slows down those tasks further and the
system-level straggler mitigation and task rescheduling will
be triggered, resulting in longer JCT than NTF.

6.4 Micro-benchmarking

Performance of Key Latency-Sensitive Microservices. In this
experiment, we evaluate how the key microservices in the
DLRA perform in the co-located environment when differ-
ent loads are enforced onto the application. We specifically
count the QoS measure of the key database MongoDB and
the key messaging microservice Kafka. We use ycsb-mongo
to stress the database. Both the record count and operation
count are set to be 100 million, and records take up 82GB
roughly. We generate 75 million message to Kafka and each
message occupies 1KB. 4 lr opportunistic jobs with 80
opportunistic tasks are placed onto the same node that exe-
cutes the containers of these microservices.

As shown in Fig. 12, the proposed TOPOSCH-p outperforms
other approaches in ensuring the QoS of both MongoDB and
Kafka microservices. For instance, the MongoDB’s OPS of
TOPOSCH-p is 1.78x and 1.49x that of native YARN and CPU-
SBS only approach, respectively. This is primarily due to the
synergetic continuum of adaptive delay scheduling of batch
tasks, effective isolation over multiple resources and the QoS
assurance in the auto-scaling mechanism. In effect, regular
batch taskswill giveways to the latency-sensitiveDLRA com-
ponents by leaving enough room when a rising risk has been
detected. Meanwhile, opportunistic tasks will be moderately

Fig. 10. Performance of MongoDB co-located with Spark lr jobs.

Fig. 11. JCTunder different preemption schemes.

TABLE 4
Task Preemption Rates of Different Auto-Scaling Strategies

Load Level LTF NTF RB NLTF LP

light load 12.5% 12.3% 12.3% 12.4% 7%
heavy load 18.2% 18% 18.1% 18.2% 13.5%

4830 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 12, DECEMBER 2022

preempted to facilitate the QoS recovery of such latency-sen-
sitive microservices. It can be also seen that, even switching
off the auto-scaling, the OPS value of TOPOSCH-n can retain
1.56x and 1.3x that of the two baselines. This again indicates
the individual contribution of the key techniques used in the
containment stage (Section 4) and in the resource isolation
(Section 5.1). When compared with executing MongoDB
alone, the OPS of TOPOSCH-p and TOPOSCH-n are merely
reduced by 10.9% and 21.9%. Similar observations can be
found in the MIPS measurement and other experimentation
onKakfa.

Performance Balance Between DLRAs and Batch Jobs. As dis-
cussed in Section 4.2, the reservation coefficient n is leveraged
to tune the impact of node-level risk on the amount of
reserved resource for microservices of DLRAs. We gradually
increase its value and examine the resultant performance of
DLRAs and Spark jobs. Fig. 13 shows an increasing trend in
the JCT of all batch jobs when n ramps up. Obviously, for a
given node risk, an increased n will reserve more resources
for the DLRA, and thus trade more batch performance for
reducing the latency of DLRAs. Specifically, the average JCT
of n ¼ 1 is 1.53x higher than that of n ¼ 0where no QoS assur-
ance is given, i.e., the native YARN. Kmeans jobs and lr jobs
experience a 23.4% and 18.2% increase, respectively. Tasks
without data locality – such as the Pi tasks – can be delayed
for a longer time. This is because of a higher likelihood of
throttling or eviction to yield sufficient resources for the vic-
tim microservices. Tasks with data locality requirement such
as tasks of Kmeans jobs and lr jobs, on the other hand, will be
directly launched from the second retry for rapid task startup,
even if the node is detected risky (depicted inAlgorithm 4.2.2.
Accordingly, this will lead to a slightly increased latency of
the co-existingmicroservices.

