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ABSTRACT Advances in DNA sequencing technologies have drastically changed our

perception of the structure and complexity of the plant microbiome. By comparison, our

ability to accurately identify the metabolically active fraction of soil microbiota and its

specific functional role in augmenting plant health is relatively limited. Important ecologi-

cal interactions being performed by microbes can be investigated by analyzing the

extracellular protein fraction. Here, we combined a unique protein extraction method and

an iterative bioinformatics pipeline to capture and identify extracellular proteins (metaex-

oproteomics) synthesized in the rhizosphere of Brassica spp. We first validated our

method in the laboratory by successfully identifying proteins related to a host plant

(Brassica rapa) and its bacterial inoculant, Pseudomonas putida BIRD-1. This identified

numerous rhizosphere specific proteins linked to the acquisition of plant-derived nutrients

in P. putida. Next, we analyzed natural field-soil microbial communities associated with

Brassica napus L. (oilseed rape). By combining metagenomics with metaexoproteomics,

1,885 plant, insect, and microbial proteins were identified across bulk and rhizosphere

samples. Metaexoproteomics identified a significant shift in the metabolically active frac-

tion of the soil microbiota responding to the presence of B. napus roots that was not

apparent in the composition of the total microbial community (metagenome). This

included stimulation of rhizosphere-specialized bacteria, such as Gammaproteobacteria,

Betaproteobacteria, and Flavobacteriia, and the upregulation of plant beneficial functions

related to phosphorus and nitrogen mineralization. Our metaproteomic assessment of

the “active” plant microbiome at the field-scale demonstrates the importance of moving

beyond metagenomics to determine ecologically important plant-microbe interactions

underpinning plant health.

IMPORTANCE Plant-microbe interactions are critical to ecosystem function and crop pro-

duction. While significant advances have been made toward understanding the struc-

ture of the plant microbiome, learning about its full functional role is still in its infancy.

This is primarily due to an incomplete ability to determine in situ plant-microbe interac-

tions actively operating under field conditions. Proteins are the functional entities of the

cell. Therefore, their identification and relative quantification within a microbial commu-

nity provide the best proxy for which microbes are the most metabolically active and

which are driving important plant-microbe interactions. Here, we provide the first meta-

exoproteomics assessment of the plant microbiome using field-grown oilseed rape as
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the model crop species, identifying key taxa responsible for specific ecological interac-

tions. Gaining a mechanistic understanding of the plant microbiome is central to devel-

oping engineered plant microbiomes to improve sustainable agricultural approaches

and reduce our reliance on nonrenewable resources.

KEYWORDS Brassica napus, field soil, metagenomics, metaproteomics, plant

microbiome, sustainable agriculture

The plant microbiome is integral to plant health as it delivers several life support

functions (1, 2). This includes enhancing the plant’s ability to acquire both macro-

and micronutrients, such as nitrogen, phosphorus, and iron, as well as enhancing plant

innate immunity against a range of plant pathogens (2–4). Since the green revolution,

intensive agricultural practices have resulted in a decoupling between microbes and

their host plants (5). The breakdown of rhizobia-legume symbiosis in heavily fertilized

cropping systems is perhaps the most well-known example (6). Others, such as the

apparent reduction in the relative abundance of Bacteroidetes in domesticated crops

relative to their wild cultivars, are more cryptic (7). Agriculture is now facing a signifi-

cant global crisis: a rapidly changing climate, an ever-growing human population, and

depletion of our natural resources used to fuel crop production has identified severe

vulnerabilities in ensuring future food security (2, 8). While the industrial production of

nitrogen fertilizers is a highly energetic process, the production of inorganic phospho-

rus fertilizers is reliant on the continued supply of mined rock phosphate (9). The latter

of these fertilizer production regimes is set to cause various socioeconomic and politi-

cal tensions as global stocks of rock phosphate are depleted (9, 10). Thus, there is an

urgent need to develop a holistic understanding of the plant microbiome function and

its numerous components (11).

Through the release of signaling molecules, exudation of organic nutrients, and the

decoration of plant cell walls with specific attachment molecules, plants can actively

select for a subset of specialized soil microorganisms (12, 13). This frequently involves

a reduction in microbial diversity as one moves from the bulk soil . rhizosphere .

root tissue (1, 14). While bulk soil is considered a relatively carbon poor environment

favoring an oligotrophic lifestyle, the rhizosphere and root system is typified by a high

turnover of organic matter driven through rhizodeposition, an environment favoring a

copiotrophic lifestyle. Indeed, copiotrophic bacteria related to Proteobacteria, Bacteroidetes,

and Actinobacteria often dominate plant-associated microbial communities (15, 16).

While our understanding of the diversity, structure, and functional potential of mi-

crobial communities has drastically improved, there is still considerable uncertainty

about how this translates into specific plant-microbe interactions, especially carbon for

nutrient exchange (2). Therefore, we still lack understanding of the functional compo-

nents involved in delivering beneficial plant activities within the root microbiome.

Proteins are the functional entities of the cell whose regulation is controlled by sur-

rounding biotic and abiotic conditions. Metaproteomics, the study of the entire protein

content of a given environmental sample, holds enormous potential to improve our

understanding regarding the function of soil microbial communities (17). Unlike its

application in seawater (18, 19), anaerobic digestors (20, 21), or the human or animal

gut (22, 23), soil metaproteomics has been relatively underexploited (24). This is partly

due to conventional soil extraction methods coextracting contaminating substances,

such as organic carbon and humic acids (24). Furthermore, microbial complexity in

soils is usually greater than any other environment (1, 11, 24), leading to considerable

problems in metagenome sequencing and assembly, which are critical for quality

metaproteome measurements. However, its application is increasing due to improved

bioinformatics pipelines to correctly identify peptides from mass-spec data sets (25).

Furthermore, the majority of expressed proteins are related to cytoplasmic housekeep-

ing and core metabolic functions, which can often result in poor detection of more eco-

logically important but less abundant noncytoplasmic proteins (26). This observation is
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evident in our previous laboratory-based studies investigating individual bacterial responses

to phosphate limitation (27, 28). One alternative is to focus on the extracellular (exo) frac-

tions of proteins found outside the cell using metaexoproteomics (MEP), a method that

adapts extraction protocols for detecting soil extracellular enzyme activity (29). MEP has

been successfully utilized to determine the active chitin-degrading community of a tropical

soil in response to chitin amendment (29). While this extraction method is applicable to

bulk soil analysis (requiring 50 to 100 g soil material), sampling the rhizosphere (typically 1

to 2 g material) is much more challenging. Furthermore, the method currently requires spe-

cialized equipment and is relatively low throughput. These technical limitations have likely

reduced the take up of this approach, despite its enormous potential.

