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ABSTRACT
Radicals and their precursors play a central role in the chemical
transformations occurring in indoor air and on indoor surfaces. Such
species include OH, HO2, peroxy radicals, nitrous acid, reactive chlor-
ine species, NO3, N2O5, Criegee intermediates, and glyoxal and meth-
ylglyoxal. Recent advances on instrumental analysis and modeling
studies have demonstrated the need for a wider range of measure-
ments of radical species and their precursors in indoor air. This work
reviews measurement techniques and provides considerations for
indoor measurements of several radicals and their precursors.
Techniques to determine the actinic flux are also presented owing to
the relevance of photolytically-initiated processes indoors. This
review is also intended to provide pointers for those wanting to
learn more about measurements of radicals indoors.

KEYWORDS
Criegee; peroxy; HONO;
FAGE; CIMS; Laser-induced
fluorescence

1. Introduction

A small group of highly reactive species, often radicals and their precursors, play a central
role in the chemical transformations occurring in indoor air and on indoor surfaces.
Reactions involving these species affect indoor air quality through the loss of reactants and
the formation of new chemical species whose toxicity could differ substantially from their
precursors. Since reaction products are often of lower volatility than their parent com-
pounds, these reactions can also lead to the growth or formation of particulate matter.
Measuring the concentrations of highly reactive species is challenging for

several reasons:
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� mixing ratios in indoor air are often extremely low
� inlet losses can be problematic. Instrument residence times and material selection

are therefore important considerations
� pre-concentration is not generally viable as a measurement strategy as it is with

stable organic compounds
� instrument calibration and validation studies are complicated by the absence of

commercially available reference materials

Moreover, practical issues like instrument size, noise, and hazards associated with
lasers and electrical cables need to be considered in occupied indoor spaces.
Based on the assumption that indoor radical concentrations were much lower than

outdoors, the study of reactive indoor chemistry was initially restricted to ozone chem-
istry. However, first modeling and then experimental studies began to question this
assumption and indicated that concentrations of radicals can be on the same order of
magnitude as that observed outdoors, or even larger for chlorine radicals under circum-
stances such as cleaning. Indoor radicals can derive from sources indoors (such as
cleaning or air-freshener use) or through infiltration of radical precursors (VOC, O3

and NOX) from outside air.
Transmission of UV and visible light into buildings plays a fundamental role in the

generation of radicals. Outdoors, oxidation is driven by photochemistry, often initiated by
sunlight at wavelengths shorter than 320 nm. Such high energy photons are not generally
available indoors and the oxidizing capacity can be dominated by infiltration of reactant
species from outdoor air and by non-photochemical reactions (also known as “dark
chemistry”) [1]. This results in different oxidizing atmospheres indoors and outdoors.
Recent studies suggest that photolysis of molecules that absorb light at wavelengths lon-

ger than 320 nm, such as nitrous acid (HONO) and formaldehyde (HCHO), may lead to
higher indoor hydroxyl radical (OH) concentrations than previously expected. Gomez
Alvarez et al.[2] provided the first direct experimental confirmation that the indoor levels
of OH radicals are comparable to outdoor concentrations. Particularly noteworthy are
activities that lead to high indoor concentrations of these species, such as of HONO fol-
lowing combustion[3]. HONO photolysis can compensate for the missing OH formation
by ozone photolysis, which is normally the dominant source of OH radicals outdoors.
Indoor cleaning can also lead to radical production. Carslaw et al.[4] reported meas-

urements of OH and hydroperoxy (HO2) radicals made by laser-induced fluorescence
spectroscopy in a computer classroom, (i) in the absence of indoor activities, (ii) during
desk cleaning with a limonene-containing cleaner and (iii) during operation of a com-
mercially available “air cleaning” device. In the unmanipulated environment, the one-
minute averaged OH concentration remained close to or below the limit of detection
(6.5� 105 molecules cm�3), while HO2 was 1.3� 107 molecules cm�3. These concentra-
tions increased to �4� 106 and 4� 108 molecules cm�3, respectively during desk clean-
ing. During operation of the air cleaning device, OH and HO2 concentrations reached
�2� 107 and �6� 108 molecules cm�3, respectively.
Owing to the presence of O3 and nitrogen dioxide (NO2) indoors and the relatively

