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Abstract

In this paper, a hierarchical attention network is proposed to generate robust

utterance-level embeddings (H-vectors) for speaker identification and verifica-

tion. Since different parts of an utterance may have different contributions to

speaker identities, the use of hierarchical structure aims to learn speaker re-

lated information locally and globally. In the proposed approach, frame-level

encoder and attention are applied on segments of an input utterance and gen-

erate individual segment vectors. Then, segment level attention is applied on

the segment vectors to construct an utterance representation. To evaluate the

quality of the learned utterance-level speaker embeddings on speaker identifi-

cation and verification, the proposed approach is tested on several benchmark

datasets, such as the NIST SRE2008 Part1, the Switchboard Cellular (Part1),

the CallHome American English Speech ,the Voxceleb1 and Voxceleb2 datasets.

In comparison with some strong baselines, the obtained results show that the

use of H-vectors can achieve better identification and verification performances

in various acoustic conditions.

Keywords: Speaker Embeddings, Hierarchical Attention, Speaker

Identification, Speaker Verification, Attention Mechanism
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1. Introduction

The goal of speaker recognition is to recognize a speaker from the character-

istics of voices [1, 2]. Representing the speaker properties into low dimensional

feature space is beneficial for many downstream tasks, and such compact rep-

resentations used to distinguish speakers (speaker embedding) has been an at-

tractive topic and widely used in some studies, such as speaker identification [3],

verification [4, 5, 6], detection [7], segmentation [8, 9], and speaker dependent

speech enhancement [10, 11].

Traditionally, GMM-UBM [12] based I-vectors played an important role in

speaker embedding generation. With the rapid growth of deep learning tech-

niques, previous works [13, 14] used deep neural networks such as time de-

lay neural networks (TDNNs) [15] and convolutional neural networks (CNNs)

[16, 17] to extract speaker embeddings. Variani, et al. developed the d-vector

which uses multiple fully-connected neural network layers [18]. In [13], Snyder,

et al. proposed X-vectors, which consists of a TDNN structure that can model

relationships in wide temporal contexts and computes speaker embeddings from

variable length acoustic segments.

However, different parts of an utterance may have different contributions to

speaker identities. How to highlight the importance of different parts of an input

utterance is underdeveloped. [19], for example, proposed an attentive X-vector

architecture that added a global self-attention layer within the basic X-vector

architecture. The attention mechanism is located prior to the statistics pooling

operation. The attention mechanism computes weights for each temporal frame,

and the weight vector is multiplied with the original feature map. In the output

feature sequence, each of the temporal frames are assigned a weight number

that indicates the importance of that frame to the target speaker identities.

The results show the attentive X-vector model out-performs the original X-

vector model. Both [20, 21] proposed similar architectures that compute weights

on different positions of the input frames. Both of the works demonstrated

that attention mechanism performs better than the X-vector model in speaker
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recognition.

The attention mechanism highlights the most relevant part to the training

target that can improve the performance of the model for different purposes

[14]. This property allowed for noise reduction methods to be developed for

both image and speech signals, whereby the corrupted features were allocated

lower weights to ensure that the model focuses on the clean features. In this way,

excess noise can be reduced and the robustness of the model can be improved [20,

14]. The attention mechanism used in the speaker recognition model was a self-

attention layer that was built into the speaker recognition model. Similar to the

self-attention mechanisms used in other domains, the attention mechanism in

speaker recognition models, such as attentive X-vector and Resnet, can highlight

the most relevant features in terms of the speaker identities and discard the

irrelevant ones [20, 21].

However, the attention mechanism described above has two potential prob-

lems. Firstly, the self-attention layer computes the global attention weights for

each frame of the sequence. Longer sequences of, say, three seconds, may con-

tain multiple relevant features that are important to the target speaker and,

since the softmax function based global attention can only highlight some of

the important features, the model is likely to lose some significant information.

This is due to the fact that global attention computes the importance weight

for each frame in the whole sequence. The softmax function constraints all of

the attention values can be summed to one (to simulate the probability proce-

dure. As the sequence becomes longer, the importance of each frame is diluted

[20, 21]. For example, when there are two significant features in the sequence,

one of the features is captured by the attention mechanism and a high weight

value is assigned (e.g. larger than 0.5). The remainder of the sequence can

only share the remainder of the weighting (e.g. less than 0.5), so the second

significant feature will be incorrectly weighted. This phenomenon is shown and

discussed in Section 5 and Figure 2, using the experimental results.

The second problem is that the global self-attention only captures global

features, but pays insufficient attention to local features due to the computation
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process discussed above. In noisy conditions, as indicated by Le et al. [22],

different types of noises (including fluctuating and steady noise) can affect the

speech signal locally. For example, if one speaker-related feature (present in

some frames) is distorted in some segment (or region) of the utterance, the

global attention mechanism cannot capture it. For example, in Figure 2, Section

5, the global attention mechanism cannot capture the important feature in the

first segment.

