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ABSTRACT 27 

Meat tenderness is an important quality trait critical to consumer acceptance, and determines 28 

satisfaction, repeat purchase and willingness-to-pay premium prices.  Recent advances in 29 

tenderness research from a variety of perspectives are presented. Our understanding of 30 

molecular factors influencing tenderization are discussed in relation to glycolysis, calcium 31 

release, protease activation, apoptosis and heat shock proteins, the use of proteomic analysis for 32 

monitoring changes, proteomic biomarkers and oxidative/nitrosative stress. Each of these 33 

structural, metabolic and molecular determinants of meat tenderness are then discussed in 34 

greater detail in relation to animal variation, postmortem influences, and changes during 35 

cooking, with a focus on recent advances. Innovations in postmortem technologies and enzymes 36 

for meat tenderization are discussed including their potential commercial application.  37 

Continued success of the meat industry relies on ongoing advances in our understanding, and in 38 

industry innovation.  The recent advances in fundamental and applied research on meat 39 

tenderness in relation to the various sectors of the supply chain will enable such innovation.  40 

Key words 41 

genetics, proteomics, oxidation, molecular, cooking, proteases, nitrosative, high pressure 42 

processing, connective tissue, collagen 43 

1. Introduction 44 

Tenderness is an important quality trait which determines satisfaction, repeat purchase and 45 

willingness-to-pay premium prices. Historically, over the 1920-1960’s, the effects of genetics, 46 

biochemistry and production factors on meat tenderness were identified utilizing physical, 47 

chemical, histological and sensory methods.  These experiments, along with the research 48 

conducted in the 1970’s formed the basis of much of our understanding of meat tenderness (see 49 

review in Warner, Miller, Ha, Wheeler, Dunshea, Li, Vaskoska, & Purslow, 2021), and the data 50 

remain valid today. This research over the last 70 years has been pivotal in understanding the 51 

mechanisms determining meat texture and tenderness, as well as for industry advances in 52 

quality assurance.  Recent advances and understanding of mechanisms, including biology, 53 

biochemistry and bio-physics of meat in relation to tenderness, have occurred throughout the 54 

meat supply chain.   55 

The major determinants of meat tenderness are; connective tissue and cross-links, 56 

myofibrillar integrity, sarcomere length, protein denaturation and intramuscular fat. Our 57 

understanding of molecular factors influencing tenderization has advanced and this is reviewed 58 

here in relation to glycolysis, calcium release, protease activation, apoptosis and heat shock 59 

proteins, the use of proteomic analysis for monitoring changes, proteomic biomarkers and 60 
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oxidation/nitrosative stress. Each of these structural, metabolic and molecular determinants of 61 

meat tenderness are then discussed in greater detail in relation to animal variation, and changes 62 

during postmortem ageing and cooking, with a focus on recent advances. Finally, recent 63 

innovations in postmortem technologies and enzymes for meat tenderization are discussed 64 

including their potential commercial application. 65 

Methods to measure tenderness can include the conduct of sensory panels, consumer 66 

panels, or through instrumental measures such as hardness, derived from Texture Profile 67 

Analysis or much more commonly, shear force, a measure of the force required to shear through 68 

a meat sample. Shear force is described in the literature either simply as shear force, peak shear 69 

force or Warner-Bratzler shear force (WBSF) and for a discussion of the definition and use of 70 

these terms as well as their relation to sensory measures the reader is referred to Warner et al. 71 

(2021).  WBSF and other variations of shear force are the most often reported values to measure 72 

tenderness and thus are used throughout this review, as significantly less studies included 73 

sensory or consumer panel data.  74 

This review examines meat tenderness across species and through the supply chain from a 75 

variety of perspectives. These perspectives include biology, molecular, biochemistry, industry 76 

and technological, allowing the sometimes divergent viewpoints to be examined more closely 77 

and hopefully enabling convergence and innovation.  78 

 79 

2. Advances in molecular understanding of factors influencing tenderization 80 

 81 

The general viewpoint that myofibrillar protein degradation by endogenous proteases plays an 82 

important role in meat tenderization has long been accepted (Davey and Gilbert, 1969). The 83 

nature of meat tenderization is the development of proteolysis of myofibrillar proteins by multi-84 

enzyme systems during the conversion of muscle to meat and subsequent aging time. The 85 

biochemical and metabolic processes involved in this muscle-to-meat conversion are extremely 86 

intricate due to the complex interactions across different pathways during postmortem aging. In 87 

recent decades, the developing biochemical approaches and proteomics techniques have been 88 

applied to unravel the cellular and molecular mechanisms behind the variation in meat quality 89 

attributes. The primary outcome has been the identification of differential protein expression 90 

and modification across phenotypes with variable meat quality attributes, highlighting the 91 

importance of finding potential biomarkers to predict meat tenderness. Based on protein 92 

functions and the involved metabolic pathways, the biomarkers can be categorized into 93 

metabolic enzymes, structural proteins, oxidative stress-related proteins, heat shock proteins, 94 
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proteases, apoptotic and signaling proteins. These proteins are key participants in the critical 95 

biochemical events including glycolysis and energy metabolism, calcium release, apoptosis, 96 

proteolysis and involvement of oxidative and nitrosative stress in postmortem muscle 97 

metabolism. 98 

2.1 Glycolysis and energy metabolism 99 

In postmortem muscle, the anoxic state of the muscle cell prevents the production of a large 100 

amount of ATP by the citric acid cycle and oxidative phosphorylation. The shuttle between 101 

creatine/phosphocreatine and glycolysis occurs and gradually glycolysis dominates in ATP 102 

generation, resulting in lactate accumulation and pH decline. The ultimate pH and the pH 103 

decline rate are indicators of metabolic potential and can influence the development of meat 104 

tenderness. Lomiwes, Farouk, Wu and Young (2014) provided convincing evidence that beef 105 

tenderization was compartmentalized by ultimate pH, owing to the variable degradation rate of 106 

myofibrillar proteins by the regulatory protease activity of Calpain-1 (µ-calpain) and potentially 107 

cathepsin B. The extent of pH decline and the ultimate pH are influenced by the glycolytic 108 

potential, which depends on functioning glycolytic enzymes catalyzing glycogen to lactate and 109 

an excess of muscle glycogen at slaughter. Recently, the role of mitochondrial and aerobic 110 

metabolism, adenosine monophosphate (AMP) kinase and other pathways in determining rate 111 

and extent of pH fall has been researched and comprehensive reviews are available (Apaoblaza 112 

et al., 2020; Chauhan & England, 2018; England et al., 2016, 2018). Positive relationships have 113 

been reported between meat tenderness and the abundance of glycolytic enzymes, including 114 

phosphoglucomutase, glyceraldehyde 3-phosphate dehydrogenase, triose-phosphate isomerase, 115 

enolase, pyruvate kinase and lactate dehydrogenase (Picard & Gagaoua, 2017). Succinate 116 

dehydrogenase and succinyl Co-A synthase, belonging to the tri-carboxylic acid (TCA) cycle, 117 

were reported to be more expressed in tender meat (Ouali et al., 2013). It should be noted that 118 

the use of glycolytic proteins as potential biomarkers to predict meat tenderness outcomes will 119 

be different between species and muscle types (Picard & Gagaoua, 2017; 2020). 120 

2.2 Calcium release  121 

Consumption of ATP in the muscle cell allows relaxation in the actomyosin bond and is 122 

involved in the sequestration of Ca2+ and ion gradients (Geeves & Holmes, 2005). As 123 

postmortem muscle cells encounter less energy and more acidic conditions, this can lead to the 124 

dysfunction of sarcoplasmic reticulum (SR), causing Ca2+ to leak into the sarcoplasm 125 

(Küchenmeister, Kuhn, and Ender, 2000; Küchenmeister, Kuhn, and Strabenow, 2002; Bing et 126 

al., 2016). Decreased ATP levels combined with elevated cytoplasmic calcium initially results 127 

in the formation of the permanent cross-bridge, also called the actomyosin bond. On the other 128 

hand, calcium is an important messenger in many cell signaling pathways. Calcium is involved 129 

in calpain system activation, and also in the initiation of apoptosis, leading to proteolysis and 130 
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meat tenderization. The components of Ca2+ channels located in the membrane of sarcoplasmic 131 

reticulum are lined with the membrane proteins sarco-endoplasmic reticulum calcium-ATPase 132 

1, ryanodine receptor and inositol 1, 4, 5-trisphosphate receptor, which are suggested to be 133 

involved in meat tenderization. Kim et al. (2008) reported that more expression of inositol 134 

1,4,5-trisphosphate receptor was detected in a tough meat group (Warner-Bratzler shear force, 135 

WBSF, 79±5.9 N) with a high Ca2+ level in beef longissimus dorsi compared to a tender meat 136 

group (WBSF, 36±2.9 N). Dysregulation and different expressions of Ca2+ channel proteins 137 

were reported in pale, soft, exudative (PSE, a quality defect) meat in pork (Guo et al., 2016; 138 

Wang et al., 2019) and PSE-like meat in broiler (Xing et al., 2017). Recently, Dang et al. (2020) 139 

reported that the incubation of DS16570511, a cell-permeable inhibitor of the mitochondrial 140 

calcium uniporter, into bovine longissimus thoracis et lumborum within 20 min of 141 

exsanguination significantly increased the sarcoplasmic calcium concentration at 24 h and 142 

subsequently enhanced Calpain-1 autolysis, calpastatin degradation, myofibrillar protein 143 

proteolysis, and meat tenderness over a 14 d aging period. Collectively, it is suggested that 144 

sarcoplasmic calcium levels can be collectively modulated by mitochondria and sarcoplasmic 145 

reticulum and exhibit a crucial role in the development of meat tenderness during postmortem 146 

aging.   147 

2.3 Protease activation and proteolysis  148 

Accumulated evidence supports the predominant role of Calpain-1 in the proteolysis of 149 

myofibrillar proteins as the major contribution to meat tenderization (Koohmaraie, 1992; 150 

Geesink et al., 2006; Camou et al., 2007) . The Calpain-2 (m-calpain), another member of 151 

calpain family, was thought to be inactive postmortem, due to insufficient calcium 152 

concentration in muscle and acidic conditions in post-rigor muscle (Maddock, Huff-Lonergan, 153 

Rowe, & Lonergan, 2005). However, Colle and Doumit (2017) found that Calpain-2 was 154 

responsible for the improvement of beef tenderness after 14 d of aging while Calpain-1 was 155 

mainly active in the first 14 d. The activity of Calpain-2 was shown to increase early 156 

postmortem by the injection of calcium chloride or freezing (Wheeler, Koohmaraie, & 157 

Shackelford, 1997). The underlying mechanism through which calcium chloride improves meat 158 

tenderness is via modulation of calpain and calpastatin activities. Calcium chloride 159 

injection/infusion is particularly beneficial for meat from tougher muscles or breeds, e.g. Bos 160 

indicus. For further information on the role of calcium on the activation and inactivation of 161 

calpains and calpastatin, refer to a comprehensive review by Nowak (2011). Proteolysis during 162 

the meat tenderization process may be the synergistic effects of multi-enzymes including 163 

calpains, cathepsins, and caspases, but the predominant role of calpains (Uytterhaegen et al., 164 

1994) remains unchallenged in the literature. In particular, lysosome cathepsins are a large 165 

family of exo- and endo-peptidases and would be activated at low pH conditions which are 166 
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favored by postmortem muscle cell with ultimate pH of 5.3-5.7. Zhang, Li, Yu, Han, & Ma 167 

(2019) found that cathepsin B and D released from destabilized lysosomal membrane in 168 

postmortem bovine longissimus activated the pro-apoptotic proteins Bid and Bax in the 169 

mitochondria. The mitochondrial membrane permeability was triggered by activated Bid and 170 

Bax and further induced caspase-9 and caspase-3 activation, leading to apoptosis and 171 

contributing to meat tenderness. 172 

Extensive degradation of myofibrillar and cytoskeletal proteins, including troponin-T, 173 

tropomyosin, desmin, titin and nebulin, can occur while minor changes in actin, myosin and 174 

