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ABSTRACT

Machine learning algorithms have been extensively used to implement structural

health monitoring (SHM) systems to detect the occurrence of damage within a structure.

To obtain the most effective data for SHM decision making, it is desirable to perform

sensor placement optimisation (SPO), with a particular focus on damage identification.

However, comparatively little attention has been paid to systematic assessment criteria

appropriate to the design of a sensor system for SHM. This paper focusses on studying

the evaluation criteria at different stages of a sensor-system design process, ranging from

the measurement of linear associations to the detailed evaluation of the overall proba-

bility of correct classification. The effects of the investigated criteria are demonstrated

using a physics-based model with uncertain parameters related to material proprieties.

Predictions of the dynamic response of the structure in different states of interest are

used to derive features.

INTRODUCTION

At the design stage of a structural health monitoring (SHM) system, a physics-based

model can be used to provide predictions of dynamic response of structure in the differ-

ent states of interest. To make the predictions from a model more reliable, approaches

incorporating the uncertainties of input parameters into model simulation have received

a great deal of interest in the research literature [1]. The most intuitive way to im-

plement uncertainty propagation is via Monte Carlo sampling [2]. However, for large-

scale models, the computational cost of the process can be prohibitive. Some surrogate

modelling methods have been developed to overcome this limit, such as the polynomial

chaos expansion, Gaussian process regression (also referred to as Kriging) and neural

networks [3–5].

Based on the above research, some studies on sensor placement optimisation (SPO)

technologies by using features derived from model predictions has been carried out. Gu-

ratzsch & Mahadevan (2010) proposed a probabilistic finite element model analysis to
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provide measurements for the subsequent SPO process [6]. The spatial and temporal

distribution of model parameters was considered via a random process or random field.

Monte Carlo sampling was adopted to transfer the uncertainty of input variables to out-

puts. Castro-Triguero et al. (2013), also used Monte Carlo simulation to realise the

propagation of parametric uncertainties, but focussed on investigating the influence of

these uncertainties on the SPO methodologies based on the Fisher information matrix

and energy matrix rank [7]. Eshghi et al. (2019), developed a reliability-based method

to optimise the sensor network design, considering the uncertainty of structural geom-

etry and input force amplitude [8]. Kriging combined with Latin hypercube sampling

was applied to reduce the computational cost of generating training and testing data for

cases with different health states, sensor locations and sensor sizes. It can be found that

the focus of current research on sensor system design is on how to consider the model

uncertainties in the optimisation and to find the influence of these uncertainties.

Since the study of system assessment criteria for the design process has received

little attention in the reviewed literature, this paper will endeavour to address this gap by

introducing a hierarchical evaluation system to improve the optimisation design of the

SHM sensor network. The key novelty of this paper is to present a systematic process

for SHM sensor optimisation design and put forward corresponding evaluation indicators

suitable for different stages of the process. It will be shown that this method can support

decision making with respect to number, type and locations of sensors.

The structure of this paper is as follows. Section 2 introduces the framework of

assessment criteria. Section 3 describes the numerical model of a rectangular plate to

provide data for the case study. The results for the case study are then shown and dis-

cussed in Section 4. Finally, conclusions are presented in Section 5.

ASSESSMENT CRITERIA

There are key distinctions between the cost functions used for different stages of a

sensor system design. When the task is to select an optimal sensor combination from

a large number of candidates, the cost functions need to be quick to evaluate to enable

efficient optimisation and it may be acceptable for them to be abstracted from the main

aim of the system to some extent. For the final system evaluation, to decide the number of

sensors and the sensor type, the priority is to make the most accurate evaluation possible

of how the system will perform in practice.