System Overhead. We analyze a per-AM overhead from
DLRA Analyzer in terms of time complexity and memory
consumption. (i) Time Consumption. As shown in Fig. 14, the
time cost linearly increases but slows down when the trace
number reaches 30,000. The maximal measured time is no
more than 1.6 seconds. Considering the overall time con-
sumption in the resource allocation, the incurred increase to
the scheduling latency is less than 1% compared with the
native YARN. (ii) Memory Cost. The additional memory
used for fast data access using redis is roughly 126MB, less
than 2% increase compared against native YARN. Given the
intrinsic diversity in request number and arrival pattern,
the number of traces for tracking latency in TOPOSCH over a
given period can be customized in AM to balance the
scheduling precision and the incurred overhead. It is worth
noting that the overhead analysis is on a per-AM basis but
can be naturally extended to cases of multiple DLRAs. For
cases of multiple DLRAs, memory cost will be increased
by multiple times due to redis is instantiated to support
multi-tenancy; each AM of DLRA will independently store
its own request tracing information. Each AM will be
encapsulated in a Docker container, and thus the AM can
separately run with stringent resource isolation and negli-
gible interference.

7 RELATED WORK

Resource Managers in Shared Clusters. Cluster resource man-
agement frameworks, such as YARN [14], Mesos [15], Fuxi
[3] Borg [10] are based on two-level centralized scheduling.
They decouple the inter-job resource sharing and intra-job
task scheduling, and the job managers need to negotiate
with the centralized manager and then take charge of the
job execution. Capacity Scheduling [46] or Fairness Schedul-
ing [47] are proposed to fulfill an efficient quota-based
resource sharing among multiple jobs. The objective is the
enforcement of scheduling invariants for heterogeneous
applications, with policing/security utilized to prevent
excessive resource occupation. To further improve cluster
utilization and system throughput, many other systems are
based on fully decentralized design, such as Apollo [48],
Omega [49], or hybrid system design, such as Mercury [26]
and ROSE [16]. However, all these systems are devised
towards scheduling batch analytic jobs. TOPOSCH is built
upon YARN 3.0 and based on a hybrid scheduling design –
our key modules are integrated with the centralized
resource management framework while the opportunistic
tasks are managed in a decentralized manner. The proposed
mechanisms are designed to be complementary to, and can
be implemented upon, the existing protocols in any two-
level resource management systems.

Fig. 12. QoS of key microservices under different isolation mechanisms.

Fig. 13. The performance of DLRAs and batch jobs.

Fig. 14. Time consumption for critical path analysis.

ZHU ETAL.: QOS-AWARE CO-SCHEDULING FOR DISTRIBUTED LONG-RUNNING APPLICATIONS ON SHARED CLUSTERS 4831

Performance Tracing and Diagnostics. Many prior works
are devoted into anomaly diagnosis and behavior analysis
of large-scale distributed applications. They can be classi-
fied into two categories: (i) black-box approaches using exter-
nal application states to infer and analyze the problems.
[29], [50] rely on a tremendous number of log files to extract
performance information and infer the dependency models.
[51] trains models to predict and localize latent errors in
microservices based on log information comprising a set of
predefined features. [52] uses fault injection to measure the
execution and data flows of distributed applications and to
diagnose the bottlenecks. (ii) white-box approaches by moni-
toring causality within microservices instead of inferences
through statistical analysis. [53], [54] infer the execution
path of the application based on the static analysis and sym-
bolic execution. [55], [56] provide developers with tracing
frameworks to add trace-points within the application to
collect runtime footprints. In comparison, TOPOSCH uses a
white-box methodology to track and trace the requests over
the whole DLRA and avoids over-dependencies upon prior
diagnosis conditions, typically pre-defined in black-box
approaches. Instead of using the existing fine-grained track-
ing instrumentation, TOPOSCH adopts a light-weight tracking
method to trace DLRA-level latency data, thereby signifi-
cantly reducing per-DLRA runtime overhead.