Our recent work has successfully characterized the in vitro exoproteomes of single

strain cultures related to Pseudomonas spp. and Flavobacterium spp. in response to

phosphate-limiting growth conditions (27, 28). These rhizobacteria produce numerous

hydrolytic and transport proteins targeting organic phosphorus components in response

to phosphate limitation. Thus, exoproteomics can generate significant insights into the

mechanisms utilized by microbes to compete for growth limiting nutrients and their

contribution to environmental nutrient cycling (26, 30, 31). In this study, we adapted our

previous extraction method to efficiently capture the extracellular proteins (metaexopro-

teome [MEP]) found in agricultural soils to identify the most active microbial taxa in the

rhizosphere of Brassica napus L. (oilseed rape) and the major metabolic interactions oper-

ating. We hypothesized that (i) the rhizosphere would contain a distinct set of metabol-

ically active microbes relative to the surrounding bulk soil and (ii) microbes would

express proteins for the mineralization of N and P as a response to elevated C. In addi-

tion to capturing extracellular plant and aphid-pest proteins in the rhizosphere, we

observed a distinct shift in active fraction of the microbial community in this compart-

ment relative to the bulk soil with several Pseudomonas spp. dominating the MEP.

RESULTS

Pseudomonas putida BIRD-1 expresses a distinct set of rhizosphere-associated

proteins under laboratory conditions. Our previous extraction method involved

extracting protein from ;100 g soil (29), which is not feasible when working with rhi-

zosphere soil. To determine whether we could efficiently capture extracellular proteins

from soil using the Stratabead resin, we first performed a series of protein spikes into

soil and water as a control. We used either bovine serum albumin or the exoproteome

of lab-grown P. putida BIRD-1 as the protein spike, both of which were successfully

recaptured from soil and water (Fig. S2).

To further confirm the efficacy of this method, we established a simple plant growth

experiment under laboratory conditions using Brassica rapa OH17 grown in a sand: soil

mix (n = 6) and inoculating washed and resuspended Pseudomonas putida BIRD-1

(6 � 108 cells mL21). After 3 weeks of growth, the sand: soil mix was collected, and pro-

tein was extracted. Using the in silico predicted proteome of either P. putida BIRD-1 or

B. napus as the database and a criterion of at least 2 unique peptides per protein, we

identified a total 201 (177 protein clusters) and 215 proteins, respectively (Table S1a

and b). We also performed a third search using the P. putida BIRD-1 proteome and

additional protein sequences related to various extracellular proteins (substrate binding

proteins, phosphatases, chitinases, pectinases, etc.) retrieved from bacterial genomes de-

posited in the IMG/JGI database (accessed 05/06/2018). This search indicated that both

P. putida BIRD-1 proteins, in addition to those from closely related Pseudomonas strains,

and exoproteins produced by taxonomically divergent rhizobacteria were captured by our

method (Table S1c). Two replicate samples containing low quantities of protein were omit-

ted from further analyses. While normalized spectral abundance factor (NSAF) quantifica-

tion methods have now been superseded by various peak areas methods, we used NSAF

here to make easier comparisons with our previously published data sets (27). For P. putida

BIRD-1, the 40 most abundant proteins represented 61% of the total exoproteome. The

pot-grown P. putida exoproteome (black bar) showed a distinct profile compared to previ-

ous in vitro exoproteomes (28) (blue bar, Fig. 1A and Table S1b). This included an increase
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FIG 1 Comparison of P. putida BIRD proteome during in situ and in vitro growth experiments. (A) Hierarchical

clustering of proteins based on abundance profiles (Z-score, calculated from % abundance) across the different

growth conditions; blue, exoproteome (XP) of liquid cultures; gray, insoluble and soluble fractions of the

cellular proteome (CP) from liquid cultures; black, exoproteome captured from pot experiments using Brassica

rapa R018. Data for individual replicates are displayed. (B) Assessment of functions (COG categories) related to

periplasmic, cell surface, and extracellular proteins across the different growth conditions. The mean value for

quadruplicate (pot), triplicate (In vitro deplete/replete), and sextuple (In vitro deplete/replate) replicates from

each growth conditions is plotted. GenBank accession number are given on the y axis. All % abundance values

were calculated from normalized Spectral Abundance Factor (NSAF) values.
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in the relative abundance of some outer membrane proteins, porins and substrate binding

proteins associated with ABC transport systems and a decrease in others, while some were

detected at similar relative abundances (Table 1). While we did detect several cytoplasmic

proteins, their relative abundance in either the exo- or intracellular soluble (gray bar) pro-

teomes were still markedly different. In addition, many of the abundant in vitro intracellular

proteins detected in our previous study (28) were either not detected or were present in

very low abundance in the pot-grown proteome suggesting an inherent change in metab-

olism. Most of the abundant rhizosphere-inducible proteins belonged to four general

Clusters of Orthologous Gene (COG) categories: (i) amino acid transport and metabolism,

(ii) carbohydrate transport and metabolism, (iii) inorganic ion transport and metabolism,

and (iv) cell envelope biogenesis, outer membrane (Fig. 1B and Table 1). While several sub-

strate binding proteins related to carbon and nitrogen metabolism were enriched in the

rhizosphere (Fig. 1B and Table S1b), substrate binding proteins associated with high-affin-

ity phosphate (PstS) or 2-aminophosphonate (AepX) ABC transporters were not detected,

nor was the low-phosphate inducible alkaline phosphatase PhoX, that were all detected in

vitro (27, 32). This would suggest that under these conditions BIRD-1 did not experience

localized phosphate depletion severe enough to trigger its P-stress response regulon (28).

Metaproteomic assessment of microbial activity in the rhizosphere of field-

grown oilseed rape and surrounding bulk soil. Next, we sampled bulk and rhizo-

sphere soil from agricultural fields sown with oilseed rape under contrasting P fertilizer

regimes (Fig. S1). Plants were sampled at an early growth stage, between the four-six

leaf and rosette growth stages. To create a comprehensive database for MEP, we gen-

erated over 500 GB of metagenomics data from bulk and rhizosphere soil samples and

used a coassembly method to identify over 64 million open reading frames (ORFs).

