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Modern epidemiological analyses to understand and combat the spread of disease depend

critically on access to, and use of, data. Rapidly evolving data, such as data streams

changing during a disease outbreak, are particularly challenging. Data management is further

complicated by data being imprecisely identified when used. Public trust in policy decisions

resulting from such analyses is easily damaged and is often low, with cynicism arising

where claims of ‘following the science’ are made without accompanying evidence. Tracing the

provenance of such decisions back through open software to primary data would clarify this

evidence, enhancing the transparency of the decision-making process. Here, we demonstrate

a Findable, Accessible, Interoperable and Reusable (FAIR) data pipeline. Although developed

during the COVID-19 pandemic, it allows easy annotation of any data as they are consumed by

analyses, or conversely traces the provenance of scientific outputs back through the analytical

or modelling source code to primary data. Such a tool provides a mechanism for the public,

and fellow scientists, to better assess scientific evidence by inspecting its provenance, while

allowing scientists to support policymakers in openly justifying their decisions. We believe

that such tools should be promoted for use across all areas of policy-facing research.

This article is part of the theme issue ‘Technical challenges of modelling real-life epidemics

and examples of overcoming these’.

 D
o
w

n
lo

ad
ed

 f
ro

m
 h

tt
p
s:

//
ro

y
al

so
ci

et
y
p
u
b
li

sh
in

g
.o

rg
/ 

o
n
 2

5
 A

u
g
u
st

 2
0

2
2
 



3

royalsocietypublishing.org/journal/rsta
P
h
il.
Tra
n
s.
R
.So

c.
A
380:20210300

...............................................................

1. Introduction
Historically, models and analyses used to support advice to government have not been publicly

available as public policies are implemented. Typically, some materials would only subsequently

become public via traditional publication routes, with the delays that this implies. Technological

advances and increasingly influential ideas from open source and reproducible science mean

that this approach is no longer tenable. During the current COVID-19 pandemic, many models

used by the Scientific Pandemic Influenza Group on Modelling (SPI-M), who advise the United

Kingdom Government on human infectious disease threats based on infectious disease modelling

and epidemiology, have indeed been made publicly available (e.g. [1–4]). However, even these

models still lack the transparent and readily traceable chain of evidence connecting data and

assumptions with model outputs that would allow them, and their results, to be readily available

and independently assessed. It is also commonly the case that data availability, coverage and

quality are extremely variable or, if available, data may not be in a form that can be easily

used without curation or transformation, further analysis and a detailed description of the

data. The ephemeral nature of some data sources and the rapid evolution of datasets used

during an emergency, combined with the sparsity or absence of metadata describing datasets, all

compound the problem of assessing evidence. In this article, we examine the challenges around

data coverage, quality and access with a particular focus on the issues and demands highlighted

by the COVID-19 pandemic and outline the properties of a data pipeline designed to provide an

infrastructure to address the demands of disease modelling for outbreak control policy-making,

now and in the future.

The modelling work during the COVID-19 pandemic to generate estimates of key parameters

and make predictions of likely outbreak trajectories has required multiple epidemiological

models, operating at different scales and with varying levels of epidemiological detail (e.g. [5–8]).

This raises issues around the scale and resolution of the data used, and the extent to which the data

are processed or abstracted before use. Moreover, the existence of multiple models, drawing on

the same pool of available datasets, but in different ways, exposes a key point: that data, models

and results are all research objects that require management.

From a practical perspective, the pandemic has made it clear that modellers must make

the basis of their advice both transparent and accessible. Following the path from basic

science to policy-friendly interpretation, via choice of parameter values, model structure, model

assumptions, code implementation and generation of outputs, is complex even for specialists.

Version control tools like git combined with online repositories such as GitHub have hugely

enhanced sharing and collaboration on code, and managed repositories such as Zenodo now exist

for Open Science. However, this is just a small subset of what is required from a usable platform

to support open and transparent epidemiological modelling, given the requirements that it be

consistent in use across the range of likely applications, sufficiently unobtrusive that it is feasible

for modellers to adopt it, and accommodating the necessary diversity of data sources. Digital

Research Infrastructure can now support transparent linking of the steps along this pathway.

We have developed a pipeline that provides an open and publicly accessible ‘chain of trust’

to transparently connect primary data with research outputs via open source, publicly accessible

analysis and modelling code. This pipeline provides a route by which scientific hypotheses and

study results combined with other sources of societal data (e.g. epidemiological, demographic,

geographic and health service use) can contribute, through intermediate analyses, to publicly

available and openly tested models while enabling generation of outputs whose dependencies

can be fully interrogated.

In developing this pipeline, we provide an Open Science solution that addresses long-standing

and critical problems in public health and livestock disease control. For example, Keeling [9],

in a review of the modelling effort during the UK Foot and Mouth disease outbreak of 2001,

identified a number of sources of conflict associated with the use of mathematical modelling

in emergency veterinary public health. Keeling argued that tension between the veterinary and

modelling sciences arose at least partially because of a disjunction of experience at different scales:
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that veterinary expertise was likely to be more accurate and effective at a local scale, whereas

models were most effective in integrating the risks associated with multiple, larger scale events.

It therefore becomes difficult to seek consensus across these groups, due to the confounding of

perspective with professional expertise. A more general point was made by Matthews et al. [10],

who argued that, as the spatial scale on which decisions and interventions are required increases,

the threshold at which it is worthwhile to intervene, when measured in terms of the estimated

risk of infection per premises, will tend to decrease. In this case also, we can note a problematic

confounding of perspective (local, regional, national or supra-national) with the properties of

any models operating at these different scales. Unfortunately, it is all too easy to see how these

systemic issues could translate into a lack of confidence in the results of a quantitative analysis,

or even into a dismissal of modelling results where these conflict with the ‘common sense’ of an

influential grouping.