QoS-Aware Workload Co-Location. The ability to co-locate
jobs (i.e., execute within the same CPU or GPU) has been
identified as a means to address under-utilization problem.
Understanding and achieving high resource utilization or
high energy efficiency for heterogeneous workloads in cloud
computing is an important topic [27], [37], [44], [57], [58].
Existing work on QoSmanagement when co-locating hetero-
geneous workloads has two distinct categories: (i) reducing
the probability of resource contention by either granting iso-
lated execution environments to LRAs [49], [59] or adjusting
task placement to reduce the resource contention on a certain
node [11], [60], primarily for runtimeQoS of LRA. (ii) Reduc-
ing performance interference caused by resource contention
through performance prediction and resource inference, pri-
oritizing the resource requests of latency-sensitive LRAs
[17], [18], [19], [57], [60], [61]. Many of them have applied
machine learning to precisely characterize the behavioral
patterns. For instance, [62], [63] leverage various ML meth-
ods such as support vector regression, random forest and
extreme gradient boosting tree to predict workloads or sys-
tem load changes. [64], [65] employ neural networks to esti-
mate JCT and load fluctuation. However, they can hardly
take runtime information into consideration and thus fail to
provide sufficient insights into timely calibrating the runtime
QoS. [36], [44] use complicated multi-variable statistical clas-
sifiers to predict the expected interference among applica-
tions. They perform preparatory small-scale interference
tests with varied levels of background applications. [18], [19]
use performance index to depict contention at the time of
resource allocation and conduct offline studies of the rela-
tionship between multiple resources and the resulting per-
formance. However, they are designated to guarantee
performance for monolithic applications, and not directly
applicable to tackle the scheduling problem when there is
tempo-spatial latency fluctuation within DLRAs. Neverthe-
less, the key techniques are orthogonal to our QoS prediction

engine and can be modified for profiling the QoS of key
microservices. By contrast, TOPOSCH leverages the distributed
tracing to pinpoint the risky microservices and intervene the
batch scheduling; meanwhile, TOPOSCH adopts the prediction
based auto-scaling to reclaim the most suitable resources
from batch tasks andminimize the cost of task preemption.

8 CONCLUSION

Balancing cluster utilization and applications’ QoS is a non-
trivial task. Microservice architecture advances the manifes-
tation of distributed LRAs (DLRAs), comprising multiple
interconnected microservices that are executed in long-lived
distributed containers and serve massive user requests.
Detecting and mitigating QoS violation becomes even more
intractable due to the network uncertainties and latency
propagation across dependent microservices.

In this paper, we present, a scheduling system to adap-
tively co-schedule and co-locate latency-sensitive applica-
tions and batch jobs. TOPOSCH periodically identifies the risk
of QoS violation for the running microservices by tracing
and analyzing the critical path based on substantial requests
and the consequential end-to-end latency graph. we then
propose an effective delay scheduling mechanism in the
scheduler for intervening the upcoming task placement that
can prioritize the QoS assurance of DLRAs. A vertical auto-
scaling mechanism, with the aid of resource-performance
modeling and fine-grained resource access control, is pro-
posed for promptly mitigating the QoS violation of key
microservices in the DLRAs. A graceful task preemption is
leveraged to ensure a low-cost task preemption and
resource reclamation during the auto-scaling.

It is intricate but imperative to understand the end-to-end
and tail latency in a dynamic, highly-concurrent distributed
system at Internet scale. An overt observation is cloud-based
LRAs have now become another main type of workloads,
even more important than the conventional batch jobs. This
particularly boost the requirement for strict QoS guarantees
when diverse workloads are mixed. The investigated holistic
approach at both the cluster-level and node-level leads to
potential implications of workload co-location in many real-
world domains and thus is apt for adoption in Cloud and
HPC schedulers.

In the future, we plan to examine the proposed mecha-
nism over more microservices in production environments
and investigate their QoS sensitivity to fine-grained resour-
ces at large scale. We also plan to auto-learn the parameter
settings by using reinforcement learning.