When controlling for one of the two variables separately, nonmetric multidimensional

scaling (NMDS) analysis showed no significant effect of compartments (bulk versus rhi-

zosphere; one-way similitude analysis [ANOSIM]: R = 0.027, P = 0.316) or fertilizer treat-

ment (High P versus Low P; ANOSIM: R = 0.485, P = 0.11) on the total soil microbial

communities (metagenome [MG]) (Fig. 2A and B). Again, using a minimum of two

unique peptides per protein, a total of 1,895 (10 comtaminants) (Table S2c) proteins

were detected across all samples. The relative abundance of proteins was quantified

using label-free quantification (LFQ) values. There was a significant difference (Adonis:

R2 = 0.736, P = 0.001) in the proteomic profiles of bulk and rhizosphere samples

(Fig. 2C). In contrast, there was no significant effect (Adonis: R2 = 0.031, P = 0.667) of

fertilizer treatment on the proteomic profiles of either soil compartment. While only 48

proteins were significantly enriched in the bulk soil (false-discovery rate [FDR] cor-

rected: P , 0.05; fold change: .1.5), 815 were significantly enriched (FDR corrected:

P , 0.05; fold change: .2) in the rhizosphere (Table S2c). Furthermore, almost all

highly abundant proteins were rhizosphere associated, with only a few abundant pro-

teins associated with bulk soil (Fig. 2D).

Autochthonous Pseudomonas spp. were highly active in the rhizosphere of

young field-grown Brassica napus L. The vast majority of rhizosphere protein content

was related to several Pseudomonas spp. (;65%) and B. napus (;20%) (Fig. 3A). In addi-

tion, several abundant rhizosphere proteins were related to soil/root aphids and its cor-

responding symbiont Buchnera aphicola (Gammaproteobacteria). Proteins expressed by

these groups as well as Betaproteobacteria, other Gammaproteobacteria, Bacteroidetes

(predominantly Flavobacteraceae), and fungi were all rhizosphere-enriched (Fig. 3A). In

contrast, proteins expressed by Actinobacteria, Alphaprotebacteria, Acidobacteria, and

Archaea were collectively more abundant in bulk soil (Fig. 3A). The identified Pseudomonas

proteins were aligned to four different Pseudomonas genomes, representing four distinct

Pseudomonas groups (33): P. putida BIRD-1, P. fluorescens SBW25, P. stutzeri DSM4166, and P.

syringae DC3000. On average, detected proteins had the highest identity with P. fluorescens

SBW25 (93%), suggesting most of the identified proteins belonged to strains within the P.

fluorescens group. However, there was significant variation in average identity (%) related to

each strain and numerous proteins were absent from each individual genome (Fig. S3 and
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TABLE 1 Comparison of extracellular proteins with validated/predicted outer membrane or periplasmic localization detected in the exoproteome of P. putida BIRD-1 grown in B. rapa
R-o-18 rhizosphere soil (Mean_pot) in vitro (phosphate replete [Mean_ExoR]) and phosphate deplete [ExoD] growth conditions)

% abundance

(based on NSAF)a

Accession Gene description General COG Rhizo exo

In vitro

ExoR

In vitro

ExoD

Outer membrane proteins

ADR58908 OprH: outer membrane protein Cell wall/membrane/envelope biogenesis 2.220 0.002 0.002

ADR61156 OprF: outer membrane porin Cell wall/membrane/envelope biogenesis 2.155 0.623 1.104

ADR58923 OprD: outer membrane porin Cell wall/membrane/envelope biogenesis 1.508 0.414 0.743

ADR58859 17-kDa surface antigen Cell wall/membrane/envelope biogenesis 1.467 0.192 0.450

ADR58498 Hypothetical outer membrane protein, conserved Cell wall/membrane/envelope biogenesis 1.213 0.328 0.617

ADR61639 OmpA/MotB domain protein Cell wall/membrane/envelope biogenesis 1.026 0.002 0.002

ADR58237 OprG: outer membrane porin Cell wall/membrane/envelope biogenesis 0.948 0.182 0.175

ADR57964 OprD: outer membrane porin Cell wall/membrane/envelope biogenesis 0.797 0.397 0.644

ADR58967 Hypothetical protein, conserved Cell wall/membrane/envelope biogenesis 0.550 0.002 0.002

ADR61541 Hypothetical protein, conserved Cell wall/membrane/envelope biogenesis 0.302 0.188 0.859

ADR58941 OprL: outer membrane porin Cell wall/membrane/envelope biogenesis 0.148 0.247 0.477

ADR58485 Putative outer membrane lipoprotein Cell wall/membrane/envelope biogenesis 0.055 0.349 0.378

ADR58849 OmpA-like: outer membrane porin Cell wall/membrane/envelope biogenesis 0.137 0.108 0.398

ADR61817 OsmY-like: transport-associated protein Cell wall/membrane/envelope biogenesis 0.002 0.602 0.695

ADR59032 Outer membrane lipoprotein, conserved: phosphate-repressible Cell wall/membrane/envelope biogenesis 0.052 0.020 0.929

ADR62644 Outer membrane lipoprotein, conserved Cell wall/membrane/envelope biogenesis 0.002 0.494 0.847

ADR58940 TolB: periplasmic component of the Tol biopolymer transport system Cell wall/membrane/envelope biogenesis 0.002 0.907 1.598

ADR62149 Rare lipoprotein A family Cell wall/membrane/envelope biogenesis 0.002 0.544 0.702

ADR59302 FpvA: TonB-dependent iron receptor Cell wall/membrane/envelope biogenesis 0.002 0.276 0.169

ADR58775 PhoX: alkaline phosphatase Cell wall/membrane/envelope biogenesis 0.002 0.031 1.149

Periplasmic substrate

binding proteins

ADR61840 AapJ: amino acid ABC transporter substrate-binding protein, PAAT family Amino acid transport and metabolism 2.087 0.193 0.361

ADR58867 BraC: L-leucine-binding protein/L-isoleucine-binding protein/L-valine-binding protein Amino acid transport and metabolism 1.911 0.653 0.570

ADR62215 LivJ: amino acid/amide ABC transporter substrate-binding protein, HAAT family Amino acid transport and metabolism 1.841 0.271 0.521

ADR61462 Substrate-binding region of ABC-type glycine betaine transport system Amino acid transport and metabolism 0.880 0.271 0.326

ADR58803 L-glutamate-binding protein/L-aspartate-binding protein Amino acid transport and metabolism 0.819 1.148 0.812

