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Abstract 9 

Heat stress (HS) leads to altered sheep behavior, physiological, and biochemical processes 10 

which negatively affects their welfare and performance. While suitable strategies are needed to 11 

ameliorate the impacts of HS in sheep, it is equally important to accurately and non-invasively 12 

measure HS. Traditionally, rectal temperature (RT) is considered an indicator of thermal balance 13 

and is used to assess the impacts of hot conditions on sheep. However, measuring RT itself can be 14 

a stressor as it often requires restraining of the animals. The main objective of this study was to 15 

establish whether a combination of infrared thermography (IRT) and machine learning techniques 16 

can be applied to predict sheep RT when subjected to HS. Thermal images and RT were taken 17 

twice weekly from Dorper, and 2nd Cross (Poll Dorset X (Border Leicester X Merino)) lambs 18 

(n=24/breed, 4-5 months old), for two weeks. Sheep were randomly allocated to either (i) 19 

thermoneutral (TN; 18–21 °C, 30–50% relative humidity (RH), n = 12/group) or (ii) cyclic HS 20 

treatments (28–40 °C, 40-60% RH, the cycle comprised of high temperatures 38-40 °C between 21 

0800 and 1700 h daily and 28 °C, 30-40% RH maintained overnight). The head was selected as 22 

the region of interest because of less wool cover; specifically, the IRT of forehead, eye, ear, nostril, 23 

and face locations were measured. Artificial neural network (ANN) models were developed using 24 

three different backpropagation algorithms with temperature-humidity index (THI), and IRT 25 

temperatures as inputs and RT measured manually as targets. Results showed that the forehead 26 

and eye IRT temperatures had the highest correlation (P<0.01) with THI and RT. Further, Bayesian 27 

Regularization, with one hidden layer containing 10 neurons with a tangent sigmoid transfer 28 

function, showed the best correlation (R=0.92) and highest performance (MSE=0.02). The model 29 

developed may be a rapid and cost-effective technique to monitor real-time body temperatures in 30 

sheep and also to detect HS with minimal restraint. 31 
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Introduction 33 

Excessive heat load or heat stress (HS) describes a situation where the thermoregulatory 34 

mechanisms of an animal fail to regulate the body temperature effectively within the normal range. 35 

HS is a major constraint to the wellbeing and productivity of farm animals, such as sheep reared 36 

under subtropical and tropical conditions (Marai et al., 2008; Joy et al., 2020a; Baida et al., 2021). 37 

The primary physiological response to HS in ruminants involves increased body temperature and 38 

respiration rate (normal body temperature and respiration rate range in sheep is 38.1-39.9 °C and 39 

12-30 beats/min; but the values may vary under different conditions such as level of activity, diet, 40 

breed and age) (Chauhan et al., 2014b; Joy et al., 2020b). Prolonged heat stress often leads to low 41 

productivity (Koluman and Daskiran, 2011; Maurya et al., 2016), compromised immune function 42 

(Chauhan et al., 2014a; Shi et al., 2020; Chauhan et al., 2021), high morbidity, and mortality 43 

(Phillips, 2016).  Early identification of animals under moderate /extreme HS is vital to enable 44 

suitable interventions such as providing access to shade, cool drinking water and in severe cases 45 

artificial cooling of stressed animals using pedestal fans to mitigate HS, improve animal welfare, 46 

and reduce the risk of sheep mortality. However, systematic screening to identify signs of HS is 47 

particularly difficult under farm conditions, especially in grazing systems, where animals are 48 

present in large numbers. Although weather indices such as temperature-humidity index (THI) and 49 

heat load index (HLI) could act as a guide for estimating HS severity in livestock, they carry a set 50 

of limitations. The primary constraint for using bioclimatic indices is their poor relationship to the 51 

thermoregulatory dynamics of the animals under excessive HS. Typically, the level of HS in 52 

animal depends upon the inherent genetic potential of the individual animal to the stressful 53 

conditions, which may vary for species, breed, age, physiological stage etc. (Osei-Amponsah et 54 

al., 2019; Joy et al., 2020a). Therefore, irrespective of the available information, methods to 55 

measure and monitor the physiological responses such as body temperature in real-time may give 56 

more information on  the early detection of HS in sheep.  57 

The animal’s core body temperature estimates the temperature of vital internal organs such 58 

as the heart, liver, and brain. There are several indicators established in ruminants as an indirect 59 

measurement to represent core body temperature comprising rectal (Goodwin, 1998), vaginal 60 