low light levels, it might be expected that the nitrate radical (NO3) could attain
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significant indoor concentrations. Arata et al.[5] conducted direct indoor measurements
of the nitrate radical (NO3) and dinitrogen pentoxide (N2O5) produced following com-
bustion cooking emissions in a residential kitchen. They concluded that indoor combus-
tion suppresses nitrate radical chemistry when O3 concentrations are low, but at
moderate O3 levels (�40 ppbv), measured NO3 concentrations reached 3–4 pptv. A box
model showed that moderate O3 levels led to a nitrate radical production rate of
7 ppbv h�1.
It has also recently been shown that cleaning activities using chlorine-based cleaners

including use of bleach can lead to the formation of numerous reactive chlorine (Cl)
species, many of which are photo-labile and could generate atomic Cl indoors. Wong
et al.[6] measured concentrations of chlorinated gases and aerosol components using
online chemical ionization and aerosol mass spectrometers after an indoor floor was
repeatedly washed with a commercial bleach solution. Gaseous chlorine (Cl2) at mixing
ratios of tens of ppbv and hypochlorous acid (HOCl) at mixing ratios of hundreds of
ppbv were observed after floor washing. Nitryl chloride (ClNO2), dichlorine monoxide
(Cl2O), and chloramines (NHCl2, NCl3) were also formed under these conditions.
Photochemical box models indicated that OH, Cl, and chlorine monoxide (ClO) gas-
phase radical concentrations could be greatly enhanced (>106 and 105 molecules cm�3

for OH and Cl, respectively) in such bleach cleaning conditions, depending on the
amount of indoor illumination[6]. Dark chemistry during bleach cleaning and use of
surface disinfectants also affects indoor air quality by enhancing oxidation of organics
and production of secondary organic aerosols indoors [7,8].
Gandolfo et al.[9] provided direct measurements and modeling of the actinic flux and

photolysis frequencies of species relevant for indoor atmospheres (HONO, NO2 and
NO3) during summer and winter periods. Zhou et al.[10] measured wavelength-resolved
ultraviolet (UV) irradiance in multiple indoor environments and quantified the effects
of variables such as light source, solar angles, cloud cover, window type, and electric
light color temperature on indoor photon fluxes. They reported mathematical relation-
ships that predict indoor solar UV irradiance as a function of solar zenith angle, inci-
dent angle of sunlight on windows, and distance from windows and surfaces for direct
and diffuse sunlight. Using these relationships, they predict elevated indoor steady-state
OH concentrations (0.80–7.4� 106 molecules cm�3) under illumination by direct and
diffuse sunlight and fluorescent tubes near windows or light sources. In a later study,
Zhou et al. [11] made intensive measurements of wavelength-resolved spectral irradiance
in a test house during the HOMEChem campaign and reported diurnal profiles and
two-dimensional spatial distribution of photolysis rates (J) of several important indoor
photolabile gases. Their results showed that sunlight transmitted through windows,
which was the dominant source of ultraviolet (UV) light in the test house, led to clear
diurnal cycles and large time- and location-dependent variations in local gas-phase
photochemical activity. Compared to diffuse sunlight, local J values of several key
indoor gases under direct solar illumination were 1.8–7.4 times larger and strongly
dependent on time, solar zenith angle, and incident angle of sunlight relative to the
window. Photolysis rates were highly spatially heterogeneous and fast photochemical
reactions in the gas phase were generally confined to within tens of centimeters of the
area exposed to direct sunlight. Opening windows increased UV photon fluxes by a
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factor of 3 and increased predicted local hydroxyl radical (OH) concentrations in the
sunlit region by a factor of 4.5, leading to a concentration of 3.2� 107 molecules cm�3

as a result of higher J values and an increased contribution from O3 photolysis. Figure
1 displays photon fluxes of indoor light sources and the product of absorption cross
section and photolysis quantum yield of likely indoor oxidants.
The above overview of recent measurements and modeling studies demonstrates the

need for a wider range of measurements of radical species and their precursors in
indoor air. This paper therefore focuses on reviewing measurement techniques and pro-
vides considerations for indoor measurements of OH, HO2, and peroxy radicals, OH
reactivity, the OH radical precursor, nitrous acid, reactive chlorine species, NO3 and its
atmospheric reservoir N2O5, Criegee intermediates, and the bicarbonyl species glyoxal
and methylglyoxal indoors. Techniques to measure the actinic flux are also presented
owing to the relevance of photolytically-initiated processes indoors. The inorganic spe-
cies NO, NO2, and O3 were omitted as they are routinely measured relatively
straightforwardly.
This review of indoor radicals and radical precursor measurement techniques is

intended to provide some pointers for those wanting to learn more about radical con-
centrations indoors. It is based on recent innovations for radical measurements and
connected species/parameters. It is not an exhaustive review of all possible techniques.
For instance, Matrix Isolation Electron Spin Resonance (MIESR) has been superseded

Figure 1. Photon flux of common indoor light sources (right axis, arbitrary scale) shown with the
product of absorption cross section and photolysis quantum yield of likely indoor oxidants (left axis).
Actinic fluxes of the indoor lamps were measured at a short distance. Reproduced from Young
et al.[1], with permission from the Royal Society of Chemistry.
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by other methods and long physical path methods like multi-pass Differential Optical
Absorption Spectroscopy (DOAS) are normally too bulky for indoor measurements.