Stage 1 - optimal sensor combination

The task at hand is achieving optimal spatial deployment of sensors for binary or

multiclass classification. In this paper, the multiple correlation coefficient (MCC) is

investigated as a possible early-stage assessment criterion, which is designed to measure

the maximal linear association between a set of independent variables and a dependent

variable [9]. Here, the N observations with n independent variables are represented

by a matrix X of dimension N × n. An N × 1 vector of labels associated with each

observation is represented by y. The essence of the MCC analysis of X and y is to find

a projection direction of X that can maximise the linear correlation between y and the



projected X, which can be realised by,
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where,

ŷ = X∗β, s.t. X∗ = [1, X] (2)

ŷ refers to a vector containing the predicted values of the label. ⊤ indicates the matrix

transpose. Subscript c means the variables are centralised. X∗ is an augmented matrix

of dimension N × (n + 1). β can be obtained from the normal equations for a linear

multiple regression with a least-squares cost function, which can be written as,

β = (X∗⊤X∗)−1X∗⊤y (3)

The MCC is a scalar, taking values from 0 to 1. A sensor combination corresponding

to a higher MCC value indicates that the features from these sensors may perform better

when predicting the labels. The cost function defined by the MCC is an efficient means

of searching for the optimal spatial deployment of sensors with different numbers.

Note that the labels can usually be represented by a vector, but it may happen that

the labels are represented by a matrix, for example, when the labels should be dummy

encoded to a matrix to avoid adding order information. In this case, the canonical cor-

relation coefficient can be adopted to replace the MCC. However, there is no research to

theoretically prove which encoding method can make the selected features better predict

the labels in the model training step. Furthermore, considering computational efficiency,

the MCC is selected as an example in this paper. It is suggested that the criterion applied

at this stage can be any criterion used in filter methods for feature selection, which mea-

sure the relevance of features from sensors by their correlation with dependent variables,

without actually training a model on features.

Stage 2 - optimal sensor number and type

For the final design stage of a sensor system, the assessment criteria are composed

of parameters or derivations of the confusion matrix, allowing the intuitive considera-

tion of the SHM system’s performance. Based on the characteristics of the feature set

distribution, the purpose of classification and the consequences of misclassification, an

appropriate criterion can be selected for the second stage of a system design. The pa-

rameters of the confusion matrix are demonstrated in Table I.

The results based on these criteria are related to the selected type of classifier. There-

fore, at this stage, it is necessary to determine the possible classifiers which will be used

TABLE I. Terminology in a confusion matrix.

Measured condition

Positive Negative

Predicted condition
Positive True positive (tp) False positive (fp)

Negative False negative (fn) True negative (tn)

P refers to positive; N refers to negative



for classifying the data once the structure is put into use. Since the number of opti-

mal sensor combinations with different sensor numbers and sensor types is expected to

be relatively small at this stage thanks to the optimisation conducted in Stage 1, it is

feasible to train the associated classifiers and compare them with each other.

For binary classification, the receiver operator characteristic (ROC) curve is a commonly-

used criterion to indicate the diagnostic ability of an classification system. The ROC

curve consists of true positive rate and false positive rate. The area under the curve

(AUC) makes it easy to compare one ROC curve to another. Thus, AUC is a criterion

considered in the sensor system evaluation step for the cases of binary classification.

For multiclass classification, a derivation from the confusion matrix, accuracy, is

taken as an example to assess system performance. A higher accuracy means a better

decision can be made by the established SHM system. Overall accuracy can be calcu-

lated from the confusion matrix by,

Accuracy =
tp+ tn

tp+ tn+ fp+ fn
(4)

The variables in this equation are defined in Table I.

A NUMERICAL CASE STUDY

A state-space model of a plate structure with 24 degrees of freedom (DoFs) is used

for demonstration in this paper with the simulation carried out in MATLAB version

R2018b. The parameters of the 24 DoF model are given in Table II. Each lumped-mass

node provides a candidate location for the sensor, as demonstrated in Figure 1a. The

simulated boundary condition is fixed-free. Figure 1b shows the first four mode shapes

of this structure.

Observations of this structure are simulated by using the state-space model to acquire

time-series data and then via the Fourier transform to obtain the frequency response

functions (FRFs). A white noise Gaussian excitation is employed as the input force.