ADR58144 Polyamine ABC transporter, periplasmic polyamine-binding protein Amino acid transport and metabolism 0.653 0.154 0.155

ADR62524 PotF_2: putrescine ABC transporter, periplasmic putrescine-binding protein Amino acid transport and metabolism 0.601 0.357 0.494

ADR57956 L-cystine-binding protein/diaminopimelate-binding protein Amino acid transport and metabolism 0.356 0.531 0.646

ADR62668 PstS1: phosphate ABC transporter, periplasmic phosphate-binding protein Inorganic ion transport and metabolism 0.002 0.328 2.680

ADR60631 PstS2: phosphate ABC transporter, periplasmic phosphate-binding protein Inorganic ion transport and metabolism 0.002 0.453 2.198

ADR61477 AepS: phosphonate/ABC-type Fe31 transport system periplasmic component-like

protein

Inorganic ion transport and metabolism 0.002 0.266 0.467

ADR62476 AepX: 2-aminoethylphosphonate ABC transporter, periplasmic binding protein Inorganic ion transport and metabolism 0.932 0.046 0.097

ADR58557 Phosphonate/selenate ABC transporter periplasmic phosphonate-binding protein Inorganic ion transport and metabolism 0.270 0.309 0.959

ADR60984 Carbohydrate ABC transporter substrate-binding protein, CUT1 family Carbohydrate transport and metabolism 0.002 0.002 0.053

aValues present are the calculated mean % abundance (n = 4) in the total exoproteome based on normalized spectral abundance factor (NSAF) values.

M
e
ta
e
xo

p
ro
te
o
m
ics

A
sse

ssm
e
n
t
o
f
B
ra
ssica

R
h
izo

sp
h
e
re
s

m
S
y
ste

m
s

M
o
n
th

Y
Y
Y
Y

V
o
lu
m
e
X
X

Issu
e
X
X

1
0
.1
1
2
8
/m

sy
ste

m
s.0

0
0
2
5
-2
2

6

Downloaded from https://journals.asm.org/journal/msystems on 24 August 2022 by 2a00:23c6:140b:3701:8c1b:ba4:639e:98d2.



Table S2d), suggesting multiple strains of Pseudomonas were highly active in the rhizo-

sphere, confirming observations when analyzing the initial DIAMOND searches (Table S2c).

Comparison of individual protein abundance with corresponding ORF abundance in

the MG demonstrated plant-associated bacteria, such as Gammaproteobacteria (Pseudo-

monadaceae), Betaproteobacteria (Burkholderia, Oxalobacteraeae, Commonamondaeae)

and Bacteroidetes (Flavobacteriaeae), were more active in the rhizosphere despite minor

changes in gene relative abundance (Fig. 3B). In addition, proteins expressed by methyl-

otrophic bacteria were also enriched in the rhizosphere relative to surrounding bulk soil.

For Acidobacteria and Actinobacteria, while some proteins were more abundant in the

rhizosphere, other proteins were more abundant in the bulk soil. This is consistent with

the life history strategy of many taxa related to these two phyla (34). Proteins related to

various genera associated with the Candidate Radiation Phyla were also detected

FIG 2 Metagenomic and metaexoproteomic assessment of field-grown Brassica napus L. bulk soil and rhizosphere communities. (A and B) NMDS ordination

(stress = 0.025) between total microbial community composition of the rhizosphere (n = 6) and bulk (n = 6) compartments (A) or the low Pi fertilizer (Low

P) and high Pi fertilizer (High P) (B) treatments. Each point represents one metagenomic sample (n = 12). Data representing relative variable importance (R)

and significance (p) calculated by PERMANOVA (ANOSIM) are displayed. (C) Multivariate analysis of the active microbial communities collected from the

same soil samples, bulk soil (circles) and rhizosphere soil (squares). (D) The relative abundance of detected proteins in all samples based on label-free

quantification (LFQ) values. Pale blue equals the least abundant, black equals the mean abundance, and red equals the most abundant. Dendrograms for

both sample and protein were calculated.
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demonstrating this large group of enigmatic bacteria are active in natural soils.

Together, this demonstrates MEP can identify changes in metabolic activity that can be

masked by solely relying on metagenomic data.

Based on functional annotation of all identified bacterial proteins, a large propor-

tion of intracellular proteins were still captured during our extraction step, many of

which were related to either central or auxiliary metabolism as well as housekeeping

functions and protein synthesis (Metabolism, Housekeeper, Fig. 3C). Despite the

greater amount of total protein detected in rhizosphere samples (Fig. 2D), ribosomal

proteins (protein synthesis marker) represented a greater proportion of total protein in

this compartment, further demonstrating elevated microbial activity in this rhizosphere

compartment relative to bulk soil. The most abundant extracellular proteins were

related to outer membrane porins, substrate binding proteins associated with ABC

transporters and extracellular hydrolytic enzymes. In bulk soil, but not in the rhizo-

sphere, a significant proportion of protein was assigned to hydrogenases.

Comparison of metagenomic and metataxonomic field-grown Brassica napus L.

soil communities demonstrates the importance of metaproteomics.Microbial com-

munity composition did not differ significantly between compartment (Fig. 2A), and

many rhizosphere-enriched proteins were encoded from genes whose abundance in

the MG showed little variation between either soil compartment (Fig. 3B). Therefore, to

better determine the relative abundance of active taxa identified in the metaproteome

(MP), we expanded our taxonomic assessment of the total soil microbial communities

(MG) associated with either bulk soil or rhizosphere soil compartments. To do this, we

analyzed the assembled MG using the read abundance and taxonomy of Single copy

Core Genes (SCGs), as well as generating an amplicon-based 16S rRNA gene profile

(Fig. 4). Both the SCG and 16S rRNA gene profiles showed Actinobacteria (MG = 24%;

16S bulk = 48%, and 16S rhizo = 43%) and Proteobacteria (MG = 44%; 16S bulk = 21%,

16S rhizo = 29%) numerically dominated the total genomic content of the total soil

bacterial community, while Bacteroidetes constituted only 5%. At the order level, based

on SCGs, separation by compartment (bulk v rhizosphere) did not significantly

affect the soil communities’ taxonomic structure (Fig. S4). 16S rRNA gene profiles

revealed the abundance of Pseudomonadaceae (3.43%; 100% Pseudomonas) was

FIG 3 Taxonomic profile of the in situ MEP sampled from field-grown Brassica napus. (A) Compartmental partitioning based on the relative abundance of

proteins associated with various taxonomic groups identified in either rhizosphere or bulk soil samples. (B) Comparison of relative protein expression versus

relative gene abundance in rhizosphere versus bulk soil samples. Each point represents a single protein and its size represents its relative abundance in the