2. Measurements techniques of radicals and radical precursors indoors

2.1. Hydroxyl and hydroperoxy radicals

Oxidation of volatile organic compounds produces radical species indoors. These gas-
phase oxidation reactions transform primary VOC emissions into secondary species
(including into harmful pollutants), and involve the OH and HO2 radicals, collectively
known as HOx. There is a need to better understand the chemical transformations of
multiple VOC species that are present indoors and the potential impact of their oxida-
tion on indoor air quality and human health. Doing so requires the measurement of
radical concentrations and the secondary species which derive from them in real-life
environments. Such measurements will permit the further development of chemical
mechanisms for models and to gain further insight.
Owing to the short-lived nature of radical species (for example, <1 second for OH),

their local concentrations are controlled by the rate at which they are chemically formed
and removed, and not by transport processes. As a result, comparing measured and
modeled concentration profiles of oxidants such as OH radicals is an ideal test of how
well we understand the details of these chemical transformations. Another parameter
linked to the OH radical is the pseudo-first-order rate coefficient at which OH is
removed by its sinks, known as the OH reactivity. This parameter is representative of
all the chemical losses of OH. The OH reactivity can be measured in ambient air by
coupling a reactor in which OH is generated to instruments able to quantify OH or
OH reactivity.
Peroxy radicals, which comprise both HO2 and organic RO2 (where R is an organic

group), are key intermediate species in the oxidation process. These radicals facilitate
fast chemical cycles that reform OH and, in the presence of NO, lead to the formation
of NO2 which can photolyze to generate ozone. The central role of RO2 and their short
lifetimes make measurements of their concentrations useful for comparison with model
predictions. However, the measurement of these radicals is an experimental challenge
owing to their high reactivity, short lifetimes, and low concentrations. Table 1 summa-
rizes typical concentrations of radicals in the atmosphere, including indoor
environments.
A range of instruments have been developed to measure HOx radicals in the atmos-

phere using optical and mass spectrometric techniques [12–14].

Table 1. Concentration range of the radicals in the atmosphere. Note that for CH3O2 this represents
a model estimate only.
Radical(s) Atmospheric concentration (molecules cm-3)

OH 105-107

HO2 106-109

CH3O2 106-108

sum RO2 106-109
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2.1.1. OH quantification
The techniques currently used for OH are Fluorescence Assay by Gas Expansion
(FAGE), Chemical Ionization Mass Spectrometry (CIMS) and Differential Optical
Absorption Spectroscopy (DOAS), although DOAS is now retired from field use and is
only used at one outdoor atmospheric simulation chamber (SAPHIR at J€ulich). Figure 2
shows a range of methods for quantifying OH across a range of concentrations.
Techniques based on the measurement of a tracer have been used indoors and in
atmospheric simulation chambers (e.g., HIRAC, EUPHORE and SAPHIR).

2.1.2. FAGE technique principle
The FAGE (Fluorescence Assay by Gas Expansion) technique is based on detection of
Laser Induced Fluorescence (LIF) detection of OH after excitation at 308 nm. The sam-
ple is at low pressure, after a gas expansion formed by sampling the atmosphere
through a small pinhole. As of 2021, the FAGE technique is the approach most com-
monly used in field campaigns. Eleven groups in the world have developed instruments:
University of Leeds[27], Max Planck Institute in Mainz[28], Forschungszentrum J€ulich[29],
EUPHORE chamber in Valencia (http://www.ceam.es/wwweuphore/), Pennsylvania
State University[15], University of Indiana at Bloomington [30], University of Lille [31],
Peking University in collaboration with the Forschungszentrum J€ulich[32], and Hefei[33].
Recently, a modification to the FAGE sampling methodology has been made which

uses an inlet pre-injector (IPI) to add a chemical scavenger to remove any ambient OH
prior to sampling by the pinhole and entering the fluorescence cell [28,34–36]. A measure-
ment using the IPI is known as OH-Chem, and is different to OH-Wave, which uses
wavelength modulation of the laser to measure the background signal. Through the use
of the IPI, any remaining LIF signal from OH must have originated from artificially
generated OH from an interference present within the fluorescence cell itself, and