In order to address the two issues discussed above, the key is to develop a

new neural network architecture that can capture both local and global features

in one framework. The attention mechanism needs to be used in both local and

global scenarios, and this is something that can be achieved through the use

of hierarchical structures like the document classification approach proposed by

[23]. In this approach, the network firstly uses multiple word level encoders,

each one of which captures the local features between words in each sentence

and the attention mechanism is used to assign weights for each word within each

sentence. Each sentence is then summarised in a single sentence vector. At a

higher level, the generated sentence vectors are then inputted into a sentence

level encoder which focuses on the global information between each sentence

and the attention mechanism was used to allocate weights between each of the

sentence vectors. The sentence level encoder then compresses different sentence

vectors to generate a document vector, which is then used for the final prediction.

The key attribute of whose approach is that the hierarchical attention struc-

ture captures the local and global information at two levels. It gristly measures

the importance of each word in one sentence, then measures the importance of

each sentence in one document, recognising the fact that the importance of the

same word may be different in different sentences [23].

In this paper, a hierarchical attention network is proposed, inspired by the

work of [23] described above, in which the utterance is viewed as a document, the

segments are sentences and the frames are viewed as the words. The proposed

hierarchical attention network captures the local and global speaker-related fea-

tures by using the frame-level and segment-level encoders. As discussed above,
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some features may be corrupted in some segments but become cleaner in others.

The hierarchical attention network splits the input signal into different seg-

ments. The frame-level encoder with attention computes the attention weights

between each frame within the segment. Then, the segment-level encoder mea-

sures the importance between each segment and generates the utterance vector

for the final prediction of the speaker identities.

In the the previous published paper: H-vectors: Utterance-level speaker

embedding using a hierarchical attention model [24], the hierarchical attention

network is proposed and experiments were conducted on the SRE08, SWBC

and CHE datasets. In this paper, besides the effectiveness of the proposed

approach, its robustness against noise on several benchmark datasets, such as

Voxceleb1 and Voxceleb2, will be also evaluated. Moreover, in this paper, a

sliding window instead of a static window is employed to avoid missing possibly

useful information for the related speaker tasks. The effectiveness of these two

types of windows will be discussed in the following sections.

The rest of the paper is organized as follow: Section 2 discussed the related

works, including recent works on speaker recognition and attention mechanisms.

Section 3 presents the architecture of our approach. Section 4 depicts the used

data, experimental setup, and the baselines to be compared. The obtained

results are shown in Section 5, and a conclusion is finally drawn in Section 6.

2. Related Works

The generation of speaker embeddings is a long-established task. To extract

a general speaker representation, Najim et al. [12] defined a “total variabil-

ity space” containing the speaker and channel variabilities simultaneously, and

then extracted the speaker factors by decomposing feature space into subspace

corresponding to sound factors including speaker and channel effects. With the

rapid development of deep learning technologies, some architectures using deep

neural networks (DNN) have been developed for general speaker representation

[18, 13].
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In [18], Variani et al. introduced the d-vector approach using the LSTM

and averaging over the activations of the last hidden layer for all frame-level

features. Snyder et al. [13] used a five-layer DNN with taking into account a

small temporal context and statistics pooling. In [25, 26], Chung et al. and Xie

et al. applied ResNet architecture, such as ResNet-34 and thin-ResNet-34 into

speaker verification.

Recently, attention mechanism is widely used in speaker embedding gener-

ation, as attention mechanism allows the model to pay attention on different

part of the input and highlight the most important part. For speaker recogni-

tion, there are some previous studies [19, 21, 20, 14] using attention mechanism.

Wang, et al. used an attentive X-vector where a self-attention layer was added

before a statistics pooling layer to weight each frames [20, 21, 19]. Rahman, et

al. jointly used attention model and K-max pooling to selects the most relevant

features[14]. Zhang et al. [17] used triplet loss combined with a very deep con-

volutional neural network to learn high quality speaker embeddings with small

intra-class distances.

In addition to speaker recognition, the attention model has also been widely

used in natural language processing [27, 28, 23, 29], speech recognition[30, 31,

32, 33], and computer vision [34, 35, 36, 37, 38, 39]. In [27] , Bahdanau, et

al. designed an attention model to allow the each time step of decoder to pay

attention to different part of input sentence. Xu et.al used an attention model

in a similar way to design an encoder decoder network for image caption [34]. In

[30], Moritz, et al. combined CTC (connectionist temporal classification) and

attention model to improve the performance of end to end speech recognition.

In [31, 32] and [33], different attention models were also designed for speech

emotion recognition and phoneme recognition, respectively. To further improve

the robustness of the attention model, some previous studies used two attention

models within one framework. Luong, et al. used global attention and local

attention, where global attention attends to the whole input sentence and local

attention only looks at a part of the input sentence [28]. Li, et al. applied global

and local attention in image processing to further improve the performance
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Figure 1: The architecture of Hierarchical Attention Network.

[35]. Woo, et al. used spatial attention and channel attention to extract salient

features from input data [36].

3. Model Architecture

Figure 1 shows the architecture of the proposed hierarchical attention net-

work. The network consists of several parts: a frame-level encoder and attention

layer, a segment-level encoder and attention layer, and two fully connect lay-

ers. Given input acoustic frame vectors, the input sequence is split into several

segments. The frame-level encoder and attention layers firstly compress each
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segment into a segment vector. Then, the segment-level encoder and attention

layers generate an utterance vector from the segment vector sequence, and the

following classifier is trained to perform speaker identification or verification.

