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Abstract

Livestock welfare assessment helps monitor animal health status to maintain productivity,
identify injuries and stress, and avoid deterioration. It has also become an important market-
ing strategy since it increases consumer pressure for a more humane transformation in animal
treatment. Common visual welfare practices by professionals and veterinarians may be sub-
jective and cost-prohibitive, requiring trained personnel. Recent advances in remote sensing,
computer vision, and artificial intelligence (AI) have helped developing new and emerging
technologies for livestock biometrics to extract key physiological parameters associated with
animal welfare. This review discusses the livestock farming digital transformation by describ-
ing (i) biometric techniques for health and welfare assessment, (ii) livestock identification for
traceability and (iii) machine and deep learning application in livestock to address complex
problems. This review also includes a critical assessment of these topics and research done
so far, proposing future steps for the deployment of AI models in commercial farms. Most
studies focused on model development without applications or deployment for the industry.
Furthermore, reported biometric methods, accuracy, and machine learning approaches pre-
sented some inconsistencies that hinder validation. Therefore, it is required to develop
more efficient, non-contact and reliable methods based on AI to assess livestock health, wel-
fare, and productivity.

Introduction

Climate change predictions that are affecting most agricultural regions and livestock transpor-
tation routes are related to increasing ambient temperatures, rainfall variability, water availabil-
ity, and increased climatic anomalies, such as heatwaves, frosts, bushfires, and floods, affecting
livestock health, welfare, and productivity. These events have triggered and prioritized a critical
digital transformation within livestock research and industries to be more predictive than
reactive, implementing new and emerging technologies on animal monitoring for decision-
making purposes. Several advances in smart livestock monitoring aim for the objective meas-
urement of animal stress using digital technology to assess the effect of livestock welfare and
productivity using biometrics and artificial intelligence (AI).

The most accurate methods to measure livestock health and welfare are invasive tests, such
as analysis of tissue and blood samples, and contact sensors positioned on the skin of animals
or internally either by minor surgery, intravaginal, or rectally implanted (Jorquera-Chavez
et al., 2019a; Zhang et al., 2019b; Chung et al., 2020). However, these are apparently imprac-
tical approaches to monitor many animals for continuous assessments on farms. These
approaches require a high level of know-how by personnel for sampling, sensor placement,
data acquisition processing, analysis and interpretation. Furthermore, they impose medium
to high levels of stress on animals, introducing biases in the analysis and interpretation of
data; for this reason, researchers are focusing on developing novel contactless methods to
improve animal welfare (Neethirajan and Kemp, 2021). There are also visual assessments
that can be made by experts and trained personnel to assess levels of animal stress and welfare.
However, these can be subjective and require human supervision and assessment with similar
disadvantages of the aforementioned physiological assessments and sensor technologies (Burn
et al., 2009).

Recent digital advances in sensor technology, sensor networks with The Internet of Things
(IoT) connectivity, remote sensing, computer vision and AI for agricultural and human-based
applications have allowed the potential automation and integration of different animal science
and animal welfare assessment approaches (Morota et al., 2018; Singh et al., 2020). There has
been increasing research on implementing these new and emerging digital technologies and
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adaption to livestock monitoring, such as minimal contact sensor
technology, digital collars and remote sensing (Karthick et al.,
2020). Furthermore, novel analysis and modeling systems have
included machine and deep learning modeling techniques to
obtain practical and responsible AI applications. The main
applications for these technologies have been focused on asses-
sing physiological changes from animals to be related to differ-
ent types of stress or the early prediction of diseases or parasite
infestation (Neethirajan et al., 2017; Neethirajan and Kemp,
2021). One of the most promising approaches is implementing
AI incorporating remote sensing and machine learning (ML)
modeling strategies to achieve a fully automated system for non-
invasive data acquisition, analysis, and interpretation.
Specifically, this approach is based on inputs from visible, ther-
mal, multispectral, hyperspectral cameras and light detection
and ranging (LiDAR) to predict targets, such as animal health,
stress, and welfare parameters. This approach is presented in
detail in the following sections of this review.

However, much of the research has been based on academic
work using the limited amount of data accumulated in recent
years to test mainly different AI modeling techniques rather
than deployment and practical application to the industry.
Some research groups have focused their efforts on pilots for AI
system deployments to assess the effects of heat stress on animals
and their respective production, welfare on farming and animal
transport, animal identification for traceability, and monitoring
greenhouse emissions to quantify and reduce the impact of live-
stock farming on climate change.

This review is based on the current research on these new and
emerging digital technologies applied to livestock farming to
assess health, welfare, and productivity (Table 1). Some
AI-based research applied for potential livestock applications
have tried to solve too many complex problems rather than con-
centrating on simple and practical applications, and with few
deployment examples. However, the latter is a generalized prob-
lem of AI applications within all industries, in which only 20%
of AI pilots, have been applied to real-world scenarios and have
made it to commercial production. The latter figures have
increased slightly due to COVID-19 for 2021, with increases up
to 20% for ML and 25% for AI deployment solutions, according
to the Hanover Enterprise Financial Decision Making 2020 report
(Wilcox, 2020). By establishing a top-down approach (identifying
goldilocks problems), specific and critical solutions could be easily
studied to develop effectively new and emerging technologies,
including AI. In Australia and worldwide, several issues have
been identified for livestock transport in terms of the effect of cli-
mate change, such as effects of increased temperatures, droughts,
and heatwaves on livestock welfare; especially during long sea
trips through very hot transport environments, such as those in
the Persian Gulf, with temperatures reaching over 50°C) and
the identification and traceability of animals. Many livestock pro-
ducing countries have identified AI and a digital transformation
as an effective and practical solution for many monitoring and
decision-making problems from the industry.

