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Abstract 17 

The South Qinling Belt is a key area for understanding the collisional history of the 18 

South China and North China blocks during the Lopingian (late Permian) and Triassic. 19 

This paper establishes the first integrated timescale based on conodont biostratigraphy 20 

and δ13Ccarb records from a continuous end Permian to the end-Early Triassic 21 

succession at Yiwagou, South Qinling Platform (SQP). Ten Early Triassic conodont 22 



 

 

zones are established. They are, in ascending order, Hindeodus parvus, H. 23 

postparvus, Neospathodus dieneri, Eurygnathodus costatus and E. hamadai, 24 

Novispathodus waageni-Scythogondolella mosheri, 25 

Pachycladina-Parachirognathus assemblage, Triassospathodus hungaricus, Ns. 26 

robustispinus and T. clinatus zones. Our record of δ13Ccarb fluctuations shows close 27 

correspondence to known Early Triassic carbon isotope fluctuations and, in 28 

combination with the conodont data, helps achieve a high-resolution age model for 29 

the region. The use of E. costatus as a good auxiliary marker for the 30 

Induan-Olenekian boundary (IOB), within palaeolatitudes of 40°N-40°S, is supported 31 

but it can not replace the use of Nv. waageni, because the former is absent in 32 

higher-latitude and cooler regions. The conodont faunas from the Palaeo-Tethyan 33 

Yiwagou section closely resemble those from the Northern Yangtze Platform (NYP), 34 

but they differ somewhat from the contemporaneous Nanpanjiang Basin at species 35 

level. Thus, the Qinling Sea was likely well connected with the NYP in the Early 36 

Triassic, but was more isolated from the Nanpanjiang Basin. The remarkable 37 

reappearance of Hindeodus fauna around the IOB at Yiwagou implies that the 38 

shallow-water Qinling Sea was a refuge area for this genus long after its 39 

disappearance elsewhere.  40 

 41 

Key Words: Conodonts, Qinling, Permo-Triassic, Carbon isotope, Tethys 42 

 43 

1. Introduction 44 



 

 

The end Permian witnessed the most severe mass extinction in the history of life 45 

with the subsequent aftermath in the Early Triassic marked by unfavourable 46 

environmental conditions, including high temperatures and marine anoxia, and major 47 

perturbations of the carbon isotope record (e.g., Payne et al., 2004; Sun et al., 2012; 48 

Wignall, 2015). Several smaller crises occurred in the Early Triassic, especially 49 

around the Smithian-Spathian boundary (SSB) (e.g., Lyu et al., 2019; Song et al., 50 

2019; Zhang et al., 2019a; Chen et al., 2021). During this period, conodonts are the 51 

most important index fossils for marine stratigraphic division and correlation, and 52 

they can provide even higher resolution correlation when combined with carbon 53 

isotope records. The GSSP of the Induan-Olenekian boundary (IOB) in the Early 54 

Triassic is not yet defined, however Novispathodus waageni sensu lato is a 55 

promising candidate index taxon in two candidate sections, the West Pingdingshan 56 

section in Chaohu of South China (Tong et al., 2003; Zhao et al., 2007, 2008a, 2008b, 57 

2013; Tong and Zhao, 2011; Lyu et al., 2018) and the Mud section in Spiti of India 58 

(Krystyn et al., 2005, 2007; Orchard, 2007; Orchard and Krystyn, 2007). The 59 

widespread Eurygnathodus costatus is another possible index fossil for the IOB 60 

(Lyu et al., 2020). As for the SSB, the first appearance datum (FAD) of Nv. 61 

pingdingshanensis has been proposed as a marker at the West Pingdingshan section 62 

in Chaohu (Liang et al., 2011). However, this species may have originated a little 63 

earlier than the SSB and sometimes co-occurs with late Smithian ammonoids or 64 

conodonts (e.g., Orchard and Zonneveld, 2009; Goudemand et al., 2018; Chen et al., 65 

2021). Besides Nv. pingdingshanensis, other early Spathian conodonts, such as 66 

Triassospathodus hungaricus, T. ex. gr. homeri, Neogondolella jubata and 67 

Icriospathodus collinsoni, together with a sharp positive carbon isotope shift, can 68 

also help constrain the SSB.  69 



 

 

A large number of palaeontological and palaeoenvironmental studies from 70 

Lopingian to Early Triassic strata have been undertaken in South China. These have 71 

especially focused on the sections from the Northern Yangtze Platform (NYP) and 72 

Nanpanjiang Basin (Fig. 1, e.g., Jiang et al., 2007; Chen et al., 2015; Yang et al., 2014, 73 

2019). The NYP is mainly located in Hubei, Anhui, and Jiangsu provinces, and in 74 

northeastern Sichuan Province and Chongqing City. The Nanpanjiang Basin is mostly 75 

located in Guangxi, and parts of Hunan and Guizhou provinces. Studies have revealed 76 

some differences between the conodont faunas from two areas, for example, the 77 

discovery of Scythogondolella at West Pingdingshan in Anhui, and at Longtan and 78 

Qinshan in Jiangsu (Liang et al., 2011; Liu et al., 2020), and Parafurnishus 79 

xuanhanensis at Panlongdong in northeastern Sichuan (Yang et al., 2014), which are 80 

not matched by any discoveries in the Nanpanjiang Basin.  81 

Outcrops of Lower Triassic strata also occur in the South Qinling region and the 82 

associated faunas have characteristics transitional between South China and North 83 

China, although they become more comparable to South China in the Middle Triassic 84 

(Lai et al., 1992, 1995). However, only a few studies have been undertaken on the 85 

Lopingian to Lower Triassic in the region because of the high altitude and poor access 86 

(e.g., Lai et al., 1992, 1994; Li et al., 2019). Here we establish a high-resolution 87 

conodont biostratigraphy and the first carbon isotope record from the Yiwagou 88 

section in the western South Qinling Belt (SQB), and compare these with sections in 89 