ACKNOWLEDGMENTS

J. Zhu and R. Yang are co-first authors with equal
contribution.

REFERENCES

[1] J. Dean and S. Ghemawat, “MapReduce: Simplified data process-
ing on large clusters,” Commun. ACM, vol. 51, pp. 107–113, 2008.

[2] B. Saha, H. Shah, S. Seth, G. Vijayaraghavan, A. Murthy, and C.
Curino, “Apache tez: A unifying framework for modeling and
building data processing applications,” in Proc. ACM SIGMOD
Int. Conf. Manage. Data, 2015, pp. 1357–1369.

4832 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 12, DECEMBER 2022

[3] Z. Zhang, C. Li, Y. Tao, R. Yang, H. Tang, and J. Xu, “Fuxi: A fault-
tolerant resource management and job scheduling system at inter-
net scale,” Proc. VLDB Endowment, vol. 7, pp. 1393–1404, 2014.

[4] M. Zaharia et al., “Apache spark: A unified engine for big data
processing,” Commun. ACM, vol. 59, pp. 56–65, 2016.

[5] Storm, 2022. [Online]. Available: https://storm.apache.org
[6] Flink, 2022. [Online]. Available: https://flink.apache.org
[7] Hbase, 2022. [Online]. Available: https://hbase.apache.org
[8] mongodb, 2022. [Online]. Available: https://www.mongodb.com
[9] M. Abadi et al., “TensorFlow: A system for large-scale machine

learning,” in Proc. 12th USENIX Conf. Operating Syst. Des. Imple-
mentation, 2016, pp. 265–283.

[10] A. Verma, L. Pedrosa, M. Korupolu, D. Oppenheimer, E. Tune,
and J. Wilkes, “Large-scale cluster management at google with
borg,” in Proc. 10th Eur. Conf. Comput. Syst., 2015, pp. 1–17.

[11] P. Garefalakis, K. Karanasos, P. Pietzuch, A. Suresh, and S. Rao,
“Medea: Scheduling of long running applications in shared pro-
duction clusters,” in Proc. 13th EuroSys Conf., 2018, pp. 1–13.

[12] Q. Liu and Z. Yu, “The elasticity and plasticity in semi-container-
ized co-locating cloud workload: A view from alibaba trace,” in
Proc. ACM Symp. Cloud Comput., 2018, pp. 347–360.

[13] Y. Gan, Y. Zhang, and K. Hu, “Seer: Leveraging big data to navi-
gate the complexity of performance debugging in cloud micro-
services,” in Proc. 24th Int. Conf. Architectural Support Program.
Lang. Operating Syst., 2019, pp. 19–33.

[14] V. K. Vavilapalli et al., “Apache hadoop YARN: Yet another resource
negotiator,” inProc. 4th Annu. Symp. Cloud Comput., 2013, pp. 1–16.

[15] B. Hindman et al., “Mesos: A platform for fine-grained resource
sharing in the data center,” in Proc. 8th USENIX Conf. Netw. Syst.
Des. Implementation, 2011, pp. 295–308.

[16] X. Sun et al., “ROSE: Cluster resource scheduling via speculative
over-subscription,” in Proc. IEEE 38th Int. Conf. Distrib. Comput.
Syst., 2018, pp. 949–960.

[17] D. Lo, L. Cheng, R. Govindaraju, P. Ranganathan, and C. Kozyrakis,
“Heracles: Improving resource efficiency at scale,” in Proc. ACM/
IEEE 42ndAnnu. Int. Symp. Comput. Architecture, 2015, pp. 450–462.

[18] Y. Sfakianakis, C. Kozanitis, C. Kozyrakis, and A. Bilas, “QuMan:
Profile-based improvement of cluster utilization,” ACM Trans.
Architecture Code Optim., vol. 15, no. 3, pp. 1–25, 2018.

[19] P. Lama, S. Wang, X. Zhou, and D. Cheng, “Performance isolation
of data-intensive scale-out applications in a multi-tenant cloud,”
in Proc. IEEE Int. Parallel Distrib. Process. Symp., 2018, pp. 85–94.