(Hillman et al., 2009), tympanic (Brown-Brandl et al., 1999) and rumen temperature (Ipema et al., 61 

2008; Lees et al., 2019).  Among those, rectal temperature (RT) is used as a conventional “gold 62 

standard” indicator of core body temperature in sheep. Nevertheless, measurements of RT are 63 



time-consuming, labor-intensive, and often require manual handling, which can affect animal 64 

welfare. Infrared thermography (IRT) provides an alternative approach for quantifying animal 65 

body temperature. This approach measures the surface temperature based on proportional 66 

emissions of heat radiation from the body (Salles et al., 2016; Macmillan et al., 2019). Infrared 67 

images also indicate the difference in the blood flow resulting from high body temperature under 68 

stressful environmental conditions (McManus et al., 2015). Hence, the temperature of different 69 

body locations such as the eye (Hoffmann et al., 2013; Daltro et al., 2017), fore-head (Peng et al., 70 

2019), muzzle (Fuentes et al., 2020b), rump (Baida et al., 2021), flank (McManus et al., 2015), 71 

feet (Montanholi et al., 2008) and udder temperatures (Metzner et al., 2014; Osei-Amponsah et al., 72 

2020), measured using IRT, have been used to quantify physiological parameters and stress in 73 

various livestock species.  Thermal imaging is fast, reliable and has the advantage that it could 74 

screen many animals with little or no restraint (Idris et al., 2021). Also, this method is more 75 

advanced, non-invasive and has greater potential for automation than conventional methods (Salles 76 

et al., 2016; Fuentes et al., 2020b). However, there are some limitations and factors that must be 77 

taken into consideration while using IRT. Accurate measurement of IRT often requires a consistent 78 

image angle and distance to the subject, along with constant ambient temperature, wind speed, and 79 

direct sunlight (Idris et al., 2021). Also, it is not possible to predict RT from IRT imaging. 80 

However, a model could be developed to predict it from the surface temperatures of the body and 81 

because of non-linearity of the relation between the inputs and the target, machine learning could 82 

provide a more accurate prediction.  83 

 Machine learning and computer vision algorithms provide new opportunities to non-84 

invasively examine farm animals in terms of behavior (Stewart et al., 2017; Fuentes et al., 2020a), 85 

physiology (Jorquera-Chavez et al., 2019; Fuentes et al., 2020b), and production changes (Fuentes 86 

et al., 2020c). Artificial neural networks (ANN) are widely applied in multiple agricultural fields, 87 

designed to learn, and find patterns among the input data to predict specific outputs (Gonzalez 88 

Viejo et al., 2019; Taheri et al., 2021). Model development is achieved by a process of training 89 

where these algorithms process the data by modifying weights and biases to obtain the best 90 

correlation (Taheri et al., 2021). Applications of IRT and ANN have been recently implemented 91 

to analyze environmental-related stress responses in farm animals based on changes in body 92 

temperature (Jorquera-Chavez et al., 2019; Fuentes et al., 2020b). However, using the ANN 93 

technique usually requires selecting the best neural network structure with optimum model factors 94 



such as the number of hidden layers, neurons, training function, and the activation function for 95 

hidden layers and the output function (Taheri et al., 2021). A hidden layer is located between the 96 

input and output of the algorithm, in which the function applies weights to the inputs and directs 97 

them through an activation function as the output. The number of hidden layers and neurons is 98 

mostly determined by trial-and-error to obtain the best model with a minimum error and high 99 

performance in predicting the target values (Gonzalez Viejo et al., 2019). Compared to other 100 

ruminant species (cattle and goats), sheep have thick wool that acts as a significant resistance layer 101 

to the skin (Fuentes et al., 2020b). We propose that the facial area of the head would be suitable 102 

for measuring skin temperature using IRT as this location contains minimal wool in sheep.  103 

Therefore, the main objective of this research was to explore the correlations between the 104 

temperatures obtained from IRT images of a sheep’s head and develop an ANN model to predict 105 

the RT using these images.   106 

Materials and Methods 107 

Animals and Experimental Design 108 

The live animal study was approved by the Faculty of Veterinary and Agricultural Sciences, The 109 