3.1. Frame-Level Encoder and Attention

For the frame-level processing, an utterance is divided into N segments:

S = {S1,S2, · · · ,SN} using a sliding window with length M and step H .

Each segment Si ∈ R
M×L = {xi1,xi,2, · · · ,xi,M} contains M L-dimensional

acoustic frame vectors xi,t ∈ R
1×L, where i denotes the ith segment, t denotes

the tth frame, i ∈ {1, · · ·N}, t ∈ {1, . . . ,M}.

In the frame-level encoder, a one-dimensional CNN is used on each segment,

and followed by a bidirectional GRU [40] in order to get information from both

directions of acoustic frames and contextual information.

S
′

i = CNN(Si)
−→

h i =
−−−→

GRU(S
′

i)
←−

h i =
←−−−

GRU(S
′

i)

The output of a frame-level encoder hi = [
−→
h i,
←−
h i] contains the information

of the segment Si, where hi ∈ R
M×E and hi = {hi,1,hi,2, · · · ,hi,M}

In the frame-level attention layer, a two-layer MLP is first used to convert

hi into score vector zi, by which a normalised importance weight vector αi can

be computed via a softmax function [23].

αi,t =
exp(zi,t)∑M

t=0
exp(zi,t)

(1)

zi,t = Relu(hi,tW i,0 + bi,0)W i,1 , (2)

where zi,t and αi,t are a scalar score and normalized score for each time step t

respectively. W i,0 ∈ R
E×E , bi,0 ∈ R

1×E and W i,1 ∈ R
E×1 are the parameters

of a two-layer MLP. These parameters are shared when processing N segments.

A weighted output of frame-level encoder is computed by

Ai,t = αi,thi,t (3)
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Following [13], a statistics pooling is applied on Ai to compute its mean vector

(µi) and std (σi) vector over t. A segment vector V Si
is then obtained by

concatenating the two vectors:

V Si
= concatenate(µi,σi) (4)

3.2. Segment Level Encoder and Attention

For the segment-level encoder and attention, the same steps used in frame-

level encoder and attention are implemented except for a bi-directional GRU

layer, as the omission of the GRU layer can accelerate training when processing

a large number of samples.

The output of the frame level encoder and attention is V S ∈ R
N×E =

{V S1
,V S2

, · · · ,V SN
}. The weight vector αs ∈ RN×1 = {αs

1
, αs

2
, · · · , αs

N} of

segment level attention can be computed as follows [41]:

αs
i =

exp(zsi )∑N

i=0
exp(zsi )

zsi = Relu(V Si
W n,0 + bn,0)W n,1 ,

(5)

where zsi and αs
i are a scalar score and normalized score for each segment vector

V Si
respectively. W n,0 ∈ R

E×E , bn,0 ∈ R
1×E and W n,1 ∈ R

E×1 are the

parameters of a two-layer MLP. A vector is generated using a statistics pooling

over all weighted segments:

µU = mean(
∑

i

αs
iSi)

σU = std(
∑

i

αs
iSi)

V U = concatenate(µU ,σU )

(6)

The final speaker identity classifier is constructed using a two-layer MLP

with V U being its input. As shown in figure 1, the output of the first fully

connected layer can be used as the final utterance embedding, represented by

EmbU .
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4. Experiment

4.1. Data and Use

Table 1: The details of four speech datasets: Part1 of Sre2008 (SRE08), CallHome(CHE),

Switchboard(SWBC), Voxceleb1 (Vox1) and Voxceleb2 (Vox2)

Dataset Type #Speaker Size (hour) #Utterance (1s) #Utterance (3s)

SRE08 Telephone+Interview 1336 640 3,528,326 1,176,453

CHE Telephone 120 60 252,224 84,460

SWBC Telephone 254 130 1,008,901 336,417

Vox1 Interview 1251 352 2,305,315 868,438

Vox2 Interview 6112 2442 11,408,822 3,610,387

To comprehensively test the proposed approach, four datasets, NIST SRE

2008 part1 (SRE08), CallHome American English Speech (CHE), Switchboard

Cellular Part 1 (SWBC), Voxceleb1 (Vox1) and Voxceleb2 (Vox2), are used

in this paper to train the proposed model and evaluate utterance embedding

performance.

SRE08 indicates the 2008 NIST speaker recognition evaluation test set [42],

which contains multilingual telephone speech and English interview speech. In

this work, Part1 of SRE2008, containing about 640-hour speech and 1336 dis-

tinct speakers, is selected in our experiments. The interview speech signals are

approximately 3 minutes segmented from long conversations.

SWBC [43] contains 130 hours telephone speech, totally 254 speakers (129

male and 125 female) under various environment conditions (indoors, outdoors

and moving vehicles). The stereo speech signals are split into two monos, and

both of them are used in experiments.

CHE [44] contains 120 telephone conversations speech between native En-

glish speakers (totally 120 speakers). Among all of the calls, 90 of them are

placed to various locations outside North America. In this dataset, speech from

the left channel is used, as the labels of speakers in the right channels is unavail-

able. In our experiments, SRE08 is used to train the proposed model, by which
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Utterance-level embeddings can be then generated using CHE and SWBC.