[20] C. Delimitrou and C. Kozyrakis, “Quasar: Resource-efficient and
QoS-aware cluster management,” in Proc. 19th Int. Conf. Architec-
tural Support Program. Lang. Operating Syst., 2014, pp. 127–144.

[21] C. Delimitrou, D. Sanchez, and C. Kozyrakis, “Tarcil: Reconciling
scheduling speed and quality in large shared clusters,” in Proc.
6th ACM Symp. Cloud Comput., 2015, pp. 97–110.

[22] Y. Zhang, G. Prekas, G. M. Fumarola, M. Fontoura, I. Goiri, and R.
Bianchini, “History-based harvesting of spare cycles and storage
in large-scale datacenters,” in Proc. 12th USENIX Conf. Operating
Syst. Des. Implementation, 2016, pp. 755–770.

[23] C. Hu et al., “TOPOSCH: Latency-aware scheduling based on crit-
ical path analysis on shared yarn clusters,” in Proc. IEEE 13th Int.
Conf. Cloud Comput., 2020, pp. 619–627.

[24] Apache hadoop yarn 3.0.0, 2018. [Online]. Available: https://
hadoop.apache.org/docs/r3.1.1/index.html

[25] Kafka stream, 2022. [Online]. Available: https://kafka.apache.org
[26] K. Karanasos et al., “Mercury: Hybrid centralized and distributed

scheduling in large shared clusters,” in Proc. USENIX Annu. Tech.
Conf., 2015, pp. 485–497.

[27] R. Yang et al., “Performance-aware speculative resource oversub-
scription for large-scale clusters,” IEEE Trans. Parallel Distrib.
Syst., vol. 31, no. 7, pp. 1499–1517, Jul. 2020.

[28] F. Nwanganga and N. Chawla, “Using structural similarity to pre-
dict future workload behavior in the cloud,” in Proc. IEEE 12th Int.
Conf. Cloud Comput., 2019, pp. 132–136.

[29] M. Chow, D. Meisner, J. Flinn, D. Peek, and T. F. Wenisch, “The
mystery machine: End-to-end performance analysis of large-scale
internet services,” in Proc. 11th USENIX Conf. Operating Syst. Des.
Implementation, 2014, pp. 217–231.

[30] Z. Wen et al., “GA-par: Dependable microservice orchestration
framework for GEO-distributed clouds,” IEEE Trans. Parallel Distrib.
Syst., vol. 31, no. 1, pp. 129–143, Jan. 2019.

[31] R. Yang, X. Ouyang, Y. Chen, P. Townend, and J. Xu, “Intelligent
resource scheduling at scale: A machine learning perspective,” in
Proc. IEEE Symp. Serv.-Oriented Syst. Eng., 2018, pp. 132–141.

[32] Piggymetrics, 2022. [Online]. Available: https://github.com/
sqshq/PiggyMetrics

[33] Hadoop yarn opportunistic containers, 2017. [Online]. Available:
https://hadoop.apache.org/docs/r3.0.0/hadoop-yarn/hadoop-
yarn-site/OpportunisticContainers.html

[34] R. Bellman, “On a routing problem,” Quart. Appl. Math., vol. 16,
pp. 87–90, 1958.

[35] X. Zhang, E. Tune, R.Hagmann, R. Jnagal, V. Gokhale, and J.Wilkes,
“CPI2: Cpu performance isolation for shared compute clusters,” in
Proc. 8th ACMEur. Conf. Comput. Syst., 2013, pp. 379–391.

[36] C. Delimitrou and C. Kozyrakis, “Paragon: QoS-aware scheduling
for heterogeneous datacenters,” in Proc. 18th Int. Conf. Architec-
tural Support Programm. Lang. Operating Syst., 2013, pp. 77–88.