South China and elsewhere (Fig. 1). The study interval encompasses the 90 

Permo-Triassic mass extinction and the Smithian-Spathian crisis and therefore 91 

provides insight into these times of environmental stress on the little-known, 92 

north-western margin of the South China Block. 93 



 

 

 94 

2. Geological setting and stratigraphy 95 

The Qinling Orogenic Belt is located in the central part of China, and can be 96 

subdivided into four tectonic units, the southern margin of the North China Block 97 

(NCB), the North Qinling Belt (NQB), the South Qinling Belt (SQB), and the 98 

northern margin of the Yangtze Block (Fig. 1, Bao et al., 2015). These terranes 99 

amalgamated during the collision of SCB and NCB (e.g., Lai et al., 1995; Yang et al., 100 

2002) causing the closure of the Mianlue Ocean along the southern edge of the 101 

Qinling belt. Ocean destruction occurred gradually from the Lopingian in the east to 102 

the Late Triassic in the west according to fossil evidence (Li et al., 2021; Wu et al., 103 

2021) and detrital zircon ages (Zheng et al., 2021). The Yiwagou section is located in 104 

Têwo County, Gansu Province, northwestern China, and lies in the western part of the 105 

SQB (start point GPS 34°15'21"N, 103°12'14"E, Height 4060 m). From Lopingian to 106 

Early Triassic times, it was situated in the South Qinling Carbonate Platform (Figs. 1, 107 

2). The continuous section spans the Lopingian to Lower Triassic, and is composed of 108 

the Yangu, Zhalishan and Maresongduo formations (Fig. 3). The Yangu Formation is 109 

composed of grey, thick-bedded limestone, oolitic limestone and dolomite. The 110 

Zhalishan Formation is mainly characterized by grey or red, thin- to medium-bedded 111 

limestone, bioclastic limestone and lime mudstone. The Maresongduo Formation 112 

consists of red or grey, thick-bedded crystalline dolomite, dolomitic limestone and 113 

micritic limestone. 114 



 

 

 115 

3. Materials and methods 116 

A total of 162 conodont samples (each weighing 4–5 kg) were collected. Closest 117 

spacing was around the Permian-Triassic interval (one sample every 0.5 m) with 118 

wider spacing in the other intervals (one sample every 3 to 5 m). All samples were 119 

crushed into small fragments, then completely dissolved in an 8% solution of acetic 120 

acid, followed by heavy liquid separation. The residue was examined using a 121 

stereoscopic binocular microscope to find conodonts. Finally, a scanning electron 122 

microscope (SEM) was used for photography. 123 

A total of 297 geochemical samples were collected every 2-3 m from 124 

Changhsingian to early Spathian level. About 2–3 g powder was generated from each 125 

sample using an electric drill whilst avoiding weathered surfaces, calcified veins, 126 

fossils and recrystallized parts. The powders were reacted with 100% phosphoric acid 127 

at 72 °C to produce CO2 gas, which was analyzed using a MAT-253 mass 128 

spectrometer with standard methodology (see Song et al., 2013) in the State Key 129 

Laboratory of Biogeology and Environmental Geology, China University of 130 

Geosciences (Wuhan). Isotopic values are showed as per mil relative to the Vienna 131 

Pee Dee belemnite (V-PDB) standard and the analytical precision was better than ± 132 

0.1‰ for δ13C and ± 0.2‰ for δ18O for repeated samples.  133 

 134 

4. Results 135 



 

 

In total, about 6500 conodont specimens belonging to 30 species and 12 genera 136 

have been obtained (Figs. 3-6, Supplementary material 1), enabling us to construct 10 137 

conodont zones in ascending order. A carbon isotope curve is plotted from the top of 138 

Yangu Formation to the bottom of Maresongduo Formation based on 297 δ13Ccarb 139 

values (Fig. 3). 140 

 141 

4.1 Conodont zonation 142 

In the Yangu Formation, Clarkina orientalis and C. sp. were recovered from the 143 

grey, thick-bedded limestone of Bed -2 (Fig. 3). C. orientalis has a small cusp 144 

separated from the carina, it can be distinguished from C. abadehensis by its 145 

extremely wide posterior brim and a gap between the cusp and the posterior-most 146 

denticle (Fig, 4.1). In addition, a previous study of the Yiwagou section has reported 147 

C. changxingensis and C. subcarinata from Bed -5 and -6, and the fusulinid 148 

Reichelina tenuissima, R. sp. from Bed -4 to Bed -6 (Lai et al., 1994). These 149 

combined records indicate a Changhsingian (late Permian) age for the top of Yangu 150 

Formation. In the overlying Zhalishan and Maresongduo formations ten conodont 151 

zones have been recognized.  152 

 153 

4.1.1 Hindeodus parvus Zone  154 

Lower limit: first occurrence of H. parvus.  155 

Upper limit: first occurrence of H. postparvus.  156 



 

 

Hindeodus parvus first occurs in the grey micritic limestone of the upper part of 157 

Bed 1 (at 0.7 m height), and ranges into the grey or red micritic limestone of the lower 158 

part of Bed 3. Surprisingly, it reappears again around the Induan-Olenekian boundary 159 

in grey or red limestone within the Ns. dieneri and E. costatus zones (Figs. 3, 4. 160 

13-14). Yin et al. (1988) proposed the FAD of H. parvus to be the marker for the 161 

base of the Triassic at the Meishan section. This level is widely accepted and has been 162 

reported from numerous Tethyan and Panthalassan regions (Table 1, e.g., Jiang et al., 163 

2007; Chen et al., 2015; Yuan et al., 2014).  164 

 165 

4.1.2 Hindeodus postparvus Zone 166 

Lower limit: first occurrence of H. postparvus.  167 

Upper limit: undefined.  168 

Hindeodus parvus and H. praeparvus co-occur in this zone. H. postparvus is 169 

found in three samples of grey and red limestones in lower part of Bed 3, and like H. 170 

parvus, it reappears around the Induan-Olenekian boundary (Fig. 3). H. postparvus 171 

was named by Kozur (1989) based on a specimen originally assigned to Hindeodus 172 

parvus (Fig. 1c in Kozur and Pjatakova, 1976) in the Achura section of Azerbaijan. 173 