MEP. Proteins were partitioned into various taxonomic groups. (C) Broad functional assessment of the bacterial MEP. The relative abundance of these

functions was calculated by either counting the total number of distinct detected proteins associated with each function (Diversity) or by determining their

relative abundance (LFQ values) in either the bulk (Bulk) or rhizosphere (Rhizo) MEP. Results plotted are the mean of 6 replicates: 3 Pi replete and 3 Pi deplete

for each compartment.
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FIG 4 Composition of bulk soil and rhizosphere soil microbial communities sampled from field-grown oilseed rape

based on the composition of single copy core genes in the metagenome or 16S rRNA gene amplicon profiling. (A)

Relative abundance of all bacterial taxa in the combined (bulk and rhizosphere) soil metagenome. Selected

taxonomic groups of interest in this study are labeled while others have been omitted for clarity. (B) CIRCOS plots

showing the relative abundance distribution among the dominant phyla in either the bulk soil or rhizosphere

compartment.
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not significantly different between bulk and rhizosphere compartments, despite

significantly greater activity in the rhizosphere, as was the case for SCG-derived

abundance data (Fig. 3A). In contrast, rhizosphere-active Flavobacteraceae (100%

Flavobacterium) and Betaproteobacteria, which made up 3.8% and 6.12% of the 16S

rRNA gene rhizosphere community, respectively, were significantly enriched in this

compartment compared to the bulk soil (Fig. S5). In summary, two methods for tax-

onomic assignment and relative abundance determination demonstrated signifi-

cantly less shifts between soil compartments based on DNA in comparison with

protein.

Active autochthonous Pseudomonas spp. experience Pi limitation under field

conditions independently of fertilizer regime. To better determine the metabolic

interactions occurring in the rhizosphere, we focused our analysis on the proportion of pro-

teins predicted to be either periplasmic, outer membrane associated, or extracellular, ignor-

ing predicted cytoplasmic proteins whether they had a role in nutrient acquisition or not

(Table S2e). The expression of ABC-transporter related substrate binding proteins is an

excellent proxy for metabolic interactions operating in any given environmental niche. The

majority of these were expressed by Pseudomonas spp. and to a lesser extent

Burkholderiales spp. (Fig. 5A). In agreement with our laboratory pot experiment inoculated

with P. putida BIRD-1, many detected substrate binding proteins were associated with pre-

dicted amino acid transporters, but a significant number were also predicted to transport

other nitrogenous compounds such as polyamines and quaternary amines, as well as car-

bohydrates (Fig. 5A, bottom). Importantly, in the rhizosphere compartment, two out of

three Pseudomonas proteins identified as PstS, the substrate binding protein associated

with the high-affinity phosphate ABC transporter, were highly expressed (Fig. 5A and B).

Indeed, one identified PstS was among the top 10 most abundant proteins in the total MP,

including abundant plant and insect proteins (Table S2c). While numerous substrate bind-

ing proteins were significantly more abundant in the rhizosphere, fertilizer regime had no

significant effect on their expression, even for PstS (Fig. 5A and Table S2c).

In addition, we also detected numerous extracellular hydrolytic enzymes (Fig. 5 and

FIG 5 Functional analysis of in situ plant-microbe interactions based on soil metaproteomes. (A) Taxonomy and gross functional classification of substrate

binding proteins identified in bulk and rhizosphere (rhizo) soil metaproteomes. The relative abundance of each function was calculated by either counting

the total number of distinct detected proteins associated with each function (Diversity) or by determining their relative abundance (LFQ values) in either

the bulk (Bulk) or rhizosphere (Rhizo) MEP. (B) The effect of compartment and phosphate fertilizer regime on the expression of bacterial substrate binding

proteins. (C and D) Taxonomy (C) and relative abundance (D) of all PhoX ORFs identified in bulk and rhizosphere soil MGs combined.
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Table S2c). Among these were five alkaline phosphatases belonging to the PhoX fam-

ily, all of which were most closely related to the P. fluorescens group (Fig. S6). Despite

the limited diversity of alkaline phosphatases in the metaexoproteome, Pseudomonas

PhoX ORFs constituted 2% and 8% of the diversity and richness (relative abundance) in

the MG, respectively (Fig. 5C). Furthermore, despite their absence in the metaexopro-

teome, there were also a significant number of ORFs encoding either the PhoD or

PhoA alkaline phosphatases in the MG, with PhoD the most abundant of all three

(Fig. 5D). ORFs encoding PhoA and PhoD from a diverse range of taxa were present in

both compartments, (Fig. S7) despite no evidence of expression. Finally, the abun-

dance of Pseudomonas phoD was almost identical to Pseudomonas phoX (Fig. 5D), fur-

ther suggesting preferential expression of the latter alkaline phosphatase.

DISCUSSION

Building a holistic understanding of plant-microbe interactions relies on the develop-

ment of suitable tools to investigate complex and simultaneously occurring metabolic

processes in situ. Here, first using P. putida BIRD-1 as a model and then analyzing natural

field-soil microbial communities, we demonstrate that metaexoproteomic assessment of

the rhizosphere is achievable and can significantly refine our understanding of the estab-

lishment and function of the plant microbiome. Specifically, these data generate further

testable hypotheses surrounding the genomic basis of rhizosphere competence and mi-

crobial nutrient cycling, which will ultimately guide our ability to engineer plant micro-

biomes and better determine abiotic and biotic causes of plant disease. Likewise, this

method successfully captured extracellular plant and corresponding pathogenic aphid pro-

teins demonstrating the efficacy of this method to also understand plant host-pathogen

interactions.

Plants differ in their ability to manipulate soil communities. For example, while a

strong “rhizosphere effect,” i.e., enrichment of rhizosphere-specific bacteria recruited

from the surrounding bulk soil, can be observed for barley (16), other plants elicit much

more subtle differences (15). A significant limitation of metagenomics is its inability to

clearly identify the most active microbes and metabolic processes occurring in a specific

environment, which is further compromised with the inclusion of subtle spatiotemporal

parameters. In addition, while metatranscriptomics can provide information on activity,

it suffers from neglecting posttranscriptional and posttranslational regulation of protein

synthesis, as well as an inability to spatially resolve protein compartmentalization, i.e.,

intra- versus extracellular location. While our metagenomic data were consistent with

the observation that oilseed rape elicits a weak rhizosphere effect on soil microbial com-

munities (14), by utilizing MEP we observed a clear difference between the active micro-

bial community present in the rhizosphere compared to the surrounding bulk soil. This

agrees with metatranscriptomics studies investigating the active plant microbiota in vari-

ous crops (35). This difference in activity can be largely attributed to an increase in the

quantity of microbial and plant protein captured in the rhizosphere and elegantly dem-

onstrates the rhizosphere as a hot spot for plant-induced microbial activity (1, 2, 36–38).