Biometric techniques for health and welfare assessment

The most common methods for animal welfare and health assess-
ment are either visual and subjective, specifically for animal
behavior, or invasive. They may involve collecting blood or
urine samples to be analyzed using expensive and time-
consuming laboratory techniques such as enzyme-linked

immunosorbent assay (ELISA) and polymerase chain reaction
(PCR) (Neethirajan et al., 2017; Du and Zhou, 2018;
Neethirajan, 2020). Other measurements that are usually related
to the health and welfare of animals are based on their physio-
logical responses such as body temperature, heart rate (HR),
and respiration rate (RR) (Fuchs et al., 2019; Halachmi et al.,
2019). To measure body temperature, the most reliable methods
are intravaginal or measured in the ear, with the most common
devices based on mercury or digital thermometers
(Jorquera-Chavez et al., 2019a; Zhang et al., 2019b). Body tem-
perature is vital for early detection and progression of heat stress,
feed efficiency, metabolism, and disease symptoms detection such
as inflammation, pain, infections, and reproduction stage, among
others (McManus et al., 2016; Zhang et al., 2019b).

Traditional techniques to assess HR may involve manual mea-
surements using stethoscopes (DiGiacomo et al., 2016;
Jorquera-Chavez et al., 2019b; Fuentes et al., 2020a), or automatic
techniques based on electrocardiogram (ECG) devices, such as
commercial monitor belts with chest electrodes, such as the
Polar Sport Tester (Polar Electro Oy, Kempele, Finland)
(Orihuela et al., 2016; Stojkov et al., 2016), and photoplethysmo-
graphy (PPG) sensors attached to the ear (Nie et al., 2020). The
HR parameter and variability are usually used as an indicator of
environmental stress, gestation period, metabolic rate, and diag-
nosis of cardiovascular diseases (Fuchs et al., 2019; Halachmi
et al., 2019). On the other hand, RR is typically measured by
manually counting the flank movements of animals resulting
from breathing in 60 s using a chronometer (DiGiacomo et al.,
2016; Fuentes et al., 2020a) or counting the breaths in 60 s
using a stethoscope, or by attaching sensors in the nose, or thorax,
which can detect breathing patterns (Jorquera-Chavez et al.,
2019a). Respiration rate can be used to indicate heat stress and
respiratory diseases (Mandal et al., 2017; Slimen et al., 2019;
Fuentes et al., 2020a).

The main disadvantage of traditional methods based on con-
tact or invasive sensors to assess physiological responses is the
potential stress they can cause to the animal by the methodology
used, which can introduce bias. The stress may be caused by the
anxiety provoked by the restraint and manipulation/contact with
their bodies for the actual measurement or to attach different sen-
sors. Furthermore, these methods tend to be costly and time-
consuming, making it very impractical assessing a large group
of animals. In manual measurements, they may also have
human error and, therefore, are subjective and not that reliable.
Some specific applications for different livestock will be discussed,
separating cattle, sheep and pigs (Table 1).

Cattle

To assess the body temperature of cattle continuously, Chung
et al. (2020) proposed an invasive method for dairy cows by
implanting a radio frequency identification (RFID) biosensor
(RFID Life Chip; Destron Fearing™, Fort Worth, TX, USA) on
the lower part of ears of three cows that were monitored for 1
week; however, this method showed medium-strength correla-
tions when compared directly to the intravaginal temperature
probe for two of the cows (R2 = 0.73) and low correlation in the
third cow (R2 = 0.34). The authors then developed a ML model
based on the long short-term memory method to increase predic-
tion accuracy. However, the study only reported the root mean
squared error (RMSE = 0.081) of the model but left out the accur-
acy based on the correlation coefficient as it should be done for
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Table 1. Summary of biometric methods to assess health and welfare for cattle, sheep, and pigs

Animals Measurement Technique
Groundtruth (traditional

methods)
Number of
animals Accuracy of method Proposed application Reference

Cattle

Dairy cows Body temperature Implanted RFID
biosensor and
Machine learning

Vaginal temperature
(probe)

3 RMSE = 0.08 First steps for precision
agriculture methods

(Chung et al., 2020)

Simulated
cows

Temperature and
movements

Wearable digital
sensors
Wireless data
acquisition

None 1 toy
simulating a
cow and hot
water

Not reported Health monitoring and
disease detection

(Tahsin, 2016)

Cattle
(Holstein and
Jersey)

Body temperature Contactless
biometrics
Computer vision
Infrared thermal
images

Rectal temperature
(probe)

Not specified Mean difference
between methods
0.04 ± 0.10°C

Alternative to traditional
temperature methods

(Wang et al., 2021a)

German
Holstein
cows

HR
HRV

Wearable sensors None 40 Not reported Tested impact of different
stimulation methods

(Zipp et al., 2018)

Dairy calves HR Wearable sensors None 69 Not reported Behavioral and stress
response

(Buchli et al., 2017)

Cows HR
RR
Chewing

Contactless
biometrics
Computer vision
RGB images and
laser

HR: wearable sensor
RR and Cheiwng: manual
count

6 HR: R = 0.98
RR: R = 0.97
Chewing: R = 0.99

Biomedical monitoring for
optimized cattle treatment

(Beiderman et al.,
2014)

Dairy cows
Holstein
Friesian

Skin temperature
HR
RR

Contactless
biometrics
Computer vision
Infrared thermal
images and RGB
videos

Skin temperature: vaginal
probe
HR: wearable sensors
RR: manual count

10 Skin Temperature:
R = 0.74
HR: R = 0.20–0.83
RR: R = 0.87

Monitoring of physiological
responses

(Jorquera-Chavez
et al., 2019b)

Dairy cows RR Computer vision
Infrared thermal
and RGB videos

Manual count 15 Mean difference
Manual vs RGB
video: −0.01 ± 0.87
Manual vs infrared
videos: 0.83 ±0.57

Monitoring of health and
welfare

(Stewart et al., 2017)

Calves RR Contactless
biometrics
Computer vision
Infrared thermal
images

Manual count from RGB
videos

5 R2 = 0.93 Monitoring of health and
welfare

(Lowe et al., 2019)

Japanese
Black Calves

RR Contactless
biometrics
Computer vision
Infrared thermal
images
Deep learning

Manual count 5 R2 = 0.91 Monitoring health (Kim and Hidaka,
2021)

(Continued )
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Table 1. (Continued.)