In contrast to H. parvus, it has strongly diverging denticles that develop a curved line 174 

of tips. The species sometimes has a reduced anterior bar with one or two small 175 

denticles. H. postparvus is widespread during the Griesbachian in Tethyan and 176 

Panthalassan regions, including South China, India, Oman, Tibet, Japan, Southern 177 

Armenia and Slovenia (e.g., Orchard and Krystyn, 1998; Kolar-Jurkovšek and 178 

Jurkovšek, 2015; Zhang et al., 2019b, Table 1). 179 

   180 



 

 

4.1.3 Neospathodus dieneri Zone 181 

Lower limit: undefined.  182 

Upper limit: first occurrence of E. costatus.  183 

Hindeodus parvus, H. postparvus, H. aff. sosioensis, H. sp., Neospathodus 184 

aff. pakistanensis, Pachycladina spp. and Parafurnishus xuanhanensis co-occur 185 

in this zone. Ns. dieneri appears in the red limestone at the base of Bed 11, and it was 186 

also found and illustrated in Lai (1992) from Bed 10 at Yiwagou. Three Morphotypes 187 

of Ns. dieneri have been distinguished and corresponding subzones are established in 188 

Chaohu (Table 1, Zhao et al., 2007). The specimen (Fig. 4. 24) has a broad cusp and a 189 

short denticle posterior to the cusp, typical of Neospathodus dieneri Morphotype 3. 190 

Ns. dieneri is widely distributed in eastern Palaeo-Tethys, the southern margin 191 

of Neo-Tethys, Panthalassa and Boreal realms from the Dienerian to Smithian (Table 192 

1), although it has not been found from western Palaeo-Tethys (Kolar-Jurkovšek and 193 

Jurkovšek, 2015). We correlate this zone at Yiwagou is correlated with the same zone 194 

from the west Pingdingshan (Zhao et al., 2007) and Guandao sections of the 195 

Nanpanjiang Basin (Lehrmann et al., 2015) in South China, and also from the Spiti 196 

area, India (Krystyn et al., 2004, 2007; Sun et al., 2021), British Columbia, Canada 197 

(Orchard and Tozer, 1997; Orchard, 2008) and Kamura, Japan (Zhang et al., 2019b).  198 

 199 

4.1.4 Eurygnathodus costatus Zone  200 

Lower limit: first occurrence of E. costatus  201 

Upper limit: first occurrence of E. hamadai 202 

Parafurnishus xuanhanensis, H. parvus, H. postparvus and H. aff. 203 

sosioensis co-occur in this zone. E. costatus was recovered from grey limestone of 204 

Bed 12 and the base of Bed 13. It mainly occurs from the latest Dienerian to the early 205 



 

 

Smithian within 40°N-40°S (Fig. 2, see discussion below), but it has also been found 206 

in middle or late Smithian strata in the Three Gorges area in Hubei, South China 207 

(Zhao et al., 2013). This widespread zone can also be found in Slovenia (Chen et al., 208 

2016), the Lichuan area of Hubei, South China (Wang and Cao, 1981), the 209 

Palaeo-Tethyan Spiti area, India, the southern margin of Neo-Tethys (Sun et al., 2021) 210 

and a Panthalassa terrane in southwest Japan (Koike, 1988).  211 

 212 

4.1.5 Eurygnathodus hamadai Zone 213 

Lower limit: first occurrence of E. hamadai,  214 

Upper limit: first occurrence of Nv. waageni and Sc. mosheri.  215 

Parafurnishus xuanhanensis co-occurs in this zone. E. hamadai occurrs with 216 

E. costatus in grey limestone at the base of Bed 13. It is a Smithian species that 217 

usually appears a little after E. costatus and may have evolved from the latter (Chen 218 

et al., 2016; Lyu et al., 2020). This zone is known from Tethyan regions and 219 

Panthalassa, and correlates with the E. hamadai zone in Slovenia (Chen et al., 2016), 220 

Spiti, India (Krystyn et al., 2007) and southwest Japan (Koike, 1988).  221 

 222 

4.1.6 Novispathodus waageni–Scythogondolella mosheri Assemblage Zone 223 

Lower limit: first occurrence of Nv. waageni and Sc. mosheri.  224 

Upper limit: first occurrence of Pc. obliqua.  225 

Scythogondolella phryna and Sc. cf. milleri co-occur in this zone. They occur 226 

in grey, thin-bedded limestone at the lower part of Bed 14. Nv. waageni is a 227 

widespread species reported from many locations (e.g., Zhao et al., 2008a, 2008b; 228 

Orchard and Krystyn, 2007; Orchard, 2008, fig. 2), although it has never been found 229 

in central southern Europe (Chen et al., 2016). The genus Scythogondolella is the 230 



 

 

only widespread gondolellid in the Smithian, and Sc. mosheri was found in 231 

Panthalassa, Boreal realms and higher-latitude Tethyan regions, but not in 232 

low-latitude Tethyan regions (Fig. 2, Li et al., 2019).  233 

 234 

4.1.7 Pachycladina–Parachirognathus Assemblage Zone 235 

Lower limit: first occurrence of Pc. obliqua.  236 

Upper limit: last occurrence of Pc. qinlingensis.  237 

Large number of Pachycladina obliqua, Pc. qinlingensis, Parachirognathus 238 

delicatulus, Pg. semicircnelus and Hadrodontina anceps co-occur in this zone. 239 

They were recovered from red and grey limestone, grey micritic limestone and red 240 

oolitic limestone from the upper part of Bed 14 to the middle part of Bed 18. 241 