CapZ have been reported during postmortem aging (Lana & Zolla, 2016). Gradual degradation 175 

of myofibrillar proteins can cause the breakdown of the Z-line, thus weakening the longitudinal 176 

structure of the myofibrillar sarcomere (Huff-Lonergan, Zhang, & Lonergan, 2010). Recently, 177 

plectin, a scaffold protein traversing the periphery of Z-discs, costameres, mitochondria and 178 

nuclear membranes, was found to be gradually degraded in pork longissimus thoracis during 7 d 179 

of postmortem aging, predominantly by Calpain- 1 (Tian et al., 2019).  180 

Protein phosphorylation has been reported to be involved in calpain activation and 181 

degradation of myofibrillar and cytoskeletal proteins. Li et al. (2017) found that in vitro 182 

phosphorylation of ovine myofibrillar proteins, especially desmin and troponin T, by protein 183 

kinase A prevented their degradation by Calpain-1. In addition, both phosphorylation of 184 

Calpain-1 by protein kinase A and dephosphorylation by alkaline phosphatase promoted the 185 

catalytic activity of Calpain-1 (Du et al., 2019; Du et al., 2018). It was also found that 186 

phosphorylated Calpain-1 was more sensitive to inhibition by calpastatin.  187 

The basic components and mechanisms of tenderization postmortem are similar in 188 

poultry in comparison with mammalian muscle, such as the roles of actin-myosin interaction 189 

and Calpains-1 and -2 induced degradation of cytoskeletal proteins (Tomaszewska-Gras, 190 

Schreurs, & Kijowski, 2011; Zhao et al., 2017). Dransfield (1994b) showed that 80% of 191 

maximum tenderness could be reached only 0.3 h after slaughter in chicken while 4.2, 7.7, 9.5, 192 

and 10 d were needed in pig, sheep, rabbit, and cattle muscles, respectively, suggesting a much 193 

more rapid tenderization process in chicken compared to other species such as beef, pork and 194 

mutton. This has been attributed to the greater calcium sensitivity and the activation of the 195 

calpain system (Lee, Sante-Lhoutellier, Vigouroux, Briand, & Briand, 2008). In addition, the 196 

thinness of the perimysium and endomysium, relative to mammalian muscle, is also thought to 197 

be a contributor to the high levels of tenderness in poultry muscle (An et al., 2010), likely 198 

partially associated with the young age at which poultry are slaughtered. 199 
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2.4 Apoptosis and heat shock proteins (HSPs)  200 

Apoptosis in the postmortem cell is generally acknowledged to occur, based on the occurrence 201 

of typical characteristics including cell shrinkage, phosphatidylserine externalization and 202 

mitochondria alteration (Becila et al., 2017; Ouali et al., 2013). One of the representative 203 

pathways to induce apoptosis is the release of cytochrome C from mitochondria, promoted by 204 

the calcium-activated Bax in turn activating the caspases (Wang et al., 2018). The most 205 

profound effect of apoptosis on the muscle cell is the mediation of proteolysis executed by 206 

caspases (Kemp & Parr, 2012). Regulation of caspases activity has been shown to affect the 207 

degradation of myofibrils (Chen et al., 2011; Huang et al., 2014). Caspase-3 activity was 208 

reported to be negatively correlated with WBSF (r = –0.49 at 24 h of postmortem aging; r = –209 

0.61 at 48 h of postmortem aging) in bull longissimus, and the authors speculated that caspase-3 210 

was associated with advanced proteolysis (Cao et al., 2013; Zhang, Wang, et al., 2013). A 211 

putative mechanism for the participation of caspases in proteolysis is the interaction with the 212 

calpain system, in particular the calpain endogenous inhibitor calpastatin, which is a substrate of 213 

caspases (Kemp & Parr, 2012). The interaction between caspases and calpain system seems to 214 

be multifaceted and complex in postmortem muscle, hence warranting further research.  215 

Heat shock proteins are synthesized in response to cell stress, acting as protectors, 216 

chaperones and restorers of cellular homeostasis. According to their monomeric molecular size, 217 

HSPs can be categorized into five conserved classes, including HSP60, HSP70, HSP90 and 218 

HSP100 as well as the small HSPs (12-43 kDa, e.g., HSP27, HSP20 and αβ-crystallin) (Gusev, 219 

Bogatcheva, & Marston, 2002). The initial role of HSPs is to activate an anti-apoptotic process 220 

in muscle cells, possibly by the following pathways; i) formation of a complex with active 221 

caspases to block their activity and function, ii) binding with substrates of effector caspases to 222 

delay or inhibit proteolysis and iii) restoration of damaged proteins to restrain the initiation of 223 

apoptosis (Lomiwes, Farouk, Wiklund, & Young, 2014). Heat shock proteins are reported to be 224 

biomarkers for the prediction of meat tenderness across a wide range of proteomic studies (see 225 

reviews in Ouali et al., 2013; Picard & Gagaoua, 2017). An in vitro myofibrillar protein 226 

digestion model conducted by Ding et al. (2018) showed that HSP27 might directly or indirectly 227 

interact with caspase-3 and Calpain-1 to decrease their activity and decrease the proteolysis of 228 

myofibrillar proteins. However, the individual contribution of HSPs to meat tenderization is 229 

difficult to elucidate and more investigations on the underlying mechanisms are needed.    230 

2.5 Exploration of protein biomarkers for meat tenderness 231 

Research has been carried out to identify potential protein biomarkers to predict meat tenderness 232 

and reviews on the topic have been conducted (Ouali et al., 2013; Picard & Gagaoua, 2020). 233 

Guillemin, Bonnet, Jurie, and Picard (2011b) conducted a functional interactome analysis of 24 234 

proteins and showed that apoptosis, heat shock protein functions and oxidative stress resistance 235 
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were associated with tenderness although this varied between muscle types. However, HSP’s 236 

beta-1 and beta-6 were identified as robust biomarkers regardless of muscle type, breed and 237 

evaluation method of tenderness (Picard & Gagaoua, 2020). Similarly, MyHC-I (myosin heavy 238 

chain isoforms I), MyHC-IIa and cis-peroxiredoxin showed negative, but MyHC-IIx, parkinson 239 

disease protein 7 and Calpain-1 showed positive, association with tenderness regardless of 240 

breed, the end-point cooking temperature or the country origin of the panelist (Gagaoua, 241 

Terlouw, Richardson, Hocquette, & Picard, 2019). Picard and Gagaoua (2020) conducted meta-242 

proteomics to integrate data across 12 studies. They identified variation between muscles and 243 

candidate biomarkers for beef tenderness could be grouped into proteins of structure and 244 

contraction, protection against oxidative stress and apoptosis, energy metabolism, 70 family 245 

HSPs and proteasome subunits in the longissimus and candidate bio-markers consistent across 246 

muscles were several heat shock proteins.   247 

Despite extensive research over more than a decade, accurate tenderness prediction 248 

using these biomarkers remains a challenge and has not been adopted by the meat industry, 249 

partly because meat tenderization is a complex biological process that depends on many 250 

intrinsic and extrinsic factors along the supply chain (Gagaoua, Monteils, & Picard, 2018). At 251 

present, while being of value in expanding our understanding of the tenderization process, the 252 

value of any of these biomarkers for predicting meat tenderness in a commercial environment 253 

remains to be seen.  This is particularly because before any consideration of industry 254 

implementation, these potential biomarkers require extensive validation not only across species 255 

but also across different carcasses and muscles and also in terms of their accuracy of prediction 256 

for both instrumental and sensory measurements. Furthermore, Purslow, Gagaoua and Warner 257 

(2021) discuss that in order to use proteomics as a tool for identifying biomarkers for meat 258 

quality, there is a need for hypothesis-driven proteomics studies, rather than the current post-hoc 259 

explanations. 260 

2.6 Oxidative and nitrosative stress   261 

Reactive oxygen species (ROS) accumulate in postmortem muscle due to oxidative stress and 262 

altered mitochondrial activity. Oxidation of the amino acid side chains and backbone of proteins 263 

causes protein fragmentation and protein-protein cross-linkages which affects protein function 264 

and activity (Estevez, 2011; Zhang, Xiao, & Ahn, 2013). Meat tenderness can be promoted via 265 

ROS-mediated myofibrillar protein fragmentation (D'Alessandro & Zolla, 2013). Moreover, 266 

moderate oxidation of myofibrillar protein can enhance its susceptibility to Calpain-1 and 267 

caspases and then promote its degradation (Fu, Liu, Ben & Wang, 2020; Smuder, Kavazis, 268 

Hudson, Nelson, & Powers, 2010). However, ROS also cause the inactivation of Calpain-1, thus 269 

decreasing the proteolysis of myofibrillar proteins and inversely regulating meat tenderization 270 

(Lametsch, Lonergan, & Huff-Lonergan, 2008). Antioxidant enzymes including superoxide 271 
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dismutase, catalase, glutathione dismutase, protein DJ-1 and peroxiredoxins are guardians 272 

against ROS to balance the redox state of muscle cell. A range of antioxidant proteins and 273 

enzymes have been identified to vary within postmortem muscles, some of which are reported 274 

as biomarkers for the prediction of meat tenderness (Hwang, Park, Kim, Cho, & Lee, 2005; Jia 275 

et al., 2007). Specifically, superoxide dismutase had higher expression in tender meat 276 

(Guillemin et al., 2011a, b) while peroxiredoxin 2 and 6 were more abundant in tough meat 277 

(Carlson et al., 2017; Jia et al., 2009). Protein DJ-1 is an antioxidant protein playing a protective 278 

role against oxidative stress, and in proteomic studies its expression has been found to gradually 279 

increase during postmortem aging in pork, beef and lamb (Jia et al., 2007; Picard et al., 2014). 280 

Picard et al. (2014) used principal component analyses to demonstrate a relationship between 281 

protein DJ-1 and tenderness, which varied substantially between muscles; DJ-1 concentration 282 

was negatively correlated with tenderness in ST but positively correlated with tenderness in LT 283 

muscle. In contrast, Jia et al. (2009) found that there was no difference in protein DJ-1 284 

expression between bovine longissimus muscles with variable meat tenderness, demonstrating 285 

that clarification of whether there is any relationship between DJ-1 expression and meat 286 

tenderness is required. 287 

The origin of nitrosative stress in postmortem muscle is the production of nitric oxide 288 

(NO) presumably by the activation of the enzyme nitric oxide synthase (NOS), induced by the 289 

hypoxic conditions (Liu et al., 2015; Man, Tsui, & Marsden, 2014) and the reduction of nitrite 290 

and nitrate in the acid postmortem muscle environment (Lundberg, Weitzber, & Gladwin, 291 

2008). Manipulation of NO levels pre-slaughter and postmortem could significantly affect meat 292 

tenderness, although the results have been inconsistent across studies, as extensively discussed 293 

in the review of Liu et al. (2018a). Recently, Hou et al. (2020) reported that shear force was 294 

decreased by NOS inhibitors and increased by NO donors, indicating NO could suppress meat 295 

tenderization. NO and protein S-nitrosylation are involved in postmortem metabolism which 296 

might account for the variation in meat tenderization. A large number of proteins including 297 

glycolytic enzymes, antioxidant proteins and enzymes, myofibrillar proteins, Ca2+ channel 298 

components and heat shock proteins were identified to be S-nitrosylated in pork muscle (see 299 

Table 1; Liu et al., 2018b). Those proteins were proposed to be involved in biochemical 300 

processes including glycolysis and pH decline, calpain autolysis and proteolysis and Ca2+ 301 

release from SR in postmortem muscle (Figure 1). A well-elucidated mechanism is the 302 

inhibition of Calpain- 1 autolysis leading to decreased myofibrillar protein degradation by NO-303 

induced S-nitrosylation modification (Zhang et al., 2018a) and the combination with calpastatin 304 

(Liu et al., 2019a). Glycolysis and pH decline were altered postmortem by manipulating NO 305 

levels in pork longissimus thoracis corresponding to decreased glycogen phosphorylase, 306 

glyceraldehyde-3- phosphate dehydrogenase and pyruvate kinase activities with their improved 307 
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modification of S-nitrosylation (Zhang et al., 2019a). Recently, significant differences in NOS 308 

activity, Ca2+ content, expression and S-nitrosylation modification of RyR1 and SERCA1 were 309 

observed between PSE and normal pork, suggesting NO and protein S-nitrosylation can 310 

putatively play a crucial role in regulating Ca2+ homeostasis (Wang et al., 2019). Moreover, 311 

myofibrillar proteins can also be S-nitrosylated which has been found to affect the susceptibility 312 

to Calpain-1 proteolysis in vitro (Liu et al., 2019b). Hou et al. (2020) utilized a NO donor (S-313 

nitrosoglutathione, GSNO) and NOS inhibitor (Nω-nitro-L-arginine methyl ester hydrochloride, 314 

