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Abstract

A three-dimensional (3-D) localization algorithm for multiple near-field (NF)

sources considering amplitude attenuation is proposed in this paper. First-

ly, we use the symmetry of the array and the delay autocorrelation of NF

signals to construct the virtual received data, whose phase factor is linear

with the sensor position. By using the symmetry of amplitude attenuation

of the virtual received data, a one-dimensional (1-D) peak search estimator

is constructed to obtain the first angle parameter. Then, the estimated re-

sult is substituted into another spectral peak search function based on the

original data to estimate the range parameter. Finally, a single-snapshot

virtual received data set is generated, and the remaining angle parameter is

solved by a phase retrieval operation. The proposed algorithm can automat-

ically match the 3-D parameters, and has a stable estimation performance
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considering amplitude attenuation, as demonstrated by simulation results.

Keywords: Source localization, near-field sources, amplitude attenuation,

temporal-spatial.

1. Introduction

As an important topic in source localization, the case with near-field

(NF) sources has found many applications in radar [1] and wireless com-

munications [2]. With the source-sensor distance being within the Rayleigh

distance (known as in the Fresnel region) of the array [3], the wavefront cur-

vature becomes spherical, where direction-of-arrival (DOA) and range of the

NF sources need to be jointly estimated. A series of NF source localization

methods have been proposed, including the subspace methods [4–6], and the

sparse representation methods [7], where only the one-dimensional (1-D) an-

gle (azimuth) and range can be obtained based on linear arrays. For the

more general case, i.e., three-dimensional (3-D) estimation, where the pa-

rameters of interest are elevation, azimuth and range, two typical solutions

can be found in [8] and [9], which are based on a center-symmetric cross

array, employing the subspace rotation invariance method and optimization

method, respectively. Unfortunately, all above-mentioned algorithms ignore

amplitude attenuation of the received signal, which varies from sensor to sen-

sor and is inversely proportional to the source-sensor distance, as pointed out

in [10, 11]. Such a mismatch of the NF source model with physical reality

will no doubt lead to performance degradation in parameter estimation.

On the other hand, it is important to exploit the spatial and temporal

information in the process to improve the parameter estimation performance
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[12]. Based on fourth-order cumulants, a 3-D subspace rotational invariance

algorithm is proposed in [13], which transforms the NF data into virtual

temporal-spatial far-field (FF) pseudo-data (a source beyond the Rayleigh

distance of the array is considered a far-field (FF) source, whose wavefront

is planar) by selecting specific array elements in two subarrays of the cross

array. Subsequently, another 3-D NF localization method is proposed in [14]

by constructing a set of temporal-spatial domain correlation matrices, which

reduces the computational complexity by avoiding the calculation of cumu-

lants. However, a parameter pairing process is required in [13, 14], which may

cause pairing errors in some unfavorable conditions. Then, a 3-D parameter

estimation method with automatic pairing is proposed in [15], where it first

constructs a conjugate augmented spatial-temporal cross correlation matrix,

and then three 1-D peak searches are performed to obtain estimates of the

3-D parameters, which is also applicable to the underdetermined scenario.

However, one common issue with the above methods is that no amplitude

attenuation is considered in their models.

In this paper, a spatial-temporal 3-D localization method for NF sources

considering amplitude attenuation is proposed. We first use the spatial-

temporal characteristics of the array received data and the symmetry of the

array structure to obtain the virtual received data whose phase factor is lin-

ear with the sensor position, and then the two 1-D peak search estimators are

constructed to find one angle and the range parameters, while the other angle

parameter is estimated by phase retrieval. This method can realize automat-

ic pairing of 3-D parameters, and a satisfactory estimation performance is

achieved as demonstrated by computer simulations.
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Figure 1: Geometry of a cross array for NF source localization.

Notations: Matrices and vectors are denoted by boldfaced capital letter-

s and lower-case letters, respectively. ∥·∥ denotes the l2-norm of a vector.

The superscript (·)
T

, (·)
∗

, (·)
H

stand for transpose, conjugate and conjugate

transpose, respectively. The notations E {·}, δ(·), det [·] represent the expec-

tation, Dirac function, and determinant, respectively. pinv(·) denotes the

pseudo inverse of the matrix, angle(·) denotes the phase-taking operation,

and max{·} represents the maximum value.