Pachycladina and Parachirognathus are widely distributed in low-latitude 242 

Palaeo-Tethys, Panthalassa and western USA in the Smithian and are typically 243 

encountered in shallow, high energy facies (Duan et al., 1989; Sun et al., 2012; Wu et 244 

al., 2021). The constituent taxa of this Smithian zone disappeared before Spathian 245 

(Zhang et al., 2019a).  246 

 247 

4.1.8 Triassospathodus hungaricus Zone 248 

Lower limit: first occurrence of T. hungaricus.  249 

Upper limit: first occurrence of Ns. robustispinus.  250 

Triassospathodus qinlingensis sp. nov. co-occurs in this zone. T. hungaricus 251 

was recovered from thick-bedded, crystalline dolomite of Bed 20. It was originally 252 

reported from Hungary (Kozur and Mostler, 1970), later from Sichuan, China (Tian et 253 

al., 1983), and more recently from Slovenia (Chen et al., 2016; Kolar-Jurkovšek et al., 254 

2017) and Bosnia Herzegovina (Kolar-Jurkovšek et al., 2014; Kolar-Jurkovšek et al. 255 



 

 

2021). “Neospathodus” cf. hungaricus has also been reported from Nevada (Lucas 256 

and Orchard, 2007), but the specimen is not well-preserved and is unlikely to be 257 

related to T. hungaricus, because it is about four times larger than the average size of 258 

T. hungaricus in Palaeo-Tethyan regions. In addition, the Nevadan specimen has no 259 

obvious senile characteristics (e.g. more denticles (4-5) or strongly folded basal cavity) 260 

suggesting that it is not a gerontic specimen. The T. hungaricus Zone is also known 261 

from Slovenia (Chen et al., 2016, Table 1) and is of Spathian age. 262 

     263 

4.1.9 Neospathodus robustispinus Zone 264 

Lower limit: first occurrence of Ns. robustispinus. 265 

Upper limit: first occurrence of T. clinatus.  266 

Triassospathodus qinlingensis sp. nov., T. sp. indet and Icriospathodus zaksi 267 

co-occur in this zone. Ns. robustispinus was recovered from light grey, thick-bedded 268 

dolomicrite of Bed 21. It was first reported from the lower Spathian of the West 269 

Pingdingshan section, Chaohu, South China (Zhao et al., 2008b). In Slovenia, a T. 270 

homeri - Ns. robustispinus Assemblage Zone or Ns. robustispinus Zone was 271 

established, from above the T. hungaricus and T. symmetricus zones 272 

(Kolar-Jurkovšek and Jurkovšek, 2015; Chen et al., 2016). The associated species I. 273 

zaksi is an inappropriate zonal species because it has also been reported from latest 274 

Smithian strata (where it co-occurs with Sc. milleri or Nv. pingdingshanensis) in 275 

Oman (Chen et al., 2019), southwest Japan (Maekawa et al., 2021) and Russia (Buryi, 276 

1979). This zone is of Spathian age. 277 

 278 

4.1.10 Triassospathodus clinatus Zone 279 

Lower limit: first occurrence of T. clinatus. 280 



 

 

Upper limit: undefined.  281 

Triassospathodus clinatus was recovered from red, thick-bedded, dolomitic 282 

limestone in Bed 24 from the Maresongduo Formation. Orchard (1995) distinguished 283 

T. clinatus from T. triangularis by the former’s more uniformly reclined denticles 284 

and less conspicuously folded basal cavity. T. clinatus was first founded in the early 285 

Anisian Chiosella timorensis Zone in Pakistan (type sample in Sweet, 1970; 286 

illustrated in Orchard, 1995, pl.3, figs. 5-7), and then in the Spathian-age, Marble 287 

Canyon Formation in Nevada (Orchard and Bucher, 1992, pl.1, fig. 16). Later, in the 288 

Nanpanjiang Basin, it was reported from the Anisian-age, Wantou section (Yan et al., 289 

2015, fig. 3. 25) and the Spathian-age Mingtang section (Liang et al., 2016, pl.4, figs. 290 

6-7, 12, 17). Ns. triangularis reported from Spathian strata in Jiangsu, China (Duan, 291 

1987, only pl.3, fig. 5) possibly belongs to this species. Because some typical 292 

Spathian T. hungaricus were reported from Bed 27 at Yiwagou (Lai, 1992), this zone 293 

probably begins in the Spathian. 294 

 295 

4. 2 Carbon isotope stratigraphy   296 

The average values of δ13Ccarb are +2.6‰ (ranging from -1.4‰ to +7.3‰), and 297 

δ18Ocarb are -6.6‰ (ranging from -14.5‰ to -1.4‰). The two sets of values show 298 

almost no correlation (R2 = 0.0967, supplementary material 2) suggesting that there 299 

has been little diagenetic change. The colour alteration index (CAI) of the conodont 300 

specimens is lower than 5 at the section, except for one sample (M-24) from 301 

thick-bedded crystalline dolomite in the lowermost Maresomgduo Formation (Bed 302 

20). Some of the isotopic values in the Yangu Formation and lowermost Maresongduo 303 

Formation derive from dolomitic samples that have potentially had their primary 304 



 

 

δ13Ccarb records altered. However, the carbon isotope composition of the dolomitic 305 

samples follows the same trends as the associated carbonate samples suggesting they 306 

are primary values. This conclusion is also supported by the close correspondence of 307 

carbon isotope profile from Yiwagou to other Permian-Triassic isotope records (e.g., 308 

Payne et al., 2004; Tong et al., 2007; Song et al., 2013; Sun et al., 2021). These show 309 

a series of high-amplitude, negative and positive excursions that have been labelled 310 

