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Abstract  9 

Livestock welfare assessment helps monitor animals' health status to maintain 10 

productivity, identify injuries and stress, and avoid deterioration. It has also become an 11 

important marketing strategy since increasing consumer pressure for a more humane 12 

transformation in animals’ treatment. Common visual welfare practices by professionals 13 

and veterinarians may be subjective and cost-prohibitive, requiring trained personnel. 14 

Recent advances in remote sensing, computer vision, and artificial intelligence (AI) have 15 

helped developing new and emerging technologies for livestock biometrics to extract key 16 

physiological parameters associated with animal welfare. This review discusses the 17 

livestock farming digital transformation by describing (i) biometric techniques for health 18 

and welfare assessment, (ii) livestock identification for traceability and (iii) machine and 19 

deep learning application in livestock to address complex problems. This review also 20 

includes a critical assessment of these topics and research done so far proposing future 21 

steps for deployment of AI models in commercial farms. Most studies focused on model 22 

development without applications or deployment for the industry. Furthermore, reported 23 

biometric methods, accuracy, and machine learning approaches presented showed some 24 

inconsistencies that hinder validation. Therefore, it is required to develop more efficient, 25 

non-contact and reliable methods based on AI to assess livestock health, welfare, and 26 

productivity. 27 

Keywords: Machine learning; deep learning; animal welfare; biometrics; computer 28 

vision.  29 

 30 

Introduction 31 

 Climate change predictions that are affecting most agricultural regions and livestock 32 

transportation routes are related to increasing ambient temperatures, rainfall variability, 33 

water availability, and increased climatic anomalies, such as heatwaves, frosts, bushfires, 34 

and floods, affecting livestock's health, welfare, and productivity. These events have 35 

triggered and prioritised a critical digital transformation within livestock research and 36 

industries to be more predictive than reactive, implementing new and emerging 37 

technologies on animal monitoring for decision making purposes. Several advances in 38 

smart livestock monitoring have as aim the objective measurement of animal stress using 39 

digital technology to assess the effect of livestock welfare and productivity using biometrics 40 

and artificial intelligence (AI). 41 
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 The most accurate methods to measure livestock's health and welfare are invasive 42 

tests, such as analysis of tissue and blood samples, and contact sensors positioned on the 43 

skin of animals or internally either by minor surgery, intravaginal, or rectally implanted 1-44 

3. However, these are apparent impractical approaches to monitor many animals in farms 45 

for continuous assessments. These approaches require a high level of know-how by 46 

personnel for sampling, sensor placement, data acquisition processing, analysis and 47 

interpretation. Furthermore, they impose medium to high stress levels on animals, 48 

introducing biases in the analysis and interpretation of data, for this reason, researchers 49 

are focusing on developing novel contactless methods to improve animal welfare 4. There 50 

are also visual assessments that can be made by experts and trained personnel to assess 51 

levels of animal stress and welfare. However, these can be subjective and require human 52 

supervision and assessment with similar disadvantages of physiological assessments and 53 

sensor technologies mentioned before 5. 54 

 Recent digital technological advances in sensor technology, sensor networks with The 55 

Internet of Things (IoT) connectivity, remote sensing, computer vision and artificial 56 

intelligence (AI) for agricultural and human-based applications have allowed the potential 57 

automation and integration of different animal science and animal welfare assessment 58 

approaches 6, 7. There has been increasing research on implementing these new and 59 

emerging digital technologies and adapted to livestock monitoring, such as minimal 60 

contact sensor technology, digital collars and remote sensing 8. Furthermore, novel 61 

analysis and modelling systems have included machine and deep learning modelling 62 

techniques to obtain practical and responsible AI applications. The main applications for 63 

these technologies have been focused on assessing physiological changes from animals to 64 

be related to different types of stress or the early prediction of diseases or parasite 65 

infestation 4, 9. One of the most promising approaches is implementing AI incorporating 66 

remote sensing and machine learning modelling strategies to achieve a fully automated 67 

system for non-invasive data acquisition, analysis and interpretation. Specifically, this 68 

approach is based on inputs from visible, thermal, multispectral, hyperspectral cameras 69 

and LiDAR to predict targets, such as animal health, stress and welfare parameters. This 70 

is presented in detail in the following sections of this review. 71 

 However, much of the research has been based on academic work using the limited 72 

amount of data accumulated in recent years to test mainly different AI modelling 73 

techniques rather than deploying and practical application to the industry. Some research 74 

groups have focused their efforts on pilots for AI system deployments to assess the effects 75 

of heat stress on animals and their respective production, welfare on farming and animal 76 

transport, animal identification for traceability, and monitoring greenhouse emissions to 77 

quantify and reduce the impact of livestock farming on climate change.  78 

 This review is based on the current research on these new and emerging digital 79 

technologies applied to livestock farming to assess health, welfare and productivity (Table 80 

1). Some AI-based research applied for potential livestock applications have tried to solve 81 

too many and complex problems rather than concentrating on more simple and practical 82 

applications and with little deployment examples. However, the latter is a generalised 83 

problem of AI applications within all industries, in which only 20% of AI pilots, have been 84 

applied to real world scenarios and have made it to commercial production. The latter 85 

figures have increased slightly due to COVID-19 for 2021 with increases up to 20% for 86 

machine learning and 25% for AI deployment solutions, according to the Hanover 87 

Enterprise Financial Decision Making 2020 report 10. By establishing a top-down approach 88 

(identifying goldilocks problems), specific and critical solutions could be easily studied to 89 
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develop effectively new and emerging technologies, including AI. In Australia and 90 

worldwide, several issues have been identified for livestock transport in terms of the effect 91 

of climate change, such as increased temperatures, droughts, and heat waves on livestock 92 

welfare (especially during long sea trips through very hot transport environments, such as 93 

those in the Persian Gulf with temperatures reaching over 50 oC) and the identification 94 

and traceability of animals. Many livestock producing countries have identified AI and a 95 

digital transformation as an effective and practical solution for many monitoring and 96 

decision-making problems from the industry. 97 

 98 

Biometric techniques for health and welfare assessment 99 

 The most common methods for animal welfare and health assessment are either visual 100 

and subjective, specifically for animal behaviour, or invasive. They may involve collecting 101 

blood or urine samples to be analysed using expensive and time-consuming laboratory 102 

techniques such as enzyme-linked immunosorbent assays (ELISA) and polymerase chain 103 

reaction (PCR) 9, 11, 12. Other measurements that are usually related to the health and 104 

welfare of animals are based on their physiological responses such as body temperature, 105 

heart rate (HR), and respiration rate (RR) 13, 14. To measure body temperature, the most 106 

reliable methods are intravaginal or measured in the ear, with the most common devices 107 

based on mercury or digital thermometers 1, 2. Body temperature is vital for early detection 108 

and progression of heat stress, feed efficiency, metabolism, and disease symptoms 109 

detection such as inflammation, pain, infections, and reproduction stage, among others 1, 110 