University of Melbourne Animal Ethics Committee (Ethics ID: 1714357.1) and was conducted at 110 

The University of Melbourne, Dookie Campus, Victoria, Australia (36°23'01.9"S 145°42'52.1"E) 111 

over two weeks. The details on animals and experimental design have been previously reported by 112 

Joy et al. (2020b) and Zhang et al. (2021). Briefly, 48 lambs of two different breeds, Dorper and 113 

2nd Cross [SC; Poll Dorset X (Border Leicester X Merino)] lambs (24 lambs from each breed; 4-5 114 

months old with live weight = 40.9 ± 0.91 kg, (Mean ± SD) were used in the study. The lambs 115 

were acclimatized to indoor facilities for two weeks before starting the measurements. They were 116 

fed a mixed ration (50% pellets, 25% oaten hay, and 25% lucerne chaff) ad libitum, complimented 117 

with freshwater ad libitum. After acclimatization, lambs were randomly allocated to two 118 

treatments (i) thermoneutral (TN; 18–21 °C, 30–50% relative humidity (RH), n = 12/group) and 119 

(ii) cyclic heat stress (HS; 28–40 °C, 40-60% RH, the cycle comprised of high temperatures 38-120 

40 °C between 800 and 1700 h daily and 28 °C, 30-40% RH maintained overnight).  121 

Data Acquisition 122 

During the current study, the temperature and RH of the treatment rooms (TN and HS) were 123 

recorded at 30-minute intervals using a universal serial bus (USB) temperature and humidity data 124 

https://deepai.org/machine-learning-glossary-and-terms/activation-function


logger (TechBrands; Electus Distribution, Rydalmere, NSW, Australia). Based on the weather 125 

variables, the THI was calculated according to the formula described by Marai et al. (2007), given 126 

T and RH as dry-bulb temperature (°C) and relative humidity (%) respectively.  127 THI =  T −  {(0.31 − 0.0031 ∗ RH) ∗ (T − 14.4)}.    … (1) 128 

 Thermal images were obtained twice weekly at 1700 h using a handheld portable infrared 129 

thermal camera FLIR T1050sc (FLIR Systems Inc.; Wilsonville, OR, USA) with thermal 130 

sensitivity of <20 mK and a wide temperature range (-40 °C to +2000 °C). The camera has an 131 

accuracy of ±2 °C or ±2% of reading at 25 °C for temperatures up to 1200 °C, with an emissivity 132 

of 0.985 (FLIRSystems, 2015; Osei-Amponsah et al., 2020). Sheep were restrained in a standing 133 

position and thermal imaging was performed at approximately 0.5 m distance from the animal at 134 

an angle of between 30° to 40° with emissivity set to 0.95, as indicated for animal skin (Stelletta 135 

et al., 2012). Thermal images were analyzed using the FLIR’s ResearchIR Max software 136 

(FLIRSystems, 2015) to record the skin temperature of the lambs in various body locations. 137 

Specifically, the head was selected as a region of interest (ROI) for temperature estimation as this 138 

area contains less wool and other regions of the body may create a bias for data extraction between 139 

hair and wool sheep breeds (Fuentes et al., 2020b). Henceforth, nostril (nostril T), forehead (FH 140 

T), ear (ear T), eye (eye T), and face (face T) were selected as ROIs for this current study (Fig 1). 141 

One of the main constraints in extracting FH T from SC lambs was that they had less wool in the 142 

forehead region which may create biases in the data obtained. Therefore, FH T on both breeds 143 

were obtained from a slighter lower location, level with the eye to avoid any interruptions from 144 

wool (Fig 1). The RT of the animals was also simultaneously measured using a digital thermometer 145 

(Model: DT-K11A; Honsun, Shanghai, China).  146 



 147 

Fig 1. Example of a thermal image of a Dorper sheep’s head showing the region of interests 148 

(ROIs) selected; Bx1- Face, Bx2- Ear, EI1- Eye, Sp1- Nostril and Sp3- Fore-head 149 