N1–N4 and P1–P4 (Song et al., 2013).  311 

 312 

5. Discussions  313 

5.1 Intercalibrated conodont–δ13Ccarb correlation framework 314 

The Yiwagou results enable us to establish an integrated conodont biostratigraphy 315 

and δ13Ccarb records from latest Permian to the Early Triassic. Carbon isotope values 316 

show a small negative shift from late Changhsingian to around the base of the H. 317 

parvus Zone. A negative shift beginning slightly prior to the PTB has been noted in 318 

many regions and coincides with the end Permian mass extinction (Fig. 7; e.g., Cao et 319 

al., 2009; Korte and Kozur, 2010; Song et al., 2013), although the magnitude of the 320 

excursion is relatively small (~-1.8‰) at Yiwagou. The more negative values seen 321 

elsewhere may be absent at Yiwagou because of the presence of a hiatus around the 322 

level of an oolitic limestone (Bed -1) although no obvious weathering surface was 323 

observed at this level in the field.  324 

Above the Permian-Triassic boundary δ13Ccarb values increase upwards (~+7.0‰) 325 

for ~200 m and define a major positive (P2) excursion which is composed of double 326 



 

 

peaks around the IOB, with the second peak having higher values (Fig. 3). In 327 

Palaeo-Tethyan regions, this P2 excursion is also known from the West Pingdingshan 328 

(Tong et al., 2007) and Guandao sections (Lehrmann et al., 2015) in South China, and 329 

the Žiri area of Slovenia (Chen et al., 2016). It is also known in Neo-Tethyan regions, 330 

such as Musandam (Clarkson et al., 2013), Oman (Richoz, 2006), Spiti (Sun et al., 331 

2021) and Iran (southern margin, Horacek et al., 2007). In most sections in the world, 332 

the IOB is defined by the first occurrence of Nv. waageni sensu lato around P2. 333 

However, at Yiwagou, Nv. waageni sensu lato only occurs in one sample of Bed 14, 334 

which is much a higher level than the level of P2. But E. costatus first occurs in the 335 

lower part of Bed 12, just between the double peaks of P2, which can be well 336 

correlated with the first occurrence of this species at two IOB candidate sections, the 337 

West Pingdingshan and the Mud sections (Fig. 7). Hence the IOB can be placed in the 338 

lower part of Bed 12. 339 

Above the P2 excursion, there is an ~8.5‰ negative shift in the δ13Ccarb curve 340 

from the IOB into the middle-late Smithian, followed by a quick rebound across the 341 

SSB to P3 (~+6.5‰) in the earliest Spathian. The peak values of both P2 (~+7.3‰) 342 

and P3 (~+6.5‰) are considerably heavier than the values seen in South China at this 343 

time (Fig. 7, e.g., Payne et al., 2004; Tong and Zhao, 2011; Song et al., 2013, 2019; 344 

Lyu et al., 2019). The typical Spathian species - T. hungaricus first occurs at the base 345 

of Maresongduo Formation, leaving a 60-m thick interval that is barren of conodonts 346 

below this level. The T. hungaricus Zone, which can be equivalent to the ammonoid 347 

Tirolites cassianus Zone (Kozur, 2003; Kolar-Jurkovšek et al. 2021), is not the first 348 

conodont zone in Spathian. In the Idrija–Žiri area, Slovenia, the early Spathian Ns. 349 



 

 

robustus, Platyvillosus corniger and Pl. regularis zones were found lower than T. 350 

hungaricus Zone (Chen et al., 2016, table 1). Hence the SSB should be somewhere 351 

within the 60-m barren interval. Zhang et al. (2019a) suggested SSB to be around the 352 

midpoint between N3 and P3 of δ13C curve; using this criterion, the SSB would lie in 353 

the upper part of Bed 18. 354 

 355 

5.2 The conodont marker for the IOB: Nv. waageni or E. costatus?  356 

Novispathodus waageni sensu lato and Eurynathodus costatus are both 357 

potential index fossils to define the base of Olenekian (e.g., Tong et al., 2003; Lyu et 358 

al., 2018, 2020). Here we compare their attibutes. Firstly, Nv. waageni has a wider 359 

distribution than E. costatus which is restricted to palaeolatitudes within 40°N – 360 

40°S (Fig. 2). In comparison, Nv. waageni is globally distributed (although not 361 

known from western Palaeo-Tethyan regions), and is also common in northern 362 

high-latitude regions, Middle Sikhote Alin (Klets, 1995), Canadian Arctic (Orchard, 363 

2008), Svalbard (Nakrem et al., 2008) and Siberia (Eastern Laptev Sea coast and 364 

Kotelny Island (Dagys, 1984; Klets and Yadrenkin, 2001; Klets and Kopylova, 2006; 365 

Konstantinov et al., 2013), Lena River lower reaches of the Western Verkhoyansk 366 

region (Klets and Kopylova, 2006), Shevlya River basin (Kuz’min and Klets, 1990), 367 

and Churki Ridge (Klets, 2008)). It also occurs in southern high-latitude regions, 368 

Nepal (Hatleberg and Clark, 1984), South Tibet (Wang, 1995) and Western Australia 369 

(Metcalfe et al., 2013). Secondly, Eurygnathodus has lighter δ18Oapatite values than 370 

coeval neospathodids (Neospathodus and Novispathodus), which suggests it 371 

prefers shallower and warmer waters than the neospathodids (Sun et al., 2012; Chen 372 



 

 

et al., 2021). This likely explains the abundance of Eurygnathodus in shallow, 373 

epeiric ramp settings in Europe where Nv. waageni is absent (e.g., Chen et al., 2016, 374 

2021). Thirdly, E. costatus has shorter stratigraphic range around the IOB, whilst the 375 

Nv. waageni group can range up into Spathian (Zhao et al., 2008a; Liang et al., 2011), 376 

so that the occurrence of E. costatus often corresponds to a P2 positive δ13Ccarb 377 

excursion, but Nv. waageni does not (Fig. 7). In summary, E. costatus provides an 378 

auxiliary marker for the IOB within 40°N-40°S, but cannot replace the more 379 

widespread Nv. waageni.  380 

 381 

5.3 The surprisingly long-range of Hindeodus in South Qinling 382 

An abundant Hindeodus fauna, including H. parvus, H. postparvus, H. aff. 383 

sosioensis and H. sp., appears around the IOB at Yiwagou, and co-occurs with 384 

Parafurnishus xuanhanensis and E. costatus. Because this Hindeodus fauna 385 

appears about 200 m above the earliest Griebachian Hindeodus occurrences but not 386 

in the intervening strata it is unlikely that this reappearance is due to reworking. 387 