The Voxceleb1 (Vox1) [45] dataset is also employed as it is one of the most

widely used datasets for speaker identification and verification. This dataset is

extracted from Youtube videos, collected ”in the wild”, and has an official train-

test split for both speaker identification and verification tasks. For the speaker

identification task, the training set and test set contains the same number of

speakers. For the speaker verification split, the test set contain 37,720 test pairs,

40 distinct speakers totally.

The Voxceleb2 (Vox2) dataset [25] is the extension of Voxceleb1, with a

larger number of speakers (6112) and larger number of utterances (more than

1 mission utterances). The development set of Vox2 contains 5994 speakers

while the test set contains 118 speakers. In this paper, Vox2 dataset (both

development set and test set) is used for training and the test set of Vox1 is

used for evaluation.

To evaluate the robustness of the proposed approach, extra noise from MU-

SAN dataset is used. MUSAN dataset contains three categories of noises: gen-

eral noise, music and babble [46]. The general noise type contains 6 hours of

audio, including DTMF tones, dialtones, fax machine noises et.al. The music

type contains 42 hours of music recording from different categories. The babble

type contains 60 hours of speech , including read speech from public domain,

hearings, committees and debates et.al.

In this work, energy based VAD [47] is used to remove the unvoiced signals.

After using VAD, each segment is viewed as an utterance. The total number of

utterances of the three datasets are listed in Table 1. Each segment is further

segmented into frames using a 25ms sliding window with a 10ms shift. All

frames are converted into 20-dimensional MFCC feature vectors. Similar to

[23], to build a hierarchical structure, each utterance, fragment and frame vector

obtained here are viewed as a document, sentence and word, respectively.
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4.2. Experimental Setup

In this work, both speaker identification and speaker verification tasks are

conducted to evaluate the proposed model using the utterance-level embeddings.

Both of the speaker identification and speaker verification experiments are split

into two scenarios, each scenario use different datasets.

The first scenario is to evaluate the quality of the generated utterance-level

speaker embeddings. In this scenario, SRE08, CHE and SWBC datasets are

used. The models are firstly trained using SRE08 dataset. Then, the trained

model is used to extract utterance-level embeddings for both SEBC and CHE.

The speaker identification and verification tasks are then conducted on the

utterance-level embeddings

For the speaker identification task, datasets are randomly split into training

and test data with 9:1 ratio. The training set and test set have the same number

of speakers. For the speaker verification task, in SWBC, there are 50 speakers

in the enrolment set and 120 speakers in the evaluation set, with 10 utterances

for each speaker. In the CHE, there are 30 speakers in the enrolment set and

60 speakers in the evaluation set. Each speaker has 10 utterances. As a further

comparison with some state-of-the-art methods, the related experiments were

also conducted on the Voxceleb datasets.

The second scenario is to evaluate the robustness of the generated utterance-

level speaker embedding in noise conditions. In this scenario, Voxceleb1 (Vox1)

dataset is used. Vox1 dataset is recorded ”in the wild”, and additional noise

signals are augmented.

For both speaker identification and speaker verification tasks, the training

sets are augmented by mixing Voxceleb1 data with noise signals from MUSAN

dataset at a random SNR level (0, 5, 10, 15 and 20 dB). The test utterances are

mixed with a certain type of noise with one of the five SNR levels (0, 5, 10, 15

and 20 dB).

In speaker identification task, both training and test sets contain the same

number of speakers (1251 speakers) [45]. The training set contains 145,265

utterances and the test set contains 8251 utterances. In order to reduce possible
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bias, the MUSAN dataset is also split into two parts for training and test. This

is to ensure that the noise signals used for training will not be reused for test.

For the speaker verification task, there contains 148,642 utterances (1211

speakers) in the VoxCeleb1 development dataset, and 4,874 utterances (40

speakers) in the test dataset [45]. There are total 37,720 test pairs. The same

data configuration on the data for speaker recognition task is also set for speaker

verification.

For the experiments described above, both of the window size(M) and step

size (H) of the proposed hierarchical attention network are fixed at 30 frames,

which means there is no overlap between each segment. There is also an extra

experiment to test the effectiveness when changing the window size and step

size.

4.2.1. Baselines

In the experiments, some baselines, such as X-vectors [13], attentive X-

vectors [20, 19] and Resnet [26, 25] were built up for comparisons.

The first baseline (”X-Vectors”) is based on a TDNN architecture [13]. It is

now widely used for speaker recognition and is effective in speaker embedding

extraction. It contains a five-layer TDNN based frame-level feature extractor,

each layer operates on certain time steps. A statistics pooling operation is ap-

plied on the output of the frame-level feature extractor to summarize the output

sequence into a vector. Then, a DNN based segment-level feature extractor is

used to generate the final speaker embedding.

The second baseline (”Attentive X-Vectors”) is made by combining a global

attention mechanism with X-vectors [20, 19, 21]. In addition to the frame-level

feature extractor, statistics pooling operation and the segment-level feature ex-

tractor, the Attentive X-vectors uses a global attention mechanism on the output

of the frame-level feature extractor before the statistics pooling operation. The

attention mechanism used in Attentive X-vectors directly compute weights on

each frame, which is different from the proposed approach.