[37] G. Yeung, D. Borowiec, R. Yang, A. Friday, R. Harper, and P. Gar-
raghan, “Horus: Interference-aware and prediction-based sched-
uling in deep learning systems,” IEEE Trans. Parallel Distrib. Syst.,
vol. 33, no. 1, pp. 88–100, Jan. 2022.

[38] W. Chen, X. Zhou, and J. Rao, “Preemptive and low latency data-
center scheduling via lightweight containers,” IEEE Trans. Parallel
Distrib. Syst., vol. 31, no. 12, pp. 2749–2762, Dec. 2019.

[39] P. Garraghan, X. Ouyang, R. Yang, D. McKee, and J. Xu,
“Straggler root-cause and impact analysis for massive-scale vir-
tualized cloud datacenters,” IEEE Trans. Serv. Comput., vol. 12,
no. 1, pp. 91–104, Jan. 2016.

[40] G. Ananthanarayanan, A. Ghodsi, S. Shenker, and I. Stoica,
“Effective straggler mitigation: Attack of the clones,” in Proc. 10th
USENIX Symp. Netw. Syst. Des. Implementation, 2013, pp. 185–198.

[41] JmeterEB/OL, 2022. [Online]. Available: https://jmeter.apache.org
[42] Tpc-w[eb/ol], 2019. [Online]. Available: http://www.tpc.org/

tpcw/specs.asp
[43] S. Huang, J. Huang, J. Dai, T. Xie, and B. Huang, “The hibench bench-

mark suite: Characterization of the mapreduce-based data analysis,”
inProc. IEEE 26th Int. Conf. Data Eng.Workshops, 2010, pp. 41–51.

[44] C. Delimitrou and C. Kozyrakis, “Quasar: Resource-efficient and
QoS-aware cluster management,” Proc. 19th Int. Conf. Architectural
Support Program. Lang.Operating Syst., vol. 49, no. 4, pp. 127–144, 2014.

[45] C. Qu, R. N. Calheiros, and R. Buyya, “Auto-scaling web applica-
tions in clouds: A taxonomy and survey,” ACM Comput. Surv.,
vol. 51, no. 4, pp. 1–33, 2018.

[46] YARN Capacity Scheduler, 2022. [Online]. Available: http://
hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-
site/CapacityScheduler.html

[47] YARN Fair Scheduler, 2022. [Online]. Available: http://hadoop.
apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/
FairScheduler.html

[48] E. Boutin et al., “Apollo: Scalable and coordinated scheduling for
cloud-scale computing,” in Proc. 11th USENIX Conf. Operating
Syst. Des. Implementation, 2014, pp. 285–300.

[49] M. Schwarzkopf, A. Konwinski, M. Abd-El-Malek, and J. Wilkes,
“Omega: Flexible, scalable schedulers for large compute clusters,”
in Proc. 8th ACM Eur. Conf. Comput. Syst., 2013, pp. 351–364.

[50] A. Pi, W. Chen, X. Zhou, and M. Ji, “Profiling distributed systems
in lightweight virtualized environments with logs and resource
metrics,” in Proc. 27th Int. Symp. High-Perform. Parallel Distrib.
Comput., 2018, pp. 168–179.

[51] X. Zhou, X. Peng, T. Xie, and J. Sun, “Latent error prediction and
fault localization for microservice applications by learning from
system trace logs,” in Proc. 27th ACM Joint Meeting Eur. Softw.
Eng. Conf. Symp. Found. Softw. Eng., 2019, pp. 683–694.

[52] C. Pham et al., “Failure diagnosis for distributed systems using
targeted fault injection,” IEEE Trans. Parallel Distrib. Syst., vol. 28,
no. 2, pp. 503–516, Feb. 2017.

[53] C. Zamfir and G. Candea, “Execution synthesis: A technique for
automated software debugging,” in Proc. 5th Eur. Conf. Comput.
Syst., 2010, pp. 321–334.