Furthermore, the Hindeodus specimens do not show evidence of abrasion suggesting 388 

they have not been transported any distance which again suggests they are unlikely to 389 

have been reworked from old strata (Figs. 4. 13-14). The genus Hindeodus occurred 390 

globally in the Griesbachian, and was considered to either become extinct in late 391 

Griesbachian (Kozur, 1998) or to have perhaps extended into the earliest Dienerian 392 

(Orchard, 2007). Based on oxygen isotope analysis, Clarkina and Hindeodus 393 

inhabited similar water depths in the Lopingian, but separated into different water 394 

depth in the earliest Triassic when Hindeodus lived in shallower waters than 395 



 

 

Clarkina (Joachimski et al., 2012). Hindeodus’ widespread distribution in the 396 

Griesbachian at a time of widespread anoxic bottom waters also suggests a 397 

surface-dwelling life site (Lai et al., 2001). Compared with its global Griesbachian 398 

distribution, the restriction of Hindeodus to Yiwagou in the IOB interval marks a 399 

major contraction in its range. Presumably the shallow water environments of this 400 

western-most South China location provided a final refuge area for this long-lived 401 

genus.  402 

 403 

5.4 Comparison of conodont faunas in Palaeo-Tethys 404 

The conodont faunas from the SQP reported here have their greatest similarity 405 

with conodonts from the NYP both in terms of genera and species, but have less 406 

similarity with those from the Nanpanjiang Basin at species level (Table 2). In the 407 

Induan, Parafurnishus xuanhanensis is known from Panlongdong, Sichuan, and 408 

from Yiwagou, but it has not been found in the Nanpanjiang Basin or Europe. 409 

Scythogondolella, a cosmopolitan Smithian genus, is represented at Yiwagou by Sc. 410 

mosheri, Sc. phryna and Sc. cf. milleri, whilst in the NYP, Sc. milleri, Sc. milleri 411 

parva, Sc. aff. mosheri, Sc. ellesmerensis and Sc. aff. lachymiformis occur in the 412 

Longtan and Qingshan sections, Jiangsu (Liu et al., 2020; Sun et al., 2020) and Sc. 413 

milleri (Neogondolella sp., fig. 3, 10 in Liang et al., 2011) occurs at West 414 

Pingdingshan, Anhui. However, Scythogondolella is not known from either the 415 

Nanpanjiang Basin nor in Europe. During the Spathian, T. hungaricus occurs at 416 

Yiwagou and NYP sections: Wangcang, Sichuan (Tian et al., 1983) and Xiejiacao, 417 

Chongqing (our unpublished materials), and in Europe (e.g., Hungary (Kozur and 418 

Mostler, 1970), Slovenia (Chen et al., 2016; Kolar-Jurkovšek et al., 2017) and Bosnia 419 



 

 

Herzegovina (Kolar-Jurkovšek et al., 2014; Kolar-Jurkovšek et al. 2021)). Ns. 420 

robustispinus is found at Yiwagou and West Pingdingshan (Zhao et al., 2008b), and 421 

also in Slovenia (Kolar-Jurkovšek and Jurkovšek, 2015; Chen et al., 2016). All these 422 

species mentioned above have not been found in the Nanpanjiang Basin so far. It can 423 

be inferred that the NYP was well connected with the SQP in the Early Triassic, based 424 

on the near-identical conodont biota, whilst the Nanpanjiang Basin was partly isolated 425 

from this region perhaps because of a series of intervening barriers (e.g., small 426 

islands). The differences of conodont faunas between eastern and western 427 

Palaeo-Tethys was likely due to the long distance separation and different 428 

environments.  429 

 430 

6. Systematic palaeontology 431 

 432 

Class: Conodonta Eichenberg, 1930 433 

Order Ozarkodinida Dzik, 1976 434 

Family Gondolellidae Lindström, 1970 435 

Subfamily Novispathodinae Orchard, 2005 436 

Genus Triassospathodus Kozur, 1998 437 

Type species: Triassospathodus homeri (Bender, 1970) 438 

 439 

Remarks: according to the multielement conodont apparatus, Triassospathodus and 440 

Neospathodus belong to different subfamilies with different S0, S2-S4 elements 441 

(Orchard, 2005). In terms of morphology, the lower side of basal cavity is upward 442 

curved in the P1 element of Neospathodus, but straight or downward curved in 443 

Triassospathodus (Kozur et al., 1998). A folded basal cavity (triangular or 444 

heart-shaped) is more common in Triassospathodus than Neospathodus or 445 

Novispathodus. 446 

 447 



 

 

Triassospathodus qinlingensis sp. nov. Li and Lai 448 

Figures 6. 8-14 449 

 450 

Holotype: Fig. 6. 14 from sample M-21 (Bed 20), in the T. hungaricus Zone, about 451 

582 m above the P-T boundary at the Yiwagou section, Têwo, Gansu Province, 452 

China. 453 

 454 

Paratypes: Fig, 6. 9 from sample M-20 (Bed 20), 6. 13 from sample M-21 (Bed 20) in 455 

the T. hungaricus Zone. 456 

 457 

Derivation of name: from the South Qinling belt, the type locality. 458 

 459 

Diagnosis: P1 element generally bears 5-7 largely fused denticles with increasing 460 

inclination toward the posterior end. The terminal cusp is prominent and most 461 

strongly reclined. The expanded subtriangular or heart-shaped basal cavity occupies 462 