Partitioning the MEP between compartments was not only achieved through the

capture of significantly more bacterial protein in the rhizosphere (Fig. 2B) but also a

shift in the taxonomic groups producing these proteins. Rhizosphere-specialized bacte-

rial taxa can also be thought of as copiotrophs, responding to elevated labile and com-

plex organic carbon deposition. On the other hand, oligotrophs are relatively more

active in carbon-depleted bulk soil (34). The large increase in Pseudomonas activity as well

other bacterial groups such as Flavobacterium (Bacteroidetes), and various Burkholderiales

(Betaproteobacteria) in the rhizosphere is consistent with their predicted life history strat-

egies (34, 39). Likewise, our MEP data also confirmed that “bulk soil-specialized” or oligotro-

phic bacteria, such as those related to Verrucomicrobia, Actinobacteria, and Acidobacteria

(39), were relatively more active in the surrounding soil. While our study only captured a sin-

gle time point, our data clearly revealed that various distinct strains of Pseudomonas are

highly active in the rhizosphere of oilseed rape and represent a major and ecologically
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important component of this crop’s microbiome (14, 40, 41). Pseudomonas represents a rel-

atively small fraction of the seed microbiome. Thus, an increase in their relative abundance,

especially several strains, in both the rhizosphere and root during the early stage of oilseed

rape growth indicates active selection from the surrounding bulk soil (40, 41). Further inves-

tigation should now focus on determining how the active fraction of the community

changes over time, particularly at different growth stages. This would help determine the

stability of field-grown plant microbiomes, which could ultimately be used to determine

early signs of pathogen-induced dysbiosis.

In addition to gaining functional insight into the plant microbiome through identifi-

cation of active taxonomic groups, we also identified numerous proteins related to var-

ious beneficial functions (1, 36). Plant root exudates shape microbial communities and

amino acids can become the major group of exudates released by plants over time

and, in addition to quaternary amines, can represent a significant fraction of the dis-

solved organic N pool (42–44). Furthermore, the turnover of the soluble amino acid

pool in soil may be orders of magnitude greater than that of ammonium or nitrate

(45). Based on our MP data collected from both our inoculated pot experiment and

field trial, we discovered Pseudomonasmetabolism shifts toward the turnover of amino

acids and other N-containing compounds when growing in the oilseed rape rhizo-

sphere. Given that most heterotrophic soil microbes are carbon limited, the high

expression of uptake and catabolic proteins targeting amino acids and other nitroge-

nous carbon sources (predominantly amines) observed here suggests that microbial-

mediated mineralization of ammonium may be a key process in the rhizosphere, as

observed in marine systems (31, 46). Thus, release of nitrogenous organic carbon exu-

dates may represent a mechanism that allows plants to get an immediate return on

their metabolic investment in the form of labile ammonium. This aligns with the idea

that plants “prime soils” for microbial N mineralization through the exudation of or-

ganic C, stimulating expression of peptidases and proteases (45).

Plant-available phosphate is often a small fraction of the total soil P content. The

slow diffusion of Pi in soil means that plant uptake during growth creates a zone of Pi

depletion around the roots (1 to 3 mm) (47–50), which is only intensified by increases

in microbial growth on plant-derived labile organic carbon (1). In almost all bacteria,

including Pseudomonas, synthesis of phosphatases and the high affinity phosphate

transporter PstSABC is negatively regulated by exogenous levels of inorganic ortho-

phosphate. Thus, these proteins serve as excellent markers to assay for phosphate

depletion (51–53). Furthermore, elevated soil phosphatase activity has recently been

shown to co-occur with the severity of Pi depletion (54). While our pot experiments

showed no evidence of localized Pi depletion in the rhizosphere, in our field experiment

the identification of five and three distinct Pseudomonas PhoX and PstS homologs, respec-

tively, suggests rhizosphere-dwelling Pseudomonas spp. experience phosphate-limiting

growth conditions, despite saturation of the soil with inorganic fertilizers. PhoD is com-

monly used as the major gene marker for microbial phosphatase activity (55–57). However,

despite this family being the most abundant phosphatase in the MG for both the total com-

munity and Pseudomonas population, only PhoX was detected in the MEP, consistent with

its role as the major phosphatase in plant-associated Pseudomonas (28, 53, 58) and other

environmental Proteobacteria (59, 60). Furthermore, stimulation of Flavobacteriia likely has

importance consequences for remineralization of organic P (27, 61).

Conclusions. Here, we present the first metaexoproteomic assessment of the plant

microbiome sampled from a field-grown agricultural crop. Our new technique enabled us

to identify highly active taxa in the rhizosphere and the key nutrients they target. Crop

production heavily relies on the unsustainable use of inorganic N and P fertilizers, and

modern agricultural initiatives are moving toward the use of more sustainable organic

sources of either N or P. The success of this strategy is dependent on having a deep under-

standing of the key microbial players involved in N and P cycling and the biotic and abiotic

factors that control this. In this regard MEP can greatly advance our understanding of the
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spatiotemporal dynamics of functionally important taxa and allow us to better engineer

the plant microbiome through environmental and plant genotypic selection.

MATERIALS ANDMETHODS

Growth conditions for laboratory pot experiments. Plants were grown in a field soil collected from

the University of Reading’s Sonning Farm facility (51° 289 55.38360 N, 0° 539 44.36880 W) between a depth

of 20 and 60 cm. The soil properties are 50% sand, 38% silt and 12% clay, with a pH of 6.7. Soil was air

dried for 72 h, sieved through a 1-cm sieve, and supplemented with 0.4 g L21 NH4NO3, 0.75 g L21 KNO3,

and 0.225 g L21 Ca(H2PO4)2. Pots were filled with 1 L of soil, autoclaved, and left for 5 days. A 1-cm layer of

moist perlite was overlaid for the seeds to germinate in. Two seeds of Brassica rapa R-o-18 were sown into

the perlite layer to germinate, and thinned to one plant per pot. At sowing, pots were treated with 100 mL

minimal media with Pseudomonas putida BIRD-1. P. putida BIRD-1 was maintained on Luria Bertani (LB)

agar (1.5% wt/vol) medium at 30°C. Prior to inoculating the pots, BIRD-1 was grown overnight in LB at

30°C and used to inoculate (1% vol/vol) minimal medium using 20 mM glucose as the sole carbon source,

7.5 mM ammonium as the sole nitrogen source, and 1 mM phosphate as the sole P source (27). Cells were

incubated at 30°C (shaking at 160 rpm) and grown to a final yield of 109 cells mL21.