Noise with a prescribed signal-to-noise ratio (SNR) is introduced into the simulated

time-series data to represent the noise effects corresponding to different sensor types.

Note that the type of sensor is characterised by the SNR. There is a rule of thumb that

the higher the sensor cost, the higher the SNR of data. Four SNRs ranging from 45dB to

30dB (with an interval of 5dB) are adopted here to simulate four sensor types. They are

high-precision sensors, medium-precision sensors, low-precision sensors, and extremely

low-precision sensors respectively.

TABLE II. The parameters of the plate structure.

Parameter Mean (µ) SD (σ) Distribution

m, kg 1 0 N/A

k, N/m 1000 30 Normal (independent)

c, N/(m/s) 1 0.03 Normal (dependent on k)

Damage 1, N/m 200 0 N/A

Damage 2, N/m 200 0 N/A

m: Mass; k: Stiffness; c: Damping
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(a) Labels for simulated conditions. (b) First 4 mode shapes.

Figure 1. Schematic of the simulated 2-D plate and the corresponding mode shapes.

This approach was used to provide predicted normal condition data and damaged-

state data for the design stage of an SHM system. In a practical setting, the damage

cases of interest would be determined by failure mode and effect analysis. In this case

study, damage is simulated by reducing the local stiffness. The position and extent of the

simulated damage can be changed according to the research needs. Two damage cases

are considered in this case study by reducing the stiffness value at two positions by 200

N/m, which is included in Table II. The positions of the damage are shown in Figure 1a.

Uncertainty analysis

The focus of this paper is not on how to provide reliable data sets, so here the intro-

duction of uncertainty in the stiffness parameters is a simple example of how to consider

the discordance between the FE model and the real structure. Because proportional

damping dependent on stiffness was used in this simulation, an uncertain damping effect

was also involved. Other parameters related to material properties or geometry were

held constant. The mean values and standard deviations of the uncertain parameters of

the 24-DoF model are given in Table II.

Latin hypercube sampling (LHS) was adopted to efficiently generate the random

samples of the uncertain parameters. After partitioning a cumulative curve into N in-

tervals with the equal cumulative probability, LHS proceeds by randomly selecting one

sample from each interval. The convergence of mean value and standard deviation of

the first three natural frequencies for different sample sizes was used to determine the

required sample size, as shown in Figure 2. It was found that both indicators remained

stable after 150 samples; thus, 150 was selected as the number of samples. After obtain-

ing 150 samples of this plate structure in the healthy state, 150 samples for two damage

cases were obtained respectively by reducing the stiffness at the position of damage 1 or

damage 2.

In addition to the parametric uncertainty, the uncertainty caused by the influence

of noise on the time series data was also taken into account. For each model sample,

20 time-series observations were simulated under each specified signal-to-noise ratio to

consider the effect of noise. Therefore, 3000 measurements are available for each of the

normal state, damaged state 1 and damaged state 2 in the case study.

Sensor placement optimisation
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Figure 2. Mean value and standard deviation for the first three natural frequencies of model

samples.

Before conducting SPO, effective features should be extracted from the output sig-

nals of all candidate sensors. One option for generating robust features using FRFs is the

multivariate outlier analysis approach introduced in [10]. Here, a frequency range (FR)

with a specific resolution can be selected to generate features by using the Mahalanobis

squared-distance (MSD) technique to compute the discordance between an observation

and a training set. The equation to calculate MSD-based features is as follows:

D2

M
= (x− µ̄)⊤S−1(x− µ̄) (5)

where x is a vector referring to an observation, µ̄ and S are the mean value and covari-

ance matrix for a set of baseline observations respectively. ⊤ indicates transpose.

This kind of feature can naturally account for uncertainty effects in the case that the

normal condition data includes measurements under different conditions, designed to

be filtered out [11]. Therefore, the normal condition data for 150 random samples of

the plate structure were used to calculate the mean value and the covariance required in

equation 5.