1/2 to 2/3 of the lower side. 463 

 464 

Description: This species has a ratio of length: height about 1.3: 1. It bears 5-7 largely 465 

fused, posteriorly inclined denticles, with increasing inclination toward the posterior 466 

end. The denticle on the posterior end (cusp) is inclined most strongly and always 467 

projects beyond the posterior margin of basal cavity. The length of denticles increases 468 

from anterior end to posterior end. The expanded basal cavity occupies 1/2 to 2/3 of 469 

the element’s length, is subtriangular or heart-shaped, and usually widest at the 470 

posterior end. The lower margin of the basal cavity is slightly downward curved. 471 

 472 

Remarks: This species is similar to Ns. robustispinus and T. brevissimus, but can 473 

be distinguished from them by its more posteriorly inclined denticles (especially the 474 

cusp) and the slightly folded basal cavity. Compared with T. hungaricus, it has 475 

different dimensions with more denticles. In comparison with Ns. planus, this 476 

species has a less inflated basal cavity, and its highest denticle is the second or third 477 

one from posterior end, whereas it is the first one (cusp) in Ns. planus (Chen et al., 478 

2016).  479 

  480 



 

 

Materials: 39 specimens from sample M-21, M-20, M-19 in Bed 20, M-9, M-5 in Bed 481 

21, Maresongduo Formation.  482 

 483 

Age: Spathian        484 

 485 

Conclusions 486 

A detailed conodont biostratigraphic and chemostratigraphic study was carried 487 

out at the Yiwagou section from the western part of the South Qinling Belt, 488 

northwestern China. A total of ~6500 specimens were obtained and these have been 489 

assigned to 30 species of 12 genera in strata spanning the end Permian to Early 490 

Triassic interval. One new species Triassospathodus qinlingensis sp. nov. is 491 

introduced. Ten conodont zones have been recognized in the Early Triassic at 492 

Yiwagou. They are, in ascending order, H. parvus Zone, H. postparvus Zone, Ns. 493 

dieneri Zone, E. costatus Zone, E. hamadai Zone, Nv. waageni-Sc. mosheri 494 

Assemblage Zone, Pachycladina-Parachirognathus Assemblage Zone, T. 495 

hungaricus Zone, Ns. robustispinus Zone and T. clinatus Zone. Based on a 496 

combination of conodont zonation and carbon isotope records, the PTB, IOB and SSB 497 

are all clearly defined at Yiwagou. 498 

The δ13Ccarb curve is comparable to that seen elsewhere. It shows a negative shift 499 

from the late Changhsingian to the PTB followed by a positive trend that culminates 500 

in the double peak positive excursion around the IOB, the P2 excursion of Song et al. 501 

(2013). A negative into the late Smithian, is followed by a quick rebound to the P3 502 



 

 

positive peak in the earliest Spathian. The peak values of both P2 (~+7.3‰) and P3 503 

(~+6.5‰) are considerably heavier than the values seen in South China.  504 

The conodont faunas of South Qinling Sea are closely similar to those of the 505 

North Yangtze Platform. In contrast, the conodonts from the Nanpanjiang Basin in 506 

Early Triassic are somewhat different at species level pointing to the isolation of this 507 

basin. The difference between Yiwagou assemblages and those of more distant 508 

Western Tethyan realms are likely due to the long distance and different environments 509 

in the regions. Hindeodus, which was thought to have gone extinct in the late 510 

Griesbachian, has an unexpected final reappearance around the IOB at Yiwagou 511 

suggesting the South Qinling region provided the final refuge for this long-lived 512 

genus.  513 

Our study also provides new data for supporting the contention that E. costatus 514 

can be used as an auxiliary marker for the IOB within palaeolatitudes of 40°N-40°S, 515 

although Nv. waageni is widespread at all latitudes at this time and is therefore a 516 

more useful marker for this level. 517 
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Figure and Table Captions 532 

Figure 1. Early Triassic palaeogeography of Qinling and South China (modified after 533 

Lai and Yin, 1992; Feng et al., 1997), and simplified tectonic map of the Qinling 534 

orogen (modified after Bao et al., 2015). MLSZ = Mianlue suture zone. 535 

 536 

Figure 2. Global palaeogeographic map (modified after 537 

http://www.scotese.com/newpage5.htm) and selected conodont distributions. E. 538 

costatus is seen to be restricted to within 40°N – 40°S whilst Nv. waageni is 539 

globally distributed (except for western Palaeo-Tethyan regions). Scythogondolella 540 

is the only widespread gondolellid in the Smithian. Locations: 1. Yiwagou, South 541 

Qinling; 2. Chaohu, South China; 3. Nanpanjiang Basin, South China; 4. Northeastern 542 

Vietnam; 5. Japan; 6. Timor; 7. Malay Peninsula; 8. West Malaysia; 9. South 543 

Primorye, Russia; 10. Middle Sikhote Alin (Klets, 1995); 11. Qinghai, China; 12. 544 

Lhasa Terrane, Tibet, China; 13. Afghanistan; 14. United Arab Emirates; 15. Oman; 545 

16. Salt Range, Pakistan; 17. India; 18. Nepal ; 19. Himalaya Terrane, Tibet; 20. 546 



 

 

Western Australia; 21. South Tyrol, Italy; 22. Slovenia and Croatia; 23. Bosnia and 547 

Herzegovina (Kolar-Jurkovšek et al. 2021); 24. Serbia; 25. Western USA; 26. British 548 

Columbia, Canada; 27. Alberta, Canada; 28. Canadian Arctic; 29. Svalbard, Norway. 549 

1-9, 12-22, 24-29 Nv. waageni and E. costatus (after Lyu et al., 2020 and its 550 

references), Scythogondolella and other gondolellids (after Li et al., 2019 and its 551 

references). Siberia: 30. Eastern Laptev Sea coast and Kotelny Island (Dagys, 1984; 552 

Klets and Yadrenkin, 2001; Klets and Kopylova, 2006; Konstantinov et al., 2013); 31. 553 