15. Traditional techniques to assess HR may involve manual measurements using 111 

stethoscopes 16-18, or automatic techniques based on electrocardiogram (ECG) devices, 112 

such as commercial monitor belts with chest electrodes, such as the Polar Sport Tester 113 

(Polar Electro Oy, Kempele, Finland) 19, 20, and photoplethysmography (PPG) sensors 114 

attached to the ear 21. The heart rate parameter and variability are usually used as an 115 

indicator of environmental stress, gestation period, metabolic rate, and diagnosis of 116 

cardiovascular diseases 13, 14. On the other hand, respiration rate (RR) is typically 117 

measured by manually counting the flank movements of animals resulting from breathing 118 

in 60 s using a chronometer 16, 18 or counting the breaths in 60 s using a stethoscope, or 119 

by attaching sensors in the nose, or thorax, which can detect breathing patterns 2. 120 

Respiration rate can be used to indicate heat stress and respiratory diseases 16, 22, 23. 121 

 The main disadvantage of traditional methods based on contact or invasive sensors to 122 

assess physiological responses is the potential stress they can cause to the animal by the 123 

methodology used, which can introduce bias. The stress may be caused by the anxiety 124 

provoked by the restraint and manipulation/contact with their bodies for the actual 125 

measurement or to attach different sensors. Furthermore, these methods tend to be costly 126 

and time-consuming, making it very impractical assessing a large group of animals. In 127 

manual measurements, they may also have human error and, therefore, are subjective 128 

and not that reliable. Some specific applications for different livestock will be discussed, 129 

separating for cattle, sheep and pigs (Table 1). 130 

 131 

Cattle 132 

 To assess the body temperature of cattle continuously, Chung et al. 3 proposed an 133 

invasive method for dairy cows by implanting a radio frequency identification (RFID) 134 
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biosensor (RFID Life Chip; Destron Fearing™, Fort Worth, TX, USA) on the lower part of 135 

ears of three cows that were monitored for one week; however, this method showed 136 

medium-strength correlations when compared directly to the intravaginal temperature 137 

probe for two of the cows (R2 = 0.73) and low correlation in the third cow (R2 = 0.34). 138 

The authors then developed a machine learning (ML) model based on the long short-term 139 

memory method to increase prediction accuracy. However, the study only reported the 140 

root mean squared error (RMSE = 0.081) of the model but left out the accuracy based on 141 

the correlation coefficient as it should be done for regression ML models. On the other 142 

hand, Tahsin 24 developed a remote sensor system named Cattle Health Monitor and 143 

Disease Detector connected using a wireless network. This system integrated a DS1620 144 

digital thermometer/thermostat (Maxim Integrated™, San Jose, CA, USA) and a Memsic 145 

2125 thermal accelerometer (Parallax, Inc., Rocklin, CA, USA) to assess the activity of 146 

animals by measuring the lateral and horizontal movements of the cow. The integrated 147 

sensors node was placed on the neck using a collar, with the option to be powered using 148 

a solar panel. Furthermore, Wang et al. 25 developed a non-invasive/contactless sensor 149 

system to assess the body temperature of cattle using an infrared thermal camera (AD-150 

HF048; ADE Technology Inc., Taipei, Taiwan), an anemometer (410i; Testo SE & Co., 151 

Kilsyth, VIC, Australia), and a humiture sensor (RC-4HA; Elitech Technology, Inc., Milpitas, 152 

CA. USA). These sensors were placed in the feedlot at 1 m from the cows and 0.9 m above 153 

the ground to record the head of each cow, while these were restrained using a headlock. 154 

The authors used a rectal thermometer as groundtruth to validate the method and 155 

reported a difference of 0.04 ±0.10 °C between the grountruth and the method proposed. 156 

The anemometer and humiture sensor were used to remove the frames affected by 157 

external weather factors to extract outliers.  158 

 In the case of heart rate, Zipp et al. 26 used a Polar S810i and RS800CX sensors 159 

attached to the withers and close to the heart to measure HR and HR variability (HRV) 160 

while locked after milking to assess the impact of different stimulation methods (acoustic, 161 

manual and olfactory). However, the authors reported technical problems to acquire HR 162 

and HRV, which led to missing values and altered the analysis. This is another drawback 163 

of using contact sensors as they can become unreliable due to different reasons, such as 164 

natural animal movements causing sensors to lose contact with the animal skin and 165 

connectivity problems. Buchli et al. 27 used a Polar S810i belt attached to the torso of 166 

calves to measure HR while the animals were in their pen. However, similar to the previous 167 

study, these authors also had errors in the data acquired and excluded data from eight 168 

calves. To avoid these problems, remote sensing methods have been explored, such as 169 

those developed by Beiderman et al. 28 based on an automatic system to assess HR, RR 170 

and chewing activity using a tripod holding a PixeLink B741 camera (PixeLink, Rochester, 171 

NY, USA) and a Photop D2100 laser connected to a computer. The laser pointed at the 172 

neck and stomach of the cow. The acquired signal was analysed using the ‘findpeaks’ 173 

Matlab® (Mathworks, Inc., Natick, MA, USA) function to assess HR from the neck area 174 

and RR and chewing from the stomach section. The authors reported a correlation 175 

coefficient R = 0.98 for HR, R = 0.97 for RR and 0.99 for chewing data compared with 176 

manual measurements for RR y chewing and Polar sensor for HR. These latter methods 177 

may solve the contact probles and unreliavility of data quality; however, they seem to still 178 

be manual methods requiring opertaors. The authors did not proposed an automation 179 

system for measurements. 180 

 Jorquera et al. 17 also presented contactless methods to assess skin temperature, HR 181 

and RR of dairy cows using remote sensing cameras and computer vision analysis. These 182 
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authors used a FLIR AX8 camera (FLIR Systems, Wilsonville, OR, USA) integrated into a 183 