Pots were placed in large seed trays and watered from below using deionized water throughout the

experiment. Pots were placed in a controlled environment growth room (Units 37–38; Weiss Technik UK

Ltd., Loughborough, UK), with a 16-h day length, 21°C day, 18°C night, and 80% relative humidity. Light

was provided by a bank of fluorescent bulbs with a photosynthetic photon flux density of 250 mmol

m22 s21. After 4 weeks growth, plants were harvested. Plants were gently extracted from the soil and

excess soil shaken off the root system. Roots were cut and placed in a 50-mL falcon tube containing

20 mL potassium sulfate buffer (PSB; 0.5 M K2SO4, 10 mM EDTA, pH 6.6). The roots were vortexed in the

PSB for 10 s to remove rhizosphere soil before being transferred to a fresh tube containing PSB and vor-

texed again for 10 s. The rhizosphere soil from both tubes was combined into one sample, centrifuged

at 4,000 rpm at 4°C for 5 min and then snap-frozen in liquid nitrogen. Samples were stored at 280°C

prior to being freeze-dried.

Field sampling site and conditions. Brassica napus L. plants were sampled at the four-leaf growth

stage in October 2017, using a systematic sampling design (Fig. S1), from the same location as the soil

was collected for the pot trials above. Plants were removed from the soil, and the roots were processed

as described in the previous section.

Extraction of extracellular proteins from soil. To extract extracellular proteins from agricultural field

soil, the methods developed by Rollings-Johnson et al. (29) and Armengaud et al. (26) were modified to

account for the reduction in available sample associated with rhizosphere soil. Briefly, loose soil was

shaken off plant roots and discarded, and the remaining rhizosphere soil was removed from the roots by

immersion and shaking in a 0.5 M KSO4 10 mM EDTA buffer, pH 6.6, until approximately 30 g of soil had

been collected in a 1:3 wt/vol ratio of soil: buffer. This solution was incubated at room temperature with

100 rpm shaking for 1 h, centrifuged at 12,800 � g for 20 min at 4°C, decanted into Nalgene centrifuge

tubes, and centrifuged at 75,600 � g for 20 min at 4°C. The supernatant was then sequentially filtered

through 0.45- and 0.22-mm pore-size PVDF filters (Fisher Scientific) to remove any bacterial cells and

adjusted to pH 5 with 10% vol/vol trifluoroacetic acid. Then, 0.001% (vol/vol) of StrataClean resin (Agilent

Technologies, UK) was added in order to bind proteins, and samples were incubated in a rotatory shaker

at 4°C overnight. Samples were centrifuged at 972 � g for 5 min at 4°C, and supernatants were discarded.

If any precipitates were observed, then the resin was resuspended in dH2O adjusted to pH 5 with 10% vol/

vol Trifluoroacetic acid, and this centrifuge step was repeated. Next, the resin was resuspended in 20mL of

1� lithium dodecyl sulfate 1� dithiothreitol gel loading buffer (Expedeon-Abcam, UK), heated to 95°C for

5 min, and then sonicated in a water bath for 5 min, twice in succession.

Identification and quantification of proteins. For protein identification a short run (;2 min) was

performed to create a single gel band containing the entire exoproteome, as previously described by

Christie-Oleza et al. (62). In-gel reduction was performed prior to trypsin digestion and subsequent clean

up as previously described (62). Samples were analyzed by means of nanoLC-ESI-MS/MS using an

Ultimate 3000 LC system (Dionex-LC Packings) coupled to an Orbitrap Fusion mass spectrometer

(Thermo Scientific, USA) using a 60-min LC separation on a 25-cm column and settings as previously

described (63).

To identify peptides, we used an iterative database search approach. First, all detected mass spectra

were searched against the total assembled metagenome (MG) database containing 64.1 M open reading

frames (ORFs), generated from a composite metagenome of the field soil, detailed below. To reduce re-

dundancy, ORFs were clustered at 90% using CD-HIT and representative ORF sequences were used as

the database. A 90% clustering value was chosen based on a preliminary database search using a subset

of the total MG (0.931 M ORFs), focusing on P cycling and other extracellular proteins (Pset). This

reduced database was clustered at both 99% and 90%, and while some resolution was lost at 90% clus-

tering, the vast majority of protein clusters were identified. Therefore, 90% clustering was applied to

constrain the total MG database. X!-Tandem and MS-GF1 searches were performed, generating a data-

base of 206,065 identified proteins, prior to FDR and minimum unique peptide filtering. This reduced

ORF database was then used in a MaxQuant search, returning 6,718 proteins (plus 71 decoy and 21 con-

taminants). Removal of proteins with only one observed peptide, only identified by modified peptides,

and allowing for a peptide threshold FDR of 5% and a protein threshold FDR of 10% resulted in a final

protein detection of 1,895 protein groups (10 contaminants). Setting FDR thresholds is a complex issue

when applying these to metaproteomics (64). After manual scrutiny (visualized using Scaffold Viewer
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v4.8.7) of search results obtained using the Pset database and setting the FDR at either 5% (Table S2a)

or 10% (Table S2b), we decided on using a relaxed FDR of 10%. The extra peptides/proteins identified

by relaxing the FDR threshold did not occur in a random fashion, suggesting that true biological infer-

ence was maintained in the vast majority of cases. Indeed, most extra identified peptides were assigned

to proteins already identified using a more stringent FDR, suggesting that isoforms and microdiversity

of proteins at the amino acid level restricted the number of peptides/proteins identified. This is perhaps

a consequence of our clustering step, but it should be noted that the overral biological inference

remains remarkably similar for either chosen FDR threshold (Table S2a and b). The highest ranked pro-

tein in each group, based on number of unique peptides and/or probability, was taken forward.