L-NAME) and incubated them with beef semimembranosus muscle immediately post-slaughter 315 

for 24 h. Results showed that apoptosis-related morphological changes including more 316 

chromatin condensation, nucleus fragmentation, apoptotic body formation, and mitochondrial 317 

swelling were observed in L-NAME groups accompanying with higher caspase-3 and -9 318 

activities while these changes in the GSNO group were retarded compared to the control. It was 319 

suggested that NO may play a negative role in beef apoptosis during postmortem aging. Taken 320 

together, NO and protein S-nitrosylation could exert an important role in the development of 321 

meat tenderness via pleiotropic pathways.  322 

3. Advances in animal and pre-slaughter effects 323 

Meat tenderness is affected by complex interactions of multiple ante- mortem and post- mortem 324 

factors and in this section we review the pre-slaughter factors, with a focus on the animal. 325 

Figure 2 illustrates the interactions between the ante- mortem factors and the affected metabolic, 326 

molecular, and enzymatic processes and systems. 327 

3.1 Breed effects 328 

Breed and genotype determine an animal’s potential for producing tender meat, and the 329 

interaction of genetics with ante- and postmortem environment and management will determine 330 

the ultimate tenderness of the meat from an animal.  Palatability trait differences have been 331 

characterized among cattle breeds (Koch, Dikerman, & Crouse, 1982; Wheeler et al., 2001a, 332 

2004, 2005) and are considered in cross breeding programs.  On average, aged longissimus from 333 

Jersey, Pinzgauer, Piedmontese, Red Poll, South Devon, Angus, and Wagyu tends to be more 334 

tender and longissimus from the Bos indicus breeds tend to be less tender, while a majority of 335 

breeds produce longissimus that is intermediate in tenderness.  Cattle with Bos indicus 336 

inheritance are commonly used in tropical and subtropical environments (Cole, Ramsey, Hobbs, 337 

& Temple, 1964).  The heat tolerance and insect resistance possessed by these breeds, coupled 338 

with their maternal characteristics and advantages from increased heterosis, have made them a 339 

valuable part of beef production in the tropical and subtropical environments (Cole et al., 1964; 340 

Crockett, Baker, Carpenter, & Koger, 1979; Cundiff, Gregory, Koch, & Dickerson, 1986).  341 

However, Bos indicus cattle, especially Brahman and Nellore, have been repeatedly reported to 342 

produce tougher meat than Bos taurus cattle (Koch et al., 1982; Peacock, Koger, & Hodges, 343 
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1982; Crouse, Cundiff, Koch, Koohmaraie, & Seideman, 1989; Johnson, Huffman, Williams, & 344 

Hargrove, 1990; Wheeler et al., 1990a, b, 1996, 2001) due to less calpastatin inactivation and 345 

thus increased calpastatin levels at later postmortem times (Wheeler et al., 1990a; Whipple et 346 

al., 1990; Pringle, Williams, Lamb, Johnson, & West, 1997), resulting in less proteolytic 347 

degradation and slower improvements in tenderness with aging (Whipple et al., 1990; Wheeler 348 

et al., 1990a, b; O’Connor, Tatum, Wulf, Green, & Smith, 1997).  However, numerous other 349 

metabolic differences also may contribute to the reduced tenderness of Bos indicus-influenced 350 

cattle (Wright et al., 2018).  The use of composite breeds comprised of 3/8 or 5/8 Bos indicus 351 

inheritance is common among beef producers to incorporate the positive attributes of Bos 352 

indicus cattle, but breeds with 3/8 or 5/8 Bos indicus such as Brangus, Beefmaster and Santa 353 

Gertrudis still tend to have tougher longissimus on average than Bos taurus breeds (Crouse et 354 

al., 1989; Johnson et al., 1990; O’Connor et al., 1997; Bidner, Wyatt, Humes, Franke, & Blouin, 355 

2002; Wheeler, Cundiff, Shackelford, & Koomaraie, 2010).  For this reason, the Australian 356 

Meat Standards Australia eating quality assurance system for beef predicts lower consumer 357 

scores for any cattle with Bos Indicus content greater than 25% (Polkinghorne et al., 2008a, b).  358 

However, there have been three tropically-adapted Bos taurus breeds (Tuli, Bonsmara, and 359 

Romosinuano) identified that do not have reduced tenderness (Wheeler et al., 2001, 2005).  360 

Since there is as much or more variation within breeds (6 genetic standard deviations) as 361 

between the most extreme breed averages (5 genetic standard deviations) for tenderness, the 362 

opportunity for improving tenderness by selecting seedstock within a breed may be as great, or 363 

greater, than by changing breeds (Wheeler, Cundiff, Koch, & Crouse, 1996).  Differences in 364 

meat tenderness among lamb breeds also have been described (Hopkins & Fogarty, 1998; 365 

Warner, Greenwood, Pethick, & Ferguson, 2010).  Shackelford, Leymaster, Wheeler, & 366 

Koohmaraie (2012) reported that among 10 sheep breeds, Finnsheep, Romanov, and Katahdin 367 

sired lambs had more tender longissimus at 7 days postmortem than did Dorset, Suffolk and 368 

composite (Columbia, Hampshire, Suffolk) sired lambs. Hopkins and Mortimer (2014) include 369 

an overview of the subtle sheep breed effects on eating quality. 370 

 371 

3.2 Major genes 372 

A mutation in the myostatin gene has been associated with the condition in cattle known as 373 

“double muscling” (Arthur, 1995; Grobet et al., 1998; Kambadur, Sharma, Smith, & Bass, 374 

1997; McPherron & Lee, 1997; Smith, Lopez-Corrales, Kappes, & Sonstegard, 1997).  Carcasses 375 

of double muscled cattle yield a greater percentage of retail product than carcasses of normal 376 

cattle (Wheeler et al., 2001) and meat from these animals is more tender, predominantly due to 377 

reduced collagen concentration (Ngapo et al., 2002; Wheeler et al., 2001).  The myostatin 378 

mutation found in the Limousin cattle (F94L) results in improved meat tenderness, but to a 379 
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lesser extent than those in Piedmontese and Belgian Blue cattle (Bennett et al., 2019; Lines, 380 

Pitchford, Kruk, & Bottema, 2009).  Furthermore, F94L interacts with CAPN1 (see section 381 

below) polymorphisms such that the CAPN1 effect on increased tenderness is less pronounced. 382 

  383 

 Callipyge is a muscle hypertrophy condition in sheep that causes dramatic toughening 384 

of the resulting meat, but with variation among muscles (Cockett et al., 1994, 2005; 385 

Koohmaraie, Shackelford, Wheeler, Lonergan, & Doumit, 1995; Carpenter, Rice, Cockett, &  386 

1996; Freking, Keele, Nielsen, & Leymaster, 1998). It is associated with increased calpastatin 387 

activity and hence decreased protein degradation post-mortem by µ-calpain (Lorenzen et al., 388 

2000; Freking et al.,1998; Koohmaraie et al., 1995).  389 

 390 

3.3 Genomic markers 391 

Measures of beef tenderness have been reported to be moderately heritable, with estimates 392 

ranging from 0.30 to 0.53 (Shackelford et al., 1994; Wheeler et al., 1996, 2001, 2004, 2005; 393 

Dikeman et al., 2005).  Smith et al. (2003) estimated that 46% of the variation in beef 394 

tenderness is genetic and 54% is environmental. In Australia, Bos indicus or tropically adapted 395 

breeds have a higher heritability for tenderness (longissimus WBSF h2=0.30; consumer panel 396 

tenderness score h2=0.31) and phenotypic variance compared to Bos taurus breeds (WBSF 397 

h2=0.09; consumer panel tenderness score h2=0.1) (Johnston, Reverter, Ferguson, Thompson, & 398 

Burrow, 2003).  Whereas heritability of WBSF in pork in the Canadian pig population is 39% 399 

(Miar et al., 2014) and in the Australian sheep population is 20 and 36% for longissimus  and 400 

semitendinosus respectively for sensory assessments and 24% for WBSF in the longissimus 401 

(Mortimer et al., 2015).  These data indicate that improving tenderness via genetic selection is 402 

possible.  However, the degree to which a trait is influenced by genes versus environment will 403 

depend on the particular environment and genes of each specific situation (Warner et al., 2010). 404 

 405 

 Historically, in order to improve tenderness, breeding animals with superior genetic 406 

potential must be identified either through progeny testing or by direct measurements on the 407 

breeding animals themselves.  The costs and time requirements associated with accurate 408 

collection of tenderness data has limited the use of progeny testing for tenderness traits in 409 

commercial practice.  The use of genetic marker-assisted selection would allow greater 410 

efficiency in genetic progress with regard to tenderness.  The development and implementation 411 

of genetic markers has been described in some detail (Allan & Smith, 2008; Smith et al., 2003; 412 

Warner et al., 2010).  Single nucleotide polymorphism (SNP) markers with significant utility for 413 

marker-assisted selection have been identified in beef in the calpain system for the CAPN1 gene 414 

(Page et al., 2002, 2004; White et al., 2005) and the CAST gene that codes for the inhibitor of 415 

calpains, calpastatin (Casas et al., 2005, 2006; Schenkel et al., 2006) and in pork (Lindholm-416 
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Perry et al., 2009; Nonneman et al., 2011, 2013; Rohrer, Thallman, Shackelford, Wheeler, & 417 

Koohmaraie, 2005).  In the last 15 years or so, the association of multiple SNPs in both calpain 418 

and calpastatin genes in a wide variety of breeds of cattle, goats, sheep and pigs with variations 419 

in meat tenderness and other aspects of meat quality has been a very active area of research. 420 

Leal-Gutiérrez, Elzo, Johnson, Hamblen, & Mateescu (2019) reviewed the effects of 3 CAPN 421 

SNPs (Capn4751, Capn316, Capn530) and three CAST SNPs (UoG-Cast, Cast2959, Cast2832) 422 

in some detail. Therefore, it appears that markers for both of these genes (CAPN1, CAST) can 423 

be used simultaneously in breeding programs to improve tenderness. Some of these research 424 

population-developed markers (CAPN1 316 and 4751; CAST-T1) have been validated on 425 

independent longissimus samples from USA commercial meat processors (Shackelford, 426 

personal communication) and their value in offsetting some of the negative impact of aggressive 427 

implant strategies on longissimus tenderness has been demonstrated (King et al., 2012).  428 

Additional SNPs have been identified with significant association with pork tenderness (Ji et al., 429 

2018), but need to be validated for commercial pigs.  Genetic markers for tenderness are now 430 

available in commercial SNP chip assays in a variety of formats for high density genotyping 431 

(50K and 770K for beef, 60K for pork, and 50K for lamb) using HD bead-chip assays.  This 432 

technology has allowed development of genomically enhanced expected progeny differences 433 

(EPDs). However, further improvements in the accuracy of reference genomes and continued 434 

improvement in next generation sequencing technology at progressively lower cost have made 435 

genotyping by sequence a feasible option with some advantages.  These advancements will lead 436 

to improved accuracy of whole genome sequence imputation that increases the ability to 437 

identify causal genetic variants and improve genomic selection for traditional and novel traits 438 

like tenderness (Butty, 2019).  439 

  440 

3.4 Growth promotants  441 

Improving the rate and efficiency of growth in market animals, and carcass leanness, are 442 

important economic considerations for livestock producers.  Therefore, the administration of 443 

agents that partition nutrients towards muscle deposition is a common practice in many 444 

countries.  The most common metabolic modifiers used in meat production include anabolic 445 

steroids and β-adrenergic agonists (BAA). At least 90% of steers and heifers fed in the USA 446 

receive anabolic steroid implants (Dikeman, 2007), which can be classified according to their 447 

active ingredient (estrogens, progestins, androgens, or combination).  Of these, the combination 448 

implants at multiple timepoints are considered to be more “aggressive”, because they generally 449 

provide greater increases in growth rate and feed efficiency (Dikeman, 2007).  A wide variety of 450 

products are available commercially and the impact on meat tenderness depends on the kind and 451 

number of implants.  For example, a meta-analysis was used to show that the application of 452 

anabolic steroids reduces consumer tenderness scores by 5 units and increases WBSF by 4.1 N 453 
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(Dunshea, D'Souza, Pethick, Harper, & Warner, 2005).  However, these effects are largely 454 

dependent on the implanting strategy used.  As implanting strategies increase in aggressiveness 455 