The baseline of ResNet contains different variations of the ResNet archi-
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tecture, such as the ResNet-34 [25] and thin ResNet-34 [26]. As many works

published state-of-the-art results using ResNet architecture on the Voxceleb2

dataset. As a result, the ResNet baseline is used for comparison of the proposed

approach and the published state-of-the-art results.

4.2.2. Evaluation Metric

In this work, prediction accuracy and the equal error rate (EER) are used

as the evaluation metrics for speaker identification [48] and speaker verification

[49], respectively.

The models are trained by AM-softmax (m is set to 0.35, s is set to 40)

[50] loss function instead of the normal softmax function to achieve a better

performance. AM-Softmax (additive margin softmax) aims to learn large inter-

class distance and small intra-class distance for the obtained embeddings [50].

Cosine similarity is used to measure the distance of the two embeddings.

Moreover, to show the quality of the learned utterance-level embeddings,

t-SNE [51] is used to visualize their distributions after being projected on a

2-dimensional plane.

4.3. Implementation

Table 2: The architecture parameters of the proposed approach, where M denotes the segment

length, N denotes the number of segments in one utterance.

Level Model Input Output

Frame-Level

CNN (M,20,1) (M,1,512)

Bi-GRU (M,512) (M,1024)

Attention (M,1024) (M,1024)

Statistics Pooling (M,1024) (1,2048)

Segment-Level

CNN (N,2048,1) (N,1,1500)

Attention (N,1500) (N,1500)

Statistics Pooling (N,1500) (1,3000)

Utterance-Level
DNN (512) (1,3000) (1,512)

DNN (512) (1,512) (1,512)

Table 2 shows the configuration of the proposed architecture. It also contains

batch normalization [52] and dropout [53] layers, where the dropout rate is set to
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0.2. Adam optimiser [54] is used for all experiments with β1 = 0.95, β2 = 0.999,

and ϵ = 10−8. The initial learning rate is 10−4.

5. Results

Table 3 lists some state-of-the-art results tested on Voxceleb1 when the train-

ing samples are from Voxceleb1 or Voxceleb2. It can be found that the proposed

H-vectors model can outperform most of the strong baselines. The reason why

H-vector model can reach comparable results with the ResNet based methods

(e.g. ResNet-34 or ResNet-50) may because the hierarchical structure captures

the local and global features. The frame-level encoder and attention can cap-

ture local features, which is useful to learn speaker related information within

a specific region of an utterance recording and reduce the possible interferences

from other regions. The segment-level encoder and attention can capture global

features, this means the contributions from different regions of an utterance will

be balanced.

In order to show how the attention mechanism works, Figure 2 shows the

visualisation of the attention weights. Figure 2 (a) is the spectrogrm of a 3s

utterance randomly selected from the Voxceleb1 dataset. Figure 2 (b) shows the

noise corrupted spectrogram (with 0dB). For a better visualisation, here demon-

strate spectrograms, instead of MFCCs, of utterance recordings. Figures 2 (c)

and 2 (d) show the attention weights obtained by using the attentive X-vector

(global attention) on the original utterance and the noise corrupted utterance

respectively. Figures 2 (e) and 2 (f) show the attention weights obtained by

using the H-vector in the same conditions. Note that the number of the atten-

tion weights in the attentive X-vector is 300 (there are 300 frames in the input

data) and the number of the segment-level attention weights in H-vector is 10

(10 segment vectors). In order to compare the attention weights, the attention

weights of the attentive X-vector are divided into 10 groups.

Although the weight distributions displayed in Figure 2(c) and (d) show

that the use of both attentive X-vector and H-vector can learn the importance
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of features in different parts of an utterance recording, the attentive X-vector

assigned a high weight value, about 0.5 to the 8th segment. This means the

contribution of the 8th segment is dominant over the rest 9 segments. This might

easily causes overestimate, and thus probably leads to an incorrect decision. As

a comparison, although the H-vector model allocated the highest weight to the

8the segment, it is close to 0.3 as shown in Figure 2(e) and (f), and other

segments segments are also allocated a relatively reasonable attention values.

It shows the H-vector model can highlight feature contributions from multiple

regions of an utterance recording.

It may be that the global attention process within the attentive X-vector

model may tend to favour few number of regions over others of a recording,

whereas the hierarchical structure of the H-vector model is able to highlight

contributions from more regions by computing the attention weights within a

small segment, and then computing the attention weights over all segments.

Table 4 shows the identification accuracy on the test data of SRE08 using

the proposed approach and two baselines. Two different utterance lengths, 1

second and 3 seconds, are used in the experiments, respectively to evaluate

the performance of the models in short and long input utterances. The use of

the H-vectors shows higher accuracy when using either 1-second or 3-second

input length than the two baselines. When the length of input utterances is 1

second, the accuracy obtained using the H-vectors can reach 94.5%, with 4.4%

improvements over X-vectors and 2.4% improvement over X-vectors+Attention,

respectively. When the length of input utterances is 3 seconds, the accuracy

obtained using the H-vectors can reach 98.5%, with about 3% improvement over

X-vectors and about 2% improvements over X-vectors+Attention. The proposed

approach is more robust than the two baselines when processed utterances are

short. In addition, the accuracies obtained using 3-second utterances are better

than those using 1-second utterances. This probably means a longer utterance

may contain more information relevant to a target speaker than short ones.