Raspberry Pi V2.1 camera module to record infrared thermal images (IRTI) and RGB videos 184 

of the face of the cows while restrained in the crush. The IRTIs were analysed automatically 185 

using the FLIR Atlas software development kit (SDK) for Matlab® and cropped the videos 186 

in the eye and ear sections. The RGB videos were used to assess HR using the PPG method 187 

based on the luminosity changes in the green channel of the eye, forehead and full face 188 

of the cows; these signals were then further analysed using a customised Matlab® code 189 

previously developed for humans 29 and adapted for animals. On the other hand, the 190 

authors used a FLIR ONE camera to record non-radiometric videos of the cows. These 191 

were analysed using Matlab® based on the change in pixel intensity in the nose section 192 

to measure the inhalations and exhalations from which RR was calculated. 193 

 Regarding the RR techniques, besides the manual counts usually conducted based on 194 

visual assessment of the flank movement of animals, researchers have also developed 195 

computer vision techniques, which aid in the reduction of human error/bias. Stewart et al. 196 

30 assessed 15 dairy cows using three comparative methods to determine RR with i) 197 

manual counts of the flank movements by recording the time it took the cow to reach 10 198 

breaths, ii) manual counts of flank movements similar to the method (i) but from an RGB 199 

video recorded using a high-dynamic-range (HDR) CX220E camera (Sony Corporation, 200 

Tokyo, Japan), and iii) manual count of the air movement (temperature variations) from 201 

the nostrils. The latter was performed from infrared thermal videos recorded using a 202 

ThermaCam S60 camera (FLIR Systems, Wilsonville, OR, USA). The three methods showed 203 

to give similar responses with the highest average difference (0.83 ±0.57) between 204 

methods (i) and (iii). Furthermore, Lowe et al. 31 presented a similar approach but tested 205 

only in five calves. In the latter study, two methods were compared i) manual count of 206 

flank movements from an RGB video recorded using a Panasonic HCV270 camera 207 

(Panasonic, Osaka, Japan), this was made by recording the time taken for the calf to reach 208 

five breath cycles, and ii) manual count of the thermal fluctuations (colour changes) in the 209 

nostrils from infrared thermal images recorded using a FLIR T650SC camera. The Adobe 210 

Premiere Pro CC (Adobe, San Jose, CA, USA) was used for the manual counts for both 211 

methods. A high determination coefficient (R2 = 0.93) was reported comparing both 212 

methods. More recently, Kim and Hidaka 32 used a FLIR ONE Pro infrared thermal camera 213 

to record IRTIs and RGB videos from the face of calves. The authors first measured the 214 

colour changes from the nostril region manually as the time it took for the calf to complete 215 

five breaths. A mask region-based convolutional neural network (Mask R-CNN) and 216 

transfer learning were used to automatically develop a model using the RGB video frames 217 

to automatically detect and mask the calves' nose. Once the nose was detected and 218 

masked in the RGB videos, co-registered IRTIs were used to automatically extract the 219 

mean temperature of the region of interest. The authors reported an R2 = 0.91 when 220 

comparing the manual and automatic methods. 221 

 Besides the ones used to assess physiological responses, other biometrics have been 222 

explored to be applied in beef and dairy cattle. These methods consist of the use of 223 

biosensors and/or image/video analysis (remote sensing). For example, Huang et al. 33 224 

developed a computer vision method to assess body measurements (dimensions) of cattle 225 

using an O3D303 3D LiDAR camera to record the individual animals' side view and post-226 

processing using filter fusion, clustering segmentation and matching techniques. Tsai et 227 

al. 34 developed an integrated sensor module composed of a Raspberry Pi 3B processing 228 

unit (Raspberry Pi Foundation, Cambridge, England), a Raspberry Pi V2 camera module 229 

and a BME280 temperature and relative humidity sensory for environmental 230 
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measurement. This integrated module was placed on the top of the drinking troughs in a 231 

dairy farm to record drinking behaviour of the cows. The authors then applied 232 

convolutional neural networks (CNN) based on Tiny YOLOv3 real-time object detection 233 

deep learning network for the head detection of cows to predict the drinking length and 234 

frequency which were found to be correlated with the temperature humidity index (THI; 235 

R2 = 0.84 and R2 = 0.96, respectively).  236 

 237 

Sheep 238 

 Researchers have been working on different techniques to assess sheep's behavioural 239 

and physiological responses using contact and contactless sensors. Giovanetti et al. 35 240 

designed a wireless system consisting of a halter with a three-axis accelerometer ADXL335 241 

(Analog Devices, Wilmington, MA, USA) attached; this was positioned in the lower jaw of 242 

dairy sheep to measure the acceleration of their movements on x-, y- and z-axes. 243 

Furthermore, the authors used a Sanyo VPC-TH1 camera (Sanyo, Osaka, Japan) to record 244 

videos of the sheep during feeding and manually assessed whether the animals were 245 

grazing, ruminating or resting as well as the bites per minute. Similarly, Alvarenga et al. 246 

36 designed a halter attached below the jaw of sheep; this halter had an integrated data 247 

logger Aerobtec Motion Logger (AML prototype V1.0, AerobTec, Bratislava, Slovakia), 248 

which is able to measure acceleration in x-, y- and z-axes transformed into North, East 249 

and Down reference system. Besides, they recorded videos of the sheep using a JVC Everio 250 

GZR10 camera (JVC Kenwood, Selangor, Malaysia) to manually assess grazing, lying, 251 

running, standing and walking activities. These data were used to develop ML models to 252 

automatically predict activities, obtaining an accuracy of 85%.   253 

 Abecia et al. 37 presented a method to measure the body temperature of ewes using 254 

a button size data logger DS1921K (Thermochron™ iButton®, Maxim Integrated, San 255 

Jose, CA, USA) taped under the tail of the animals. This sensor was able to record 256 

temperature data every 5 min. Using remote sensing, de Freitas et al. 38 used a FLIR i50 257 

infrared thermal camera to record images from different areas of the sheep: anus, vulva, 258 

muzzle, and eyes. The authors used the FLIR Quickreport software to manually select the 259 

different sections in each sheep and obtain each area's mean temperature. They concluded 260 

that the vulva and muzzle were the best areas to assess temperature during the oestrous 261 

cycle in ewes. Sutherland et al. 39 also used an infrared thermal camera (FLIR Thermacan 262 