Typically, protein groups consisted of proteins of identical function separated by taxa, predominantly at

the species level. In silico protein sorting prediction tools, such as secretomeP 2.0, LipoP, and SignalP

(https://services.healthtech.dtu.dk/), were used to determine if proteins were truly extracellular or simply

intracellular and released during cell lysis/death. Quantification, statistical analyses, and data visualiza-

tion of exoproteomes were carried out in Perseus and RStudio (version 1.2.5033). The mass spectrometry

proteomics data have been deposited in the ProteomeXchange Consortium via the PRoteomics

IDEntifications (PRIDE) partner repository with the data set identifiers accessions PXD033692 (field soil

MEP, using the Pset database) and PXD033802 (pot soil MEP).

Extraction of metataxonomic and metagenomic data. DNA from either bulk or rhizosphere soil

was extracted using the FastDNA Spin Kit (MP Biomedicals) soil extraction kit following the manufacturer’s

instructions. All samples were checked for integrity and quality by gel electrophoresis (1% wt/vol agarose)

and NanoDrop Spectrophotometry (ThermoFisher). DNA was quantified using QuBit (ThermoFisher). For

16S rRNA gene profiling of the microbial communitiesm, 16S rDNA amplicons covering the V1-3 variable

regions were amplified using 27F and 534R eubacterial primers with Illumina overhang adapter sequences.

Following PCR cleanup (as per the manufacturer’s instructions) using AMPure XP beads (Beckmann

Coulter), indices were attached using the Nextera XT index kit (Illumina) as per the manufacturer’s instruc-

tions. Amplicons were quantified, pooled, and prepared for 2x300bp paired end sequencing using an

Illumina Miseq platform, as per the manufacturer’s instructions. For shotgun-metagenomes, libraries and

sequencing were performed by Novagene Ltd using an Illumina HiSeq–PE 150 bp.

Metataxonomic assessment of microbial communities using the 16S rRNA marker gene was per-

formed using QIIME2 (version 2020.11) (65). Singleend (forward reads) files were demultiplexed using

the demux plugin. Then, quality control and denoising were performed using the Dada2 plugin (66). All

amplicon sequence variants (ASVs) were aligned with mafft and used to construct a phylogeny with fast-

tree2 (via q2-phylogeny) (67). Taxonomy was assigned to ASVs using the q2-feature classifier against the

Greengenes 13_8 97% reference sequences (68). Raw sequence data have been deposited in the NCBI

Sequence Read Archive (SRA) under bioproject PRJNA738866.

A Bray-Curtis dissimilarity matrix was calculated based on each samples clustered-ASV profiles and

used for nonmetrical multidimensional (NMDS) scales. We have modeled the distances between UniFrac

and the Bray-Curtis discrepancies using the ASV-level table through one-way similitude analysis

(ANOSIM) to investigate differences in community composition between rhizosphere and soil compart-

ments. All of the above models were constructed using RStudio (version 3.6), including analyses for com-

paring the relative abundance of different bacterial taxonomic levels.

Coassembly of the composite metagenome. Three different coassembly iterations were explored,

either grouping samples by fertilizer treatment, biological compartment (bulk versus rhizosphere), as

well as full coassemblies. Statistical analyses, such as N50 and total assembly size, determined the full

coassembly providing the highest quality assembly of metagenomics reads. All assemblies were carried

out using megahit (69) (version 1.1.3). After removing contigs smaller than 500 nucleotides, ORFs were

called using prodigal (version 2.6.2) (70) with option “-p meta.” This resulted in a collection of 64.1 mil-

lion different ORFs. ORFs multisample coverage profiles were generated by mapping all sample reads to

the assembly using both bwa-mem (version 0.7.17-r1188) (71) and samtools (version 1.10) (72).

Metagenomic taxonomic profiling. Assembly of the 16S rRNA gene from shotgun metagenomic

read data is notoriously poor and also suffers from susceptibility to highly variable copy number across

bacterial taxa. Therefore, community composition of the MG was based on the taxonomy and abun-

dance of Single copy Core Genes (SCG). For this, the database of 64 millions ORFs was annotated using

rpsblast (version 2.9.01) (73) using the pssm formatted COG database (74), which is made available by

the CDD (75). For the set of 36 COGs taken as SCGs, corresponding ORFs were clustered at 5% ANI using

mmseqs2 (version 13.45111) (76) with options “easy-cluster,” “-cov-mode 2,” “-max-seqs 1000,” and

“-c 0.80.” This resulted in a median number of 6,280 clusters over the 36 SCGs. After adding sequences

from Refseq genome representatives, a series of 36 corresponding phylogenetics trees were built using

in sequence, mafft (version v7.407) (77), trimal (version v1.4.rev22) (78) with options “-gt 0.9” and “-cons

60” and FastTree version 2.1.10 (67). Using the python library ete3 (version 3.1.2), each SCG cluster was

assigned to the nearest refseq representative. Taxonomic profiles were obtained by summing the SCG

cluster ORFs coverage along taxonomic assignment. In the case where more than one of the 36 SCGs

was found at the same taxonomic level, median coverage was taken. Normalization was carried out by

taking for each sample the median total coverage of the 36 SCGs. This approach is insensitive to the

varying size of genomes, so that organisms with larger genomes do not appear to be more abundant

than those with smaller genomes.

To identify individual phosphatases (PhoX, PhoD, and PhoA) the methods developed in reference 79

were applied. Briefly, this involved performing a hmmsearch of the assembled MG ORF database, using

pregenerated profile hidden Markov models (pHMMs) for each protein (67). To assign taxonomy, identified

ORFs were then aligned by BLASTP (e220) to a manually curated database generated from all sequences
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deposited in the IMG/JGI database. Any sequences (,2%) not aligning to any predicted phosphatases

were removed from the data set. The read coverage for each ORF was then extracted to determine the rel-

ative abundance of each ORF. ORF coverage was then normalized by accounting for variation in total SCG

coverage as per Lidbury et al. (79). For PhoX, phylogenetic analyses were performed using IQ-Tree using

the parameters -m TEST -bb 1000 -alrt 1000. Representative PhoX sequences obtained from the genomes

of isolates spanning the diversity of Pseudomonas were aligned with the sequences identified in the MEP.

Evolutionary distances were inferred using maximum-likelihood analysis. Relationships were visualized

using the online platform the Interactive Tree of Life viewer (https://itol.embl.de/). Raw sequence data

have been deposited in the NCBI SRA under bioproject PRJNA738866.
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