[54] D. Yuan, H. Mai, W. Xiong, L. Tan, Y. Zhou, and S. Pasupathy,
“SherLog: Error diagnosis by connecting clues from run-time logs,”
ACMSIGARCHComput. ArchitectureNews, vol. 38, pp. 143–154, 2010.

[55] Systemtap, 2021. [Online]. Available: https://sourceware.org/
systemtap/

[56] J. Mace, R. Roelke, and R. Fonseca, “Pivot tracing: Dynamic causal
monitoring for distributed systems,” in Proc. 25th Symp. Operating
Syst. Princ., 2015, pp. 378–393.

[57] J. Mars, L. Tang, R. Hundt, K. Skadron, and M. L. Soffa, “Bubble-
up: Increasing utilization in modern warehouse scale computers
via sensible co-locations,” in Proc. 44th Annu. IEEE/ACM Int.
Symp. Microarchitecture, 2011, pp. 248–259.

ZHU ETAL.: QOS-AWARE CO-SCHEDULING FOR DISTRIBUTED LONG-RUNNING APPLICATIONS ON SHARED CLUSTERS 4833

https://storm.apache.org
https://flink.apache.org
https://hbase.apache.org
https://www.mongodb.com
https://hadoop.apache.org/docs/r3.1.1/index.html
https://hadoop.apache.org/docs/r3.1.1/index.html
https://kafka.apache.org
https://github.com/sqshq/PiggyMetrics
https://github.com/sqshq/PiggyMetrics
https://hadoop.apache.org/docs/r3.0.0/hadoop-yarn/hadoop-yarn-site/OpportunisticContainers.html
https://hadoop.apache.org/docs/r3.0.0/hadoop-yarn/hadoop-yarn-site/OpportunisticContainers.html
https://jmeter.apache.org
http://www.tpc.org/tpcw/specs.asp
http://www.tpc.org/tpcw/specs.asp
http://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/CapacityScheduler.html
http://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/CapacityScheduler.html
http://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/CapacityScheduler.html
http://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/FairScheduler.html
http://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/FairScheduler.html
http://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/FairScheduler.html
https://sourceware.org/systemtap/
https://sourceware.org/systemtap/

[58] Q. Chen, H. Yang, M. Guo, R. S. Kannan, J. Mars, and L. Tang,
“Prophet: Precise QoS prediction on non-preemptive accelerators to
improve utilization in warehouse-scale computers,” in Proc. 22nd
Int. Conf. Architectural Support Program. Lang. Operating Syst., 2017,
pp. 17–32.

[59] P. Delgado, F. Dinu, A.-M. Kermarrec, and W. Zwaenepoel,
“Hawk: Hybrid datacenter scheduling,” in Proc. USENIX Annu.
Tech. Conf., 2015, pp. 499–510.

[60] H. Kasture and D. Sanchez, “Ubik: Efficient cache sharing with
strict QoS for latency-critical workloads,” in Proc. ACM ASPLOS,
2014, pp. 729–742.

[61] J. Zhu et al., “Perphon: A ML-based agent for workload co-loca-
tion via performance prediction and resource inference,” in Proc.
ACM Symp. Cloud Comput., 2019, pp. 478–478.

[62] C. Liu, Y. Shang, L. Duan, S. Chen, C. Liu, and J. Chen, “Optimizing
workload category for adaptive workload prediction in service
clouds,” in Proc. Int. Conf. Serv.-Oriented Comput., 2015, pp. 87–104.

[63] E. Cortez, A. Bonde, A. Muzio, M. Russinovich, M. Fontoura, and R.
Bianchini, “Resource central: Understanding and predicting work-
loads for improved resourcemanagement in large cloudplatforms,”
inProc. 26th Symp. Operating Syst. Princ., 2017, pp. 153–167.

[64] M. R. Wyatt, S. Herbein, T. Gamblin, A. Moody, D. H. Ahn, and
M. Taufer, “PRIONN: Predicting runtime and IO using neural
networks,” in Proc. 47th Int. Conf. Parallel Process., 2018, pp. 1–12.