Lena River lower reaches, Western Verkhoyansk region (Klets and Kopylova, 2006); 554 

32. Shevlya River basin (Kuz’min and Klets, 1990); 33. Churki Ridge (Klets, 2008).  555 

 556 

Figure 3. Conodont distributions and carbon isotopes from Lopingian to Lower 557 

Triassic strata at Yiwagou, Têwo, northwestern China. 558 

 559 

Figure 4. SEM photos of conodonts from Yiwagou: 1. Clarkina orientalis, sample 560 

2YG-1; 2-8. Hindeodus praeparvus, 2-4, sample ZLSO-21, 5-8, sample ZLSO-22; 561 

9-14. H. parvus, 9-10, sample ZLSO-22, 11, sample ZLSO-23, 12, sample ZLSO-22, 562 

13, sample ZLS-2, 14, sample ZLS-5; 15-23. H. postparvus, 15-16, sample 563 

ZLSO-21, 17-18, 22-23, sample ZLS-5, 19-21, sample ZLS-2; 24. Neospathodus 564 

dieneri M3, sample ZLS-C2-8; 25. Neospathodus aff. pakistanensis, sample 565 

ZLS-C2-8; 26-27. Pachycladina spp., sample ZLS-C2-8. Scale bar = 100 µm. 566 

Numbers in red denote Hindeodus around the IOB.   567 

 568 

Figure 5. SEM photos of conodonts from Yiwagou: 1. Eurygnathodus costatus, 569 



 

 

sample ZLS-9 (after figs. 4. 34-36 in Li et al., 2019); 2. Eurygnathodus hamadai, 570 

sample ZLS-9 (after figs. 4. 40-42 in Li et al., 2019); 3. Parafurnishius 571 

xuanhanensis, sample ZLS-13 (after figs. 4. 13-15 in Li et al., 2019); 4-5. 572 

Scythogondolella mosheri, sample ZLS-30 (after figs. 5. 4-6, 16-18 in Li et al., 573 

2019); 6. Scythogondolella cf. milleri, sample ZLS-30 (after figs. 5. 22-23 in Li et 574 

al., 2019); 7. Scythogondolella phryna, sample ZLS-30 (after figs. 5. 24-26 in Li et 575 

al., 2019); 8-9. Novispathodus waageni waageni, sample ZLS-30 (after figs. 6. 1-2, 576 

5-6 in Li et al., 2019); 10. Novispathodus waageni eowaageni, sample ZLS-30 577 

(after figs. 6. 7-8 in Li et al., 2019); 11–13. Pachycladina qinlingensis, 11. P2 578 

element, sample ZLS-88 (after fig. 6. 14 in Li et al., 2019), 12. P2 element, sample 579 

ZLS-74 (after fig. 6. 16 in Li et al., 2019), 13. S2 element, sample ZLS-67 (after fig. 6. 580 

19 in Li et al., 2019); 14. Pachycladina obliqua, S2 element, sample ZLS-42 (after 581 

fig. 6. 13 in Li et al., 2019); 15-16. Parachirognathus semicircnelus, 15. S1 582 

elements, sample ZLS-88 (after fig. 6. 22 in Li et al., 2019), 16. S2 element, sample 583 

ZLS-88 (after fig. 6. 20 in Li et al., 2019). Scale bar = 100 µm. 584 

 585 

Figure 6. SEM photos of conodonts from Yiwagou: 1-2. Hindeodus aff. sosioensis, 586 

1, sample ZLS-2, 2, sample ZLS-5. 3-7. Triassospathodus hungaricus, 3, 7, sample 587 

M-20, 4-6, sample M-21; 8-14. Triassospathodus qinlingensis sp. nov., holotype 588 

(14), paratypes (9 and 13), 8, sample M-19, 9, sample M-20, 10, sample M-5, 11, 13, 589 

sample M-21, 12, sample M-9, 14, sample M-21; 15. Novispathodus robustispinus, 590 

sample M-5; 16. Icriospathodus zaksi, sample M-2; 17-19. Triassospathodus 591 

clinatus, 18, sample MRSD-1, 17, 19, sample MRSD-2. Scale bar = 100 µm. 592 



 

 

 593 

Figure 7. Comparison of latest Permian – Early Triassic carbon isotope records from 594 

South China and Mud, Spiti with the Yiwagou section. Meishan Section, Changxing 595 

(Cao et al., 2009); Guandao Section, Nanpanjiang Basin (Payne et al., 2004); West 596 

Pingdingshan Section, Chaohu (black from Tong and Zhao, 2011; blue from Lyu et al., 597 

2019), Mud Spiti (black from Sun et al., 2021; blue from Krystyn et al., 2007). Red 598 

lines denote the first occurrence of E. costatus, purple lines denote the first occurrence 599 

of E. hamadai. 600 

 601 

Table 1. Correlation of the Lower Triassic conodont zones around the world. 602 

Abbreviations: B. = Borinalla, C. = Clarkina, D. = Discretalla, E. = Eurynathodus, 603 

H. = Hindeodus, Ha. = Hadrodontina, I. = Isarcicella, Ic. = Icriospathodus, Nc. = 604 

Neoclarkina, Ng. = Neogondolella, Ns. = Neospathodus, Nv. = Novispathodus, 605 

Pu. = Paullella, Pl. = Platyvillosus, Sc. = Scythogondolella, Sw. = 606 

Sweetospathodus, T. = Triassospathodus.  607 

 608 

Table 2. Comparison of conodont faunas in Palaeo-Tethys. The faunas from the SQP 609 

strongly resemble those in the NYP, but shows less similarity with those from the 610 

Nanpanjiang Basin at species level or Europe at both genus and species level.     611 

  612 

Supplementary materials 613 

1. Statistics and distribution of conodont species at the Yiwagou section. 614 

2. Data of carbonate carbon isotope and oxygen values from the Yiwagou section. 615 

 616 
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