Artificial Neural Network (ANN) modeling 150 

ANN model structure 151 

 The basic structure of an ANN model consists of an input layer, one or more hidden layers, 152 

and an output layer. In every layer, there are several nodes, or neurons, with each layer using the 153 

output of the preceding layer as its input, so neurons interconnect with distinct layers. Each neuron 154 

specifically has weights that are modified during the learning process, and as the weight decreases 155 

or increases, it adjusts the strength of the signal of that neuron (Taheri et al., 2021). In this current 156 

study, the model was constructed based on a two-layer feedforward network with a tan-sigmoid 157 

activation function in the hidden layer and a linear transfer function in the output layer. Fig 2 158 

illustrates the graphical representation of the entire study design. The input variables selected for 159 

the prediction of RT were forehead, eye, ear, nostril, and overall face temperature obtained from 160 

infrared thermography, THI and breed type (represented as binary numbers; Dorper and SC as 0,1 161 

respectively). The neural fitting app of MATLAB 2020a (MathWorks Inc., Natick, MA, USA) 162 

allows for selecting data, creating, and training a network and validating its performance using 163 

correlation coefficient (R) and mean square error (MSE) as the goodness of fit criteria. Three back-164 

propagation training algorithms (Levenberg-Marquardt, Bayesian Regularization (BR), and Scaled 165 



Conjugate Gradient) were used to train the ANN model to predict RT in sheep. A neuron trimming 166 

exercise (5, 7, 10 and 15 neurons) was performed to obtain the best-hidden layer structure based on 167 

the highest accuracy (highest R and lowest MSE) for each algorithm (data not shown). Fifteen was 168 

the highest number of neurons considered for all the models because the use of a large number of 169 

neurons would most likely result in overfitting (Gonzalez Viejo et al., 2019).  The original dataset, 170 

corresponding to 192 observations, was randomly divided into 70% for training (N=134), 15% for 171 

testing (N=29) and 15% for validation (N=29) for each model. In the BR algorithm, 85% of the 172 

data was applied for training and 15% for testing. This algorithm has an implemented cross-173 

validation, which is performed on the training data (85%).  174 



 175 



Fig 2. Graphical representation of the study design: (A) the experimental layout, (B) the thermal 176 

image capturing and processing with the selected region of interests in the head and extraction of 177 

temperature (°C) values from the infrared thermal image (IRTI) analysis, (C) the schematic 178 

illustration of artificial neural network model to predict rectal temperature. Model diagram 179 

abbreviations: THI: temperature-humidity index; T: temperature; w: weights. 180 

Statistical analysis 181 

 The correlation among THI, RT and skin temperatures (obtained from IRTs) were estimated 182 

using correlation analysis in Genstat (GenStat 19th Edition; VSN International Ltd., Hemel 183 

Hempstead, UK) with a significance level set at P ≤ 0.05. Further, the statistical analysis to evaluate 184 

and compare the accuracy of the developed models consisted of R, MSE to assess performance 185 

and slope for each of the (i) training, (ii) validation, (iii) testing, and (iv) overall model stages. For 186 

the best model, the percentage of outliers using 95% confidence boundary was calculated. Linear 187 

regression analysis for temperature data with the intercept passing through the origin and P ≤ 0.05 188 

as the criteria were used to compare the RT measurements using the manual methods against the 189 

predicted RT using the ANN model with Minitab® 19 (Penn State University, PA, USA).  190 

 Dimension reduction using principal component analysis (PCA) was performed in Minitab to 191 

find relationships and patterns among the data between THI, manual RT measurements, skin 192 

temperatures obtained from IRTs and estimated RT using the ANN model proposed. Both breed 193 

type and THI were also included in PCA analysis.  194 

Results 195 

 The THI values calculated for the study period (2 weeks) ranged from 19.2-21.8 for TN 196 

conditions to 26.5-35.3 for HS treatment (Fig 3A) (Joy et al., 2020b).  197 



 198 

 199 

 200 

(A) 

(B) 



Fig 3. Boxplots showing (A) THI and (B) RT values for both TN and HS treatments over two 201 

weeks  202 

 Table 1 shows the correlations between THI, RT, and skin temperatures (forehead, eye, ear, 203 

nostril, and face region) obtained from IRT. Overall, skin temperatures obtained from IRT showed 204 

a positive correlation (P<0.01) with THI and RT in the afternoon.  Among various ROIs selected, 205 

FH T (R=0.84; P<0.01) and eye T (R=0.68; P<0.01) had the highest correlation with THI. 206 