One way to overcome these potential problems is to seek to maximize the transparency

of the modelling process, opening to general scrutiny the logic which has given rise to

potentially contentious results, clearly reporting analytical assumptions and the provenance of

the data resources, which have underpinned the analysis. To build scientific, political and public

consensus, at a minimum, it is desirable to avoid mistakes arising from poor management or weak

understanding of the data resources used. It is also important to avoid propagating any errors

which do arise and essential to have tools to find any such issues. The importance of maintaining

transparency and supporting better management of provenance of data, data products and

modelling outputs is underlined by the official statement made by the UK Office for Statistics

Regulation in November 2020 [11]. Three key objectives were specified in respect of governmental

use of data to support COVID-19 decision-making: namely that (i) where data are referenced

publicly, that the data or at minimum the provenance of the data be published; (ii) where models

are referenced publicly, that model outputs, methodologies and assumptions also be published;

and (iii) where decisions are justified by reference to data, that this be made publicly available.

These objectives are supported by the functionalities of the Findable, Accessible, Interoperable

and Reusable (FAIR) data pipeline described below.

This article initially describes the issues we are trying to address and the existing tools that

partially address them. It then follows the conceptual development and implementation of the

open source pipeline to connect baseline assumptions and data to epidemiological models and

their outputs. Using exemplary epidemiological models, we demonstrate how model runs are

associated with a specific, cumulative chain of dependencies, supporting the critical examination

of assumptions. If errors (or issues) are identified in primary datasets, analyses or modelling

code, downstream model outputs can be automatically and transparently invalidated. The

finalized infrastructure aims to provide an ecosystem for the epidemiological and wider scientific

communities within which data, models and results can be managed in a transparent and publicly

accessible way.

(a) FAIR research objects, provenance and data cataloguing
The FAIR data principles [12] were proposed as guidelines to apply to data, making them

findable, accessible, interoperable and reusable so that both researchers and machines are able

to find, access and (re)use data. The principles have been widely adopted and subsequently

have also been applied to other research objects such as software [13], workflows [14], machine

learning algorithms and executable notebooks; and guidance for ‘FAIRification’ of data has been

developed [15,16].

The main data descriptors required to achieve FAIR data according to the principles are

as follows: (i) persistent identifiers, such as digital object identifiers (DOIs, [17]) for data,

metadata and software, Open Researcher and Contributor IDs (ORCIDs [18]) for people, and (ii)

standardized ways of recording metadata.

As regards metadata standards, the open source pipeline requires a data registry that is aligned

to existing formats and vocabularies. This will enable interoperability with other systems and
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support integrating and exchanging data in a straightforward way. To reduce the ambiguity in

diverse data representations, we rely on common formats (such as JSON-LD [19]), and common

terminologies or FAIR vocabularies [20] that provide clear definitions and persistent identifiers

for the terms. For example, we use the provenance vocabulary (PROV-O) to faithfully represent the

entities, activities and people involved in producing a research output.

2. Requirements analysis
The Scottish COVID-19 Response Consortium (SCRC) [21] was created as part of the Rapid

Assistance in Modelling the Pandemic (RAMP) initiative, coordinated by the Royal Society

[22]. During 2020, the consortium comprised over 150 volunteers from multiple universities,

research centres and industrial partners across the UK. During the design phase, we carried

out a requirements analysis involving modellers, epidemiologists, data and policy experts and

software engineers from across the consortium to determine how such a pipeline would be used,

document these use cases and extract from them the most important requirements. A search was

made for existing technologies that might satisfy these requirements, but it yielded no results (see

§3 for details), and a prototype pipeline was built to investigate the pros and cons of different

approaches. In the light of this exercise, the current pipeline was then designed and built to meet

the specifications.

(a) Use cases
From the identified use cases for the FAIR data pipeline, ultimately 17 were taken forward and

written up in detail. These use cases generated a variety of requirements, such as being able to

query the pipeline to easily establish whether a dataset is already registered; being able to run

analyses using the pipeline inside a Trusted Research Environment (TRE); being able to raise

issues with data or software at run time or retrospectively to track the quality of these entities;

and to inspect an output generated by a third party and identify whether any issues have ever

been raised with any component in its provenance. An important criterion established in the

use cases was that the software be easily approachable with low technical barriers of entry, thus

making the pipeline accessible to end users.

(b) Requirements
In the context of our objectives for a pipeline for epidemiological models, and mindful of the

requirements specified (above) by the Office for Statistics Regulation, we require:

(i) A FAIR representation of the research objects involved, such as datasets and software,

and the ability to trace updates to them, identify specific versions being used in analyses,

track their provenance and integrate all the information necessary to understand how

results are produced. This should include the ability to manually add provenance to the

system where, for instance, a policy report contains figures, or simply results, generated

by the pipeline;

(ii) The ability to work seamlessly with data that is not publicly available, and indeed to

be able to work fully offline, for instance in situations utilizing sensitive data inside TREs

such as National Health Service (NHS) Safe Havens. In these situations, it is still necessary

to be able to uphold the FAIR principles and to allow for the evaluation of the provenance

of research outputs by providing public access to metadata. However, the data must be

provably isolated from this process to comply with access requirements;

(iii) Interoperability with existing standards. No approach to solving these problems will be

successful if it invents a series of new ‘standards’, when a plethora of existing standards

already exist. This is because so much data already exist in repositories that already

comply with these standards, and users must be able to easily pull these datasets into
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the pipeline. This does not presuppose that existing standards have to be used to define

internal formats, but at least there has to be the ability to interoperate through seamless

import and/or export (e.g. DOIs, W3C-PROV [23] and W3C-DCAT [24]); and

(iv) That the system is not disruptive for end users, providing clearly identifiable short-

term benefits to epidemiologists, and the Research Software Engineers working with

them, to encourage uptake while causing as little friction as possible within their existing

workflows.

While reproducibility of results is desirable and may be possible where the data used are publicly

available, it is not a core requirement since our concern with simplicity and user-friendliness (to

minimize barriers of entry to modellers) can be in conflict with, for instance, containerization

approaches (containers package up code and all of its dependencies to allow quick and reliable

transfer of analyses from one computing environment to another) that allow full reproducibility

in all circumstances.