S60) to record videos of the left eye of ewes. These videos were analysed to assess eye 263 

temperature using the Thermacam Researcher software ver. 2.7 (FLIR Systems, 264 

Wilsonville, OR, USA). Additionally, the authors used a Polar RS800CX sensor and placed 265 

it around the ewes thorax to assess HR and HRV.  266 

 In terms of potential applications of sensor technology, Cui et al. 40 developed a 267 

wearable stress monitoring system (WSMS) consisting of master and slave units. The 268 

master unit was comprised of environmental sensors such as temperature, relative 269 

humidity and global positioning system (GPS) attached to an elastic band and placed 270 

around the rib cage of sheep, while the slave unit was composed of physiological sensors 271 

such as an open-source heart rate sensor (Pulse Sensor, World Famous Electronics llc, 272 

New York, NY, USA), and a skin temperature infrared sensor (MLX90615; Melexis, Ypres, 273 

Belgium). This system was tested on meat sheep during transportation and proposed as 274 

a potential method to assess physiological responses with minimal stress. Zhang et al. 41 275 

designed a wearable collar that included two sensors to measure (i) heart rate and oxygen 276 

saturation in the blood (MAX30102; Max Integrated, San Jose, CA, USA), and (ii) body 277 
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temperature (MLX90614; Melexis, Ypres, Belgium). These sensors were connected to the 278 

Arduino Mobile App (Arduino LLC, Boston, MA, USA) through Bluetooth® for real-time 279 

monitoring and used an SD card for data storage. The authors also proposed this system 280 

to assess physiological responses during transportation of sheep. However, these studies 281 

can only monitor sentinel animals, making laborious, difficult and impractical the 282 

assessment of all animals transported. 283 

 To solve the later problem, Fuentes et al. 16 presented a contactless/non-invasive 284 

method to assess temperature, HR and RR of sheep using computer vision analysis and 285 

machine learning. The authors used a FLIR DUO PRO camera to simultaneously record 286 

RGB and infrared thermal videos of sheep. The infrared thermal videos were analysed 287 

using customised Matlab® R2020a algorithms to automatically recognise sheep's head 288 

and obtain the maximum temperature. Results showed a very high correlation (R2 = 0.99) 289 

between the temperatures obtained with the thermal camera and the rectal and skin 290 

temperatures measured using a digital thermometer. On the other hand, RGB videos were 291 

analysed using customised Matlab® R2020a codes to assess HR and RR based on the PPG 292 

principle using the G colour channel from RGB scale for HR and “a” from Lab scale for RR. 293 

An artificial neural network model was developed using the Matlab® code outputs to 294 

predict the real HR and RR (measured manually), obtaining high accuracy R = 0.94. This 295 

study also proposed a potential deployment system to be used for animals in transport. 296 

 For other biometric assessment, Zhang et al. 42 developed a computer vision method 297 

to measure the dimensions of sheep using three MV-EM120C Gigabit Ethernet charge-298 

coupled device (CCD) cameras (Lano Photonics, JiLin Province, China) located at different 299 

positions (top, left and right side) of the weighing scale for sheep. The recorded images 300 

were analysed in Matlab® R2013 using the superpixel segmentation algorithm. The 301 

authors also obtained the dimension parameters manually and found a correlation R = 302 

0.99 for weight and R = 0.79 for dimensions (width, length, height and circumference) 303 

using support vector machine.  304 

  305 

Pigs 306 

 Pigs are also commonly studied to develop biometric techniques to assess behavioural 307 

and physiological responses. For example, Byrd et al. 43 used a KPC-N502NUB camera 308 

(KT&C, Fairfield, NJ, USA) mounted on top of the pigs' pen to assess pig behaviour. The 309 

authors used the GeoVision VMS software (GeoVision Inc, Taipei, Taiwan) and assessed 310 

whether the pigs were active (standing or sitting) or inactive (lying sternal or lateral). 311 

Nasirahmadi et al. 44 assessed the lying behaviour of pigs using closed-circuit television 312 

(CCTV) with a Sony RF2938 camera above the pen. Matlab® software was used to analyse 313 

the videos using computer vision algorithms to detect the position of each pig and analyse 314 

the distance between each animal considering their axes, orientation and centroid. On the 315 

other hand, Pezzuolo et al. 45 obtained body measurements and weight of pigs using a 316 

Kinect V1 depth camera (Microsoft Corporation, Redmond, WA, USA) positioned on the 317 

top and side of the pen. Videos were analysed using the Scanning Probe Image Processor 318 

(SPIP™) software (Image Metrology, Lyngby, Denmark) to obtain length, front and back 319 

height, and heart girth. Furthermore, authors developed linear and non-linear models to 320 

predict weight, obtaining an accuracy R2 > 0.95 in all modelling methods tested. The 321 

drawback that the authors mentioned from this technique is that the system can only 322 

record data from a single camera at a time because there is interference when using 323 

simultaneous data acquisition of the two cameras. 324 



8 

 

 Regarding techniques to measure body/skin temperature from pigs, da Fonseca et al. 325 

46 used a Testo 876-1 handheld infrared thermal camera (Testo Instruments, Lenzkirch, 326 

Germany) to record images of piglets’ full body. The IRSoft v3.1 software (Testo 327 

Instruments, Lenzkirch, Germany) was used to obtain the maximum and minimum skin 328 

temperature values. Rocha et al. 47 presented a method to measure the body temperature 329 

of pigs using two IR-TCM284 infrared thermal cameras (Jenoptik, Jena, Germany). One 330 

camera was placed in the pen perpendicular to the pigs’ body, while the second one was 331 

positioned 2.6 m above the pigs in the loading alley for transportation. The areas of 332 

interest evaluated were neck, rump, orbital region, and the area behind the ears; these 333 

were manually selected using the IRT Cronista Professional Software v3.6 (Grayess, 334 

Bradenton, FL, USA) and extracting the minimum, maximum and mean temperatures. 335 

Authors found that the temperatures from the orbital region and behind the ears were the 336 

most useful to assess different types of stress (cold/heat, thirst, hunger, pain) during 337 

handling and transportation. On the other hand, Feng et al. 48 developed a computer vision 338 

and machine learning method to predict the rectal temperature of sows using a T530 FLIR 339 

infrared thermal camera to capture images. The FLIR Tools software (FLIR Systems, 340 