[65] Q. Yang et al., “A new method based on PSR and EA-GMDH for
host load prediction in cloud computing system,” J. Supercomput.,
vol. 68, no. 3, pp. 1402–1417, 2014.

Jianyong Zhu received the PhD degree from
Beihang University, in 2022. He was previously a
software engineer in Baidu Group from Beihang
University, in 2022. He is now an assistant profes-
sor with Department of Computing with North
China Electric Power University. His research
interests include distributed systems, and data
center resource management.

RenyuYang (Member, IEEE) is an EPSRC-funded
Research Fellow with the University of Leeds, UK.
He was previously with Alibaba Group China and
Edgetic Ltd. UK, having industrial experience in
building large-scale resource scheduling systems.
He is a recipient of Alan Turing Institute post-doc-
toral Enrichment Award, 2022. His research inter-
ests include reliable resource management,
distributed systems and appliedmachine learning.

Xiaoyang Sun is currently working toward the
PhD degree of the Distributed Systems and Serv-
ices Group with the University of Leeds. He par-
ticipated in research internships in Alibaba Group
Inc., working on resource management and task
scheduling on the large-scale clusters, accelerat-
ing pre-trained models in the resource-limited
environment. His primary research focuses on
system optimization for deep learning workflows
on heterogeneous resources.

Tianyu Wo (Member, IEEE) received the BEng
and PhD Degrees in computer science from Bei-
hang University, in 2001 and 2008 respectively.
He is an Associate Professor with the School of
Software with Beihang University. His current
research interests include distributed systems,
network operation systems and IoV systems.

Chunming Hu received the PhD degree from Bei-
hang University, in 2006. He is a professor and
dean of the School of Software, BeihangUniversity.
His current research interests include distributed
systems, system virtualization, data management
and processing systems.

Hao Peng is currently an Assistant Professor
with Beijing Advanced Innovation Center for Big
Data and Brain Computing in Beihang University,
and School of Cyber Science and Technology in
Beihang University. His research interests include
representation learning, text mining and social
network mining.

Junqing Xiao received the MSc degree from Bei-
hang University, in 2018. He is currently a soft-
ware engineer with Alibaba Group. His research
interests include distributed systems and data
center resource management.

Albert Y. Zomaya (Fellow, IEEE) is the Peter
Nicol Russell Chair professor of Computer Sci-
ence in the School of Computer Science, Sydney
University, and serves as the director of the Cen-
tre for Distributed and High-Performance Com-
puting. He has published more than 700 scientific
papers and articles and is author, co-author or
editor of more than 30 books. He is the editor in
chief of the ACM Computing Surveys and serves
as an associate editor for several leading jour-
nals. He is a decorated scholar with numerous

accolades including Fellowship of the IEEE, AAAS, and the IET. Also, he
is a fellow of the Australian Academy of Science, Fellow of the Royal
Society of New South Wales, Foreign Member of Academia Europaea,
and Member of the European Academy of Sciences and Arts. His
research interests are in the areas of parallel and distributed computing,
networking, and complex systems.

Jie Xu (Member, IEEE) is the chair professor of
Computing with the University of Leeds, the
leader for a Research Peak of Excellence with
the Leeds, director of UK EPSRC WRG e-Sci-
ence Centre, Executive Board Member of UK
Computing Research Committee (UKCRC), and
Chief Scientist of BDBC, Beihang University,
China. He has worked in the field of dependable
distributed computing for more than 30 years. He
is a steering/executive committee member for
numerous IEEE conferences including SRDS,

ISORC, HASE, SOSE and is a co-founder for IEEE IC2E, DAPPS, JCC,
etc. He has led or co-led many research projects to the value of over
$30M, and published in excess of 400 academic papers, book chapters
and edited books. He is a Turing Fellow of the Alan Turing Institute.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

4834 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 12, DECEMBER 2022

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