A number of other requirements were identified for individual use cases, but since they are

mostly very specific to individual problems, and can be solved by (for instance) simply refining

interfaces to help end users use existing functionality, they are not listed here.

3. Related work
Our FAIR Data Pipeline must combine components for executing modelling workflows as well

as recording the information and provenance of the research objects. This combination enables

traceability of the modelling results.

In this section, we review related systems that provide similar functionality. We categorize

them as (i) those providing databases or online data repositories, often focused primarily on data,

(ii) those providing ways of recording workflows, usually focused primarily on reproducibility,

(iii) those recording the provenance of research objects by tracing code as it executes, and

(iv) those providing or relying on version control systems, often combining software and data

repositories. However, note that there is a significant overlap between these categories, so we

have endeavoured to place the tools in the most appropriate category.

(a) Online data repositories and databases
The ability to store data was not a core requirement of our data pipeline because of the range

of storage solutions already available. Indeed, the specific storage mechanisms at individual

sites, such as inside NHS Safe Havens, are well established and unlikely to change. Nonetheless,

existing data storage solutions offer a partial solution to the issues that we are trying to address.

For instance, Zenodo [25], and other online repositories such as figshare [26], provide

persistent identifiers (DOIs) for any form of data, and also record standard associated metadata.

By contrast, FAIRDOMHub [27], and the underlying FAIRDOM-SEEK [28] software, provide

a FAIR data and model management service specifically for Systems Biology, with metadata

tailored specifically to this community.

Splitgraph [29], on the other hand, is a PostgreSQL-based tool for building, versioning and

querying reproducible datasets. It provides a public data store, while allowing provenance

tracking of datasets that are created within Splitgraph. Dolt [30] (together with the associated

online repository, DoltHub [31]) provides similar SQL functionality, with commercial options for

private data storage, but does not generate provenance. Fully commercial data stores, such as

data.world [32], also offer similar capabilities.

All of these data stores offer some of the functionality required by the pipeline, but all would

require significant changes to users’ workflows and none can be used offline. Nonetheless, the

ability to interoperate with existing data stores like these, particularly public ones such as Zenodo,

would be very valuable for accessing existing published datasets.
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(b) Reproducible workflows
As discussed in §2b, computational reproducibility was not seen as a critical requirement for the

pipeline during the development of the use cases [33]. However, a key requirement was the ability

to trace exactly what code was run on which datasets to ensure accurate provenance recording.

Traceability can be seen as an indirect element of a reproducible workflow; therefore, there are

overlaps with tools that already exist for these purposes.

Highly developed tools exist for managing and scheduling workflows [34] that generally

guarantee reproducibility, such as Galaxy [35] for scientific workflows, Apache Airflow [36] for

more general data pipelines, and before that, Kepler [37]. Such tools are generally designed

for complex and/or regular workflows, not the bespoke and one-off analyses that are more

frequently produced in academia and which are detailed in our use cases.

On the other hand, Kaggle [38] provides an online repository containing a wide variety

of publicly available datasets and a cloud-based Jupyter Notebook [39] environment for

reproducibly analysing these datasets. However, the Jupyter-based workflow does strongly

constrain what it is possible to do with the system, and the utility of cloud-based systems may

also be undermined by legal requirements (e.g. General Data Protection Regulation (GDPR) [40]),

which place requirements on data processors not to export data outside specific jurisdictions.

Quilt [41] is an open source data hub that allows analyses to be run in (much more general)

Docker containers [42]. Quilt also provides a commercial product, QuiltData [43], for managing

private data. Neither of these explicitly allow provenance to be extracted, but the information is

indirectly available through the contents of the notebooks and containers. A different issue with

commercial platforms for data management and reproducibility is exemplified by FloydHub [44],

which provided similar functionality to QuiltData, but the company that provided this service has

ceased trading during the writing of this article.

At least two tools were created during the pandemic specifically for reproducible analyses

of COVID-19 data. Covid Model-Runner [45] was created in the early months of the pandemic

to automate the epidemiological analysis of COVID-19 datasets that predicted future outcomes

under different control scenarios. It used Docker to containerize the analyses and enforced a

standard input and output schema for the models to ensure easy comparability. However, despite

the excellent work that went into it, the tool was not widely adopted, perhaps due to its narrow

focus, combined with the complexity of adapting code to use it. The lesson from this work may

simply be that such tools must be adaptable to the workflows of the end user and cannot assume

that the converse will apply, unless they provide a critical (to the epidemiologist) service not

otherwise available. The second platform that has been developed during the pandemic has

had a very different trajectory, providing as it does just such a critical service—OpenSAFELY

[46,47] was developed to allow open and reproducible analysis of sensitive NHS patient data. It

holds electronic health record data for 40% of the population of England, and nine papers have

already been published using the platform, providing important results about the disease and

the efficacy of treatments. OpenSAFELY is designed for the analysis to be fully open, with all

activity publicly logged. It can create its own TRE to operate appropriately on sensitive data or

can be deployed on top of an existing TRE as a privacy-enhancing layer. It has many desirable

features that enhance privacy such as the lack of access by users to raw data even when analyses

are being conducted. However, it is expressly designed to operate solely inside TREs, and as such

it puts strong constraints on how users interact with it, making it much less suitable for use on

non-sensitive data.

These tools for reproducible workflow management provide useful functionality, but many

require even more substantial changes to user workflows than the data management systems

above. For specific tasks working with sensitive data, OpenSAFELY provides totally new levels

of privacy protection, but outside that narrow focus, we believe that the constraints such tools

impose are too heavy for our uses.
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(c) Provenance tools
Data provenance, or pedigree or lineage, is about documenting the processes that produce the

data in its current form. Much of the early work capturing provenance for scientific workflows is

summarized in a conference demonstration [48] and a review [34] in 2008. Since then, a standard

has emerged for documenting data provenance—the W3C Provenance Ontology [23]—and there

are multiple tools that support recording provenance in different contexts. Here, as well as

tools that capture provenance through workflow management (e.g. [36,37], described earlier), we

classify provenance tools into three further groups—tools that work at the level of the operating

system, tools that generate provenances for specific languages and tools that manage provenance

data for multiple languages.