Significant positive correlations (P<0.01) were also obtained between RT and FH T, nostril T and 207 

eye T (R=0.68, 0.58, 0.52 respectively; Table 1). Since, sheep head surface temperatures, measured 208 

using IRT, had a positive correlation (P<0.01) with RT, they were all considered as inputs for model 209 

development.  210 

Table 1. Pearson correlation coefficients between THI, RT and skin temperatures (Forehead, 211 

eye, ear, nostril and face) in sheep (n=192) 212 

 THI RT FH T Eye T Ear T Nostril T Face T 

THI 1       

RT 0.81** 1      

FH T 0.85** 0.68** 1     

Eye T 0.60** 0.67** 0.66** 1    

Ear T 0.56** 0.65** 0.65** 0.78** 1   

Nostril T 0.62** 0.55** 0.75** 0.72** 0.74** 1  

Face T 0.68** 0.50** 0.46** 0.72** 0.73** 0.48** 1 

THI: Temperature-humidity index; RT: rectal temperature; FH T: fore-head temperature; Eye T: 213 

Eye temperature; Ear T: Ear temperature; Nostril T: Nostril temperature; Face T: Face temperature. 214 

**correlation differs (P<0.01) from zero.   215 

Figure 4 shows the linear regression between RT measured manually and predicted using 216 

Bayesian training algorithm with THI as the input variable. As depicted, the correlation and 217 

determination coefficients were relatively low (R=0.81, R2= 0.66; P<0.001) with MSE=0.16 and 218 

slope=0.68.   219 



 220 

Fig 4. Comparing results from rectal temperatures measured manually using a digital thermometer 221 

vs. temperature predicted using linear regression fitted to THI-RT data. Abbreviations: R: 222 

Correlation, R2: Coefficient of determination; CI: confidence interval; PI (prediction interval). 223 

 224 

Table 2 shows the statistical data of the best models developed using various training 225 

algorithms. Overall, correlations from all models were highly significant with P<0.001. The scaled 226 

conjugate gradient algorithm with 7 neurons had the lowest R (0.87) and highest MSE (0.09; Table 227 

2). However, models developed using Levenberg-Marquardt and BR algorithms with 10 neurons 228 

showed higher overall performance with R>0.90. Comparatively, BR showed the best performance 229 

with the least MSE (<0.05) with R values being consistently over 0.90 for all stages. Also, the BR 230 

model had the highest slope close to unity (b=0.83) when compared to others. Hence, according 231 

to these results, BR was selected as the best training algorithm for this network.  232 

 233 

Table 2. Statistical results of the models developed using different algorithms. 234 

Algorithm Neurons Stage R Slope (b) MSE 

Levenberg-Marquardt 10 Training 0.90 0.78 0.06 

  Validation 0.93 0.77 0.09 

  Testing 0.91 0.88 0.07 



  Overall 0.90 0.79 0.05 

Bayesian 

Regularization 

10 Training 0.92 0.84 0.03 

  Validation - - - 

  Testing 0.90 0.84 0.05 

  Overall 0.92 0.83 0.02 

Scaled Conjugate 

Gradient 

7 Training 0.87 0.77 0.09 

  Validation 0.87 0.76 0.09 

  Testing 0.88 0.82 0.08 

  Overall 0.87 0.78 0.07 

R- correlation coefficient; MSE- mean square error. 235 

 Figure 5 shows the model's performance, with 10 hidden neurons, on the training, testing and 236 

overall data, which was trained with the BR algorithm. Better performance was found for the 237 

training stage (R=0.92; slope=0.84) while for the testing R= 0.90 and slope=0.84 and overall model 238 

had an R= 0.92, (R2=0.85) and slope=0.83. The weights and biases in this model's hidden and output 239 

layers are available as supplementary material.   240 

 241 

Fig 5. Comparison of the estimated and measured RT in training, test, and overall datasets, the 242 

neural network model was trained with the Bayesian Regularization algorithm to estimate rectal 243 

temperature from infrared thermal images (IRTIs) displaying the correlation coefficient (R) and 244 

95% confidence bounds.  245 

 246 



 Figure 6 shows the linear regression model between RT measured manually and predicted 247 

temperature from the ANN model using IRT analysis. The linear regression model showed a high 248 

correlation (R=0.92) and coefficient of determination (R2= 0.85) and was statistically significant 249 