2. Signal Model

As shown in Fig. 1, the cross array considered in our work is composed

of two symmetrical uniform subarrays. The centers of symmetry of the two

subarrays are located at the same point, i.e., the origin of the coordinate

system. The sensor at the origin is shared by the two subarrays, and utilized

as the amplitude and phase reference point. The subarray located on the

x-axis is denoted as subarray x, whose number of sensors on one side of
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the origin is Nx, with the total number of sensors in the subarray being

Mx = 2Nx + 1; the subarray located on the y-axis is denoted as subarray y,

which has only three sensors, one for each side. The inter-element spacing of

each subarray is d, which is taken as the unit length of the coordinate system.

There are K narrowband NF sources impinging onto the array from angles

and ranges (θ1, ϕ1, r1) , · · · , (θk, ϕk, rk) , · · · , (θK , ϕK , rK), k = 1, 2, · · · , K,

where θk and ϕk denote the elevation and azimuth angles of the k-th signal,

respectively, and rk denotes the range from the k-th source to the reference

sensor. Moreover, αk and βk in Fig. 1 denote the angles between direction

of the k-th signal and x- and y-axes, respectively. According to geometric

structure of the array, αk and βk are related to azimuth and elevation angles

by,

cos (αk) = sin (θk) cos (ϕk)

sin (βk) = sin (θk) sin (ϕk) .
(1)

Utilizing the relationship in Eq. (1), the range from the source to the sen-

sor located at coordinates (m, 0) or (0, n) (m ∈ {−Nx, · · · , 0, · · · , Nx} , n ∈

{−1, 0, 1}) can be written as

rm,k =







√

r2k + (md)2 − 2rkmd cosαk,m > 0
√

r2k + (md)2 + 2rkmd cosαk,m ≤ 0

rn,k =







√

r2k + (nd)2 − 2rknd cos βk, n > 0
√

r2k + (nd)2 + 2rknd cos βk, n ≤ 0.

(2)

Based on the assumption of narrowband signal, the propagation delays

of the signals can be converted into phase shifts, so the output of the sensor
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located at coordinates (m, 0) or (0, n) can be written as follows [10, 11]

xm(t) =
K
∑

k=1

(

rk
rm,k

)
p

2

e−j 2π
λ
(rm,k−rk)sk(t) + wm(t)

=
K
∑

k=1

γm,ke
−j 2π

λ
(rm,k−rk)sk(t) + wm(t)

yn(t) =
K
∑

k=1

(

rk
rn,k

)
p

2

e−j 2π
λ
(rn,k−rk)sk(t) + wn(t)

=
K
∑

k=1

γn,ke
−j 2π

λ
(rn,k−rk)sk(t) + wn(t),

(3)

where γm,k =
(

rk
rm,k

)
p

2

, γn,k =
(

rk
rn,k

)
p

2

denote the amplitude attenuation, λ

is the wavelength of the signals and p denotes the prior known path-loss

attenuation exponent value; wm(t) and wn(t) denote the additive noise on

the corresponding sensor of each subarray. To simplify the model, Fresnel

approximation to the phase delay is adopted [4–6], where the array output

can be rewritten as

xm(t) =
K
∑

k=1

(

rk
rm,k

)
p

2

e−j(mωxk+m2µxk)sk(t) + wm(t)

=
K
∑

k=1

am (αk, rk)sk(t) + wm(t)

yn(t) =
K
∑

k=1

(

rk
rn,k

)
p

2

e−j(nωyk+n2µyk)sk(t) + wn(t)

=
K
∑

k=1

an (βk, rk)sk(t) + wn(t),

(4)

where

ωxk = −2πd
λ

cosαk, µxk =
πd2

λrk
sin2αk,

ωyk = −2πd
λ

cos βk, µyk =
πd2

λrk
sin2βk.