Camflow [49] is an example of an operating system-level tool, capturing ‘whole system

provenance’ [50]. It captures the relationships between Linux operating system kernel objects

(such as files and threads) during execution and stores these such that they can be represented as

a directed acyclic graph. This is a very powerful tool, but captures so much information it is hard

to use for a relatively ‘simple’ modelling task. RDataTracker (and rdtLite and rdt) [51] are tools

to collect provenance information from code executed in R, outputting to PROV JSON format.

This can be visualized as a data derivation graph showing how data and computation led to an

result. It requires no alteration to the underlying R code, providing a very low barrier of entry, but

is inappropriate for our use, both because it slows down the code significantly in order to trace

it, and it only works on R code, strongly constraining the provenance that can be captured. A

recordr [52] is another tool working only in R to record provenance of analyses run in R without

altering the source code. Unlike RDataTracker, it does not significantly slow down the code, but

is limited by only instrumenting a very limited number of function calls that read and write files.

However, it works directly with the DataONE earth and environment online repository (https://

www.dataone.org/), allowing metadata to be recorded for some of the data being used by scripts

being traced. Finally, recipy [53] is a provenance tracking tool for Python. Again it requires only

minimal changes to the code to be tracked, but is limited, in both that it only tracks code in

Python, and that it just traces file paths, and does not retain the data or store any metadata on

the data being read and written. The Core Provenance Library (CPL) [54] provides an interface

to a relational database that is used to store provenance information. It is written in C/C++

and provides interfaces in R, Python and Java as well. Developers integrate these interfaces into

their code and actively use them to store provenance information. However, the provenance APIs

provided are very low level, not automatically capturing provenance as code is run, but rather

providing the ability to manually create, look up and link objects in the database, making the

barrier of entry just too high for most users.

These provenance tools are all very valuable in their own right, and CPL is the closest of the

tools to our requirements, but we believe that the barrier of entry for such a tool is just too high

for our users, while the other, simpler approaches are too constrained in what they can track, and

conversely, the whole operating system approach is just too complex for our needs.

(d) Version control
Source code for software has been curated through the use of version control software such as

git [55] for many decades, and there is widespread adoption throughout the epidemiological

modelling community (e.g. [1,2]). However, version control for data is less well developed, not

least because, unlike source code, data often involve files that traditional version control cannot

easily handle at present, whether due to limitations in memory, time or disk space. To allow

large and binary data to be more easily managed inside version control, additional functionality

has been added to git through git annex [56], which uses special remote stores including

cloud object storage to manage data outside the git repository. However, this is not trivial to use,

and so other platforms have been built on top of git annex to allow end users to access this

functionality more easily.
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Some of the data management tools described in §3a provide forms of version control. These

are often quite primitive in the sense that they do not identify specific changes to datasets, but only

that the dataset has changed. Qri [57] is an open source tool for data management, versioning and

sharing. Versioning happens at the individual dataset level, with commits containing high-level

metadata on the data as well as more detailed information on its structure. Pachyderm [58] is a

platform for reproducible science with versioned data repositories. It too provides provenance at

the level of data repositories that are used and produced by analyses, and reproducibility through

Docker images and Kubernetes [59] for container management. However, it is a commercial

product that has job limits on the free community edition, and it carries only limited metadata

on the data it tracks. Data Version Control (DVC) [60] (built on git annex), and DAGSHub [61],

which uses DVC for data management, git for software version control and MLflow [62] for

reproducibility, provides similar functionality to Pachyderm including provenance tracking and

is designed especially around machine learning workflows. DataLad [63] is also built on top of

git annex and provides similar functionality to DVC and Pachyderm, but has a broader scope.

We believe that the tools described earlier, especially the open source DVC/DAGSHub and

DataLad platforms, come the closest of all of the identified existing products to satisfying our

requirements. They provide provenance information (though it is not clear if manual additions

can be made), they can handle private and public data, and they are relatively unintrusive in how

users interact with them. However, they still fall short in several significant respects. Critically, it

is not clear how to separate the metadata from the data itself, since git and git annex appear

to manage both ‘under the hood’, and so it is not clear how to ensure public traceability once part

of the provenance of a model output is marked as belonging to a private data store. The metadata

they provide is also not clearly interoperable with formal standards; although the provenance

information can almost certainly be standardized, metadata standards go far beyond that. Users

and organizations interacting with the system should be traceable using persistent identifiers such

as ORCIDs, and the data management system should track persistent identifiers for datasets such

as DOIs (see §4a for further details).

All of the tools described earlier are valuable, and some are widely adopted, with many

obvious applications. Many positive lessons were identified from them in developing our

pipeline, but they are all missing core features that make them unsuitable for our purposes.

4. Overview of FAIR data pipeline

(a) Standards and interoperability
Our solution satisfies the requirements for both syntactic (referring to the formats used for the

representation of the data) and semantic (referring to the vocabularies used for the representation

of the data) interoperability of metadata by relying on the following standards and technologies:

JSON-LD: A standard format that extends JavaScript Object Notation (JSON) for Linking Data

to allow automated navigation from one piece of Linked Data through embedded links

to other pieces of Linked Data across the web; we use a JSON-LD representation for each

of the entities and for the provenance report [19].

W3C-PROV: A vocabulary for the provision of information about people and activities, such

as running code, that are involved in producing a data product in the pipeline, and

representing the data provenance [23].

W3C-DCAT: A vocabulary for data cataloguing that enables us to describe datasets and

facilitates the consumption and aggregation of metadata from multiple catalogues [24].

DOI, ORCID and ROR: Persistent identifiers for uniquely identifying digital resources, people

and organizations (respectively), and providing associated metadata.
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We will continue to work on expanding the metadata representation, provide export of data in

the relevant formats and plan to package the data products using the RO-Crate approach. RO-

Crates [64], or Research Object Crates, are a lightweight, JSON-LD-based approach to packaging

research data with their metadata, providing a standard import and export format.