Wilsonville, OR, USA) was used to obtain the maximum and mean skin temperature in 341 

different areas such as ears, forehead, shoulder, back central and back end, and vulva. 342 

With these data, the authors developed a partial least squared regression (PLS) model to 343 

predict rectal temperature, obtaining an accuracy of R2 = 0.80.  344 

 Wang et al. 49 developed a contactless method to assess HR of pigs using two different 345 

setups (i) a webcam C920 HD PRO (Logitech, Tainan, Taiwan) located on top of the 346 

operation table with an anesthetised pig, and (ii) a Sony HDRSR5 Handycam located on a 347 

tripod above resting individual housing with a resting pig. Matlab® was used to analyse 348 

the videos by selecting and cropping the (i) neck for the first setup and (ii) abdomen, neck 349 

and front leg for the dual setup. Authors used the PPG principle using the three colour 350 

channels of the RGB scale and found the G channel provided the most accurate results 351 

compared to measurements using an ECG. Barbosa Pereira et al. 50 also developed a 352 

method using anesthetised pigs; they used a long wave infrared VarioCam HD head 820 353 

S/30 (InfraTecGmbH, Dresden, Germany) to assess HR and RR. The videos were analysed 354 

using Matlab® R2018a, and it included the segmentation using a multilevel Otsu’s 355 

algorithm, region of interest (chest) selection, features identification and tracking using 356 

the Kanade–Lucas–Tomasi (KLT) algorithm, temporal filtering to measure trajectory and 357 

principal components analysis (PCA) decomposition and selection. This allowed them to 358 

obtain an estimated HR and RR at the selected frequency rates. The authors reported a 359 

determination coefficient R2 = 0.96 for HR compared to the ECG method and R2 = 0.97 for 360 

RR compared to ventilator data. Jorquera-Chavez et al. 51 developed a contactless method 361 

to assess temperature, HR and RR of pigs using an integrated camera composed of a FLIR 362 

AX8 infrared thermal camera and a Raspberry Pi Camera V2.1 to record IRTIs and RGB 363 

videos, and a FLIR ONE infrared thermal camera to record non-radiometric videos. The 364 

authors used the same method as that reported for cows 17 using Matlab® R2018b 365 

selecting the eyes and ears as regions of interest for temperature, eye section for HR and 366 

nose for RR. The same method was used in the study developed by Jongman et al. 52, but 367 

they used a FLIR DUO PRO R dual camera (infrared thermal and RGB) and reported a 368 

correlation coefficient within the R = 0.61 – 0.66 range for HR and RR compared to manual 369 

measurements. 370 
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Table 1. Summary of biometric methods to assess health and welfare for cattle, sheep and pigs. 371 

Animals Measurement Technique 

Groundtruth 
(traditional 

methods) 

Number 

of 

animals 

Accuracy of 

method 

Proposed 

application 
References 

Cattle 

Dairy cows Body temperature 
Implanted RFID 
biosensor and 

Machine learning 

Vaginal 
temperature 

(probe)  
3 RMSE = 0.08 

First steps for precision 
agriculture methods 

3 

Simulated cows 
Temperature and 

movements 

Wearable digital 
sensors 

Wireless data 
acquisition 

None 

1 toy 
simulatin
g a cow 
and hot 
water 

Not reported 
Health monitoring and 

disease detection 
24 

Cattle 

(Holstein and 
Jersey) 

Body temperature 

Contactless 
biometrics 

Computer vision  
Infrared thermal 

images 

Rectal 
temperature 

(probe) 

Not 
specified 

Mean difference 
between methods 
0.04 ± 0.10 °C 

Alternative to 
traditional temperature 

methods 

25 

German 
Holstein cows 

HR  
HRV 

Wearable sensors None 40 Not reported 
Tested impact of 

different stimulation 
methods 

26 

Dairy calves HR Wearable sensors None 69 Not reported 
Behavioural and stress 

response 
27 

Cows 
HR 
RR 

Chewing 

Contactless 
biometrics 

Computer vision 
RGB images and 

laser 

HR: wearable 
sensor 

RR and Cheiwng: 
manual count 

6 
HR: R = 0.98 
RR: R = 0.97 

Chewing: R = 0.99 

Biomedical monitoring 
for optimised cattle 

treatment 

28 

Dairy cows 

Holstein 
Friesian 

Skin temperature 
HR 
RR 

Contactless 
biometrics 

Computer vision 
Infrared thermal 
images and RGB 

videos 

Skin 
temperature: 
vaginal probe 
HR: wearable 

sensors 
RR: manual count 

10 

Skin Temperature: R 
= 0.74 

HR: R = 0.20 – 0.83 
RR: R = 0.87 

Monitoring of 
physiological responses 

17 

Dairy cows RR 
Computer vision 
Infrared thermal 
and RGB videos 

Manual count 15 

Mean difference 
Manual vs RGB 

video: -0.01 ±0.87 
Manual vs infrared 
videos: 0.83 ±0.57 

Monitoring of health 
and welfare 

30 
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Calves RR 

Contactless 
biometrics 

Computer vision 
Infrared thermal 

images 

Manual count 
from RGB videos 

5 R2 = 0.93 
Monitoring of health 

and welfare 
31 

Japanese Black 
Calves 

RR 

Contactless 
biometrics 

Computer vision 
Infrared thermal 

images 
Deep learning 

Manual count 5 R2 = 0.91 Monitoring health 32 

Qinchuan cattle 
Body 

measurements 
(dimensions) 

Contactless 
biometrics 

Computer vision 
RGB images 

Manual 
measurements 

3 2 mm 
Contactless body 

measurements of large 
livestock 

33 

Dairy cows 
Drinking 

behaviour 

Integrated sensor 
module 

Computer vision 
Deep learning 

None 25 Not reported 

Automatic and 
quantitative 

assessment of drinking 
behaviour as a 

measure of heat stress 

34 

Sheep 

Dairy sheep 
Behaviour 
actrivities 

Wireless system 
Wearable sensors 

RGB videos 

Manual 
assessment 

3 93% Behaviour assessment 35 

Ewes 
Behaviour 
actrivities 

Wearable sensors 
RGB videos 

Machine learning 

Manual 
assessment 

6 85% 

Assessment of sheep 
activity prevous to 

methane 
measurements  
Assessment of 

temporal grazing 
patterns 

36 

Ewes Body temperature Wearable sensor None 15 Not reported 
Measurement of 

temperature changes 
in lambing period 

37 

Ewes 

Surface 
temperature of 
different areas  
(anus, vulva, 
muzzle, eyes) 