To evaluate the quality of embeddings extracted using the proposed approach

and its robustness on out-of-domain data, two additional datasets (SEBC and
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CHE) are employed in our experiments. Table 5 and Table 6 show the identi-

fication accuracy and verification equal error rate when using the embeddings

learned on the SWBC and the CHE dataset, respectively. In these two tables,

the previous published results are also listed [24]. The previous work used dif-

ferent post-processing techniques for the obtained embeddings: The models are

trained using normal softmax function, PLDA back-end [59] is applied on the

embeddings to reduce the dimension to 300 [24].

On the two datasets, the H-vectors consistently outperforms the two base-

lines whether the length of utterances is 1 second or 3 seconds. In CHE dataset,

the H-vector approach reaches 89.1 % prediction accuracy and 1.44% equal

error rate, with more than 3% improvement than X-vectors and Attentive X-

vectors in speaker identification task. In speaker verification task, the H-vectors

also achieved 3% relative improvement than X-vectors and attentive X-vectors.

Similar to the results in SRE08 dataset, the results obtained by three-second

utterance length is better than that using one-second utterance length.

For most of the cases, the results obtained by this work is slightly better

than that of the previous published results. The reason might be the use of

AM-Softmax function in the training process.

From the results in Table 4, 5 and 6, it is obvious that the best results are

obtained by SRE08 dataset. The results obtained on SWBC dataset is lower

than that on the other two datasets. Since the model is trained on the SRE08

corpus, the identification performances on its test data are clearly better than

those on the other two datasets. In compare with SRE08 dataset, both CHE

and SWBC could be viewed as out-of-domain dataset. There might be some

mis-match between the test sets of CHE and SWBC dataset and the SRE08

dataset (used for training). Furthermore, as the SWBC dataset contains a wide

range of environment conditions (indoors, outdoors and moving vehicles), the

acoustic conditions is worse than SRE08 and CHE dataset. As a result, both

its identification and verification performances are relatively worse than those

obtained on the CHE dataset.

To further show the performance of the proposed model, Figure 3 illustrates
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the detection error tradeof (DET) curve of the three models (X-vectors, Atten-

tive X-vectors and H-vectors) on SWBC dataset when the utterance length is

3 seconds. From Figure 3, it is clear that H-vectors obtained both lower false

reject rate and false alarm rate, and yield lower equal error rate. Attentive

X-vectors obtained higher false reject rate and false alarm rate, but still lower

than that obtained by X-vectors. This might mainly due to the use of attention

mechanism. Attentive X-vectors uses global attention that allocates different

weight on each frame, which could highlight the importance of different frames.

However, with the combination of local and global attention, the proposed hi-

erarchical attention could out-perform the attentive X-vectors, reaching lower

false reject rate and false alarm rate.

To further evaluate the quality of extracted utterance-level embeddings, t-

SNE [51] is used to visualise the distribution of embeddings by projecting these

high-dimensional vectors on a 2D plane. In the SWBC dataset, 10 speakers are

selected and 500 three-second segment are randomly sampled for each speaker.

Figure 4 (a), (b), and (c) show the distribution of selected samples of 10 speakers

after using X-vectors, X-vectors+Attention, and H-vectors, respectively. Each

color represents a distinct speaker and each point represents an utterance. The

black mark represents the center point of each speaker class. Figure 4(a) shows

the distribution of the embeddings obtained by X-vectors. It is clear that, in this

figure, some samples from different speakers are not well discriminated as there

are overlaps between speaker classes. Due to the use of an attention mechanism

in X-vectors+Attention, figure 4(b) shows a better sample distribution than

figure 4(a). However, some samples of a speaker labelled by a blue colour are

not well clustered. In figure 4(c), the embedding obtained by H-vectors performs

a better separation than the baseline methods.

In the second scenario, Voxceleb1 dataset is used to evaluate the proposed

approach. In this scenario, the three models (X-vectors, Attentive X-vectors and

H-vectors) are trained using the official training set of Voxceleb1 for speaker

identification and verification tasks. Table 7 shows the speaker identification

accuracy and equal error rate on the Voxceleb1 dataset. Similar to the results
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in the previous three datasets, H-vectors shows better performance on Voxceleb1

dataset. In speaker identification task, H-vectors achieved 88.7% accuracy in

when the utterance length is 1 second and 90.4% accuracy when the utterance

length is 3 seconds. H-vectors obtaining more than 3% relatively improvement

than X-vectors and Attentive X-vectors. In speaker verification task, H-vectors

reaches 4.97% equal error rate on one-second utterance length and 4.64% on

three-second utterance length, the improvement is also significant.

In the hierarchical attention network architecture, different window size (M)

and step size (H) might influence the performance. In order to evaluate the

performance of the proposed H-vectors when using different window size (M)

and step size (H), Table 8 and 9 show the prediction accuracy and equal error

rate on Voxceleb1 dataset when the window size changes from 15 to 35 frames,

and the step size changes from 15 to 35 frames. From the results, the model

is more sensitive to the change of the window size. The best performance of is

obtained when M is equals to 25 frames for both one or three seconds segment

length. While, for the change of the step size, the best performance is obtained

when H is equals to 20 frames. One possible reason is that the use of sliding

window (the window size is larger than the step size) instead of static window

(the window size is equals to the step size) might capture more information.