(b) Flexible, easy to use and secure
The pipeline must fit easily into existing workflows for data access, processing, modelling and

analysis, and to support those likely to be required in a crisis situation, while ideally reducing, and

certainly not adding to, the workload of users. Such workflows might involve exploratory work

on a scientist’s local computer, the need for code to run on HPC nodes without direct runtime

internet access, or working within data safe havens and similar restricted environments.

Many of the platforms described earlier rely on cloud-based solutions or heavily constrain

what workflows are possible, providing a barrier of entry sufficiently high that they will never be

adopted by the target audience. Satisfying the requirements for both simplicity and working with

sensitive data led instead to our adoption of a distributed architecture with local data registries

that can operate fully autonomously on a laptop or in a secure environment, and which can

wrap any existing workflow with minimal changes to ease adoption of the pipeline. Since these

local registries contain only metadata, which is not disclosive, they are able to synchronize with

remote registries to satisfy requirements for public accessibility of provenance information even

for sensitive analyses.

(c) Trust and quality
During the RAMP period, SCRC proposed a model evaluation framework for open epidemiology

that would ensure information about provenance, quality and robustness of modelling results

would be available alongside any advice or reports that may be used in decision-making. This

would cover the key elements contributing to the validity of modelling results including the

quality of the underlying science, confidence in the correctness of the software implementation

and the reproducibility of outputs from it, the existence and results from validation of models

and inference procedures, and the quality and provenance of data, combining it into an overall

assessment of output policy-readiness.

The FAIR data pipeline enables such evaluation reports to be attached to objects in the

provenance chain. SCRC’s lead Research Software Engineers developed a software checklist [65]

intended to be completed by software developer(s) and updated for each release of their software.

It can then be associated with the release through a dedicated table in the data registry. This

checklist has been completed for key components of the FAIR data pipeline with copies stored as

software-checklist.md in the root of each GitHub repository alongside the software source

code.

(d) Overview of components
The FAIR Data Pipeline software suite (table 1) consists of (i) the data registry, a Django database-

backed web application holding metadata and providing REST APIs; (ii) fair, a command line

tool that can both synchronize metadata (and optionally data) between the execution platform

and a remote data registry and is used to start experimental runs directly; and (iii) a set

of language-native programming interface packages, which can be added as dependencies of

modelling software to enable it to read and write data from the pipeline. See table 1 for package

details, and figure 1 for how metadata and data flows through the pipeline. Provenance is tracked

automatically by launching analyses through a command-line tool, and tracking files as they are

read and written by minimal editing of the modelling code to wrap the read and write calls.
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Figure 1. Design of the FAIRData Pipeline. Upper panel: control flow for thewhole pipeline showing local and remote registries,
andactions that canbe taken topopulate and synchronize them. Lowerpanel: control flow for the local pipeline, showingactions
that can occur during a model run. (Online version in colour.)

5. FAIR data registry
The data registry is a dynamically updated database that stores metadata associated with

the diverse types of data utilized and generated within a typical epidemiological modelling

workflow. In this context, we refer to data in the broad sense as any files, including scripts, code,

figures and individual parameters. The system design anticipates a variety of different research

objects being present in the modelling workflow, whose interactions give rise to new objects

that are automatically entered into the registry. The registry was designed to hold the following

research objects:

datasets either sourced from a data provider, such as a government department or agency,

as open data accessed from another researcher, or generated as part of a registered

workflow;

version-controlled processing scripts typically written by the team using the registry, to
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Table 1. FAIR Data Pipeline software: all packages are available under open source licenses and are developed as public
repositories within the FAIRDataPipeline GitHub organization [66], and where appropriate, released through language-specific
package registries.

repository name language registry package name

data-registry [67] Python (Django) n.a. n.a.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

FAIR-CLI [68] Python PyPI fair-cli
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

rDataPipeline [69] R CRANa rDataPipeline
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

DataPipeline.jl [70] Julia General DataPipeline
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

javaDataPipeline [71] Java Maven org.fairdatapipeline
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

pyDataPipeline [72] Python PyPI data-pipeline-api
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

cppDataPipeline [73] C++ n.a. libfdpapi
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
aPackage to be added.

— restructure datasets, including activities such as identifying anomalies and raising

issues, data cleaning, selecting subsets and linking records across datasets,

— carry out curation activities on datasets,

— carry out specific analysis, producing output that is either going to form part

of another output in its own right, or numerical quantities (typically a vector of

parameters) that will be used downstream in the workflow;

version-controlled analysis scripts typically written by registry users;

analysis outputs generated by the application of an analysis script to a dataset;

model parameters either extracted from an analysis output, or entered into the registry as a

quantity derived from the work of the wider scientific community, such as a parameter

cited in a paper or a report from another modelling group;

version-controlled modelling code typically written by registry users for use in generating

specific model outputs;

mathematical model output generated by use of a version of a mathematical model codebase,

probably making use of multiple datasets and model parameters;

reports generated by pipelining model and analysis outputs into a pre-specified report format,

or generated manually (e.g. in Word) using such outputs.

The metadata associated with these research objects can be either intrinsic or extrinsic. Intrinsic

metadata includes fields that contain information relating to provenance. Data objects that enter

the registry from outside the data pipeline have information uploaded to detail the source of the

material, preferably including a persistent identifier such as a DOI as a commonly recognized,

persistent method for machine actionable and globally unique identification. Data objects that

enter the registry having been produced by researchers working within the data pipeline will

have metadata associated with them automatically detailing author and versioning. Such outputs

will also trace their history through pipeline interactions to uniquely identify the provenance of

the new objects. The operation of the data pipeline will not lead to any revision of the intrinsic

metadata associated with a data object; these may need to be updated if further information about

provenance becomes available, but this reflects a change in the user’s knowledge, not in the actual

nature of the data. A key property of the registry is that changes in the metadata associated with

a data object will propagate to the provenance metadata associated with offspring data objects.