Animals Measurement Technique
Groundtruth (traditional

methods)
Number of
animals Accuracy of method Proposed application Reference

Qinchuan
cattle

Body measurements
(dimensions)

Contactless
biometrics
Computer vision
RGB images

Manual measurements 3 2 mm Contactless body
measurements of large
livestock

(Huang et al., 2018)

Dairy cows Drinking behavior Integrated sensor
module
Computer vision
Deep learning

None 25 Not reported Automatic and quantitative
assessment of drinking
behavior as a measure of
heat stress

(Tsai et al., 2020)

Sheep

Dairy sheep Behavior activities Wireless system
Wearable sensors
RGB videos

Manual assessment 3 93% Behavior assessment (Giovanetti et al.,
2017)

Ewes Behavior activities Wearable sensors
RGB videos
Machine learning

Manual assessment 6 85% Assessment of sheep
activity previous to
methane measurements
Assessment of temporal
grazing patterns

(Alvarenga et al.,
2016)

Ewes Body temperature Wearable sensor None 15 Not reported Measurement of
temperature changes in
lambing period

(Abecia et al., 2020)

Ewes Surface temperature of
different areas (anus,
vulva, muzzle, eyes)

Contactless
biometrics
Computer vision
Infrared thermal
images

Rectal and vaginal
temperature

20 Not reported Assessment of temperature
during estrous cycle
Reproductive management

(de Freitas et al.,
2018)

Ewes Eye temperature
HR
HRV

Computer vision
Infrared thermal
images
Wearable sensors

None 20 Not reported Assessment of autonomic
nervous system responses

(Sutherland et al.,
2020)

Meat sheep Skin temperature
HR

Wireless wearable
monitoring
system

Traditional veterinary
monitors

60 Non-significant
differences (no
p-value reported)

Assessment of
physiological responses
with minimal stress

(Cui et al., 2019)

Mutton
sheep

HR
Oxygen saturation
Body temperature

Wearable sensors None Not reported Not reported Diagnose survival status
during transportation

(Zhang et al., 2020)

Merino lambs Skin temperature
HR
RR

Contactless
biometrics
Computer vision
Machine learning

Skin and rectal
temperature (digital
thermometer)
Stethoscope
Manual count

12 sheep /3
times a day
/four weeks

Skin temperature:
R2 = 0.99
HR and RR: R = 0.94

Assessment of
physiological responses
and heat stress during
transportation

(Fuentes et al.,
2020a)

Sheep Body measurements
(dimensions; weight)

Contactless
biometrics
Computer vision
Machine learning

Manual measurements 27 Weight: R = 0.99
Dimensions: R = 0.79

Increase efficiency in herds
management

(Zhang et al., 2018)
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Pigs

Pigs Behavior Contactless
biometrics
Computer vision

None 10 pigs /2
replications

Not reported Assessment of heat stress (Byrd et al., 2020)

Pigs Lying behavior Contactless
biometrics
Computer vision

Not reported 88 96% Welfare assessment (Nasirahmadi et al.,
2017)

Pigs Body measurements
(dimensions)
Weight estimation

Contactless
biometrics
Computer vision

Manual measurements 78 R2 > 0.95 to predict
weight

Estimate pigs’ weight
during weaning period

(Pezzuolo et al.,
2018)

Piglets
Sus Scrofa

Skin temperature
Cold/heat stress
Thirst stress
Hunger stress
Pain stress

Contactless
biometrics
Computer vision
Infrared thermal
images
Machine learning

Stress conditions based
on treatments

72 Cold/heat stress:
100%
Thirst stress: 91%
Hunger stress: 86%
Pain stress: 50%

Assessment of stress
during handling and
transportation

(da Fonseca et al.,
2020)

Sows Rectal temperature Contactless
biometrics
Computer vision
Infrared thermal
images
Machine learning

Rectal temperature
(mercury thermometer)

99 R2 = 0.80 Welfare assessment (Feng et al., 2019)

Pigs HR Contactless
biometrics
Computer vision

Electrocardiogram 2 78% (Green color
channel)

Real-time monitoring of
health and welfare

(Wang et al., 2021b)

Pigs HR
RR

Contactless
biometrics
Computer vision
Infrared camera

Electrocardiogram
Ventilator data

17 HR: R2 = 0.96
RR: R2 = 0.97

Long term monitoring of
research animals

(Barbosa Pereira
et al., 2019)

Pigs Skin temperature
HR
RR

Contactless
biometrics
Computer vision
Infrared thermal
images and RGB
videos

None 46 Not reported Early detection of disease
before symptoms appear

(Jorquera-Chavez
et al., 2020)

Pigs Eye temperature
HR
RR

Contactless
biometrics
Computer vision
Infrared thermal
and RGB videos

Stethoscope
Manual count from
videos

28 Eye temperature: not
reported
HR and RR:
R = 0.61–0.66

Physiological responses
due to respiratory diseases

(Jongman et al.,
2020)

* Abbreviations: RFID, radio frequency identification; RMSE, root mean squared error; HR, heart rate; HRV, heart rate variability; RR, respiration rate; RGB, red, green, blue.
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regression ML models. On the other hand, Tahsin (2016) devel-
oped a remote sensor system named Cattle Health Monitor and
Disease Detector, connected using a wireless network. This system
integrated a DS1620 digital thermometer/thermostat (Maxim
Integrated™, San Jose, CA, USA) and a Memsic 2125 thermal
accelerometer (Parallax, Inc., Rocklin, CA, USA) to assess the
activity of animals by measuring the lateral and horizontal move-
ments of the cow. The integrated sensors node was placed on the
neck using a collar, with the option to be powered using a solar
panel. Furthermore, Wang et al. (2021a) developed a non-
invasive/contactless sensor system to assess the body temperature
of cattle using an infrared thermal camera (AD-HF048; ADE
Technology Inc., Taipei, Taiwan), an anemometer (410i; Testo SE
& Co., Kilsyth, VIC, Australia), and a humiture sensor (RC-4HA;
Elitech Technology, Inc., Milpitas, CA. USA). These sensors were
placed in the feedlot at 1 m from the cows and 0.9 m above the
ground to record the head of each cow, while these were restrained
using a headlock. The authors used a rectal thermometer as
groundtruth to validate the method and reported a difference of
0.04 ± 0.10°C between the grountruth and the method proposed.
The anemometer and humiture sensor were used to remove the
frames affected by external weather factors to extract outliers.