In order to evaluate the robustness of the proposed model in noise conditions,

additional noises from MUSAN dataset are mixed with the utterances from the

original Voxceleb1 dataset. Table 10 and 11 show the speaker identification

accuracy and speaker verification equal error rate on different noise conditions.

Three noise types are used: general noise, music and speech noise. The noise

level is changed from 0dB to 20dB. The utterance length is three seconds.

From the results, the proposed H-vectors outperforms the two baselines in

different noise conditions. When the noise type becomes complex and the noise

level becomes larger, such as babble and music noise type at 0 and 5 dB, the

gap between the results of H-vectors is larger than that of the two baselines.

Even if the noise type is ”Babble” and the noise level is 0dB, the proposed

H-vectors model can reach 67.7% prediction accuracy, and obtained more than
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5% relative improvement than X-vectors and 3% relative improvement than

Attentive X-vectors.

The “Statistical” in Tables 10 and 11 represents the H-vector model that

without the attention mechanism in both frame-level and segment-level en-

coders. In this case, only statistical pooling operation is used to compress the

sequence input a vector, without allocating weights for each frame. This is to

evaluate the effectiveness of the attention mechanism. The results shown that

the H-vector with attention out-performs that without attention mechanism

under almost all of the noise conditions. When the noise level becomes larger,

the gap between H-vector with attention and that wihout attention becomes

larger. This phenomenon shows the the local and global attention mechanisms

are essential for the H-vector model, they can help the model to improve the

robustness.

6. Conclusion And Future Work

In this paper, a hierarchical attention network was proposed for utterance-

level embedding extraction. Inspired by the hierarchical structure of a docu-

ment made by words and sentences, each utterance is viewed as a document,

segments and frame vectors are treated as sentences and words, respectively.

The use of attention mechanisms at frame and segment levels provides a way to

search for the information relevant to target locally and globally, thus obtained

better utterance level embeddings, including better performances on speaker

identification and verification tasks, and better performances in various noise

conditions.

In the future work, different attention mechanisms, such as the multi-head

attention mechanism will be investigated in the hierarchical structure. More-

over, the attention mechanism in different dimensions of the input data, such

as time and frequency dimensions, will be tested.
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Table 3: The comparison of the proposed approach with the state-of-the-art on Voxceleb1 test

set.

Model Training Set Loss EER %

Nagrani et al.[45] VGG-M Voxceleb1 Softmax 10.2

Nagrani et al.[45] VGG-M Voxceleb1 Softmax+Contrastive 7.8

Shon et al. [55] CNN+TDNN Voxceleb1 Softmax 6.79

Cai et al. [56]. ResNet-34 Voxceleb1 A-Softmax+PLDA 4.46

Okabe et al. [21]. X-vector (TAP) Voxceleb1 Softmax+PLDA 4.70

Okabe et al. [21]. X-vector (SAP) Voxceleb1 Softmax+PLDA 4.19

Okabe et al. [21]. X-vector (ASP) Voxceleb1 Softmax+PLDA 3.85

Hajibabaei and Dai [57] ResNet20 Voxceleb1 A-Softmax 4.40

Hajibabaei and Dai [57] Retnet-20 Voxceleb1 AM-Softmax 4.30

Ours H-vector Voxceleb1 AM-Softmax 4.28

chung et al. [25] VGG-M Voxceleb2 Softmax+Contrastive 5.94

chung et al. [25] ResNet-34 Voxceleb2 Softmax+Contrastive 5.04

chung et al. [25] ResNet-34 Voxceleb2 Softmax+Contrastive 4.83

chung et al. [25] ResNet-50 Voxceleb2 Softmax+Contrastive 4.19

chung et al. [25] ResNet-50 Voxceleb2 Softmax+Contrastive 4.43

chung et al. [25] ResNet-50 Voxceleb2 Softmax+Contrastive 3.95

Xie et al. [26] Thin-ResNet-34 Voxceleb2 Softmax+TAP 10.48

Xie et al. [26] Thin-ResNet-34 Voxceleb2 Softmax+NetVLAD 3.57

Xie et al. [26] Thin-ResNet-34 Voxceleb2 AM-Softmax+NetVLAD 3.32

Xie et al. [26] Thin-ResNet-34 Voxceleb2 Softmax+GhostVLAD 3.22

Xie et al. [26] Thin-ResNet-34 Voxceleb2 AM-Softmax+GhostVLAD 3.23

Nagrani et al. [58] Thin-ResNet-34 Voxceleb2 AM-Softmax+GhostVLAD 2.87

Ours H-vector Voxceleb2 AM-Softmax 3.63

Ours H-vector Voxceleb2 AM-Softmax+Contrastive 3.21
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Figure 2: The visualisation of the attention weights. (a) the original spectrogram, (b) the

noise corrupted spectrogram, (c) the global attention weights for the original spectrogram,

(d) the global attention weights for the corrupted spectrogram, (e) the H-vector attention

weights for the original spectrogra and (f) the H-vector attention weights for the corrupted

spectrogram.
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Table 4: Identification accuracy on the test data of SRE08 when the utterance length is 1s or

3s. M and H are set to 30 frames.