(use of combination and/or multiple implants), the negative effect on tenderness is amplified, 456 

particularly when used within 70 days of the harvest date (Dikeman, 2003; Platter, Tatum, Belk, 457 

Scanga, & Smith, 2003).  Swine, poultry, and a small percentage of USA cattle production as 458 

well as many other countries (particularly in Europe), do not use anabolic steroid implants. 459 

 460 

Use of BAA’s, such as ractopamine and zilpaterol, in pigs and cattle, dramatically increases 461 

lean growth.  However, numerous reports indicate that administration of BAA’s has negative 462 

effects on the tenderness of beef and pork (Dikeman, 2003, 2007; Dunshea et al., 2005; Lean, 463 

Thompson, & Dunshea, 2014).  Feeding BAA’s has been reported to increase calpastatin 464 

activity which results in greater muscle hypertrophy and decreased tenderness primarily from 465 

the inhibition of postmortem proteolysis (Koohmaraie et al., 1991, 1996).  These negative 466 

effects on tenderness may be even greater when combined with aggressive anabolic steroid 467 

implant strategies.  In August 2013, the manufacturer of zilpaterol withdrew it from the USA 468 

and Canadian markets after the USA Food and Drug Administration (FDA) received reports of 469 

lameness or lying down of cattle fed zilpaterol (Dunshea, D’Souza, & Channon, 2016). Thus, 470 

some jurisdictions have a zero tolerance level for certain BAA’s and this is likely to impact 471 

export markets and may limit in-country use of a BAA, in order to protect export markets 472 

(Centner, Alvey, & Stelzleni, 2014). Aroeira et al. (2020) recently reviewed the impact of 473 

growth promoting compounds in cattle and pigs including minor negative effects on eating 474 

quality. 475 

3.5 Animal age  476 

Production systems vary throughout the world, and therefore animals are harvested at different 477 

points in their life-cycle.  Animals harvested at very young ages will generally be very lean, and 478 

smaller than those of mature animals.  Therefore, their carcasses may chill more rapidly, 479 

potentially resulting in cold-induced toughening (Cross, Crouse, & MacNeill, 1984).  In 480 

addition, as animals mature, intermolecular cross-links stabilize the connective tissue matrix of 481 

muscle and increased collagen stability is associated with increased toughness (Purslow, 2018).  482 

However, animals undergoing rapid growth will have a higher proportion of newly synthesized, 483 

heat-labile collagen (Aberle, Reeves, Judge, Hunsley, & Perry, 1981).  Therefore, age effects 484 

can be partially mitigated by feeding mature animals a high-energy diet (Miller, Cross, Crouse, 485 

& Jenkin, 1987; Boleman, Miller, Buyck, Cross, & Savell, 1996). However, Purslow (2018) 486 

concludes that although heat-soluble collagen explains some of the tenderness differences 487 

among muscles and ages of animals, there is considerable variation in the strength of this effect.  488 

He further concludes that the future focus should be on the heat-insoluble fraction of collagen to 489 
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develop strategies to reduce cooked meat toughness of some muscles (Purslow, 2018).  Such 490 

strategies are most likely to involve manipulation of the turnover of intramuscular connective 491 

tissue in the live animal by stimulation of collagen degradation and collagen resynthesis 492 

(Purslow, Archile-Contreras & Cha, 2012) even though collagen turnover in muscle is slower 493 

than in some other tissues (Laurent, 1987). This may include supplements of vitamins C and E 494 

(Archile-Contreras, Cha, Mandell, Miller, & Purslow, 2011) and use of selected growth 495 

promotants (Roy, Sedgewick, Aalhus, Basarab, & Bruce, 2015), or selection of animals for 496 

single nucleotide polymorphisms in the matrix metalloproteinase-1 collagenase that is known to 497 

reduce the strength of raw perimysium in cattle (Christensen, Monteavaro & Purslow, 2020). 498 

 499 

3.6 Castration effects on meat tenderness – focus on cattle and pigs 500 

The castration of male domestic animals of most species, with the exception of breeding stock, 501 

has been practiced for centuries. Historically, the main reasons for castration were to control the 502 

reproductive status of females (as often males and females were kept together), to reduce 503 

negative and aggressive behaviors and to fatten animals.  However, in some parts of the world 504 

bull calves from dairy production are sometimes not castrated, and in some countries entire 505 

male pigs are raised to take advantage of the lean and rapid growth.  It should be noted that in 506 

Australia, where traditionally male pigs are not castrated, immuno-castration is used on 65% of 507 

the male pig population, to reduce the risk of boar taint (Dunshea et al., 2016).  Castration of 508 

pigs will likely decrease particularly in the EU, as castration without the use of anaesthetics. 509 

increasingly becomes an animal welfare issue (Prunier et al., 2006). In 2014, the EU passed a 510 

resolution banning surgical castration without anesthetic but as this is voluntary, some countries 511 

in 2020 are still castrating pigs without pain relief (Aluwé et al., 2020).   512 

 513 

 Young, intact males produce more rapid and efficient growth and result in leaner 514 

carcasses than their steer/wether (castrated sheep and goats) counterparts, but are associated 515 

with management problems, most notably behavior (Seideman, Cross, Oltjen, & Schanbacher, 516 

1982; Sales et al., 2014; Goetsch et al., 2011; Nagamine et al., 2017).  In a literature review on 517 

the use of intact males for beef production, Seideman et al. (1982) concluded that meat from 518 

bull carcasses was less tender and more variable than the meat produced by steer carcasses.  519 

Using a meta-analysis,  Sales (2014) demonstrated that rams had higher WBSF values (tougher 520 

meat) than wether castrates and Nagamine and Sunagawa (2017) showed that castrated goats 521 

had lower WBSF and the meat had lower odour/taint scores than uncastrated billy goats.  In the 522 

case of cattle, Cross et al. (1984) suggested that higher concentrations of less-soluble collagen 523 

could contribute to these differences. Dikeman et al. (1993) reported longissimus steaks from 524 

bull carcasses have higher shear force values and less myofibril fragmentation than longissimus 525 

steaks from steer carcasses due to higher calpastatin activity in muscle from bull carcasses.  526 
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Higher incidence of DFD meat in entire male cattle (Tarrant, 1989) and pigs (D'Souza, Warner, 527 

Dunshea, & Leury, 1999) could contribute to decreased tenderness, as intermediate pH is 528 

known to often have increased toughness relative to normal and high pH meat (Purchas & 529 

Aungsupakorn, 1993).  The use of intact boars for pork production has some impacts on 530 

tenderness measured by sensory tenderness, but these are relatively small, being of the order of 531 

3 units on a 100 point hedonic scale (Channon et al., 2018; Channon, Hamilton, D'Souza, & 532 

Dunshea, 2016; Warner, Dunshea, & Channon, 2018; Seideman, et al., 1982).  The magnitude 533 

of these differences in tenderness are similar to those observed with similar increases in carcass 534 

leanness obtained through genetic selection for lean growth and may be an inherent 535 

consequence of the production of leaner meat (Warner et al., 2020). However, there is always a 536 

risk of boar taint with raising intact males which can be overcome with immuno-castration 537 

(Channon et al., 2018). Carcasses can be selected for boar taint using a variety of chemical or 538 

sensory techniques but tainted pork still needs to be used and a further processing does not 539 

necessarily eliminate the boar taint issue (Tørngren, Claudi-Magnussen, Støier, & Kristensen, 540 

2011). 541 

 542 

3.7 Grain feeding  543 

In many countries, cattle, sheep, and goats are commonly placed in feed lots to produce rapid, 544 

efficient growth from a high energy diet.  This practice has been reported to produce heavier, 545 

fatter, and more muscular carcasses, with higher intramuscular fat, compared to forage feeding 546 

(Bowling, Smith, Carpenter, Dutson, & Oliver, 1977; Aberle et al., 1981; Warner, Dunshea, 547 

Gutzke, Lau, & Kearney, 2014).  Concentrate-fed animals also generally produce steaks that are 548 

more tender than steaks from forage-fed animals, except that the increased mass and fat 549 

thickness in grain-fed carcasses, along with higher body temperature, slows chilling, which can 550 

sometimes result in heat-toughening (Warner et al., 2014).  But the improved tenderness of 551 

grain fed animals is likely attributable to increased growth rate associated with increased protein 552 

turnover (Koohmaraie, Kent, Shackelford, Veiseth, & Wheeler, 2002), postmortem proteolysis 553 

(Purchas, Sobrinho, Garrick, & Lowe, 2002; Aberle et al., 1981), collagen solubility (Aberle et 554 

al., 1981), increased marbling and reduced incidence of high pH DFD meat (Warner, Truscott, 555 

Eldridge, & Franz, 1988). 556 

Vitamin D supplementation to improve tenderization has increasingly attracted research 557 

attention. The use of vitamin D is thought to result in increased mobilization of calcium ions 558 

and thus more calpain activity. Indeed, supplementation of vitamin D3 or its metabolite 25-559 

hydroxyvitamin D3 was reported to lead to increased muscle calcium concentration and calpain-560 

induced degradation of troponin-T (Carnagey et al., 2008; Foote et al., 2004; Montgomery et al., 561 

2004). Feedlot supplementation with vitamin D3 and its metabolites has been shown to reduce 562 
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the shear force of meat from heifers and steers (Duffy et al., 2017; Montgomery et al., 2004), 563 

but not cull cow (Sell, Mikel, Xiong, & Behrends, 2004), lamb (Boleman, Mckenna, Ramsey, 564 

Peel, & Savell, 2004), pork (Duffy et al., 2018; Wiegand et al., 2002) or Bos indicus cattle 565 

(Lawrence et al., 2006). It is worth noting that reports on the effectiveness of vitamin D3 on 566 

shear force and sensory tenderness vary in these studies, likely due to differences in level and 567 

type of supplementation, species and breed, carcass characteristics, muscle and aging time. 568 

Thus, vitamin D3 and its metabolite supplementation for the purpose of improved tenderization 569 

requires further research. 570 

It is also worth mentioning that carcass weight has been steadily increasing in most animal 571 

production systems due to various factors, including changes in genetics, animal husbandry, 572 

nutrition, slaughter age and growth promotants. Heavier carcasses present challenges in chilling 573 

and pH-temperature decline management. A substantial amount of research has been conducted 574 

to optimize different chilling technologies (e.g. blast chilling, rapid chilling, very fast chilling, 575 

cryogenic chilling, spray chilling, Rinse&Chill®) (Zhang et al., 2019c). A study examining the 576 

effect of carcass weight on quality of feedlot steers reported heavier carcasses had a faster pH 577 

decline, a slower temperature decline, and passed through the heat shortening window (>35 °C 578 

at pH 6) (Agbeniga & Webb, 2018; Warner et al., 2014). However, in the study of Agbeniga & 579 

Webb (2018), the sarcomere length was not affected by carcass weight, nor was the shear force 580 

after 14 days of aging. Using regression analysis, Okeudo and Moss (2005) found a significant 581 

correlation between carcass weight and shear force of different lamb muscles. On the other 582 

hand, a meta-analysis found no relationship between beef carcass weight and sensory tenderness 583 

(Trefan, Doeschl-Wilson, Rooke, Terlouw, & Bunger, 2013). The mechanism through which 584 

increased carcass weight may influence meat tenderness is multi-faceted due to the 585 

compounding effects of other carcass characteristics such as growth rate (potential effect on 586 

calpains), subcutaneous fat , intramuscular fat, collagen content,   muscle type and aging.  587 

Although it is tempting to recommend further research, these compounding/confounding factors 588 

suggest that accurate description of all these attributes for carcass and quality phenotypes is 589 

critical. This is particularly evident in the lack of reporting of these critical attributes in the 590 

methodology section of many journal publications.  591 

 592 

4. Advances in postmortem factors influencing tenderization, including 593 

cooking 594 

 595 

Postmortem changes in muscle involve complex biological processes which are influenced by 596 

intrinsic and extrinsic factors. An understanding of postmortem physical and biochemical 597 
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changes that impact meat tenderness, including during the cooking process, is therefore crucial.  598 