(5)

Then, the data vector collected by the subarray x or y at time t can be
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expressed compactly as

x(t) =
K
∑

k=1

ax (αk, rk)sk(t) +wx(t) = Axs(t) +wx(t)

y(t) =
K
∑

k=1

ay (βk, rk)sk(t) +wy(t) = Ays(t) +wy(t),

(6)

where Ax = [ax (α1, r1) , ..., ax (αk, rk) , ..., ax (αK , rK)]
T with ax (αk, rk) =

[a−Nx
(αk, rk) , ..., am (αk, rk) ..., aNx

(αk, rk)]
T denotes the Mx × K manifold

matrix of subarray x, Ay is similarly defined, s(t) = [s1(t), · · · , sK(t)]
T de-

notes the K × 1 baseband signal vector, and wx(t) and wy(t) are the corre-

sponding noise vectors.

As θk and ϕk can be determined when αk and βk are retrieved, the ob-

jective of the proposed algorithm in this paper is to estimate the group of

angle-range (θk, ϕk, rk) from N snapshots of data collected by the cross ar-

ray. Unless otherwise specified, the following assumptions are made for the

proposed method,

1) The sensor spacing should satisfy d ≤ λ
4
to avoid angular ambiguity;

2) The number of sources K is known or can be estimated by some well-

known methods [16, 17], and the source signals are not correlated with each

other;

3) The noise is additive white Gaussian and independent of the signals.

3. Proposed Method

3.1. Estimate αk, rk

As observed from Eq. (4), the phase factor of the NF sources contains

a linear term and a quadratic term, and the coefficient ωxk of the linear

term contains only one estimated parameter α. Accordingly, we utilize the
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symmetry of the array and the delay autocorrelation of the signal to construct

the following virtual received data,

rm,−m (τ) = E{xm (t+ τ) x∗

−m (t)}

=
K
∑

k=1

γm,kγ−m,ke
−j(mωxk+m2µxk)e−j((−m)ωxk+(−m)2µxk)

× E{sk (t+ τ) sk (t)}+ σ2
ωδ (m) δ(τ)

=
K
∑

k=1

γ̃m,ke
−j2mωxkrsk (τ) + σ2

ωδ (m) δ(τ),

(7)

where γ̃m,k = γm,kγ−m,k denotes the amplitude attenuation of virtual received

data and σ2
ω is noise power, and rsk (τ) = E{sk (t+ τ) sk (t)} denotes the

delay autocorrelation of the k-th signal. Concatenating rm,−m (τ) for m =

−Nx, · · · , 0, · · · , Nx, a vector of size Mx × 1 is constructed as follows,

r1 (τ) = [r−Nx,Nx
(τ) , · · · , r0,0 (τ) , · · · , rNx,−Nx

(τ)]T , (8)

or alternatively

r1 (τ) = A1rs (τ) , (9)

where

A1 = [a1 (α1, r1) , · · · , a1 (αk, rk) , · · · , a1 (αK , rK)] ,

a1 (αk, rk) =
[

γ̃−Nx,ke
−j2(−Nx)ωxk , · · · , 1, · · · , γ̃Nx,ke

−j2Nxωxk
]T
,

rs (τ) = [rs1 (τ) , · · · , rsK (τ)]T .

By uniformly sampling r1 (τ) at L(L > Mx) lags τl(τl = Ts, 2Ts, · · · , LTs),

the “pseudo snapshots” matrix can be collected as follows,

R1 = [r1 (Ts) , r1 (2Ts) , · · · , r1 (LTs)] = A1Rs (10)
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where Rs = [rs (Ts) , · · · , rs (LTs)] denotes the delay autocorrelation matrix

of the signal.

Calculate the covariance matrix of the virtual received data R1 in Eq.

(10), and then perform eigenvalue decomposition (EVD) to obtain

R̃1 = E
{

R1R
H
1

}

= USΣSU
H
S +UNΣNU

H
N (11)

where ΣS denotes a diagonal matrix containing K largest eigenvalues, whose

corresponding eigenvectors for the signal subspace US, while ΣN contains

the Mx − K smallest eigenvalues on its diagonal and UN denotes the cor-

responding noise subspace. Based on the orthogonality principle [15], the

following spectral peak estimator can be constructed

f1 (α, r) = [aH
1 (α, r)UH

NUNa1 (α, r)]
−1. (12)

It can be seen from Eq. (12) that the above spectral peak function has two

estimated parameters, which could be solved directly by the time-consuming

two-dimensional (2-D) search method. In order to reduce the computational

complexity, a series of preprocessing operations are applied to the function

f1 (α, r).