This is useful in maintaining consistently valid, high-quality intrinsic metadata across the entire

population of research objects in the registry, but it is even more important when considering

extrinsic metadata.

By contrast, extrinsic metadata can be updated over time. The data registry includes two

key elements of extrinsic metadata: one (‘QualityControlled’) is an assessment of the quality, or
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fitness-for-purpose, of the research object, whether data or code. The other (‘Issue’) can be used

specifically for raising concerns about problems identified in the data or code, either at the point

of data upload or generation or through later analysis. The status of the dataset is dynamically

propagated through the registry and hence is visible in the provenance of outputs generated using

these datasets. In a similar way, datasets that have been simply superseded can also be flagged,

and reports and other outputs based on them can then be identified. If such a report is used as

the basis of (say) a briefing to government policymakers, it will be important to make it clear

where it is indeed based on outdated information. The key outcome is that all the information

required to contextualize the work is available in the provenance metadata. It is instructive to

compare this situation with the more extreme case where a dataset is (say) discovered to have

contained erroneous data for a period of time. All versions of the dataset subsequently identified

as erroneous can be flagged as invalid. All outputs derived from these datasets will have this

invalidation in their provenance; reports can be withdrawn, and there should be no risk of

any work subsequently using these invalid data without this being apparent in the provenance

metadata. In this way, the registry is the primary source of information to derive retrospective

provenance, i.e. a detailed log of the execution of the computational task, including user-defined

provenance in the form of annotations [34].

The full schema of the registry database, including other metadata such as information about

software releases and DOIs for published data, is available in electronic supplementary material,

figure 1.

6. Examples
We have selected three examples to demonstrate features of the pipeline. These are not intended

to push the limits of the software framework, but to provide simple to understand examples

that can be replicated by the reader to get a feel for the complexity of using the FAIR Data

Pipeline. The first is the reproduction in R of a simple Susceptible-Exposed-Infected-Recovered-

Susceptible (SEIRS) epidemiological model used by Bjørnstad et al. [74] to demonstrate disease

dynamics. In the second example, we reimplement this model in all four native languages of

the data pipeline (R, Java, Julia and Python) and cross-validate the results. Finally, we show

a more complex, but nonetheless very simplified, time-varying model of COVID-19 dynamics

with parameters extracted from English epidemiological data from the pandemic, and pull

these into the pipeline and run a deterministic simulation of the pandemic using those inferred

parameters.

(a) SEIRS model
To demonstrate a simple epidemiological model being run through the pipeline, we take the

example of the SEIRS model used by Bjornstat et al. [74] and reproduce the results that lead

to fig. 1b in that paper. The full code is available online in an R package [75], which provides

instructions for how to run it in the README.md file on GitHub. A vignette is also provided

[76] showing the fully worked example with results. fair pull is used (figure 1) to populate

the local registry with the parameters from the source manuscript (using a register block in

the configuration file to ensure the data are in the pipeline). fair run is then used to execute

the R script (the R code is executed from the root of the git repository via the script block

of the configuration file). The R code itself is only very lightly edited from an equivalent non-

pipeline version, with the addition of initialise() and finalise() steps to start and stop

the pipeline monitoring, and the replacement of hard-coded file paths with calls to link_read()

and link_write()with references to labels given in the configuration file (by default the unique

names under which they are stored in the registry). These functions simply return appropriate

paths, so can be directly used in place of filenames in any normal R code. The output of this

simulation is shown in figure 2 along with the provenance of the output figure.
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Figure 2. Running an SEIRS model in R through the data pipeline. Upper panel: output of the model, showing SEIRS dynamics
matching Bjorstadt et al. [74]. Lower panel: provenance of the model output, tracing the SEIRS plot back to parameter inputs.
Note that provenances are ordinarily provided in standard PROV-O format, hyperlinked to the research objects being traced and
with additional metadata, but they are simplified here for display purposes. (Online version in colour.)

(b) Model comparison
The SEIRS model described earlier was implemented in all four of the native languages of the data

pipeline, and the Java [77], Python [72] and Julia [70] implementations can be found online. We

ran all four models through the pipeline together and then wrote a small cross-validation script to

compare the models. The comparison is shown in figure 3. Critically, the models disagree due to

a difference in time steps used and the length of a year in the implementations (365 versus 365.25

days). Examining the provenance of the figure shows that this was automatically identified by

the cross-validation code, which then added an issue to the Java model output (the issue can

be seen in the registry interface in the electronic supplementary material, figure 2). This issue

can then be traced through the provenance to anything that uses this data product. This ability

to trace problems with downstream research objects (in this case figure 3) resulting from (even

retrospectively) identified problems with upstream data is a core strength of the pipeline.
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Figure 3. A comparison of all four language implementations through the data pipeline. This figure shows the plots as
almost superimposed. The reason for the slight discrepancy was automatically identified during the cross-validation, and in
consequence, the provenance of the figure highlights the issue raised. (Online version in colour.)

(c) COVID-19 model
Epidemiological models such as the one described earlier are critically dependent on the values of

parameters; these are typically difficult to estimate and subject to variable levels of uncertainty. It

is therefore important to be able to trace model outputs back to the parameterization(s) used

to generate them. We illustrate this point in a case study in which the parameterization was

determined by fitting the epidemiological model shown in figure 4 to COVID-19 epidemic data

from England up to mid-2021. These include the static parameters (figure 4 (upper panel)) and the

time-varying external force of infection et and basic reproduction number Rt that account for the

impact of pandemic response (e.g. lockdowns and travel restrictions) on the outbreak dynamics.

The model runs shown in the lower panel of figure 4 are generated by using the FAIR data pipeline

to link the deterministic, R-based implementation of the model to the parameter values generated

via Bayesian inference (figure 4 caption). The full code is provided in the same git repository as

the first example [75], and a vignette is also provided showing a fully worked example of it being

run in the pipeline [78]. Where the Bayesian inference is itself carried out within the data pipeline,

the provenance information will itself chain back to incorporate both the stochastic model and the

primary datasets.