There are a wide variety of postmortem treatments and conditions that affect the tenderness of 599 

the final product, and a comprehensive review of all of these is not possible here. In this section, 600 

we focus on those which have greatest relevance to two of the molecular mechanisms discussed 601 

above, namely oxidation and post-mortem proteolysis, as well as those that have direct effects 602 

on the integrity of the structure of muscle tissue. Freezing and thawing of meat disrupts 603 

structures and may release calcium ions and affect proteolysis.  Several post-mortem treatments 604 

of raw meat, including pulse electric field and ultrasonic treatments, have a primary effect of 605 

enhancing endogenous proteolysis, whereas hydrostatic and dynamic high-pressure treatments 606 

appear to primarily disrupt meat microstructure without enhancing proteolysis. Treatment of 607 

meat by exogenous (mainly plant-based) enzymes is another postmortem treatment with an 608 

obvious focus on tenderization by proteolysis. The final step of the production-to consumption 609 

chain is the cooking of meat, which brings about its own structural effects, and in its initial 610 

stages may also promote proteolysis. Figure 2 demonstrates the interactions between some of 611 

the post- mortem factors, metabolic and molecular processes and enzymatic systems involved in 612 

meat tenderization. 613 

 614 

4.1 Oxidation 615 

An important postmortem change during meat aging, or during frozen storage, is the potential 616 

for increased levels of oxidation. Postmortem oxidation occurs in both lipid and protein 617 

components, and the link between lipid and protein oxidation has been established (Faustman, 618 

Sun, Mancini, & Suman, 2010).  The negative effects of lipid oxidation on sensory traits are 619 

well recognized but the focus here is on protein oxidation and its effects on tenderization.  620 

Oxidation of myofibrillar and sarcoplasmic proteins has been shown to result in the formation 621 

of carbonyl derivatives and disulfide cross-links. These chemical changes lead to (i) inactivation 622 

of calpains which are essential for the tenderization process and (ii) an increase in toughness 623 

due to myofibrillar protein aggregation. Multiple reviews have focused on the causes, 624 

mechanism and effect of oxidation on meat quality, including tenderness (Bao & Ertbjerg, 2018; 625 

Estevez et al., 2020; Lund, Heinonen, Baron, & Estevez, 2011; Warner, Dunshea, 626 

Ponnampalam, & Cottrell, 2005; Zhang, Xiao, et al., 2013). Minimizing postmortem protein 627 

oxidation is therefore an important approach to improve meat tenderness. 628 

4.1.1 Oxidation during aging and storage  629 

Postmortem oxidation of meat proteins can occur within 24 hours following slaughtering, if 630 

conditions are inducive to oxidation (Rowe, Maddock, Lonergan, & Huff-Lonergan, 2004a). 631 

Xue, Huang, Huang, and Zhou (2012) showed that in-vitro exposure of beef myofibrillar 632 

proteins to H202 and Fe2+ led to a reduction in troponin-T degradation, demonstrating that 633 
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oxidative modifications of myofibrillar proteins changed their susceptibility to Calpain-1. A 634 

similar study on pork longissimus showed that OH·-induced oxidation of myosin leads to 635 

protein polymerization and aggregation, resulting in a reduced proteolytic susceptibility 636 

(Morzel, Gatellier, Sayd, Renerre, & Laville, 2006). In addition, oxidation has also been shown 637 

to decrease activity of Calpain-1, and inactivation of calpastatin (Rowe, Maddock, Lonergan, & 638 

Huff-Lonergan, 2004b). Thus, industry-adoptable approaches, such as supplementing animal 639 

feeds with antioxidants, have been developed to increase protection of myofibrillar proteins 640 

against oxidation during meat aging. A decrease in calpastatin activity and a significant increase 641 

in Calpain-1 activation and proteolysis of troponin-T in steaks from vitamins E and C fed steers 642 

was observed compared to steers fed conventional feedlot diets (Pogge, Lonergan, & Hansen, 643 

2015; Rowe et al., 2004b). Recent research with bovine fibroblasts from longissimus and 644 

semitendinosus suggests vitamins E and C can modulate collagen synthesis and degradation 645 

which have implications for postmortem meat tenderness (Archile-Contreras et al., 2011; 646 

Archile-Contreras & Purslow, 2011).  647 

4.1.2 Oxidation in packaging 648 

The effect of packaging on oxidation status of meat protein has been well established. 649 

Application of high oxygen modified atmosphere packaging (hiOxMAP) in retail display has 650 

been shown to result in a dramatic reduction in both instrumental and sensory tenderness of 651 

different muscles from beef, pork, lamb and poultry meats (Bao & Ertbjerg, 2015; Frank et al., 652 

2017; Fu et al., 2015; Geesink, Robertson, & Ball, 2015; Jongberg, Wen, Tørngren, & Lund, 653 

2014; Lorenzo & Gomez, 2012; Peng et al., 2019). The negative impact of hiOxMAP on eating 654 

quality, including tenderness, of meat, is believed to be a direct result of oxygen-induced 655 

oxidation. Meat packed in hiOxMAP has been shown to have both a loss of free thiol groups 656 

and an increase in total carbonyl content compared to those of meat packed in vacuum (Bao & 657 

Ertbjerg, 2015; Chen, Zhou, & Zhang, 2015; Lund, Lametsch, Hviid, Jensen, & Skibsted, 2007). 658 

These chemical modifications of meat proteins are linked to reduced proteolysis measured by 659 

myofibril fragmentation index (Clausen, Jakobsen, Ertbjerg, & Madsen, 2009) and desmin 660 

degradation (Fu et al., 2015) and increased cross-linking between myosin heavy chains (Bao & 661 

Ertbjerg, 2015; Kim, Huff-Lonergan, Sebranek, & Lonergan, 2010; Lund, Luxford, Skibsted, & 662 

Davies, 2008; Zakrys-Waliwander, O'Sullivan, O'Neill, & Kerry, 2012), cross-linking between 663 

myosin heavy chains and titin (Kim et al., 2010), and decreased Calpain-1’s catalytic activity 664 

(Fu et al., 2015; Lindahl, Lagerstedt, Ertbjerg, Sampels, & Lundstrom, 2010). 665 

Various approaches have been trialed with varying success to reduce the negative 666 

impact of high oxygen modified atmosphere packaging on meat tenderness. These include 667 

lowering the oxygen content (Bao & Ertbjerg, 2015; Resconi et al., 2012; Spanos, Torngren, 668 
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Christensen, & Baron, 2016), injection of calcium lactate/phosphate (Cruzen et al., 2015), 669 

modification of the gas content and headspace (Murphy, O'Grady, & Kerry, 2013; Spanos et al., 670 

2016), use of carbon monoxide and sodium nitrite (Djenane and Roncalés, 2018; Roberts et al., 671 

2017), feeding diets high in anti-oxidants (Ripoll, Joy, & Munoz, 2011), and development of 672 

active and smart packaging materials (Arvanitoyannis & Stratakos, 2012). While studies on 673 

these packaging methods report varying levels of success in suppressing oxidation, their 674 

adoption in industry will depend on further research in cost-benefit analysis, adaptability to the 675 

current supply chain, and food regulations. It is worth noting that oxidation-induced chemical 676 

modifications of proteins differ across different meat types and cuts. For example, desmin 677 

degradation was reduced as a result of hiOxMAP for beef longissimus (Fu et al., 2015) but not 678 

for pork longissimus (Bao & Ertbjerg, 2015). Similarly, a study on packaging of chicken breast 679 

(pectoralis profundus) and thigh (peroneus longus) showed that a similar increase in oxidation 680 

measured by thiol loss and protein cross-linking in both muscles due to hiOxMAP did not result 681 

in the same reduction in sensory tenderness score for the two muscles (Jongberg et al., 2014). 682 

Thus, optimization of MAP packaging for meat retail display will need to be species- and 683 

muscle-specific. While further developments in packaging technologies are on-going, extensive 684 

evidence has shown that vacuum packaging and vacuum skin packaging are ready-to-adopt  685 

alternatives to MAP which can ensure optimal tenderization and eliminate oxidation-induced 686 

toughening of meat. These low/no oxygen packaging systems are reported to result in more 687 

degradation of troponin-T and desmin, less myosin cross-linking, reduced WBSF, and increased 688 

consumer sensory acceptability (Holman et al., 2018). 689 

4.1.3 Oxidation in other meat processing methods   690 

Other postmortem methods for processing of meat, such as freezing/thawing, irradiation, 691 

pressure treatment and cooking, also influence the oxidation status of meat proteins and hence 692 

meat tenderness (Bao & Ertbjerg, 2018; Guyon, Meynier, & de Lamballerie, 2016; Leygonie, 693 

Britz, & Hoffman, 2012; Yu, Morton, Clerens, & Dyer, 2017). Specific settings of the 694 

parameters in these processes, e.g. rate and number of freezing/thawing cycles; magnitude of 695 

pressure; and cooking temperature, have been shown to result in varying levels of protein 696 

oxidation. For instance, a significant increase in protein oxidation, measured as carbonyl 697 

content, in pork longissimus, was observed at 100 °C and 140 °C compared to pork cooked at 70 698 

°C (Bax et al., 2013). Oxidation of meat proteins due to these processes not only affect 699 

tenderization of fresh meat but also protein functionality during subsequent processing, e.g. 700 

processed meat products (Buckow, Sikes, & Tume, 2013; Utrera & Estevez, 2012). Thus, 701 

further research in innovative technologies aiming at mitigating the impact of protein oxidation 702 

in meat is needed to improve both meat quality and subsequent usage. 703 
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4.2 Meat tenderization using exogenous proteases 704 

Traditionally, use of certain plant parts (leaves, stems, seeds, latex, fruits, roots, and pulps, such 705 

as Artocarpus integer, pineapple, papaya, ginger, figs and others (Table 2), to tenderize meat 706 

has been considered important. Although the modern meat industry has been able to reduce 707 

variability in meat tenderness, by implementing accelerated conditioning and aging and use of 708 

electrical stimulation, inherent variation in meat tenderness, means that less than 10% of the 709 

carcass meat is suitable for grilling (Polkinghorne et al., 2008b).  Proteases which break-down 710 

myofibrillar proteins can be endogenous (eg. calpains and cathepsins) and exert their effects in 711 

the animal and during aging (see Warner et al., 2021 for review) or exogenous, with application 712 

to the meat postmortem.  Many of the meat cuts obtained from slaughtered animals could 713 

benefit from the use of exogenous enzymes to reduce the toughness of many meat cuts and add-714 

value (Bekhit, Hopkins, Geesink, Bekhit, & Franks, 2014).   715 

Proteases can be classified as acidic, neutral, or alkaline proteases on the basis of 716 

optimal pH for their activity, as animal, plant, bacterial, fungal, yeast, or marine proteases on 717 

the basis of their source (Table 2); or as endopeptidases and exopeptidases on the basis of their 718 

cleavage position. Comprehensive accounts of protease classification, characteristics, 719 

regulation, and the level of investigation in meat research can be found in Bekhit et al. (2014; 720 

2017) and Tantamacharik, Carne, Agyei, Birch, and Bekhit (2018).  Therefore, the following 721 

section will provide information on recent trends for the use of exogenous proteases to tenderize 722 

meat and make general comments in relation to the potential commercial application.  723 

4.2.1 Plant proteases  724 

Proteases are widely distributed in plants (Tantamacharik et al., 2018) but most research on 725 

meat tenderization has focused on a few cysteine proteases such as papain (papaya latex), 726 

bromelain (pineapple stem), ficin (figs), actinidin (kiwifruit) and zingibain (ginger rhizome).  727 

Papain and bromelain lack substrate specificity towards meat proteins and the extensive 728 

and non-selective hydrolysis of myofibrillar and connective tissue protein results in mushy 729 

texture and generation of ‘off’ sensory notes such as ‘grainy’ texture and ‘bitter’ flavour (Bekhit 730 

et al., 2014). The process needs to be strictly regulated to achieve the right level of tenderness 731 

but can be used to generate tender meat (Barekat & Soltanizadeh, 2018; Ma et al., 2019) and 732 

beef products for older consumers (Botinestean et al., 2018). Actinidin has attracted much 733 

interest (Zhang, Sun, Liu, Li, & Jiang, 2017; Zhu, Kaur, Staincliffe, & Boland, 2018; Bekhit et 734 

al., 2018a, b; Gong, Morton, Bhat, Mason, & Bekhit, 2019), as has zingibain (Naqvi, Thomson, 735 

Ha, Campbell, McGill, Friend, & Warner, 2021) due to their  mild and effective tenderization 736 