In the case of HR, Zipp et al. (2018) used Polar S810i and
RS800CX sensors attached to the withers and close to the heart
to measure HR and HR variability (HRV) while locked after milk-
ing to assess the impact of different stimulation methods (acous-
tic, manual and olfactory). However, the authors reported
technical problems to acquire HR and HRV, which led to missing
values and altered the analysis. This is another drawback of using
contact sensors as they can become unreliable due to different rea-
sons, such as natural animal movements causing sensors to lose
contact with the animal skin and connectivity problems. Buchli
et al. (2017) used a Polar S810i belt attached to the torso of calves
to measure HR while the animals were in their pen. However,
similar to the previous study, these authors had errors in the
data acquired and excluded data from eight calves. To avoid
these problems, remote sensing methods have been explored,
such as those developed by Beiderman et al. (2014), based on
an automatic system to assess HR, RR and chewing activity
using a tripod holding a PixeLink B741 camera (PixeLink,
Rochester, NY, USA) and a Photop D2100 laser connected to a
computer. The laser pointed at the neck and stomach of the
cow. The acquired signal was analyzed using the ‘findpeaks’
Matlab® (Mathworks, Inc., Natick, MA, USA) function to assess
HR from the neck area and RR and chewing from the stomach
section. The authors reported a correlation coefficient R = 0.98
for HR, R = 0.97 for RR and R = 0.99 for chewing data compared
with manual measurements for RR and chewing and Polar sensor
for HR. These latter methods may solve the contact problems and
unreliability of data quality; however, they seem to still be manual
methods requiring operators. The authors did not propose an
automation system for measurements.

Jorquera et al. (2019b) also presented contactless methods to
assess skin temperature, HR and RR of dairy cows using remote
sensing cameras and computer vision analysis. These authors
used a FLIR AX8 camera (FLIR Systems, Wilsonville, OR, USA)
integrated into a Raspberry Pi V2.1 camera module to record
infrared thermal images (IRTI) and RGB videos of the face of
the cows while restrained in the squeeze chute. The IRTIs were
analyzed automatically using the FLIR Atlas software develop-
ment kit (SDK) for Matlab® and cropped the videos in the eye
and ear sections. The RGB videos were used to assess HR using

the PPG method based on the luminosity changes in the green
channel of the eye, forehead and full face of the cows; these signals
were then further analyzed using a customized Matlab® code pre-
viously developed for people (Gonzalez Viejo et al., 2018) and
adapted for animals. On the other hand, the authors used a
FLIR ONE camera to record non-radiometric videos of the
cows. These were analyzed using Matlab® based on the change
in pixel intensity in the nose section to measure the inhalations
and exhalations from which RR was calculated.

Regarding the RR techniques, besides the manual counts usu-
ally conducted based on visual assessment of the flank movement
of animals, researchers have also developed computer vision tech-
niques, which aid in the reduction of human error and bias.
Stewart et al. (2017) assessed 15 dairy cows using three compara-
tive methods to determine RR with (i) manual counts of the flank
movements by recording the time it took the cow to reach 10
breaths, (ii) manual counts of flank movements similar to method
(i) but from an RGB video recorded using a high-dynamic-range
(HDR) CX220E camera (Sony Corporation, Tokyo, Japan), and
(iii) manual count of the air movement (temperature variations)
from the nostrils. The latter was performed from infrared thermal
videos recorded using a ThermaCam S60 camera (FLIR Systems,
Wilsonville, OR, USA). The three methods showed similar
responses with the highest average difference of 0.83 ± 0.57
between methods (i) and (iii). Furthermore, Lowe et al. (2019)
presented a similar approach but tested only in five calves. In
the latter study, the two methods were (i) manual count of
flank movements from an RGB video recorded using a
Panasonic HCV270 camera (Panasonic, Osaka, Japan), which
was made by recording the time taken for the calf to reach five
breath cycles, and (ii) manual count of the thermal fluctuations
(color changes) in the nostrils from infrared thermal images
recorded using a FLIR T650SC camera. The Adobe Premiere
Pro CC (Adobe, San Jose, CA, USA) was used for the manual
counts for both methods. A high determination coefficient (R2

= 0.93) was reported comparing both methods. More recently,
Kim and Hidaka (2021) used a FLIR ONE PRO infrared thermal
camera to record IRTIs and RGB videos from the face of calves.
The authors first measured the color changes from the nostril
region manually as the time it took for the calf to complete five
breaths. A mask region-based convolutional neural network
(Mask R-CNN) and transfer learning were used to automatically
develop a model using the RGB video frames to automatically
detect and mask the calves’ noses. Once the nose was detected
and masked in the RGB videos, co-registered IRTIs were used
to automatically extract the mean temperature of the region of
interest. The authors reported an R2 = 0.91 when comparing the
manual and automatic methods.

Besides those used to assess physiological responses, other bio-
metrics have been explored to be applied in beef and dairy cattle.
These methods consist of the use of biosensors and/or image/
video analysis (remote sensing). For example, Huang et al.
(2018) developed a computer vision method to assess body mea-
surements (dimensions) of cattle using an O3D303 3D LiDAR
camera to record the individual animal side view and post-
processing using filter fusion, clustering segmentation and match-
ing techniques. Tsai et al. (2020) developed an integrated sensor
module composed of a Raspberry Pi 3B processing unit
(Raspberry Pi Foundation, Cambridge, England), a Raspberry Pi
V2 camera module and a BME280 temperature and relative
humidity sensor for environmental measurement. This integrated
module was placed on the top of the drinking troughs in a dairy
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farm to record the drinking behavior of the cows. The authors
then applied convolutional neural networks (CNN) based on
Tiny YOLOv3 real-time object detection deep learning network
for the head detection of cows to predict the drinking length
and frequency which were found to be correlated with the
temperature-humidity index (THI; R2 = 0.84 and R2 = 0.96,
respectively).