According to Eqs. (2) and (7), we have

γ̃−m,k = γ̃m,k, (13)
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and therefore, a1 (α, r) can be written as

a1 (α, r) =



































e−j2(−Nx)ωx

e−j2(−Nx+1)ωx

. . .

1

. . .

e−j2(Nx−1)ωx

e−j2Nxωx

























































γ̃−Nx

γ̃−Nx+1

...

γ̃−1

1























= ζ (α)υ (α, r) .

(14)

It can be seen that υ (α, r) ̸= 0 from Eq. (14), and then by utilizing the

rank-reduction principle [18–20], we can obtain a spectral peak function only

related to angle α as follows,

P (α) = [det(ζH (α)UH
NUNζ (α))]

−1. (15)

After obtaining the estimated value α̂ from Eq. (15), we proceed to es-

timate the range parameter. Although the virtual received data constructed

in Eq. (10) contains the range parameter, it only appears in the amplitude

attenuation part, whose estimation performance might not be as good as that

from the phase factor. Therefore, the original received data of subarray x in

Eq. (6) is considered, and by performing EVD on covariance matrix of Eq.

(6), we have the noise subspace U′

N . Applying the orthogonality principle

again, the following 1-D spectral peak function can be obtained

P ′(α̂, r) = [aH
x (α̂, r)U

′H
NU

′

Nax(α̂, r)]
−1. (16)

Thus, estimation of the range parameter r̂ is achieved from Eq. (16) by

resorting to the estimated value α̂ from Eq. (15).

10



3.2. Discrimination of pseudo peaks

As pointed out in Ref. [20], rank-reduction methods might yield seri-

ous pseudo peaks, resulting in ambiguous DOA estimates in some scenarios.

Therefore, a true-peak selection method is developed as follows.

First, all the estimated values (including true peaks and pseudo peaks)

obtained by Eq. (15) are substituted into Eq. (16) for range search. If

there is an estimated angle value by which we cannot find the corresponding

range value in the Fresnel area, the peak corresponding to that angle is then

considered as a pseudo peak. It should be noted that pseudo peaks might

still exist in the remaining peak values after the above operation. Next,

several array steering matrices Bq(q = 1, 2, · · · , CK
P ) are reconstructed by

selecting K angle estimates corresponding to K peaks from the remaining

P unrecognized peaks, which have CK
P combinations. The combination of

true peaks, which corresponds to unambiguous DOA estimates, is chosen by

substituting CK
P combinations to the following equation that minimizes the

error in the least squares fitting

Eq=R1 −BqRs. (17)

Since Rs is not known a priori, the following error function eq is con-

structed

eq=
∑

τ

∥

∥B⊥

q R1(:, τ)
∥

∥

2
, (18)

where B⊥

q =I−Bq(B
H
q Bq)

−1BH
q denotes the projection matrix onto the null

space of Bq. For each of the CK
P combinations, eq is calculated and the

combination providing the minimum value is chosen as the true unambiguous
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angle estimates. A summary of pseudo peak identification steps is shown in

Table 1.

Table 1: Summary of Pseudo Peak Identification

Step 1 Perform EVD on x(n) to obtain U′

n.

Step 2 Substitute the estimate α̂ corresponding to all peaks obtained by Eq. (15)

into P
′

(α̂, r) of Eq. (16) for range search.

Step 3 Remove those angle estimates α̂ that are not able to provide the

corresponding range parameters in the Fresnel area in Step 2.

Step 4 Select K values from the remaining P angle estimates for combination,

and construct the corresponding steering matrix Bq(q = 1, 2, · · · , CK
P ).

Step 5 Substitute Bq into Eq. (18) for calculation in turn, and the combination

giving the minimum eq is the true peaks.