By comparing the averaged FRFs of the 150 samples for the normal condition and

two damaged states separately, the third peak and its vicinity of the FRFs (frequency

range between 4.3 Hz and 4.7 Hz) were selected to generate MSD-based features, in

which range the normal state data and the damaged state data are more distinguishable.

In order to provide an upper bound on performance, an exhaustive search was utilised

to search out the optimal deployment of sensors with different numbers of sensors. The

cost function (or fitness function) was constructed by the MCC. The preferred classifica-

tion algorithm here to facilitate the final system evaluation is a linear support vector ma-

chine (SVM), since it is simple and makes no assumption about the data distribution. The

hyperparameters of this algorithm are optimised by minimising five-fold cross-validation

loss. When the type of sensor changes, the same optimisation process was repeated.
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Figure 3. Results of SPO based on different data sets.

RESULTS AND DISCUSSION

The effect of noise on optimisation

To evaluate whether it is necessary to consider the noise effect in the optimisation

process, a set of comparisons based on damage case 2 are made here. The effectiveness

of a sensor combination is assessed via the MCC.

At first, MSD-based features of 150 sampling models were used to decide a group

of optimal sensor combinations with different numbers of sensors. These features only

included the influence of uncertain model parameters. The optimal MCC values calcu-

lated by using these 300 features (150 normal condition features and 150 damaged state

features) are plotted in Figure 3a, marked in green. The corresponding optimal sensor

combinations determined at the previous step were then applied to calculate the MCC

values for features extracted from sensor networks with two different SNRs (45 dB and

40 dB) (See Figure 3a for the results).

In contrast, the other two groups of optimal sensor combinations with different num-

ber of sensors were obtained by directly using features involving both parametric uncer-

tainties and noise with different levels (including 45 dB and 40 dB). The corresponding

results are shown in Figure 3b.

By comparing the results in the above two figures, it can be seen that the MCC values

in Figure 3a for two conditions with different SNRs are always smaller than the MCC

values in Figure 3b for the same two conditions. Thus, the SPO using features only

involving parametric uncertainties can not provide optimal results when the background

noise is considered in the simulation of sensor outputs. This result indicates that, as

expected, the noise has a significant impact on the result of optimisation. Therefore, at

the design stage of a sensor system, the influence of noise should be incorporated into

the optimisation process.

Sensor placement optimisation for binary classification

The normal condition and second damage case were taken as an example to carry

out the SPO for a binary classification. For four situations with different SNRs, an



TABLE III. Optimal sensor combinations for the detection of damage 2.

Num. of

sensors

Signal-to-noise ratio

45 dB 40 dB 35 dB 30 dB

1 12 11 9 1

2 12,14 9,11 9,16 1,16

3 9,12,14 9,11,17 9,15,16 1,15,16

4 5,10,12,14 1,9,11,17 9,15,16,20 1,8,15,16

5 5,6,10,12,14 1,9,11,17,18 5,9,15,16,22 1,8,12,15,16
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(b) Contour plot of AUC.

Figure 4. Two types of contour plots for binary classification.

exhaustive search was used to find the optimal sensor combination with the number of

sensors ranging from 1 to 5. The optimal results are presented in Table III, and the

corresponding MCC values can be referred to in Figure 4a. The locations of sensors are

as indicated in Figure 1a. It can be seen that as the SNR decreases, the distribution of

sensors moves from the nodes centred on the damage 2 location to the nodes providing

high-amplitude signals.

After determining the optimal sensor combinations with different numbers of sen-

sors, the ROC curves for these optimal sensor networks can be calculated to finally

decide the type and number of sensors to be installed. To compare these curves conve-

niently, the values of AUC are calculated and plotted in Figure 4b.

Figures 4a, 4b indicates that those sensor combinations with higher MCC values

have a higher AUC. Therefore, it is reasonable to use MCC as a criterion to effectively

determine the spatial combination of sensors. However, MCC values can not reflect

the performance of a established sensor system intuitively. Therefore, it is necessary

to calculate the ROC curve and AUC value via the selected classification algorithm to

facilitate the final decision on whether or not to implement the system.