Contactless 
biometrics 

Computer visión 
Infrared termal 

images 

Rectal and 
vaginal 

temperature 
20 Not reported 

Assessment of 
temperature during 

oestrous cycle 
Reproductive 
managment 

38 
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Ewes 
Eye temperature 

HR 
HRV 

Computer visión  
Infrared termal 

images 
Wearable sensors 

None 20 Not reported 
Assessment of 

autonomic nervous 
system responses 

39 

Meat sheep 
Skin temperature 

HR 
Wireless wearable 
monitoring system 

Traditional 
veterinary 
monitors 

60 

Non-significant 
differences  
(no p-value 
reported) 

Assessment of 
physiological responses 

with minimal stress 

40 

Mutton sheep 
HR 

Oxygen saturation 
Body temperature 

Wearable sensors None 
Not 

reported 
Not reported 

Disgnose survival 
status during 
transportation 

41 

Merino lambs 
Skin temperature 

HR 
RR 

Contactless 
biometrics 

Computer vision 
Machine learning 

Skin and rectal 
temperature 

(digital 
thermometer) 
Stethoscope 
Manual count 

12 sheep 
/3 times 

a day 
/four 
weeks 

Skin temperature: R2 

= 0.99 
HR and RR: R = 0.94 

Assessment of 
physiological responses 
and heat stress during 

transportation 

16 

Sheep 

Body 
measurements 
(dimensions; 

weight) 

Contactless 
biometrics 

Computer vision 
Machine learning 

Manual 
measurements 

27 
Weight: R = 0.99 
Dimensions: R = 

0.79 

Increase efficiency in 
herds management 

42 

Pigs 

Pigs Behaviour 
Contactless 
biometrics 

Computer vision 
None 

10 pigs 
/2 

replicatio
ns 

Not reported 
Assessment of heat 

stress 
43 

Pigs Lying behaviour 
Contactless 
biometrics 

Computer vision 
Not reported 88 96% Welfare assessment 44 

Pigs 

Body 
measurements 
(dimensions) 

Weight estimation 

Contactless 
biometrics 

Computer vision 

Manual 
measurments 

78 
R2 > 0.95 to predict 

weight 
Estimate pigs’ weight 
during weaning period 

45 

Piglets 
Sus Scrofa 

Skin temperature 
Cold/heat stress 

Thirst stress 
Hunger stress 

Pain stress 

Contactless 
biometrics 

Computer vision 
Infrared thermal 

images 
Machine learning 

Stress conditions 
based on 

treatments 
72 

Cold/heat stress: 
100% 

Thirst stress: 91% 
Hunger stress: 86% 

Pain stress: 50% 

Assessment of stress 
during handling and 

transportation 

46 
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Sows 
Rectal 

temperature 

Contactless 
biometrics 

Computer vision 
Infrared thermal 

images 
Machine learning 

Rectal 
temperature 

(mercury 
thermometer) 

99 R2 = 0.80 Welfare assessment 48 

Pigs HR 
Contactless 
biometrics 

Computer vision 
Electrocardiogram 2 

78%  
(Green colour 

channel) 

Real-time monitoring 
of health and welfare 

49 

Pigs 
HR 
RR 

Contactless 
biometrics 

Computer vision 
Infrared camera 

Electrocardiogram 

Ventilator data 
17 

HR: R2 = 0.96 
RR: R2 = 0.97 

Long term monitoring 
of research animals 

50 

Pigs 
Skin temperature 

HR 
RR 

Contactless 
biometrics 

Computer vision 
Infrared thermal 
images and RGB 

videos 

None 46 Not reported 
Early detection of 

disease before 
symptoms appear 

51 

Pigs 
Eye temperature 

HR 
RR 

Contactless 
biometrics 

Computer vision 
Infrared thermal 
and RGB videos 

Stethoscope 
Manual count 
from videos 

28 

Eye temperature: 
not reported 
HR and RR:  

R = 0.61 – 0.66 

Physiological responses 
due to respiratory 

diseases 

52 

* Abbreviations: RFID: radio frequency identification; RMSE: root mean squared error; HR: heart rate; HRV: heart rate variability; RR: respiration rate; 372 

RGB: red, green, blue 373 



13 

 

Biometric techniques for recognition and identification 374 

 Correct and accurate identification of livestock is essential for farmers and producers. 375 

It also allows relating each animal to different productivity aspects such as health-related 376 

factors, behaviour, production yield and quality, and breeding. Furthermore, animal 377 

identification is essential for traceability, especially during transport and after selling, to 378 

avoid fraud and animal ledger or identification forging. However, traditional methods 379 

involve ear tags, tattoos, microchips, and Radio Frequency Identification (RFID) collars, 380 

which involve high costs; some may be unreliable and easily hacked or interchanged. 381 

Furthermore, they require human labour for their maintenance, making them time-382 

consuming and prone to human error and may lead to swapping tags 53-56. Therefore, 383 

some studies in recent years have focused on the development of contactless biometric 384 

techniques to automate the recognition and identification of different animals such as 385 

bears using deep learning 57 and cows based on different features such as the face 53, 58, 386 

muzzle 55, body patterns 54, iris recognition 59, or retinal patterns 56. 387 

 388 

Cattle 389 

 Most of these biometric techniques for recognition and identification have been 390 

developed for cattle. Authors have presented methods based on one of the three main 391 

techniques (i) muzzle pattern identification, (ii) face recognition, and (iii) body recognition 392 

and identification. The first technique has been applied for cattle recognition using images 393 

of the muzzle and analysed for features as it has a particular pattern that is different for 394 

each animal, similar to the human fingerprints. Once these features and patterns are 395 

recognised, a deep learning model is developed to identify each cow 55, 60-64. Face 396 

recognition methods using different techniques such as local binary pattern algorithms 58 397 

and CNN have been proposed for specific cattle breeds with different colours and patterns, 398 

such as Simmental 65, Holstein, Guernseys, and Ayrshires, among others 53, 66; however, 399 