Sheep

Researchers have been working on different techniques to assess
sheep behavioral and physiological responses using contact and
contactless sensors. Giovanetti et al. (2017) designed a wireless
system consisting of a halter with a three-axis accelerometer
ADXL335 (Analog Devices, Wilmington, MA, USA) attached;
this was positioned in the lower jaw of dairy sheep to measure
the acceleration of their movements on x-, y- and z-axes.
Furthermore, the authors used a Sanyo VPC-TH1 camera
(Sanyo, Osaka, Japan) to record videos of the sheep during feed-
ing and manually assessed whether the animals were grazing,
ruminating or resting as well as the bites per minute. Similarly,
Alvarenga et al. (2016) designed a halter attached below the jaw
of sheep; this halter had an integrated data logger Aerobtec
Motion Logger (AML prototype V1.0, AerobTec, Bratislava,
Slovakia), which is able to measure acceleration in x-, y- and
z-axes transformed into North, East and Down reference system.
Additionally, they recorded videos of the sheep using a JVC
Everio GZR10 camera (JVC Kenwood, Selangor, Malaysia) to
manually assess grazing, lying, running, standing and walking
activities. These data were used to develop ML models to auto-
matically predict activities, obtaining an accuracy of 85%.

Abecia et al. (2020) presented a method to measure the body
temperature of ewes using a button-size data logger DS1921 K
(Thermochron™ iButton®, Maxim Integrated, San Jose, CA,
USA) taped under the tail of the animals. This sensor was able
to record temperature data every 5 min. Using remote sensing,
de Freitas et al. (2018) used a FLIR i50 infrared thermal camera
to record images from different areas of the sheep: anus, vulva,
muzzle, and eyes. The authors used the FLIR Quickreport soft-
ware to manually select the different sections in each sheep and
obtain each area’s mean temperature. They concluded that the
vulva and muzzle were the best areas to assess temperature during
the estrous cycle in ewes. Sutherland et al. (2020) also used an
infrared thermal camera (FLIR Thermacan S60) to record videos
of the left eye of ewes. These videos were analyzed to assess eye
temperature using the Thermacam Researcher software ver. 2.7
(FLIR Systems, Wilsonville, OR, USA). Additionally, the authors
used a Polar RS800CX sensor and placed it around the ewes
thorax to assess HR and HRV.

In terms of potential applications of sensor technology, Cui
et al. (2019) developed a wearable stress monitoring system
(WSMS) consisting of master and slave units. The master unit
was comprised of environmental sensors such as temperature,
relative humidity and global positioning system (GPS) attached
to an elastic band and placed around the rib cage of sheep,
while the slave unit was composed of physiological sensors such
as an open-source HR sensor (Pulse Sensor, World Famous
Electronics LLC, New York, NY, USA), and a skin temperature
infrared sensor (MLX90615; Melexis, Ypres, Belgium). This sys-
tem was tested on meat sheep during transportation and proposed
as a potential method to assess physiological responses with min-
imal stress. Zhang et al. (2020) designed a wearable collar that

included two sensors to measure (i) HR and oxygen saturation in
the blood (MAX30102; Max Integrated, San Jose, CA, USA), and
(ii) body temperature (MLX90614; Melexis, Ypres, Belgium).
These sensors were connected to the Arduino Mobile App
(Arduino LLC, Boston, MA, USA) through Bluetooth® for real-time
monitoring and used an SD card for data storage. The authors also
proposed this system to assess physiological responses during the
transportation of sheep. However, these studies can only monitor
sentinel animals, making it laborious, difficult and impractical for
the assessment of all animals transported.

To solve the later problem, Fuentes et al. (2020a) presented a
contactless/non-invasive method to assess temperature, HR and
RR of sheep using computer vision analysis and ML. The authors
used a FLIR DUO PRO camera to simultaneously record RGB
and infrared thermal videos of sheep. The infrared thermal videos
were analyzed using customized Matlab® R2020a algorithms to
automatically recognize the sheep’s head and obtain the max-
imum temperature. Results showed a very high correlation (R2

= 0.99) between the temperatures obtained with the thermal cam-
era and the rectal and skin temperatures measured using a digital
thermometer. On the other hand, RGB videos were analyzed
using customized Matlab® R2020a codes to assess HR and RR
based on the PPG principle using the G color channel from
RGB scale for HR and ‘a’ from Lab scale for RR. An artificial
neural network model was developed using the Matlab® code out-
puts to predict the real HR and RR (measured manually), obtain-
ing high accuracy of R = 0.94. This study also proposed a potential
deployment system to be used for animals in transport.

For other biometric assessments, Zhang et al. (2018) developed
a computer vision method to measure the dimensions of sheep
using three MV-EM120C Gigabit Ethernet charge-coupled device
(CCD) cameras (Lano Photonics, JiLin Province, China) located
at different positions (top, left and right side) of the weighing
scale for sheep. The recorded images were analyzed in Matlab®
R2013 using the superpixel segmentation algorithm. The authors
also obtained the dimension parameters manually and found cor-
relations of R = 0.99 for weight and R = 0.79 for dimensions
(width, length, height and circumference) using support vector
machine.

Pigs

Pigs are also commonly studied to develop biometric techniques
to assess behavioral and physiological responses. For example,
Byrd et al. (2020) used a KPC-N502NUB camera (KT&C,
Fairfield, NJ, USA) mounted on top of the pigs’ pens to assess
pig behavior. The authors used the GeoVision VMS software
(GeoVision Inc, Taipei, Taiwan) and assessed whether the pigs
were active (standing or sitting) or inactive (lying sternal or lat-
eral). Nasirahmadi et al. (2017) assessed the lying behavior of
pigs using closed-circuit television (CCTV) with a Sony RF2938
camera above the pen. Matlab® software was used to analyze the
videos using computer vision algorithms to detect the position
of each pig and analyze the distance between each animal consid-
ering their axes, orientation and centroid. On the other hand,
Pezzuolo et al. (2018) obtained body measurements and weight
of pigs using a Kinect V1 depth camera (Microsoft
Corporation, Redmond, WA, USA) positioned on the top and
side of the pen. Videos were analyzed using the Scanning Probe
Image Processor (SPIP™) software (Image Metrology, Lyngby,
Denmark) to obtain length, front and back height, and heart
girth. Furthermore, authors developed linear and non-linear
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models to predict weight, obtaining an accuracy R2 > 0.95 in all
modeling methods tested. The drawback that the authors men-
tioned from this technique is that the system can only record
data from a single camera at a time because there is interference
when using simultaneous data acquisition of the two cameras.