7. Discussion
During the COVID-19 pandemic, media outlets have channelled highly charged and politically

polarized arguments about the trustworthiness of scientific advice for government policy and also

of the advisors themselves, as well as debating the extent to which governments are, in any event,

following such advice. While some such controversies are inevitable, as a scientific community

endeavouring to provide the best advice we can to policymakers, we are at a disadvantage if the

detail of our results is hidden and if the evidence chain that connects our advice to the data and

models that underpin it is not just unavailable to the public, but in fact largely non-existent. This

situation has arisen although standards have been available for many years, promoting openness

and reuse of data and metadata, in particular through the FAIR principles for scientific data

management [12].

The FAIR Data Pipeline was SCRC’s response to this aspect of pandemic response. Querying

epidemiologists involved in both human and animal disease modelling, we could identify no

tools being used that satisfied either FAIR principles or which publicly presented the provenance
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Figure 4. Epidemiological model fitted to 2020-2021 COVID-19 data from England. Upper panel: this shows a homogeneous
model (i.e. with no age or spatial structure) with compartments representing, for each point in time, the number of individuals
who are susceptible S, infected with COVID-19 but not infectious E, infectious I, isolating/non-infectious N, recovered R, and
those who have died D. The figure shows the per-capita rates of transition for each allowed transition between states. The
parameters mE , mI , mN represent the average time spent in the states E, I and N, respectively, while bN→D and bN→R

=

1 − b
N→D are the probabilities of death and recovery. The force of infectionλt is dependent on: a per-capita external force of

infection et ; and a frequency-dependent term rRt I/N0 that represents the rate of disease transmission in terms of the average
time spent in an infectious state (here r = 1/mI) and the real-time reproduction rate Rt . Both Rt and et vary with time and
are driving variables for the model. As indicated, case and death rate data inform the transitions shown, whereas PCR and
seroprevalence data from the Coronavirus Infection Survey [79] inform on the numbers of individuals in the compartments
I + N and R, respectively. With the exceptions of mE = 4 days and mI = 4 days, all model parameters were determined via
Bayesian inference using the methodology described in [80] applied to a stochastic version of the model described here. Note
that, although the latent and infectious periods are fixed, changing these quantities has the effect of rescaling the inferred Rt
about 1, but does not impact on the other parameters significantly. Lower panel: the deterministic SEINRD R code captures the
first, second and third wave of the outbreak in terms of cases and deaths attributed to COVID-19. (Online version in colour.)

of research outputs. We felt that the media storm surrounding some of the scientific advice during

the pandemic demonstrated that such a tool would be valuable in improving trust in science used

for public policy. In addition to the indirect and intangible costs arising from diminished public

faith in science, there is also potential for wider efficiency benefits to accrue from developing and

using software to support FAIR data management. An analysis of the qualitative and quantitative

costs of not having FAIR data has estimated a negative impact of e10.2bn on the European

economy [81].
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Accordingly, a requirements analysis was run to determine what capabilities were needed

from such a tool—specifically, what functionality a data pipeline would need to provide to be

useful to not just to the epidemiological and other modelling communities, but also the broader

lay and policy audience [33]. After a review of software available for data management and

reproducible research, we concluded that no suitable tools existed in the public domain that could

be easily adapted to these uses. We therefore developed the new open source suite of tools for

FAIR management of data and models described here to improve the openness of science for

policy and better support the traceability of evidence, with as low a barrier of entry as we could

devise. Although a small amount of friction remains, our intention has been to ensure that there

are benefits for all potential users that can be realized in only a few minutes: for instance, for

modellers, the ability to automatically trace the provenance of the output of an existing model

with only a single short configuration file to describe any input and output data, and minimal

changes to the code; for a data manager or user to look up a file in a data registry and see what

(if any) metadata is held on it, and what other versions of that data product also exist; or for third

parties, the ability to look up a model output in the same data registry and see its provenance

immediately, linked directly back to the code and data used to create it.

Critically, these tools are as non-prescriptive as possible in terms of how, in what environments,

and with what software users carry out their analyses and modelling, while nonetheless tracking

in fine detail exactly what versions of what data are ingested, what commits of what software

are run and by whom, and what research outputs are generated. As well as automatically

generating detailed provenance information, the pipeline also annotates the runs with other

detailed metadata, and relies on existing standards to maximize the FAIRness of the data

produced and to enable interoperability with other resources. Finally, where possible, it reduces

the burden on users of correctly annotating data provided from external data providers (or even

their own files) by retrieving metadata (and even the data itself) directly from the sources. Where

this is not possible, it provides a simple text-based format to manually upload the necessary

information in a straightforward manner.

Isolating metadata completely from the data being analysed and used means that this resource

(in the form of data registries that can themselves be run directly on user laptops or created in the

cloud and shared across research groups if desired) can be made publicly available even when

the underlying data are highly sensitive, as usually the metadata and data have different licenses.

When allowed by the metadata license, we can include it in the registry since the data are only

identified through the checksums of the files (to ensure traceability) and any other metadata that

the user chooses to upload.

By using standard formats and vocabularies, we are maximizing the FAIRness of the metadata

stored in the registry, enabling interoperability with other resources. This also allows us to export

the metadata in recognized and proven formats with existing tools to manipulate them, and the

process of aggregating data should be simplified. However, there are still many challenges when

including external resources and aggregating the metadata. Where the data are openly available,

some sources provide data (e.g. CSV files) without any description of what the data means. Other

sources provide data dictionaries, and this improves our interpretative ability when mapping

the data into our registry, but, nevertheless, the mapping process is manual, error prone and

time consuming. By promoting a more standardized approach, we hope that data providers in

epidemiological modelling and other domains may follow our lead in adopting the standards for

data description that we support, which are widely used in other application areas.