none has been presented in single coloured cattle breeds such as Angus. On the other 400 

hand, body recognition methods have been developed to identify cows within a herd using 401 

computer vision and deep learning techniques. Within the proposed methods is the cattle 402 

recognition from the side 67, from behind 68, different angles 69, or from the top 70. The 403 

latter was proposed to identify and recognise Holstein and Friesian cattle using an 404 

unmanned areal vehicle (UAV) 70-73. Bhole et al. 67 proposed an extra step for cow 405 

recognition from the side by recording IRTIs to ease the image segmentation and remove 406 

the background.  407 

 408 

Sheep 409 

 While biometrics applied for the identification and recognition of sheep have not been 410 

deeply explored, the development of some proposed methods has been published. The 411 

techniques that have been reported for sheep consist of retinal recognition using a 412 

commercial retinal scanner OptiReader (Optibrand®, Fort Collins, CO, USA) 74 and face 413 

recognition using classification methods such as  machine or deep learning. Salama et al. 414 

75 developed a deep learning model based on CNN and Bayesian optimisation and obtained 415 

an identification accuracy of 98%. Corkery et al. 76 proposed a method based on 416 

independent components analysis and the InfoMax algorithm to identify the specific 417 
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components from the normalised images of the sheep’s faces and then find them in each 418 

tested image; the authors reported an accuracy within 95 – 95%. 419 

 420 

Pigs 421 

 The biometric techniques that have been published to identify pigs are based mainly 422 

on face recognition and body recognition from the top of the pens. Hansen et al. 77 423 

developed a face recognition method using CNN with high accuracy (97%).  Marsot et al. 424 

78 developed a face recognition system based on a mix of computer vision to identify the 425 

face and eyes and deep learning CNN for classification purposes, obtaining an accuracy of 426 

83%. On the other hand, Wang et al. 79 proposed a method to identify pigs from images 427 

recorded from the whole body using integrated deep learning networks such as dual-path 428 

network (DPN131), InceptionV3 and Xception, with an accuracy of 96%.  Huan et al. 80 429 

tested a Weber texture local descriptor (WTLD) identification method with different masks 430 

to detect and recognise individual features such as hair, skin texture, and spots using 431 

images of groups of pigs; the tested WTLD methods resulted in accuracies >96%. Kashiha 432 

et al. 81 based their automatic identification method on computer vision to recognise 433 

marked pigs within a pen using the Fourier algorithm for patterns description and Euclidean 434 

distance; this technique resulted in an 89% accuracy.  435 

 436 

Machine and deep learning application in livestock to address 437 

complex problems 438 

 This section concentrates specifically on the research on AI application using machine 439 

learning and deep learning modelling techniques on livestock, specifically for cattle, sheep 440 

and pigs. One of the latest researches has been focused on the use of AI to identify farm 441 

animals' emotional response, including pigs and cattle 82. However, it may be difficult to 442 

assess and interpret the emotional state of farm animals only from facial expression and 443 

ear positioning as proposed in the latter study, and more objective assessment could be 444 

performed using targets based on hormonal measurements from endorphins, dopamine, 445 

serotonin and oxytocin among others, which will require blood sampling. Therefore, all the 446 

in vitro and tissue applications were excluded from this section since they require either 447 

destructive or invasive methods to obtain data. 448 

 449 

Cattle 450 

 A simple AI approach was proposed using historical data (four years) with almost 451 

ubiquitous sensor technology in livestock farms, such as meteorological weather stations 452 

with daily temperature and relative humidity 83. In this study, meteorological data was 453 

used to calculate temperature and humidity indices (THI) using different algorithmic 454 

approaches as inputs to assess the effect of heat stress on milk productivity as targets in 455 

a robotic dairy farm. This approach attempted to answer complex questions with 456 

potentially readily available data from robotic and conventional dairy farms and proposed 457 

a deployment system for an AI approach with a general accuracy of AI models of 87%. 458 

More accurate heat stress assessments could be achieved by either sensor technology, 459 

with minimal invasiveness to animals, such as ear clips, collars or similar, or remote 460 

sensing cameras, computer vision and deep learning modelling. However, the latter digital 461 
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approach requires assessing individual animals using extra hardware and sensors, camera 462 

systems located in strategic positions allowing monitoring of every single animal (e.g., 463 

corral systems and straight alleys). Furthermore, these new digital approaches require the 464 

recording of new data. A big question in AI applications of AI in cattle, in this case, would 465 

be whether it is worth the significant extra investment in hardware and machine learning 466 

modelling using new data to increase the accuracy of models by an additional 10%. 467 

 Sensor technology and sensor networks have been implemented in cattle to assess 468 

lameness, such as accelerometers, IoT connectivity and time series machine learning 469 

modelling approaches 84, 85. These applications were the first approaches to be 470 

implemented in animals after applications in humans for fitbits. Sensor readings and 471 

connectivity using IoT will facilitate the implementation of this technology in a near or 472 

real-time fashion. However, there is a big downside of the requirement of sensors for every 473 

single animal to be monitored. This is valid to other applications for sensor integration 11, 474 

such as collars, halter and ear tag sensors 86, to detect physiological changes, behaviour 475 

and other anomalies 87. 476 

 As mentioned before, animal recognition using deep learning approaches should be 477 

considered the first step to apply further remote sensing and AI tools. A second step should 478 

be the identification of key features from animals using deep learning 88, which makes 479 

possible the extraction of physiological information from those specific regions using 480 

machine learning modelling, such as heart rate from the eye section or exposed skin (e.g. 481 

ears or muzzle) and respiration rate from the muzzle section. These animal features should 482 

be recognised in a video to extract enough information to obtain physiological parameters 483 

that currently require 4-8 seconds (e.g., heart rate and respiration rate) for the signal to 484 

stabilise and get meaningful data. Hence, the AI implementation steps should consider 485 

animal recognition, specific feature recognition and tracking and extraction of physiological 486 

parameters using machine learning. This may also be integrated as a whole system along 487 

with automatic animal identification using face recognition and deep learning as proposed 488 

in Figure 1. 489 
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490 

Figure 1. Proposed artificial intelligence system to assess dairy cows integrated system for face 491 

recognition, animal identification (green box) and biometrics such as heart rate in beats per minute 492 