Regarding techniques to measure body/skin temperature from
pigs, da Fonseca et al. (2020) used a Testo 876-1 handheld infrared
thermal camera (Testo Instruments, Lenzkirch, Germany) to record
images of piglets’ full bodies. The IRSoft v3.1 software (Testo
Instruments, Lenzkirch, Germany) was used to obtain the max-
imum and minimum skin temperature values. Rocha et al.
(2019) presented a method to measure the body temperature of
pigs using two IR-TCM284 infrared thermal cameras (Jenoptik,
Jena, Germany). One camera was placed in the pen perpendicular
to the pig’s body, while the second one was positioned 2.6 m above
the pigs in the loading alley for transportation. The areas of interest
evaluated were neck, rump, orbital region, and the area behind the
ears; these were manually selected using the IRT Cronista
Professional Software v3.6 (Grayess, Bradenton, FL, USA) and
extracting the minimum, maximum and mean temperatures.
Authors found that the temperatures from the orbital region and
behind the ears were the most useful to assess different types of
stress (cold, heat, thirst, hunger, and pain) during handling and
transportation. On the other hand, Feng et al. (2019) developed a
computer vision and ML method to predict the rectal temperature
of sows using a T530 FLIR infrared thermal camera to capture
images. The FLIR Tools software (FLIR Systems, Wilsonville, OR,
USA) was used to obtain the maximum and mean skin tempera-
ture in different areas such as ears, forehead, shoulder, back central
and back end, and vulva. With these data, the authors developed a
partial least squared regression (PLS) model to predict rectal tem-
perature, obtaining an accuracy of R2 = 0.80.

Wang et al. (2021b) developed a contactless method to assess
HR of pigs using two different setups (i) a webcam C920 HD PRO
(Logitech, Tainan, Taiwan) located on top of the operation table
with an anesthetized pig and (ii) a Sony HDRSR5 Handycam
located on a tripod above resting individual housing with a resting
pig. Matlab® was used to analyze the videos by selecting and crop-
ping the (i) neck for the first setup and (ii) abdomen, neck and
front leg for the dual setup. The authors used the PPG principle
with the three color channels of the RGB scale and found the G
channel provided the most accurate results compared to measure-
ments using an ECG. Barbosa Pereira et al. (2019) also developed
a method using anesthetized pigs; they used a long wave infrared
VarioCam HD head 820 S/30 (InfraTecGmbH, Dresden,
Germany) to assess HR and RR. The videos were analyzed
using Matlab® R2018a, and it included the segmentation using a
multilevel Otsu’s algorithm, region of interest (chest) selection,
features identification and tracking using the Kanade–Lucas–
Tomasi (KLT) algorithm, temporal filtering to measure trajectory
and principal components analysis (PCA) decomposition and
selection. This allowed them to obtain an estimated HR and RR
at the selected frequency rates. The authors reported determin-
ation coefficients of R2 = 0.96 for HR compared to the ECG
method and R2 = 0.97 for RR compared to ventilator data.
Jorquera-Chavez et al. (2020) developed a contactless method to
assess temperature, HR and RR of pigs using an integrated camera
composed of a FLIR AX8 infrared thermal camera and a
Raspberry Pi Camera V2.1 to record IRTIs and RGB videos,
and a FLIR ONE infrared thermal camera to record non-
radiometric videos. The authors used the same method as that
reported for cows (Jorquera-Chavez et al., 2019b) using Matlab®

R2018b selecting the eyes and ears as regions of interest for tem-
perature, eye section for HR and nose for RR. The same method
was used in the study developed by Jongman et al. (2020), but
they used a FLIR DUO PRO R dual camera (infrared thermal
and RGB) and reported a correlation coefficient within the R =
0.61–0.66 range for HR and RR compared to manual
measurements.

Biometric techniques for recognition and identification

Correct and accurate identification of livestock is essential for farm-
ers and producers. It also allows relating each animal to different
productivity aspects such as health-related factors, behavior, pro-
duction yield and quality and breeding. Furthermore, animal iden-
tification is essential for traceability, especially during transport and
after selling, to avoid fraud and animal ledger or identification for-
ging. However, traditional methods involve ear tags, tattoos, micro-
chips and radio frequency identification (RFID) collars, which
involve high costs, and some may be unreliable and easily hacked
or interchanged. Furthermore, they require human labor for their
maintenance, making them time-consuming, prone to human
error and may lead to swapping tags (Awad, 2016; Kumar et al.,
2016, 2017a; Zin et al., 2018). Therefore, some studies in recent
years have focused on the development of contactless biometric
techniques to automate the recognition and identification of differ-
ent animals such as bears, using deep learning (Clapham et al.,
2020), and cows based on different features such as the face (Cai
and Li, 2013; Kumar et al., 2016), muzzle (Kumar et al., 2017a),
body patterns (Zin et al., 2018), iris recognition (Lu et al., 2014)
or retinal patterns (Awad, 2016).