3.3. Estimate βk

Similar to Eq. (7), the virtual data related to subarray y is constructed

as follows,

r−1,1 (τ) = E{y1 (t+ τ) y∗
−1 (t)}

=
K
∑

k=1

γ1,kγ−1,ke
−j(ωyk+µyk)e−j((−1)ωyk+(−1)2µyk)E{sk (t+ τ) sk (t)}

=
K
∑

k=1

γ̄ke
−j2ωykrsk (τ) ,

(19)

where γ̄k = γ1,kγ−1,k denotes the amplitude attenuation of structural da-

ta. By uniformly sampling r−1,1 (τ) at L lags τl(τl = Ts, 2Ts, · · · , LTs), the

“pseudo snapshots” can be collected as follows,

r2 = [r1,−1 (Ts) , r1,−1 (2Ts) , · · · , r1,−1 (LTs)] = ãRs, (20)
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where ã = [γ̃y,1e
−j2ωy1 , ..., γ̃y,ke

−j2ωyk , ..., γ̃y,Ke
−j2ωyK ]. Based on Eqs. (10)

and (20), the following relationship can be attained,

r3 = vec
(

E
{

r2R
H
1

})

= A∗

1Φrss,
(21)

whereΦ = diag (γ̃y,1e
−j2ωy1 , ..., γ̃y,ke

−j2ωyk , ..., γ̃y,Ke
−j2ωyK ), rss = [p1, ..., pk, ..., pK ]

T ,

and pk is the power of the k-th signal. Substituting the estimate of parame-

ters α̂, r̂ into Eq. (21) yields the following formula,

Φrss = pinv (A∗

1) r3. (22)

Since rss is a real vector, the estimated parameter β̂ is given by

β̂ = a cos

(

angle (Φrss)

−2πd/λ

)

. (23)

At this point, the 2-D DOA and range parameters are automatically

paired without any additional operation. The proposed method is summa-

rized in Table 2.

Remark 1 : This method can be applied to non-uniform linear arrays, as

long as they satisfy the symmetry property, which is exploited in the process

of constructing the virtual receiving data.

Remark 2 : In the purely near-field case, the angle estimation values

that cannot be used for range search will be eliminated in the process of

pseudo-peak recognition, and for the mixed case [21–24], the procedure for

the pseudo-peak recognition needs to be modified in step 3 of Table 1 as

13



Table 2: Summary of the proposed method.

Input: N snapshots of the two ULA output vectors: {x(t),y(t)}Nn=1.

Output: 2-D DOA and range estimates of NF signals: α̂k, β̂k and r̂k.

Step 1 Construct R1 according to Eq. (10), where r1 (Ts) , r1 (2Ts) , · · · , r1 (LTs)

are calculated by Eq. (7) and Eq. (8).

Step 2 Perform the EVD on R1 to obtain Un, and then construct and search

through P (α) to obtain angles αk with Eq. (15).

Step 3 Find the true peaks according to Table 1, and get the corresponding

range estimate rk with Eq. (16).

Step 4 Construct r2 with Eq. (20), and then calculate r3 through Eq. (21).

Step 5 Perform phase-taking operation on r3 to obtain the angle βk with Eq. (23).

when some angle estimates cannot find the range parameter, the correspond-

ing range estimate is set to ∞.

3.4. Complexity analysis

To facilitate analysis and comparison, the computational complexity of

Chen’s method in [15] and the proposed method is analyzed in this part.

In the analysis, we only consider the parts with high complexity: covari-

ance matrix calculation, eigenvalue decomposition, peak search and matrix

inversion. Chen’s method includes one covariance matrix calculation, one

eigenvalue decomposition and three 1-D peak searches, while the proposed

method involves two covariance matrix calculations, two eigenvalue decom-

positions, two 1-D peak searches and one matrix pseudo-inverse. A summary

of the complexity of the two methods is shown in Table 3.

14



Table 3: Complexity comparison

Method Complexity

Chen’s method O {36M2
x(2L− 1) + 216M3

x + nα(2Mx · 8Mx(6Mx −K)

+nβK((6Mx −K) · 2(Nx + 1) · 2(Mx +Nx + 1))

+nrK((6Mx −K)(6Mx + 1))}

Proposed method O {M2
xL+M3

x + nα(Mx −K)(Nx + 1)(Mx +Nx + 1)

+nrK(Mx −K)(Mx + 1) +M3
x}

4. Simulation and Results

The performance of the proposed method is compared with those in [9,

15] through numerical simulations. In all simulations, the source-to-sensor

amplitude attenuation is assumed to follow the inverse-square law in physics,

i.e., p=2. Moreover, as range estimation by the algorithms in [15] almost fails

when amplitude attenuation is present, to better highlight the advantages

of the proposed algorithm, the range search part of the algorithm in [9] is

slightly modified to make it work. The array element spacing is λ
8
, the total

number of array elements is 9, and 500 Monte-Carlo trials are performed for

all simulations.