(Han, Morton, Bekhit, & Sedcole, 2009). A very effective tenderization process involved an 737 

actinidin-containing preparation which was infused pre-rigor and led to early activation of 738 
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Calpain-2 and very tender meat at 5 hrs postmortem (Han et al., 2009). Less known plant 739 

proteases with potential tenderizing effects include extracts of asparagus (Ha, Bekhit, Carne, & 740 

Hopkins, 2013; Yonezawa, Kaneda, & Uchikoba, 1998), Sarcodon aspratus (mushroom 741 

species; Kim, Lee, & Ryu, 2015), crude mango peel (Dhital & Vangnai, 2019) and Spondias 742 

cytherea roots (plum tree species; Ahmad et al., 2019). 743 

Plant proteases have been extensively studied, however according to the best knowledge 744 

of the authors, these enzymes are not used in meat products commercially.  This is likely due to 745 

various issues related to formulation, stability and control of the enzymes post-treatment which 746 

are discussed in full detail in Bekhit et al. (2017) and need to be addressed in order for future 747 

uptake in the meat industry. Many of these issues are related to the fact that commercial 748 

protease preparations contain multiple complex proteins and proteases (Ha, Bekhit, Carne, & 749 

Hopkins, 2012, 2013) that exhibit variable hydrolytic activities and can lead to over-750 

tenderization and production of ‘off’ sensory notes, as mentioned above for papain and 751 

bromelain. The variability in purity of the proteases in commercial preparations would result in 752 

different tenderization outcomes. Another issue with plant protease extracts is that they can 753 

carry some flavor of their own that may be acceptable to some and unacceptable to others, such 754 

as occurs with ginger extracts containing zingibain. 755 

4.2.2 Proteases from bacteria and fungi  756 

Proteases from bacterial and fungal sources have been extensively used in food and 757 

biotechnological applications. The microbial-derived proteases have several advantages 758 

compared to plant-derived proteases. The microbes can be cultured relatively quickly under 759 

strict conditions that allow more control over the production of the proteases. The expression 760 

and activity of the proteases can be manipulated using modified production conditions or 761 

cloning.  The cloning of an aspartic protease gene (RmproA) in Rhizomucor miehei CAU432 762 

fungi is an example which resulted in a protease with the same efficacy as papain for 763 

tenderizing pork (Sun et al., 2018). 764 

Microbial-derived proteases are commercially available from non-pathogenic sources 765 

and many have been approved by regulatory authorities. Many of these microbial-derived 766 

proteases have higher specificity and are easier to control than plant proteases (Ashie, Sorensen, 767 

& Nielsen, 2002). However, many consumers are uncomfortable with the concept of bacterial or 768 

fungal additives to food products. A good strategy to overcome this negative perception is to 769 

target probiotic bacteria as sources of effective proteases, which could be used for the dual 770 

function of gut health, and meat tenderization (Chanalia, Gandhi, Attri, & Dhanda, 2018).  771 

 772 

4.2.3 General comments 773 
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It is difficult to achieve controlled proteolysis with broad substrate specificity proteases 774 

(Schaller, 2004) and this has resulted in undesirable over-tenderized product. This may not be a 775 

problem if the final product is designed for infants, seniors or patients who may find chewing 776 

difficult. Mild tenderizing proteases (microbial-derived proteases, zingibain and actinidin) are 777 

probably easier to control and more available compared to plant proteases which are often 778 

limited by geographical or production issues. Pre-rigor infusion has not been a commercial 779 

reality until recently.  The development of Rinse & Chill® technology makes the application of 780 

compounds such as actinidin to pre-rigor carcass meat a viable option. Recent studies have 781 

combined proteases and emerging technologies, such as ultrasound (Barekat & Soltanizadeh, 782 

2018) and high pressure processing (Ma et al., 2019), and show promise for new strategies to 783 

improve distribution within the muscle, facilitate better interaction between proteases and 784 

ultrastructural proteins, and hence allow greater control of tenderization.   785 

4.3 Freezing/thawing effects on tenderness 786 

The freezing of meat produces ice crystals, the size and location of which depend on freezing 787 

rate and temperature. Rahelić, Gawwad, & Puač (1985) showed that ice crystals formed in the 788 

extracellular space at slow freezing to -10°C, intracellularly and extracellularly at -20°C, and 789 

intracellularly at temperatures between -33°C and -196°C. In their experiments, lower 790 

temperatures were accompanied by faster freezing rates. Ultrastructural studies on these frozen 791 

specimens (Rahelić et al., 1985) revealed lateral separation of muscle fibers at -10 and -20°C 792 

and disruption of intracellular structures below -33°C.  Dobraszczy, Atkins, Jeronimidis, and 793 

Purslow (1987) demonstrated that the mechanical properties of beef semitendinosus muscle 794 

frozen to -21°C and then aged at temperatures between -5°C and -30°C undergo various 795 

transitions, with a peak of work to fracture at temperatures between -10 and -15°C, indicating 796 

that the varying location of ice crystals and the plasticity due to unfrozen water affect the 797 

properties of the frozen material.  Thawing rates and methodologies (ambient temperature, 798 

chilled temperature, ohmic, acoustic, high-pressure, microwave, etc.) can also vary greatly and 799 

slow rates of thawing produce higher drip losses (Akhtar, Khan, & Faiz, 2013), with the 800 

possibility of reformation of larger ice crystals in slow thawing. Zhang and Ertbjerg (2018) 801 

interpreted the reduction in water-holding of frozen versus non-frozen pork loin as evidence of 802 

myofibrillar protein denaturation during the freeze/thaw process.  803 

Locker and Daines (1973) found small increments of tenderization in beef sternomandibularis 804 

after repeated freeze-thaw cycles. Winger and Fennema (1976) used the same muscle to 805 

demonstrate that reductions in shear force on aging occurred more rapidly in frozen samples 806 

than non-frozen samples.  Crouse & Koohmaraie (1990) found that meat aged after freezing had 807 

lower cooked shear force values than meat frozen after the same aging times.  While 808 

Hergenreder et al. (2013) reported decreases in WBSF in beef longissimus but not gluteus 809 
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medius due to freezing, no significant effects of freezing on sensory tenderness were found.  810 

Similarly, Lagerstedt, Enfalt, Johansson, and Lundström (2008)  concluded that freezing and 811 

aging decreased peak shear force values, but sensory panelists perceived meat chilled for a 812 

similar aging period to be more tender, possibly due to a higher perception of juiciness in the 813 

chilled versus frozen samples. Grayson, King, Shackelford, Koohmaraie, and Wheeler (2014) 814 

concluded that freezing or freezing and aging does decrease slice shear force measures of 815 

toughness by 10-20% in beef longissimus, although the effect is less pronounced for beef 816 

semitendinosus, with an increase in proteolysis (as measured by desmin degradation) matching 817 

the decrease in shear force. In addition, Kim et al. (2018), examining pork loins subjected to 818 

different ageing/freezing/thawing regimes, reported ageing prior to a fast freeze/thaw cycle was 819 

an effective method to improve tenderness. Thus, some structural damage caused by ice crystals 820 

in frozen meat followed by enhanced proteolysis after thawing does seem to weaken the muscle 821 

structure, although the effects can vary greatly with freezing rate, temperature, thawing rate and 822 

method, and also between muscles and breeds (Aroeira et al., 2016). However, the effects on 823 

sensory tenderness may be confounded by decreased perception of juiciness.  Emerging 824 

technologies to assist with freezing and thawing, including the use of high pressure, electrical 825 

and magnetic fields, ultrasound, microwave, and antifreeze protein, have shown promising 826 

results (Cheng et al., 2017; Zhan et al., 2018). By utilizing these physical factors during the 827 

freezing and thawing processes, ice crystal formation, migration and distribution in meat are 828 

manipulated to minimize the impact on water holding capacity and texture. Our understanding 829 

of the effect of these technologies on the tenderness of frozen/thawed meat is limited, compared 830 

to other supply chain factors, thus extensive amount of further research is required. Such 831 

research should be targeted towards intrinsic meat factors that are known to influence the rate of 832 

freezing and thawing, e.g. species, muscles, intramuscular fat, post-mortem biochemistry and 833 

ageing status of the meat. 834 

4.4 High pressure, ultrasonics and pulsed electric field for tenderization  835 

In recent years, much interest has been paid to developing more efficient and sustainable 836 

technologies to tenderize meat, or accelerate the tenderization process (Warner et al., 2017). The 837 

potential use of pulsed electric fields, ultrasound, muscle stretching techniques (Tenderstretch, 838 

Smartstretch™ and PiVac™, see Warner et al, 2017 for review) and pressure-inducing 839 

techniques (high pressure processing, hydrodynamic and shockwave) have been investigated for 840 

their potential meat tenderizing effects. Comprehensive reviews on the topics that describe 841 

principles, mode of action, effect on meat quality and future prospects of the various 842 

technologies are available (Troy, Ojha, Kerry, & Tiwari, 2016; Alarcon-Rojo et al., 2019; Bhat, 843 

Morton, Mason, & Bekhit, 2018a, 2019a; Warner et al., 2017).  A meta-analysis of literature on 844 

emerging technologies demonstrated that, across a number of studies, HPP was the most 845 
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effective technology to reduce the WBSF of meat (Warner et al., 2017). The only cautionary 846 

note was that many of the technologies only had a limited number of studies, whereas HPP 847 

technology had 23 studies, compared to, for example, PEF, which had only 12 studies. 848 

 849 

4.4.1 High pressure – hydrostatic and hydrodynamic 850 

A recent meta-analysis of 23 experiments and 216 treatments on high pressure processing (HPP) 851 

applied to beef, sheepmeat, pork and chicken showed that the maximum tenderization occurred 852 

using 68-80 oC at 100-150 MPa, and significant tenderization also occurred under HPP 853 

conditions of 35-60 oC and 100-150 MPa (Warner et al., 2017).  Recent studies have focused on 854 

exploring the mechanism of action for the tenderizing effect of HPP (high hydrostatic pressure) 855 

(Morton et al., 2017; Morton, Lee, Pearson, & Bickerstaffe, 2018; Zhang et al., 2018b; Zhang, 856 

Pan, & Wu, 2018). Beef hot-boned within 1 h of slaughter, at a temperature of 30-35°C, treated 857 

with HPP (175 MPa, for 2 min) and chilled to -1°C for 1 day,  resulted in 60% and 43% lower 858 

WBSF in longissimus thoracis and gluteus medius, respectively and better sensory scores 859 

compared to  controls (Morton et al., 2017).  These results were similar to the effect of chiller 860 

aging for 28 days.  The tenderizing effect of HPP was subsequently confirmed using the same 861 

HPP conditions (175 MPa, for 2 min) for longissimus thoracis samples from prime beef and 862 

bulls and resulted in 63% and 70% lower WBSF, respectively, and better sensory scores 863 

(Morton et al., 2018). Electron microscopy revealed that HPP had caused significant disruption 864 

to the sarcomere structure and led to a loss of network integrity, but this did not appear to be 865 

related to proteolysis, as HPP resulted in less activation of Calpain-1, shorter sarcomeres and 866 

lower myofibrillar fragmentation (MFI) (Morton et al., 2018). This suggested a lack of 867 

involvement of Calpain-1 in the observed tenderizing effect of HPP. Contrary to these findings, 868 

Zhang et al. (2018b) reported that pork subjected to HPP treatment (range 0-400 MPa, for 10 869 

min at 20°C and kept at 4°C before treatment) within 2 h of slaughter showed higher MFI, an 870 

indication of increased proteolysis.  HPP treatment of Calpain-2 and Calpain-1 and calpastatin 871 

in saline resulted in a small decrease in the Calpain-1 activity and a substantial decrease in 872 

calpastatin activity, suggesting a role for the calpain system in pork tenderization by HPP 873 