Cattle

Most of these biometric techniques for recognition and identifica-
tion have been developed for cattle. Authors have presented meth-
ods based on one of the three main techniques (i) muzzle pattern
identification, (ii) face recognition and (iii) body recognition and
identification. The first technique has been applied for cattle rec-
ognition using images of the muzzle and analyzed for features as
it has a particular pattern that is different for each animal, similar
to the human fingerprints. Once these features and patterns are
recognized, a deep learning model is developed to identify each
cow (Noviyanto and Arymurthy, 2012; Gaber et al., 2016;
Kumar et al., 2017a, 2017b, 2018; Bello et al., 2020). Face recog-
nition methods using different techniques such as local binary
pattern algorithms (Cai and Li, 2013) and CNN have been pro-
posed for specific cattle breeds with different colors and patterns,
such as Simmental (Wang et al., 2020), Holstein, Guernseys and
Ayrshires, among others (Kumar et al., 2016; Bergamini et al.,
2018); however, none has been presented in single-coloured cattle
breeds such as Angus. On the other hand, body recognition meth-
ods have been developed to identify cows within a herd using
computer vision and deep learning techniques. Within the pro-
posed methods are cattle recognition from the side (Bhole et al.,
2019), from behind (Qiao et al., 2019), different angles (de
Lima Weber et al., 2020) or from the top (Andrew et al., 2019).
The latter was proposed to identify and recognize Holstein and
Friesian cattle using an unmanned aerial vehicle (UAV)
(Andrew et al., 2017, 019, 2020a, 2020b). Bhole et al. (2019) pro-
posed an extra step for cow recognition from the side by recording
IRTIs to ease the image segmentation and remove the
background.
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Sheep

While biometrics applied for the identification and recognition of
sheep have not been deeply explored, the development of some
proposed methods has been published. The techniques that
have been reported for sheep consist of retinal recognition
using a commercial retinal scanner, OptiReader (Optibrand®,
Fort Collins, CO, USA) (Barron et al., 2008), and face recognition
using classification methods such as machine or deep learning.
Salama et al. (2019) developed a deep learning model based on
CNN and Bayesian optimization and obtained an identification
accuracy of 98%. Corkery et al. (2007) proposed a method
based on independent components analysis and the InfoMax
algorithm to identify the specific components from the normal-
ized images of sheep faces and then find them in each tested
image; the authors reported an accuracy within 95–95%.

Pigs

The biometric techniques that have been published to identify pigs
are based mainly on face recognition and body recognition from
the tops of pens. Hansen et al. (2018) developed a face recognition
method using CNN with high accuracy (97%). Marsot et al. (2020)
developed a face recognition system based on a mix of computer
vision to identify the face and eyes and deep learning CNN for clas-
sification purposes, obtaining an accuracy of 83%. On the other
hand, Wang et al. (2018) proposed a method to identify pigs
from images recorded from the whole body using integrated deep
learning networks such as dual-path network (DPN131),
InceptionV3 and Xception, with an accuracy of 96%. Huang
et al. (2020) tested a Weber texture local descriptor (WTLD) iden-
tification method with different masks to detect and recognize indi-
vidual features such as hair, skin texture, and spots using images of
groups of pigs; the tested WTLD methods resulted in accuracies
>96%. Kashiha et al. (2013) based their automatic identification
method on computer vision to recognize marked pigs within a
pen using the Fourier algorithm for patterns description and
Euclidean distance, this technique resulted in 89% accuracy.

Machine and deep learning application in livestock to
address complex problems

This section concentrates specifically on the research on AI appli-
cation using ML and deep learning modeling techniques on live-
stock, specifically for cattle, sheep and pigs. One of the latest
research studies has been focused on the use of AI to identify
farm animal emotional responses, including pigs and cattle
(Neethirajan, 2021). However, it may be difficult to assess and
interpret the emotional state of farm animals only from facial
expression and ear positioning, as proposed in the latter study,
and more objective assessment could be performed using targets
based on hormonal measurements from endorphins, dopamine,
serotonin and oxytocin among others, which will require blood
sampling. Therefore, all the in vitro and tissue applications were
excluded from this section because they require either destructive
or invasive methods to obtain data.

Cattle

A simple AI approach was proposed using historical data (4 years)
with almost ubiquitous sensor technology in livestock farms, such
as meteorological weather stations with daily temperature and

relative humidity (Fuentes et al., 2020b). In this study, meteoro-
logical data was used to calculate temperature and humidity indices
(THI) using different algorithmic approaches as inputs to assess the
effect of heat stress on milk productivity as targets in a robotic dairy
farm. This approach attempted to answer complex questions with
potentially readily available data from robotic and conventional
dairy farms and proposed a deployment system for an AI approach
with a general accuracy of AI models of 87%. More accurate heat
stress assessments could be achieved by either sensor technology,
with minimal invasiveness to animals, such as ear clips, collars or
similar, or remote sensing cameras, computer vision and deep
learning modeling. However, the latter digital approach requires
assessing individual animals using extra hardware and sensors,
camera systems located in strategic positions allowing monitoring
of every single animal (e.g. corral systems and straight alleys).
Furthermore, these new digital approaches require the recording
of new data. A big question in applications of AI in cattle, in this
case, would be whether it is worth the significant extra investment
in hardware and ML modeling using new data to increase the
accuracy of models by an additional 10.

Sensor technology and sensor networks have been implemented
in cattle to assess lameness, such as accelerometers, IoT connectivity
and time series ML modeling approaches (Taneja et al., 2020; Wu
et al., 2020). These applications were the first approaches to be
implemented in animals after applications in humans for fitbits.
Sensor readings and connectivity using IoT will facilitate the imple-
mentation of this technology in a near or real-time fashion.
However, there is a big downside of the requirement of sensors
for every single animal to be monitored. This is valid to other appli-
cations for sensor integration (Neethirajan, 2020), such as collars,
halter and ear tag sensors (Rahman et al., 2018), to detect physio-
logical changes, behavior and other anomalies (Wagner et al., 2020).

As mentioned before, animal recognition using deep learning
approaches should be considered the first step to apply further
remote sensing and AI tools. A second step should be the identi-
fication of key features from animals using deep learning (Jiang
et al., 2019), which makes possible the extraction of physiological
information from those specific regions using ML modeling, such
as HR from the eye section or exposed skin (e.g. ears or muzzle)
and RR from the muzzle section. These animal features should be
recognized in a video to extract enough information to obtain
physiological parameters that currently require 4–8 s (e.g. HR
and RR) for the signal to stabilize and get meaningful data.
Hence, the AI implementation steps should consider animal rec-
ognition, specific feature recognition and tracking and extraction
of physiological parameters using ML.