8. Conclusions

(a) Trust, but verify
By enabling the public release of the provenance of scientific policy advice, we believe that this

data pipeline will allow users to be open about their work in a way that can only increase trust in

well-founded scientific conclusions. It will increase trust by allowing verification to take place
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more easily, and it will allow users to more easily identify potential problems in the logical

constructs that have led to their conclusions through the integration of the issue tracker into the

provenance system. With climate change an ongoing crisis, subject to sectional political and wider

societal argument, and with critical inputs to any solution needing to come from the scientific

community, the COVID-19 pandemic will not be the last time that we will be challenged on our

openness and trustworthiness.

A situation where a domain expert delivers policy-relevant model-derived evidence, either

without all of the choices made in generating this evidence being made explicit or without

providing supporting evidence for these choices, is clearly problematic in terms of public trust.

In practice, in the short term, there may be insufficient time to deliver either comprehensively.

Alternatively, where decisions have to be made rapidly, potentially based on uncertain and

rapidly changing information, a key functionality is to ensure that choices are documented,

to facilitate ongoing assessment of their validity, by the modellers themselves as part of their

own scientific processes, but also by a wider population of scientific peers, and to a more

limited but still valuable extent, by science-policy brokers, policymakers and the wider general

public. Although the latter will not necessarily have the time or technical background to assess

the technical validity of modelling and analysis assumptions, trust can nevertheless indirectly

be promoted by facilitating technical scientific challenge by those who are most equipped

to do so.

It is also desirable that, as part of the provision of expert advice, domain experts are facilitated

in curating a record of the choices they have made, and of their evolving understanding of

these. In particular, ongoing assessment of the validity and relevance of model releases and key

data resources should be facilitated, whether by the modeller or by informed stakeholders. In

particular, where advice changes in the light of new information, support for resulting shifts

in policy will be enhanced by an ability to demonstrate the link between new assumptions

and new conclusions. Other, more immediately pragmatic requirements include the ability to

identify analyses and outputs that depend on outdated code or data; an ability to validate or

invalidate a past analysis conditional on the current status of its underlying assumptions and

data; and an ability to retrospectively reconstruct the validity of an analysis at a previous point

in time, given the status of the underlying assumptions at that time. We anticipate that these

key functions will be particularly important to those specialists brokering evidence across the

science-policy interface. Where the domain expert makes metadata detailing the provenance of a

dataset or codebase available, the interpretation of these in terms of applicability and validity

can be assessed and challenged by their technically proficient peers. So long as the domain

expert is updating the data registry to reflect changes in their own perception of the validity of

assumptions and data resources, any other user can use the data pipeline to meet the operational

needs described earlier or simply to explore the links between outputs and assumptions over

time. Thus, in general, the use of the data pipeline facilitates good curation of metadata by the

modeller, supports informed evaluation of work by scientific peers and democratizes access by

the wider community to information about model assumptions. In so doing, we believe that a tool

such as the data pipeline can help maintain public confidence in scientists and scientific work at

the high level which best supports society and its needs.

(b) Future work

(i) Documentation and validation

The plan to operationalize the pipeline is to integrate a suite of realistic policy-oriented models

into the data pipeline. The use cases previously described in §2a, detailing a wide range of

activities likely to be carried out by identified users (including mathematical modellers, science-

policy brokers, policymakers and the wider public), will each be implemented for the integrated

mathematical models, as part of a process of analysing user–software interactions and developing

documented procedures. We would hope to involve science-policy brokers in this process; their
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involvement will be invaluable, in that they are a key target user group and can also plausibly

serve as proxies for policymakers and the general public in the process. In particular, use cases

9-13 are different inspections of data and results that they (and other individuals like members

of the public) might wish to make to understand the origins of conclusions that researchers

present. Currently, the data registry’s web interface to address these use cases (e.g. electronic

supplementary material, figure 2) is limited, but further work is underway to improve this. Tools

for provenance visualization are also limited, and we believe further work is needed in this area

to reduce the complexity of the diagrams produced, and increase their ease of use for exploration

of data and results. If gaps become evident in the portfolio of use cases, these will be documented

and carried forward for further attention. In the longer term, we intend to pilot uptake in groups

delivering model-based evidence to policy; it is likely that initial implementation and evaluation

would best be carried out as part of an emergency simulation exercise, where the utility, costs and

robustness of the data pipeline could be assessed within the context of the wider demands made

of the scientists by policymakers.

(ii) Metadata automation

At the moment, several aspects of pipeline use are manual where they could be automated. These

include (i) the attribution of authors to software, which could be taken from CITATION.cff

or .zenodo.json files, or other metadata in the git repository; (ii) the integration of metadata

(including authorship) into the pipeline from DOIs associated with data as it is ingested; (iii)

the automatic creation of Issues and CodeRepoReleases in the pipeline from issues raised and

releases created in GitHub; (iv) the automatic generation of persistent identifiers (e.g. DOIs) when

ExternalObjects are created; and (v) improving the ease of syncing metadata between local and

remote registries. Integrating this functionality into the pipeline is desirable, since it will further

increase ease of use, reducing the barrier of entry for new users.

(iii) Interoperability

Further work is also necessary on interoperability, to increase the FAIRness of the data managed

by the pipeline, in particular to make it easier to catalogue, search, access and reuse metadata.

The pipeline can already export metadata in PROV-O and JSON-LD formats for provenance

and linked data, with some descriptions of the data products using the DCAT vocabulary.

These representations can be extended to include more details on the different research objects

as required. In addition, we also need to be able to export the whole registry in a DCAT-

compliant way for interoperability with other data catalogues, as well as exporting whole research

objects with their provenance and other metadata in RO-Crate format. This should also allow

us to import data with associated metadata directly from other platforms, either directly or via

specifically created mappings to recognized standards. Finally, we need to integrate the ability to

use different storage engines as backing stores for the pipeline.

Data accessibility. All code is available through the GitHub organization FAIRDataPipeline—https://github.

com/FAIRDataPipeline—and other materials are available through links within the paper. Code directly

related to the data pipeline also has DOIs from Zenodo (see table 1). All code will be published with

permanent DOIs on Zenodo before publication. The data are provided in the electronic supplementary

material [82].
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