(P<0.01) with slope=0.81.  The model also showed 5.2% outliers (10 out of 192) based on the 95% 250 

confidence intervals. 251 

 252 

Fig 6. Linear regression model comparing results from rectal temperatures measured manually 253 

using a digital thermometer vs. temperature from the infrared thermal image analysis (IRT). 254 

Abbreviations: R2: Coefficient of determination; CI: confidence interval; PI (prediction interval). 255 

 Figure 7 shows the PCA comparing RT measured manually (RT M), RT predicted using model 256 

(RT P), THI and skin temperatures of various ROIs obtained from IRT analysis for two sheep breeds 257 

(Dorper and SC) under both TN and HS conditions in different days of measurements. The PCA 258 

described 87.3% of the total data variability with 77.1% and 10.2% for PC1 and PC2, respectively. 259 

The results showed that RT M and RT P were closely related (Fig 7B). There was a clear difference 260 

in temperatures between HS and TN treatments such that the HS group showed higher THI and 261 

temperature values in both the breeds (Fig 7A).  262 



 263 
Fig 7.  Principal components analysis: (A) Score plot and (B) Loading plot of data measured with 264 

(1) manual techniques (i) RT M: rectal temperature manual, (2) infrared thermal images (i) Nostril 265 

T: nostril temperature, (ii) Face T: face temperature, (iii) FH T: forehead temperature, (iv) Ear T: 266 

ear temperature (v) Eye T: eye temperature and those using the machine learning model (i) RT P: 267 

rectal temperature predicted from each day of the control and heat stress treatments for both Dorper 268 

and second cross sheep breeds.  269 

Discussion 270 

 Infrared thermography has been used as a non-invasive remote sensing tool to assess 271 

changes in heat transfer and blood flow in ruminants via detecting slight variations in body 272 

temperature (Paim et al., 2012). Our study proposed selecting IRT of specific body locations such 273 

as the forehead, eye, muzzle, ear, and face, for estimating RT in sheep. The results demonstrated 274 

that THI and IRT, along with machine learning models, could help in the automated measurement 275 

of RT/body temperature in sheep to assess HS.  276 

 In recent years, with the growing awareness and interest of consumers in animal welfare, 277 

there is an urgent need to develop non-invasive measures of stress in animals to promote animal 278 

welfare. Producers and consumers are paying more attention to farm management conditions 279 

(Bittner et al., 2021) particularly on the procedures that prevent pain and discomfort. Thus, non-280 

invasive techniques of measuring HS in ruminants such as IRT (Paim et al., 2012; McManus et 281 

al., 2015) and estimation of fecal cortisol metabolites (Rees et al., 2016) are gaining importance, 282 

but it demands further research for the optimization of the methods. In this current study, we used 283 

two different sheep breeds: 1) Dorpers with loose white hairy fleece with the head being free of 284 

wool and 2) SC breeds that had a chalky white dense fleece with a less wool in the forehead region 285 

(Joy et al., 2020b). Special care was taken while measuring FH T in SC to avoid wool interruptions. 286 



Positive correlations among the IRTs, THI, and RT indicated that these variables were altered with 287 

a similar trend such that elevating THI corresponded to increasing RT and thermographic 288 

measurements (FH T, ear T, eye T, nostril T, and face T). The FH T and eye T showed the highest 289 

correlation with THI, suggesting that real-time monitoring of these regions may help to signify 290 

potential impacts of the increased environmental temperature on the thermoregulatory responses 291 

of sheep. This is in accordance with findings of previous studies (Daltro et al., 2017; Peng et al., 292 

2019) that also indicated THI was highly correlated with  FH T, and eye T in cattle. Also, RT 293 

showed a high correlation with FH T, eye T and nostril T. Measuring IRT of the eye region has 294 

been established as the best proxy of core body temperature in cattle (Daltro et al., 2017). There 295 

was also a moderate correlation between IRT of eyes and RT has been established in cattle (Gloster 296 

et al., 2011). Interestingly, nostril T showed a moderate correlation with the RT in sheep. This 297 

could be because the nose region in our study has more hairless skin exposed in sheep along with 298 

a large number of blood vessels (Dawes and Prichard, 1953), which allows measuring changes in 299 

blood flow and heat transfer more accurately.  300 

 Generally, the best ANN model is indicated by high correlation coefficient values (R) and 301 

training performance (MSE). To ensure that there is no overfitting, R and MSE values of the 302 

training and testing steps should be close to each other (Steyerberg et al., 2010). Considering a 303 

part of the data for validation before testing helps to reach this goal  (Gonzalez Viejo et al., 2019).  304 