Figure 2. Techniques currently used to quantify OH in reactive systems: FAGE1 [15], DOAS2[16], Cavity
Ringdown Spectroscopy (CRDS)3 [17], Diode-laser-based UV absorption4 [18], cw-CRDS5 [19,20], Cavity-
Enhanced Absorption Spectroscopy (CEAS)6 [21], Diode-Laser wavelength Wavelength Modulation
Absorption Spectroscopy (DL-WMAS)7 [22], Laser-Induced Fluorescence (LIF) (FAGE)8 [23], diode laser
absorption9 [24], Faraday Rotation Spectroscopy (FRS)10 [25], CIMS11 [26].
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enables removal of this interference signal. OH-Chem and OH-Wave are similar for
most conditions.

2.1.3. CIMS instrument principle
OH can be converted to H2SO4 by titration with SO2, with subsequent detection as
H2SO4 using CIMS and ionization based on its reaction with NO3

- ions. As the concen-
tration of OH is low, isotopically labeled 34SO2 is used to reduce interferences from nat-
urally present H2SO4. At present, three groups use CIMS instruments for the
quantification of OH in the field[37–39]. Isotopically labeled 34SO2 is very expensive and
shortages of it have been known. However, it increases the precision of the measure-
ment as background levels of H2SO4 can be significant.

2.1.4. DOAS instrument principle
DOAS measurement of OH has been developed in the UV (at 308 nm), where the
absorption cross sections for OH are large and well known[16]. DOAS has the advantage
of providing an absolute OH concentration but requires a long absorption path (several
km) to reach a sensitivity high enough for atmospheric applications[40]. The only cur-
rent operational instrument for OH measurements is permanently installed in the large
SAPHIR chamber in J€ulich. The SAPHIR instrument has a multipass cell with a base
length of 20m and a total path length of 2.24 km, giving a limit of detection (LoD) of
7.3� 105 molecules cm�3 for 200 s integration time [41].

2.1.5. OH reactivity
The measurement of OH reactivity has been developed over the last 2 decades for
atmospheric applications. This parameter corresponds to the sum of all losses of OH
and complements other measurements characterizing the oxidation processes linked to
OH. It measures the first order rate coefficient of the OH loss in a single measurement.
When compared with model calculations it allows evaluation of whether all the sinks of
OH are accurately captured in the chemical mechanism. For this, the directly measured
OH destruction rate is compared against the destruction rate inferred from other field
measurements. When coupled to the measured OH concentration and to measurements
characterizing the major OH-producing pathways (HO2 þ NO, HONO-photolysis and
O3-photolysis), it also allows to analyze OH budgets exclusively on experimental data.
The overall OH production rate is given by OH-recycling via the HO2 þ NO reaction
plus the primary production rates mainly resulting from photolysis of HONO and O3.
The overall OH destruction rate is given by the product of total OH reactivity and the
OH concentration.
Three techniques have been developed which generate artificial OH in a reactor con-

taining ambient air and measure its decay either directly or indirectly:

1. two are based on OH detection techniques already used for the atmospheric
measurement of OH concentrations (FAGE based on the LIF technique, and
CIMS) and coupled to different types of reactors: Flow Tube (FT) or Laser
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Photolysis reactor (LP) coupled to a FAGE instrument. These two correspond to
the following techniques: FT-LIF, FT-CIMS, LP-LIF

2. one based on the measurement of a tracer reacting with OH (Comparative
Reactivity Method, CRM)

The FT-LIF method is based on the continuous generation of OH radicals in a flow
tube by photolysis of H2O vapor by a mercury lamp placed in a moving injector, allow-
ing measurement of OH at different reaction times corresponding to different positions
of the injector, with the detection of OH by FAGE[42]. Corrections are needed for the
recycling of HO2 (generated simultaneously with OH) into OH in the presence of NO
in ambient air.
The LP-LIF is based on detection of OH by FAGE, similarly to FT-LIF, but OH is

generated in a reactor by pulsed photolysis of ozone at 266 nm in the presence of water
vapor[43]. In contrast to FT-LIF, this approach has the advantage of generating only
OH, limiting recycling of ambient HO2 to OH only to high NO conditions. Another
advantage is that the OH is directly monitored as a function of time, and conversion
from a physical parameter (distance) into time is not required.
The FT-CIMS uses the same OH generation method to FT-LIF but OH is converted