(Zhang et al., 2018b) which is in contrast to previous findings. Furthermore, the authors 874 

reported that HPP prevented rigor development and thus it appears that mechanical and 875 

biochemical factors may explain the tenderizing effects of HPP of pork. In both studies, it is 876 

likely that exposing bone-less meat samples to low temperatures during either sampling or post-877 

treatment storage would induce cold shortening, which may have been more severe in beef 878 

stored at -1°C compared to pork that was stored at 4°C. Assuming sarcomere shortening 879 

occurred (due to cold-induced shortening), this would potentially hinder access of calpain to its 880 

substrates (Weaver, Bowker, & Gerrard, 2008) in beefand thus may explain the low proteolysis 881 
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observed in the samples. Although Wheeler and Koohmaraie (1999) did not find any evidence 882 

for this in sheep longissimus. The important information from these studies is that HPP is 883 

capable of tenderizing meat either mechanically or through other systems without the 884 

involvement of calpains. A 30% to 80% reduction in WBSF has been found with the application 885 

of HPP to post-rigor meat, but this required a processing temperature above 50-60°C (Warner et 886 

al., 2017).   887 

Compared to high hydrostatic pressure (high pressure processing) for which there are 888 

numerous references, there are very few references on the application of high hydrodynamic 889 

pressure (shockwave) for meat tenderization (see review by Warner et al., 2017 for the 890 

references for both high hydrostatic and hydrodynamic pressure).  Chian et al. (2019) reported 891 

that shockwave treatment caused an 11% reduction in the WBSF of beef brisket. Earlier 892 

research on shockwaves by Bolumar, Bindrich, Toepfl, Toldrá, & Heinz (2014) reported 18% 893 

reduction in the WBSF of beef loin steaks and reported it was caused by physical disruption. 894 

 895 

4.4.2 Ultrasonication 896 

High intensity ultrasound (HIU) at frequencies typically between 20-40 KHz produces 897 

cavitation in the intramuscular fluid when applied to raw meat, and this is thought to have two 898 

possible effects: (i) direct disruption of myofibrillar, cell membrane and connective tissue 899 

structures, and (ii) potentiation of proteolysis through the release of enzymes and effects on 900 

calcium release.  These mechanisms have been reviewed at length by Alarcon-Rojo and 901 

colleagues (Alarcon-Rojo, Carrillo-Lopez, Reyes-Villagrana, Huerta-Jiménez, & Garcia-902 

Galicia, 2019; Alarcon-Rojo, Janacua, Rodriguez, Paniwnyk, & Mason, 2015). Chang, Wang, 903 

Tang, and Zhou (2015) reported that HIU disrupted intramuscular connective tissue, reducing 904 

the thickness of perimysium and disrupting endomysium.  However, the study did not reveal the 905 

length of time of storage at 4°C of specimens between application of ultrasound and the time of 906 

testing.  Similarly, Chang, Xu, Zhou, Li, & Huang (2012) reported that HIU weakened the 907 

thermal denaturation of collagen in meat (but not its heat-solubility). However, their 908 

measurements of thermal stability were taken after storage of meat samples at 4°C for up to one 909 

week after ultrasonication, so that accelerated proteolysis was a possible contributor and the 910 

reported effects cannot be ascribed to connective tissue disruption alone. Other studies focus on 911 

ultrasonic disruption of myofibrillar structures. Kang, Gao, Ge, Zhou, and Zhang (2017) and 912 

Stadnik, Dolatowski, and Baranowska (2008) reported disrupted Z-discs and swollen myofibrils 913 

after HIU treatment, but both of these studies also stress the acceleration of proteolysis during 914 

the aging process.  As Alarcon-Rojo et al. (2019) pointed out, the numerous studies on the 915 

effects of ultrasound on meat tenderness are difficult to interpret due to the wide range of 916 

ultrasonic intensities and treatment times employed, as well as the variable times between 917 
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ultrasonic treatment and measurement of biochemical, structural and tenderness parameters, 918 

However,  a mix of physical weakening of muscle structures and accelerated proteolysis by 919 

release of cathepsins and calcium ions that activate calpains was likely (Alarcon-Rojo et al., 920 

2019). 921 

 922 

4.4.3 Pulsed electric field  923 

Pulsed electric field (PEF) technology has been the subject of considerable recent research 924 

activity and has been critically reviewed by Bekhit et al. (2017) and Bhat et al. (2019a).  The 925 

first study to document a tenderizing effect of PEF in beef (Bekhit et al., 2014) reported an 926 

average of 19% reduction in WBSF relative to untreated samples. A subsequent study (Bhat et 927 

al., 2019a) documented the tenderizing effect but highlighted it was dependent on the muscle 928 

type and the status of the meat (pre- or post-rigor). A major concern for PEF use in pre-rigor 929 

meat is the heat generation that could lead to a cooking and toughening effect if high PEF 930 

intensity is used. Recent studies demonstrated PEF led to early activation of Calpain-2 and 931 

increased the proteolysis of desmin and troponin-T (Bhat, Morton, Mason, & Bekhit, 2019b, c). 932 

However, the tenderizing effect of PEF is much lower compared with that achieved by HPP 933 

(Warner, et al., 2017). Interestingly, PEF treatment has been shown to affect connective tissue 934 

and cause a reduction in the denaturation temperature of connective tissue and increased 935 

collagen solubilization at 60°C and 70°C (Alahakoon, Oey, Silcock, & Bremer, 2017). Although 936 

PEF has promise in tenderizing meat, there are several obstacles that need to be addressed. 937 

According to Bekhit et al. (2017), heat generation during the treatment of fresh meat could 938 

negatively affect important quality attributes such as color, color stability, and water holding 939 

capacity. Commercial application will need a balance between the effective use of PEF and 940 

excessive heating. Furthermore, all reported studies have used isolated muscle tissue and no 941 

research on intact composite samples (containing muscle, connective tissue, fat and bone) has 942 

been reported. It is conceivable that non-uniform and uneven treatment distribution in non-943 

homogenous material, such as meat, would occur and the effectiveness of the treatment would 944 

vary with the composition of the sample. The upscaling of PEF technology to suit meat 945 

applications is another technological hurdle required for commercial use of the technology. 946 

Most PEF experiments have used parallel plates less than 10 cm apart and fabricated meat. 947 

Processing of larger cuts would require higher voltages to generate sufficient electric field 948 

strength, with increased risk of heating.  949 

Stretching is another technology designed to improve meat tenderness. Stretching can be 950 

applied at the carcass level (tenderstretch and tendercut) or at the primal/cut level (PiVac® and 951 

Smartstretch™). The basic principle behind stretching of meat is to minimise sarcomere 952 

shortening during rigor mortis. Several reviews are available with good summaries of different 953 
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stretching methods and usage (Bekhit et al., 2014; Sørheim & Hildrum, 2002; Warner et al., 954 

2017). While tenderstretch has been more widely adopted by selected meat processors 955 

compared to other stretching methods, most likely due to its easier adoptability, some of the 956 

issues commonly raised by processors include chiller space limitation, boning efficiency, primal 957 

shape changes and yield (Condon, 2019). Tenderstretch has been incorporated in Meat 958 

Standards Australia grading scheme. 959 

In summary, there are a range of post-mortem treatments of meat that impact tenderness 960 

either through direct disruption of myofibrillar structure or accelerated proteolysis, or a 961 

combination of both.   Figure 3 shows an estimation from the meta-analysis of Warner,  962 

McDonnell, Bekhit, Claus, Vaskoska, Sikes, Dunshea, & Ha (2017) of the relative benefits of a 963 

subset of these techniques, compared to treatments administered to live animals, in terms of 964 

changes to cooked meat tenderness.   965 

 966 

4.5 Changes in tenderness during cooking 967 

Cooking is the final step prior to consumption and has a significant effect on sensory qualities. 968 

This section examines the impact of cooking on tenderness, with a focus on changes in protein 969 

conformation and degradation. Extensive research has been conducted on heat-induced 970 

denaturation of major meat proteins. These changes in the secondary structure can be observed 971 

by differential scanning calorimetry (DSC) and spectroscopic methods, such as Raman and from 972 

Fourier Transform spectroscopy. DSC thermograms of meat consist of three or more major 973 

peaks, also known as transition temperatures, which are usually associated with the denaturation 974 

of major proteins and changes in meat. When conducting DSC, care should be taken when 975 

interpreting transition temperatures of major meat proteins that overlap and the process of 976 

denaturation should be regarded as a continuous process (Vaskoska et al., 2021a). Denaturation 977 

of actin and myosin has been associated with tougher meat, and collagen denaturation has been 978 

linked to a decrease in firmness (Martens, Stabursvik, & Martens, 1982). The extent of collagen 979 

denaturation is dependent on heating temperature and heating rate. Lattore, Velazquez, and 980 

Purslow (2018) showed that the temperature, at which collagen denatured (transition 981 

temperature), increased with increasing heating rate (Figure 4).  About 5 % denaturation of 982 

collagen can be achieved through long-time, low-temperature (LTLT) cooking method in beef 983 

cooked at 60°C for 24 hours (Latorre, Palacio, Velázquez, & Purslow, 2019; Purslow, 2018). 984 

Similarly, increased tenderness in pork can be achieved with LTLT cooking which is related to 985 

solubilized collagen and reduced perimysial thickness (Li et al., 2019). Spectroscopic methods 986 

have been used to link meat tenderness to specific changes in the secondary conformation of 987 

proteins (Beattie, Bell, Borggaard, & Moss, 2008, 2004; Schmidt, Scheier, & Hopkins, 2013). 988 
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While α- helices in muscle protein conformation are associated with greater toughness in bovine 989 

semitendinosus and ovine longissimus (Beattie et al., 2004; Schmidt et al., 2013), an increase in 990 

aggregated β-sheets has also been related to greater WBSF in porcine longissimus (Beattie et al., 991 

2008). It is noteworthy that changes in content of α- helix and aggregated β- sheet are 992 

continuous with an increase in temperature. On the other hand, the level of tenderness fluctuates 993 

along the course of cooking as shown in Christensen, Purslow and Larsen (2000) and Vaskoska 994 

et al. (2020). Thus, protein conformational change alone cannot fully explain the tenderness of 995 

cooked meat.  996 

Another possible factor contributing to tenderness of meat is proteolysis during 997 

cooking. The role of calpains in tenderness of cooked meat remains largely unreported, most 998 

likely due to calpain inactivation at high temperature. However, desmin (whose degradation by 999 

Calpain-1 is a well-established marker of meat tenderization during aging) has been shown to be 1000 

further degraded during cooking of porcine longissimus thoracis et lumborum (Ertbjerg, 1001 

Christiansen, Pedersen, & Kristensen, 2012), suggesting involvement of cathepsins in 1002 

proteolysis occurring during cooking of meat. Cathepsins are endogenous carboxyl proteases in 1003 

muscle which have generally been considered to have no contribution, or a minor contribution, 1004 

to tenderization during aging (Warner et al., 2020). However, recent studies have suggested 1005 

cathepsins remain active during cooking, possibly with increased activity between 53 and 63 °C 1006 

(Christensen, Ertbjerg, Aaslyng, & Christensen, 2011). Injecting pre-rigor lamb with aspartyl 1007 

protease inhibitor pepstatin, and aspartic protease inhibitor 1,2-epoxy-3-nitrophenoxypropane 1008 

(EPNP), resulted in increases in WBSF (from 57 to 64 N, and from 60 to 80 N, respectively) of 1009 

lamb longissimus cooked at 60 °C (King & Harris, 1982). Similarly, the activity of cathepsins 1010 

B+L was negatively correlated (r =-0.50) with the WBSF of cooked porcine longissimus 1011 

(Christensen et al., 2011).  In addition, Vaskoska et al. (2021b) showed that inhibition of 1012 

cathepsins during heating of muscle fibre fragments causes a change in longitudinal and 1013 

transverse shrinkage, both of which were related to meat tenderness.  These studies together 1014 

indicate that cathepsins may contribute to tenderness of meat, particularly when cooked under 1015 

conditions that are conducive to their proteolytic activity, e.g. LTLT cooking. 1016 

5. Summary and further research 1017 

The importance of tenderness to the sustainability of the meat industry is recognized 1018 

because it has a strong influence on the consumers acceptance of the quality of the meat they 1019 

purchase, thus determining repeat purchase.  There have been many advances in knowledge 1020 

since the 1970’s, on the factors affecting meat tenderness from a structural, muscle protein, 1021 

biochemical and technological point of view.  1022 
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The value of identifying biomarkers for prediction of meat tenderness from proteomic 1023 

studies at this stage appears to be mainly in expanding our understanding of the tenderization 1024 

process.  This is partly because the complex processes associated with tenderisation post-1025 

mortem rely on many factors in the supply chain.   For this reason, some have predicted that 1026 

single protein biomarkers will not be likely to accurately or reliably predict meat tenderness 1027 