Although BR does not have a validation stage in particular, it has an implemented cross-validation 305 

which randomly divides the training data into training and validation and automatically trains the 306 

data several times until reaching the optimal combination of errors and weights using different sets 307 

of training data. This means the BR is more robust than the other algorithms (Taheri et al., 2021). 308 

Although THI showed a high correlation with RT, the observed correlations and determination 309 

coefficients of the model developed using THI as an input for predicting RT were relatively low. 310 

On the other hand, inclusion of IRT measurements as inputs improved the model performance and 311 

accuracy. Based on the performance of the three training algorithms applied for the model 312 

development, it can be concluded that BR with a NN structure of one hidden layer, containing 10 313 

neurons with a tan-sigmoid transfer function was the most accurate for estimating RT using the 314 

IRT technique. This is based on the highest correlation coefficient (R=0.92), best performance 315 

(MSE= 0.02) for overall data, good fit within confidence bounds with a low number of outliers 316 

(5.2%), overall slope close to 1 (b=0.81), and fewer signs of overfitting. Similarly, Gonzalez Viejo 317 



et al. (2019) and Taheri et al. (2021) proved that BR was the most effective algorithm for training 318 

the neural network. The BR is a back-propagation algorithm based on Levenberg-Marquardt 319 

optimization, which works based on calculating the second derivatives of a cost function with an 320 

additional term for updating weights and biases (Tiwari et al., 2013) and minimizes a combination 321 

of squared errors and weights. Several studies stated some of the important advantages of BR over 322 

other training algorithms such as good generalization for small datasets (Kayri, 2016), avoids 323 

overfitting (Bruneau and McElroy, 2006), and does not require a separate validation stage 324 

(Gonzalez Viejo et al., 2019). However, this algorithm is slower and requires more memory than 325 

the Lavenberg-Marquardt training function (Tiwari et al., 2013; Taheri et al., 2021).  326 

 As expected, HS increased RT and IRTs in both sheep breeds, implying compromised 327 

thermoregulatory mechanisms in sheep exposed to high THI (Chauhan et al., 2016; Joy et al., 328 

2020b). Further, there was a close association between THI, RT M and RT P obtained from PCA 329 

analysis which further indicates the acceptable precision of the proposed model in predicting RT 330 

of sheep under different THI conditions. Also, this model, if implemented, would be very useful 331 

in the remote monitoring of a large number of animals (i.e., at flock level), where the image/video 332 

is taken of the flock, but the data is analyzed for each animal individually (using image recognition 333 

software tools). As indicated before, the positioning of cameras, environmental conditions and 334 

excessive motion of animals could have an impact on applying these techniques under large scale 335 

conditions. Thus, further research is required to investigate the feasibility of implementing these 336 

techniques on at a flock scale and to reduce the impact of environmental factors on the accuracy. 337 

Additionally, the established model could be implemented in an intelligent interface to monitor 338 

the real-time sheep temperature on farms, which would allow a reduction in time and handling 339 

cost for producers while screening the stressed animals. Moreover, the implementation of artificial 340 

intelligence (AI) for automated data gathering using IRT images and video analysis will extend a 341 

reliable and completely automated system to identify stressed sheep during summer.  342 

Conclusions 343 

 Infrared thermography measurements in sheep offer a reliable, precise, and non-invasive 344 

technique to measure HS. Among the ROIs studied using IRT, FH T and eye T showed the highest 345 

correlation with THI, and FHT, eye T, and nostril T were strongly correlated with RT. Further, a 346 

combination of IRT and machine learning techniques, namely ANN, was applied to model the RT 347 



in sheep. The best algorithm for the specific model developed in this current study was the BR 348 

with one hidden layer, containing 10 neurons with tangent sigmoid transfer function. The model 349 

showed the highest correlation (R=0.92) and least error (MSE=0.02). Therefore,  it is concluded 350 

that IRT and machine learning could be used as a rapid and cost-effective technique to monitor 351 

real-time body temperatures in sheep for early detection of HS with minimal restraint to improve 352 

sheep welfare. 353 
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