Sensor placement optimisation for multiclass classification

The optimal spatial distributions of sensors for detecting damage cases 1 and 2 are

presented in Table IV and the optimal objective function values (MCC) are shown in

Figure 5a. For this multiclass classification task, the selected sensor distribution was



TABLE IV. Optimal sensor combinations for the detection of damage 1 and 2.

Num. of

sensors

Signal-to-noise ratio

45 dB 40 dB 35 dB 30 dB

1 2 1 3 3

2 2,18 1,13 3,15 3,15

3 1,2,18 1,2,13 1,3,18 3,4,15

4 1,2,14,17 1,2,5,13 1,3,15,18 3,4,12,15

5 1,2,6,14,17 1,2,5,12,13 1,3,5,15,18 3,4,6,15,18
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Figure 5. Two types of contour plots for multiclass classification.

found to exhibit the following phenomenon. When the introduced SNR is high, the

selected sensors will be respectively distributed around the two areas centred on the two

damaged locations. As the noise level increases (SNR decreases), the distance between

these two areas becomes smaller. The 5-fold cross-validation classification accuracy of

the SHM systems composed of these optimal sensor networks is calculated and plotted

in Figure 5b.

As shown in Figures 5a, 5b, the contour plots of MCC and accuracy achieved by

the fully-trained classifier exhibit similar trends across the number of sensors and sensor

accuracy. Therefore, it is deemed practical to use MCC as a low-cost criterion for the

multiclass classification to decide a spatial sensor deployment.

Performance comparison of assessment criteria for two stages

In order to quantitatively measure the damage detection performance of the sensors

selected by MCC and the efficiency of the MCC as the selection criteria, a set of compar-

isons are made here. First, the accuracy is directly used as the criterion to search out the

optimal sensor combinations. In order to reduce the hyperparameter optimisation time

to make it possible to calculate the accuracy of all possible sensor combinations, each

model sample under one noise level uses only four measurements to construct a data set

used here. Therefore, the number of measurements for the normal state, the damaged

state 1 and the damaged state 2 are 600 respectively. One- and two-sensor location(s)
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Figure 6. Sorting accuracy and optimal results of two assessment criteria.

TABLE V. Optimal results and calculation time for the two assessment criteria.

Criterion
Num. of sensors

1 Time (s) 2 Time (s)

Accuracy 9 5.82×10
3 2,12 2.00×10

5

MCC 2 0.37 2,19 1.11

are selected from 24 candidates. The considered SNR is 45 dB. At this noise level,

the accuracy of all possible sensor combinations is shown in Figure 6, and arranged in

ascending order. The optimal results are presented in Table V.

On the contrary, for the same data set, the accuracy values of the best sensor combi-

nations determined based on the MCC are calculated, and the optimal results are given in

Table V and Figure 6. It can be seen that the accuracy of the optimal sensor combination

received by MCC is close to the best result received by directly using accuracy as the

objective function. However, the calculation time corresponding to the MCC-based opti-

misation is greatly reduced. Therefore, in practical application, the MCC-based criterion

can be applied to reduce the number of combinations, and accuracy can further refine the

selection of sensor combinations with different sensor numbers and sensor types.

CONCLUSIONS

In this paper, a systematic framework for sensor system design combined with a

classification algorithm is established. The parametric uncertainty and background noise

are involved in the optimisation process to consider the discrepancy between numerical

simulation and the real situation.

The main contribution of this paper is to divide the SPO into two steps, including

selecting the best sensor combination and determining the number of sensors and sensor

types, and at the same time, proposing appropriate evaluation criteria for each step. A

case study of a plate structure is carried out. The results indicate that the proposed

assessment system greatly improves the speed of sensor-system design while considering

the detection performance of the designed sensor system.
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