(BPM; orange box) and respiration rate in breaths per minute (BrPM; green box). The percentage in 493 

the green box represents the certainty of identification. 494 

 Integration of UAV, computer vision algorithms and CNN have been attempted for the 495 

recognition of cattle from the air 89. However, these authors concentrated efforts on the 496 

feasibility and testing of different algorithms rather than the potential deployment of a 497 

pilot program. Furthermore, these approaches could also be used for animal recognition 498 

and the potential extraction of physiological parameters, such as body temperature (using 499 

infrared thermal cameras as payload). Dairy cows could offer more identification features 500 

than Angus cattle, which may require the implementation of multispectral cameras to 501 

include potential non-visible features from animals.  502 

 503 

Sheep  504 

Sensor technology and sensor networks have also been applied in parallel with 505 

machine learning approaches for sheep using electronic collars and ear sensors as input 506 

data and supervised selecting several behaviour parameters as targets with a reported 507 

accuracy of <90% for both methods 90. Some predictive approaches from existing data 508 

have been attempted to assess carcass traits from early-life animal records 91 using 509 

supervised and unsupervised regression machine learning methods with various low to 510 

high accuracies reported.  511 

Similar detection systems mentioned before for other animals have been applied for 512 

sheep counting using computer vision and deep learning CNN methods 92, which can also 513 

be used in parallel with other AI procedures to extract more information from animals for 514 
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health or welfare assessments, such as sheep weight 93. Following this approach, additional 515 

physiological parameters, such as heart rate, body temperature and respiration rate, can 516 

be extracted from individual sheep non-invasively 16. The latter study also proposed using 517 

this AI approach for real livestock farming applications, such as animal welfare assessment 518 

for animals during transportation.  519 

Other welfare assessments have been developed for sheep based on the facial 520 

classification expression for pain level applied using deep learning CNN and computer 521 

vision with 95% accuracy. However, no deployment reported, which can be used to assess 522 

further animal welfare 94. 523 

 524 

Pigs 525 

 Some simple machine learning applications have been implemented to predict water 526 

usage in pig farms using regression machine learning algorithms 95. However, this study 527 

reported a maximum determination coefficient of R2 = 0.42 for regression tree algorithms, 528 

which could be related to poor parameter engineering, since only temperature and relative 529 

humidity was used.   530 

 Automatic pig counting 96, pig posture detection 97, 98, mounting 99 and sow behaviour 531 

100, localisation and tracking 101, aggressive behaviour 102  have been attempted using 532 

computer vision and deep learning. These are relatively complex approaches for 533 

meaningful questions considering further pipeline of analyses. These approaches could be 534 

used to extract more information from the individual pigs once they have been recognised, 535 

such as biometrics including heart rate and respiration rate extracted for other animals, 536 

such as sheep mentioned before 16 and cattle identification 73 with accuracies in 537 

identification between 86% and 96% with a maximum of 89 individuals. 538 

 Other approaches have been implemented for the early detection (between 1 to 7 539 

days of infection) of respiratory diseases in pigs using deep learning approaches 103. Other 540 

computer vision approaches using visible and infrared thermal imagery analysis without 541 

machine learning approaches also delivered an acceptable assessment of respiratory 542 

diseases in pigs 51. 543 

 544 

Conclusions 545 

 Implementing remote sensing, biometrics and AI for livestock health and welfare 546 

assessment could have many positive ethical implications and higher acceptability by 547 

consumers of different products derived from livestock farming. Specifically, integrating 548 

digital technologies could directly impact increasing the willingness to purchase products 549 

from sources that introduced AI to increase animal welfare on the farm and transport for 550 

ethical and responsible animal handling and slaughtering. However, a systematic 551 

deployment of different digital technologies reviewed in this paper will require further 552 

investment, which some governments, such as Australia, has identified as a priority. 553 

 It is difficult to assess the applicability or deployment options from different research 554 

done so far on livestock, which have applied biometrics and AI since there is no consistency 555 

in the reporting of the accuracy of models, performance, testing for over or underfitting of 556 

models, number of animals used or proposed pilot or deployment options (Table 1). 557 
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Furthermore, in most of these studies, there are no follow-ups on the models either by 558 

establishing potential pilot deployments to test them in real-life scenarios. Many 559 

researchers only rely on the validation and testing protocols within the model development 560 

stage. The latter does not give any information on the practicality or applicability of these 561 

digital systems, since circumstances in real life scenarios change in time and models need 562 

to be re-evaluated and continuously fed with new data to learn and adapt to different 563 

circumstances and scales of use. 564 

 It is also clear that much of the AI developments and modelling for livestock farming 565 

applications are academic, and very little research has focused on efficient and practical 566 

deployment to real-world scenarios. To change this, researchers should work on real-life 567 

problems in the livestock industry, starting with simple ones and pressing questions. The 568 

next step is to solve them using efficient and affordable technology, starting with big data 569 

analysis from historical data accumulated by different industries. The idea here is to 570 

initially apply AI where the data exists to achieve maximum reach with high performance 571 

and scalable applications (e.g. heat stress assessment on milk production using historical 572 

weather information and productivity data). It is also required to check whether the correct 573 

data is available, avoid basing AI on reduced datasets and restricted only to test different 574 

machine learning approaches. Academic exercises based on AI modelling for its sake only 575 

rarely reach pilot programs and applications to the real world. Furthermore, data quality 576 

and data security are becoming fundamental issues that should be dealt using digital 577 

ledger systems for data and model deployments, such as blockchain implementation. This 578 

approach allows treating data and AI models as a currency to avoid hacking and 579 

adulteration, especially with AI models and data dealing with welfare assessments for 580 

animals in farms to claim ethical production or animals in transport. 581 

 To solve these problems, AI modelling, development and deployment strategies 582 

should have a multidisciplinary team with constant communication during the model 583 

development and deployment stages; or what could be a better approach, but very rare 584 

nowadays is to have an expert on animal science, data analysis and AI dealing with 585 

business companies. This could change soon through specialised Agriculture, Animal 586 

Science and Veterinary degrees in which data analysis, machine learning and AI is 587 

introduced in their respective academic curriculums. 588 

 Integrating new and emerging digital technology with AI development and deployment 589 

strategies for practical applications would create effective and efficient AI pilot applications 590 

that can be easily scaled up to production to create successful innovations in livestock 591 

farming. 592 

 593 
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