(Starkey, Geesink, Collins, Oddy, & Hopkins, 2016) whereas we suggest potential biomarkers 1028 

still need extensive validation across species, carcasses and muscles.  In addition, the role of 1029 

collagen in tenderness has been overlooked in proteomic studies, likely because it is very 1030 

challenging to isolate and purify (Warner et al., 2021).   1031 

Collagen has not only been overlooked in recent proteomic studies, but also there is a 1032 

general lack of research on the contribution of collagen to meat tenderness. This is particularly 1033 

in light of the data showing the post-mortem degradation of collagen (Sylvestre et al., 2002), the 1034 

possible role of Vitamins C and E in collagen synthesis (Archile-Contreras et al., 2011) and 1035 

potential for manipulation of the pools of heat-labile collagen in the animal and post-mortem 1036 

(Purslow, 2014; 2018).  Hence future research on tenderness should include a focus on the 1037 

changes in collagen in the animal, post-mortem during ageing and also during cooking.  This 1038 

will assist in developing strategies to reduce cooked meat toughness of some animals and 1039 

muscles. 1040 

Many hypothesis-driven studies have been conducted on effects of genetic, nutritional and 1041 

environmental and molecular factors influencing meat tenderization whereas proteomic studies 1042 

have focused on generating post-hoc hypotheses for the role of proteins in meat quality 1043 

(Purslow et al., 20201. These molecular studies have been useful in identifying the important 1044 

role of energy metabolism and new insights of apoptosis and proteases other than calpain in 1045 

protein breakdown post-mortem.  Recent research has highlighted the importance of considering 1046 

the interaction between different proteases including between caspases, cathepsins and the 1047 

calpain system which seems to be multifaceted and complex in postmortem muscle. Recent data 1048 

shows that proteolysis, which is initiated in the meat during ageing, continues during heating 1049 

and cooking (Vaskoska et al., 2021b), which challenges some of the traditional thinking that 1050 

proteolysis ceases once cooking occurs.  Further research on the interaction between the 1051 

protease systems in animals, during processing and storage and also during cooking warrants 1052 

further research.  1053 

The application of processing technologies and enzymes for advanced meat tenderization has 1054 

been ongoing. Critically, evidence for substantial tenderization of very tough muscles has had 1055 

most success with high hydrostatic pressure processing and also with plant-derived enzymes such 1056 

as ginger and kiwifruit.  Importantly, these technologies and enzymes are far more effective in 1057 
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tenderizing than any toughness arising to hormonal growth promotants, genetics or nutrition of 1058 

the animal.  The research on processing technologies and enzymes require further validation on 1059 

muscles other than the longissimus and also in a wider range of carcasses and species.  In addition, 1060 

investigation of the molecular and biological mechanisms underpinning these technologies and 1061 

enzymes will enable advances in understanding in addition to industry application.  1062 

The research conducted on meat tenderness has allowed eating quality assurance programs 1063 

to be developed around the world and in some countries, this has resulted in premium prices for 1064 

‘quality assured tenderness’.  Future research should continue to advance the field to enable 1065 

innovations in the meat industry. 1066 
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Table 1. S-nitrosylated proteins and SNO-modified cysteine sites identified from pork 2040 

during postmortem aging (adapted from Liu et al, 2018b). 2041 

Protein Accession Peptide sequence Cys-site A0  A3 
Std 

A0 

Std 

A3 
P-value 

Aldolase C  F1RJ25 
KGVVPLAGTDGETTTQGLDGLSER

C
1AQYKKD 

1352 1.005 1.744 0.046 0.066 0.0058 

Alpha-Actinin-1 I3LIK6 
R.LHKPPKVQEKCQLEINFNTLQTK

L 
112 0.618 0.946  0.013  0.043 0.0002 

ATP-dependent 6-

phosphofructokinase 
Q2HYU2 RLPLMECVQVTKD 351 0.844 1.097 0.117 0.069 0.0325 

ATP-dependent 6-

phosphofructokinase 
Q2HYU2 RIFANTPDSGCVLGMR.K 709 0.935 1.297  0.007  0.071 0.0010 

Beta-Enolase Q1KYT0 KFGANAILGVSLAVCKAGAAEKG 119 0.595 0.638 0.107 0.120 0.6703 

Beta-Enolase Q1KYT0 KTGAPCRSER.L 399 1.392 2.174  0.084  0.189 0.0028 

Beta-Enolase Q1KYT0 KVNQIGSVTESIQAC]KL 357 0.968 1.338  0.006  0.061 0.0005 

Glucose-6-phosphate 

isomerase 
F1RNU9 KMIPCDFLIPVQTQHPIR.K 

404 
0.786 1.038 0.036 0.030 0.0008 

Glutathione reductase F1RX66 RKTKCVMKM 432 0.565 0.720 0.012 0.045 0.0047 

Glyceraldehyde-3-

phosphate 

dehydrogenase 

Q0QES9 KIVSNASCTTNCLAPLAKV 

131 

0.789 1.563 0.009 0.124 0.0004 

Glyceraldehyde-3-

phosphate 

dehydrogenase   Q0QES9 

RVPTPNVSVVDLTCRL  222 0.864 1.502 0.077  0.222 0.0093 

Heat shock protein HSP 

90-alpha 
O02705 KKTKFENLCKL 573 0.603 0.793 0.051 0.090 0.0355 

L-lactate dehydrogenase 

A chain 
P00339 KNRVIGSGCNLDSARF 163 0.989 1.940 0.057 0.174 0.0008 
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1The cysteine in red means that was modified by S-nitrosylation.  2042 

2The amount of specific SNO-sites modification in A0 and A3 samples was relative to 2043 

that of G100 samples. A0 and A3 represent the samples for aging 0 and 3 d of pork 2044 

longissimus thoracis muscle, respectively and G100 represents the sample for 100 µM  S-2045 

nitrosoglutathione (GSNO, a NO donor) incubation with A0 protein sample. 2046 

 2047 

  2048 

L-lactate dehydrogenase 

C chain 
Q9TSX5 RVIGSGCNLDSARF 163 0.912 1.853  0.016  0.045 <0.0001 

Malate dehydrogenase P11708 KAICDHVR.D 251 0.771 1.141 0.013 0.056 0.0004 

Malate dehydrogenase P11708 KVIVVGNPANTNCLTASKS 137 0.913 1.514  0.054  0.006 <0.0001 

Phosphoglycerate kinase1 Q7SIB7 KAAIPSIKFCLDNGAKS 50 0.926 1.720 0.053 0.181 0.0019 

Phosphoglycerate kinase1 Q7SIB7 
KIGQATVASGIPAGWMGLDCGPE

SSKKY 
316 0.912 1.383  0.003  0.07  0.0003 

Phosphoglycerate kinase1 Q7SIB7 KACADPAAGSVILLENLRF 108 0.677 0.846  0.068  0.088 0.0590 

Protein DJ-1 F1RII4 KVTVAGLAGKDPVQCSR.D 46 0.806 1.504 0.030 0.037 0.0024 

Sarcoplasmic\endoplasmi

c reticulum calcium 

ATPase1 

F1RFH9 RANACNSVIRQ 471 0.831 2.221 0.021 0.130 <0.0001 

Titin / KKTTCKLKM 2352 0.652 0.862 0.049 0.010 0.0019 

Triosephosphate 

isomerase 
Q29371 KIAVAAQNCYKV 67 0.787 1.548 0.042 0.206 0.0033 

Triosephosphate 

isomerase 
Q29371 RIIYGGSVTGATCKE 218 0.919 1.267  0.012  0.046 0.0002 

Aldolase C  F1RJ25 
KGVVPLAGTDGETTTQGLDGLSER

C
1AQYKKD 

1352 1.005 1.744 0.046 0.066 0.0058 
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Table 2. Plant, microbial and animal proteases potentially useful in meat tenderization. 2049 

Derived from Tantamacharik et al. (2018). 2050 

Origin and enzymes  Source 

ANIMAL ORIGIN  

Placental protease; Pancreatin; 

Pepsin; Chymotrypsin, Trypsin, 

Elstase, Carboxypeptidase 

Pancreas and stomach of mammals 

BACTERIAL ORIGIN  

Alkaline elastase, alkaline 

protease, collagenase (Sigma 

type VII) 

 

Alkalophilic Bacillus sp. Bacillus polyfermenticus Clostridium histolyticum 

Subtilisin (EC 3.4.21.62) 

and subtilisin-like cold active 

proteases 

Serratia marcescens; Bacillus sp.; Pseudomonas lundensis; Enterococcus 

faecalis; Stenotrophomonas maltophilia; Curtobacterium. Lutium; 

Pseudoalteromonas sp.; Aspergillus ustus; Pedobacter cryoconitis; Bacillus 

cereus; Colwellia sp.; Bacillus amyloliquefaciens; Flavobacterium 

psychrophilum; Leucosporidium antarcticum; Pseudomonas; 

Pseudoaltermonas sp. 

FUNGAL ORIGIN  

Acid, alkaline, serine and 

neutral proteases 

Aspergillus Sojae; A.flavus, A. fumigatus; A. niger; Chrysosporium 

keratinophilum; Conidioboluscoronatus; Paecilomyces lilacinus; Rhizopus 

oligosporus; Debaryomyces hansenii; Mrakia frigida; Candida 

parapsilosis; Penicillium restrictum; Penicillium roqueforti; Mucor 

circinelloides; Debaryomyces castellii; Kluyveromyces marzianus; 

Aspergillus candidus; Aspergillus. Oryzae 

Fusariumeumartii 

YEAST ORIGIN Saccharomyces cerevisiae, Candida lipolytica (NRRL Y-1094) 

PLANT ORIGIN  

Zingibain (EC 3.4.22.67) Ginger (Zingiber officinale) 

Papain (EC 3.4.22.2) Papaya latex 

Bromelain (EC 3.4.22.4) Pineapple stem 

Ficin (EC 3.4.22.3) Fig latex 

Capparin Caper (Capparis spinosa) 

serine-type endopeptidase 

 (EC 3.4.21.92) 

Asparagus 

Actinidin  (EC3.4.22.14) Kiwifruit 

(Actinidia deliciosa) 
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Cucumisin  (EC 3.4.21.25) Kachri (Cucumis trigonus Roxb); Cucumis sativus L. 

Subtilisin-like/serine protease  Taraxacum officinale; Heliantus annas; Machira pomifera; Cucumis melo; 

Cucurbita ficifolia; Benincasa cerifera; Benincasa hispida; Trichosantus 

cucumeroides; Trichosantus kirrilowi; Trichosanthes bracteata; Euphorbia 

supine 

MARINE ORIGIN  

Pepsin, pepsinogen, gastricsin, 

trypsin, chymostrypsin, elastase, 

collagenase 

Northern Shrimp (Pandalus borealis) heads; marine by products 

  2051 
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Figure 1. Proposal pathways of nitric oxide  involved in postmortem aging including energy 2052 

metabolism, glycolysis, calpains, calcium release, apoptosis and proteolysis via protein S-2053 

nitrosylation.  2054 

Abbreviation: NOS: nitric oxide synthase, NO: nitric oxide, RyR: ryanodine receptor, SERCA: 2055 

Sarcoplasmic\endoplasmic reticulum calcium ATPas, PFK: phosphofructokinase, GP: glycogen 2056 

phosphorylase, PK：pyruvate kinase.  2057 
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Fugure 2. Overview of the interactions between ante- mortem, post- mortem factors, metabolic 2060 

and molecular processes, and the affected enzymatic systems relevant for meat tenderization. 2061 

 2062 

 2063 
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Figure 3: Results of meta-analyses of Warner et al. (2017) predicting the change in peak shear 2064 

force (N) in response to various treatments.  Positive changes (green bars) are predicted 2065 

reductions in shear force, whereas negative changes (red bars) are predicted increases. Pre-rigor 2066 

treatments of Smartstretch™ lengthening, post-rigor pulsed electric field (PEF-post-rigor), 2067 

electrical shock wave (SW-electrical), ultrasound and to both pre- and post-rigor meat of high-2068 

pressure processing (HPP) are compared to predicted effects of applications of ractopamine, 2069 

zilpaterol and hormonal growth promotants (HGP) to beef cattle.   The mean effect is shown 2070 

and the vertical bar is the least significant difference (2 x SED). Reproduced from Warner et al. 2071 

(2017) with the permission of Elsevier Ltd.  2072 
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Figure 4.  Differential scanning calorimetry thermograms of a) perimysium from pectoralis 2074 

profundus and b) perimysium from semitendinosus at variable heating rates (1, 2, 5, 10, 15 and 2075 

20 K/min), reproduced from Latorre, Velazquez, and Purslow (2018) 2076 
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