Integration of UAV, computer vision algorithms and CNN
have been attempted for the recognition of cattle from the air
(Barbedo et al., 2019). However, these authors concentrated
efforts on the feasibility and testing of different algorithms rather
than the potential deployment of a pilot program. Furthermore,
these approaches could also be used for animal recognition and
the potential extraction of physiological parameters, such as
body temperature (using infrared thermal cameras as payload).
Dairy cows could offer more identification features than Angus
cattle, which may require the implementation of multispectral
cameras to include potential non-visible features from animals.

Sheep

Sensor technology and sensor networks have also been applied in
parallel with ML approaches for sheep using electronic collars and
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ear sensors as input data and supervised selecting several behavior
parameters as targets with a reported accuracy of <90% for both
methods (Mansbridge et al., 2018). Some predictive approaches
from existing data have been attempted to assess carcass traits
from early life animal records (Shahinfar et al., 2019) using super-
vised and unsupervised regression ML methods with various low
to high accuracies reported.

Similar detection systems mentioned before for other animals
have been applied for sheep counting using computer vision and
deep learning CNN methods (Sarwar et al., 2018), which can also
be used in parallel with other AI procedures to extract more infor-
mation from animals for health or welfare assessments, such as
sheep weight (Shah et al., 2021). Following this approach, add-
itional physiological parameters, such as HR, body temperature
and RR, can be extracted from individual sheep non-invasively
(Fuentes et al., 2020a). The latter study also proposed using this
AI approach for real livestock farming applications, such as ani-
mal welfare assessment for animals during transportation.

Other welfare assessments have been developed for sheep
based on the facial classification expression for pain level applied
using deep learning CNN and computer vision with 95% accur-
acy. However, no deployment was reported, which can be used
to assess further animal welfare (Jwade et al., 2019).

Pigs

Some simple ML applications have been implemented to predict
water usage in pig farms using regression ML algorithms (Lee
et al., 2017). However, this study reported a maximum determin-
ation coefficient of R2 = 0.42 for regression tree algorithms, which
could be related to poor parameter engineering, since only tem-
perature and relative humidity were used.

Automatic pig counting (Tian et al., 2019), pig posture detec-
tion (Nasirahmadi et al., 2019; Riekert et al., 2020), mounting
(Li et al., 2019) and sow behavior (Zhang et al., 2019a), localiza-
tion and tracking (Cowton et al., 2019) aggressive behavior
(Chen et al., 2020) have been attempted using computer vision
and deep learning. These are relatively complex approaches for
meaningful questions considering further pipeline of analyses.
These approaches could be used to extract more information
from the individual pigs once they have been recognized, such
as biometrics, including HR and RR extracted for other animals
such as sheep, mentioned before (Fuentes et al., 2020a), and cattle
identification (Andrew et al., 2017) with accuracies in identifica-
tion between 86 and 96% with a maximum of 89 individuals.

Other approaches have been implemented for the early detec-
tion (between 1 and 7 days of infection) of respiratory diseases in
pigs using deep learning approaches (Cowton et al., 2018). Other
computer vision approaches using visible and infrared thermal
imagery analysis without ML approaches also delivered an accept-
able assessment of respiratory diseases in pigs (Jorquera-Chavez
et al., 2020).

Conclusions

Implementing remote sensing, biometrics and AI for livestock
health and welfare assessment could have many positive ethical
implications and higher acceptability by consumers of different
products derived from livestock farming. Specifically, integrating
digital technologies could directly impact increasing the willing-
ness to purchase products from sources that introduced AI to
increase animal welfare on the farm and transport for ethical

and responsible animal handling and slaughtering. However, a
systematic deployment of different digital technologies reviewed
in this paper will require further investment, which some govern-
ments, such as Australia, have identified as a priority.

It is difficult to assess the applicability or deployment options
from different research studies done so far on livestock, which
have applied biometrics and AI, because there is no consistency
in the reporting of the accuracy of models, performance, testing
for over or underfitting of models, number of animals used or
proposed pilot or deployment options (Table 1). Furthermore,
in most of these studies, there are no follow-ups on the models
either by establishing potential pilot deployments to test them
in real-life scenarios. Many researchers only rely on the validation
and testing protocols within the model development stage. The
latter does not give any information on the practicality or applic-
ability of these digital systems, because circumstances in real-life
scenarios change over time and models need to be re-evaluated
and continuously fed with new data to learn and adapt to differ-
ent circumstances and scales of use.

It is also clear that most of the AI developments and modeling
for livestock farming applications are academic, and very little
research has focused on efficient and practical deployment to real-
world scenarios. To change this, researchers should work on real-
life problems in the livestock industry, starting with simple ones
and pressing questions. The next step is to solve them using effi-
cient and affordable technology, starting with big data analysis
from historical data accumulated by different industries. The idea
here is to initially apply AI where the data exists, to achieve max-
imum reach with high performance and scalable applications
(e.g. heat stress assessment on milk production using historical
weather information and productivity data). It is also required to
check whether the correct data is available, avoid basing AI on
reduced datasets, and restricted only to test different ML
approaches. Academic exercises based on AI modeling for its
sake only rarely reach pilot programs and applications in the
field. Furthermore, data quality and data security are becoming
fundamental issues that should be dealt using digital ledger systems
for data and model deployments, such as blockchain implementa-
tion. This approach allows treating data and AI models as a cur-
rency to avoid hacking and adulteration, especially with AI
models and data dealing with welfare assessments for animals in
farms to claim ethical production or animals in transport.

To solve these problems, AI modeling, development and
deployment strategies should have a multidisciplinary team with
constant communication during the model development and
deployment stages; what could be a better approach, but very
rare nowadays is to have an expert on animal science, data ana-
lysis and AI dealing with companies. This could change soon
through specialized Agriculture, Animal Science and Veterinary
degrees in which data analysis, ML and AI are introduced in
their respective academic curriculums.

Integrating new and emerging digital technology with AI
development and deployment strategies for practical applications
would create effective and efficient AI pilot applications that can
be easily scaled up to production to create successful innovations
in livestock farming.
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