Utterance Length Model Accuracy %

1 Second

X-vector 90.1

X-vector+Att 92.1

H-vector 94.5

3 Seconds

X-vector 95.2

X-vector+Att 96.7

H-vector 98.5

Table 5: Identification accuracy and equal error rate (EER) on CHE dataset when the utter-

ance length is 1s or 3s. M and H are set to 30 frames. The previous published results (Pre)

are also listed [24].

Utterance Length Model Accuracy % EER % (Pre) EER %

1 Second

X-vector 84.8 1.94 1.86

X-vector+Att 87.5 1.61 1.53

H-vector 89.1 1.44 1.36

3 Seconds

X-vector 89.4 1.46 1.39

X-vector+Att 91.0 1.21 1.18

H-vector 92.8 1.08 1.01

Table 6: Identification accuracy and Equal Error Rate (EER) on SWBC dataset when the

utterance length is 1s or 3s. M and H are set to 30 frames. The previous published results

(Pre) are also listed [24].

Utterance Length Model Accuracy % EER % (Pre) EER %

1 Second

X-vector 78.2 2.23 2.17

X-vector+Att 81.0 2.05 2.02

H-vector 83.7 1.92 1.90

3 Seconds

X-vector 81.3 2.01 1.98

X-vector+Att 84.0 1.82 1.79

H-vector 86.2 1.69 1.61

24



Figure 3: The DET curve on the SEBC dataset when the segment length is 3 seconds.

Figure 4: Embedding visualization using t-SNE. In the SWBC dataset, 10 speakers are selected

and 500 three-second segment are randomly sampled for each speaker. Each color represents

a speaker, and each point indicates an utterance.
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Table 7: Identification accuracy and Equal Error Rate (EER) on Voxceleb1 dataset when the

utterance length is 1s or 3s. M and H are set to 30 frames.

Utterance Length Model Accuracy % EER %

1 Second

X-vector 85.8 5.75

X-vector+Att 86.9 5.22

H-vector 88.7 4.97

3 Seconds

X-vector 88.2 5.13

X-vector+Att 89.2 4.79

H-vector 90.4 4.64

Table 8: Identification accuracy and Equal Error Rate (EER) on Voxceleb1 dataset when the

window size M is changed from 15 to 35 frames.

Utterance Length Window Size Accuracy % EER %

1 Second

15 86.4 5.24

20 87.3 5.01

25 89.2 4.82

30 88.7 4.97

35 88.3 5.11

3 Seconds

15 88.7 4.72

20 89.6 4.43

25 91.0 4.28

30 90.4 4.64

35 89.5 4.79
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Table 9: Identification accuracy and Equal Error Rate (EER) on Voxceleb1 dataset when the

step size H is changed from 15 to 35 frames.

Utterance Length Step Size Accuracy % EER %

1 Second

15 87.5 4.93

20 89.6 4.86

25 89.4 4.92

30 88.7 4.97

35 87.1 5.12

3 Seconds

15 90.1 4.61

20 91.0 4.43

25 90.6 4.37

30 90.4 4.64

35 88.3 4.90
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Table 10: Speaker identification results for different noise types (Noise, Music and Babble)

at different SNR (0-20 dB), and the original Voxceleb1 test set. The utterance length is 3

seconds. M and H are set to 30 frames.

Noise Type SNR X-vectors Att-X-vectors Statistical H-vectors

Noise

0 74.6 75.8 73.8 76.9

5 79.5 79.4 78.7 81.3

10 83.1 84.0 83.8 86.0

15 85.0 86.3 85.9 87.2

20 87.9 87.8 86.7 88.9

Music

0 68.2 70.1 66.7 72.3

5 72.0 73.5 71.4 74.8

10 79.4 81.0 79.5 82.9

15 84.2 86.6 83.3 87.8

20 86.1 88.0 85.2 89.3

Babble

0 64.1 65.2 62.1 67.9

5 70.5 71.4 68.4 74.0

10 77.4 77.0 76.4 78.7

15 83.5 84.5 81.8 86.2

20 86.6 86.9 86.0 88.1

Original 88.2 89.2 87.6 90.4
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Table 11: Speaker verification results for different noise types (Noise, Music and Babble)

at different SNR (0-20 dB), and the original Voxceleb1 test set. The utterance length is 3

seconds. M and H are set to 30 frames.

Noise Type SNR X-vectors Att-X-vectors Statistical H-vectors

Noise

0 12.26 11.32 12.82 10.92

5 10.01 9.26 11.03 9.03

10 8.33 7.77 8.92 7.28

15 7.25 6.76 8.14 6.50

20 6.91 6.02 7.48 5.95

Music

0 14.15 12.92 15.88 12.68

5 11.03 10.04 12.20 9.83

10 9.35 8.64 10.69 8.33

15 8.41 8.08 9.83 7.62

20 6.79 6.25 7.72 6.17

Babble

0 30.02 27.77 32.56 26.82

5 16.46 15.32 18.02 14.58

10 13.26 12.53 15.38 12.38

15 9.10 8.31 10.47 8.14

20 7.95 7.22 8.91 7.04

Original 5.47 5.06 5.93 4.64
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