The root mean square error (RMSE) versus signal-to-noise ratio (SNR)

result is shown in Fig. 2, where the sources impinge onto the array from

{60◦, 135◦, 0.8λ} and {55◦, 120◦, 0.3λ}, and 2000 data snapshots are collect-

ed. The pseudo-snapshots of the proposed algorithm and those in Ref. [15]

are both set to 50. The SNR varies from -5 dB to 25dB. It can be seen

that with the increase of SNR, the performance of the proposed method has
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significantly improved, while the compared methods tend to saturate, due to

model mismatch without considering amplitude attenuation.

In Fig. 3, the performance is examined versus the number of snapshots.

The settings are the same as in the first simulation, except that the SNR

is 15dB and the number of snapshots is changed from 200 to 3500. Similar

to the observation in Fig. 2, the change trend of the methods in [9] and

[15] with respect to the number of snapshots is not obvious, i.e., it reaches a

“saturated” state, while the proposed one still exhibits a good performance.

In Fig. 3(c), Wu’s method is modified so that the RMSE for range estimation

decreases with increase of the number of snapshots.

In addition, the runtime of all three methods versus the number of snap-

shot is shown in Fig. 4. It can seen that the running time of the proposed

algorithm is obviously shorter than that of Chen’s method and Wu’s method.

This is because the dimension of the matrices constructed by the proposed

method is smaller than that of Chen’s method, and it is search-free for the

third parameter. As compared with Wu’s method, the proposed algorithm

avoids the calculation of the fourth-order cumulant, and thus the computa-

tional complexity is effectively reduced.

Then, the angle resolution of the proposed method is studied. The reso-

lution performance is presented by the estimated success rate under the same

condition, and the success criterion is given below.

max

{

max
k=1,2,··· ,K

|αk − α̂k| , max
k=1,2,··· ,K

∣

∣

∣
βk − β̂k

∣

∣

∣

}

≤ ε, (24)

where ε is the threshold for success and Fig. 5 shows the results when

the threshold ε is 0.5◦, 2◦ and 4◦, respectively. Except for the 2-D angle

parameters of the sources, the other configurations are the same as before.
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The SNR is set to 15dB and the angle interval of 2-D DOAs simultaneously

changes from 1◦ to 25◦. From Fig. 5, we can see that with the increase

of angle interval, the success rate of the compared methods stays at almost

zero or increases only slightly. This is due to the significant error caused by

ignoring amplitude attenuation. On the contrary, with the increase of angle

interval, the success rate of the proposed method gradually increases.

Finally, we give an example to demonstrate the applicability of the pro-

posed method for mixed NF and FF sources by setting the range of the

second source and SNR to ∞ and 15dB, respectively in the first simulation,

while keep other simulation parameters unchanged. From Fig. 6 (a), it can

be seen that the proposed method has effectively identified the 2-D DOAs of

the mixed sources, along with the range parameter of the first NF source in

Fig. 6 (b).

5. Conclusions

In this work, the 3-D localization problem of NF sources has been s-

tudied considering the effect of amplitude attenuation. By exploiting the

temporal-spatial information of the received data, the proposed method has

three stages for pairing-free estimation of the 3-D parameters and enjoys a

higher estimation accuracy either in 2-D DOAs or range estimation than two

existing methods, as demonstrated by computer simulations. To distinguish

pseudo and true peaks occasionally caused by the rank-reduction method, a

procedure is introduced for the method to reach an unambiguous estimation

result.
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Figure 2: RMSEs versus SNR.

18



Number of Snapshots

10
3

R
M

S
E

(d
e
g
re

e
)

10
-1

10
0

α estimation

Proposed

Chen's method

Wu's method

(a)

Number of Snapshots

10
3

R
M

S
E

(d
e
g
re

e
)

10
0

β estimation

Proposed

Chen's method

Wu's method

(b)

Number of Snapshots

10
3

R
M

S
E

(w
a
v
e
le

n
g
th

)

10
-2

10
-1

10
0

r estimation

Proposed

Chen's method

Wu's method

(c)

Figure 3: RMSEs versus the number of snapshots.
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