first into H2SO4 and detected by CIMS. The measurement is made at one reaction time
by alternatively injecting sulfur dioxide in the reactor at the entrance or at a position
corresponding to a detection time of about 75ms[44]. Corrections are also needed for
recycling of ambient HO2 into OH with NO.
The CRM technique does not directly measure OH but rather measures a tracer

reacting with it. It is based on the competition between the reactions of OH with all
species present in ambient air and with the tracer molecule added to the flow. OH is
produced in a reactor by continuous photolysis of H2O vapor using a mercury lamp
and the tracer is quantified by a suitable detector at the exit of the reactor. Pyrrole
(C4H5N) is currently used as the tracer.
The methods used to measure OH reactivity, together with their performance details,

are summarized in Table 2. The data in Table 2 is from two intercomparison campaigns
of OH reactivity that took place in the atmospheric simulation chamber SAPHIR in
Forschungszentrum J€ulich in October 2015 and April 2016[45]. The intercomparison
gathered all the instruments then used for the determination of OH radicals.
The column corresponding to OH concentration in Table 2 is what is generated

inside the instrument to perform the OH reactivity measurement. For example, in the
LP-LIF method, OH is generated by photolysis of ozone at 266 nm followed by the reac-
tion of O(1D) with H2O vapor at a certain laser power. The O3 and H2O concentrations
vary between instruments and therefore affect the initial OH generated (column [OH]
in Table 2).

2.1.6. HO2 quantification
HO2 is most frequently quantified by indirect detection based on converting HO2 to
OH and subsequent detection as OH using FAGE or CIMS instruments. However, titra-
tion by NO can also convert some RO2 to HO2. In FAGE instruments, modulation of
NO is used to selectively detect HO2

[32,55–57]. With PeRCIMS instruments (Peroxy
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Radical Chemical Ionization Mass Spectrometry), depending on the concentration of
O2, NO and SO2 and diluting the air sampled with either O2 or N2, it is possible to spe-
ciate measurements of either RO2 or HO2

[14,58–60] but only if CH3O2 is the major con-
tribution to total RO2. A modified PERCA (peroxy radical chemical amplification)
instrument dedicated to the sum of RO2 measurement, using detection of NO2 by LIF,
has been tested to selectively quantify HO2 using a denuder with heterogeneous losses
higher for HO2 than for RO2

[61]. Bromide has recently been shown to be a useful
reagent ion for CIMS detection of HO2 with high selectivity and at concentrations rele-
vant to many ambient conditions [62,63]. Approaches to measure HO2 are shown in
Figure 3.

2.2. Peroxy (RO2) radicals

Quantification of RO2 radicals is more complex than for OH and HO2, because the per-
oxy radicals comprise a family of radicals and not an individual species. As a result,
most techniques only allow measurement of the sum of all RO2 or of a sub-group of
RO2. Efforts have been made to selectively measure CH3O2, the main RO2 radical in the
atmosphere. Selective quantification of CH3O2 is possible by titrating with NO and
detection as CH3O with laser-induced fluorescence. This approach has been demon-
strated in the HIRAC (Highly Instrumented Reactor for Atmospheric Chemistry) cham-
ber[71], where an intercomparison was also performed with the less sensitive cavity-ring
down method[72].
Other techniques for unspeciated RO2 measurements are based on similar detection

methods to those used for HO2, after converting RO2 into HO2:

Figure 3. Techniques currently used to quantify HO2 in reactive systems: 1 Absorption
Spectroscopy[64] 2Flash Photolysis UV Absorption[65] 3Near-Infrared Wavelength Modulation
Spectroscopy&UV Absorption Spectroscopy[66] 4cw-CRDS[67] 5Optical Feedback Cavity Enhanced
Absorption Spectroscopy[68] 6Noise-Inmune Cavity Enhanced Optical Heterodyne Detection[69] 7Mid-
Infrared Faraday Rotation Spectrometry[70] 8Bromide Chemical Ionization Mass Spectrometry[63]
9Peroxy Radical Chemical Ionization Mass Spectrometry[59] 10FAGE[56] 11PERCA-denuder[61].
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1. ROxLIF is derived from the FAGE technique, coupling it to a conversion cell
held at �30Torr (addition of CO and NO) to convert ROx

(RO2þROþHO2þOH) into HO2. Sufficient CO is added so that when OH is
formed it is immediately converted to HO2, which is detected in the FAGE after
titration with NO[56,73,74]. Some speciation of RO2 is possible by measuring both
the total RO2 and the total RO2 which gives an interference in the measurement
of HO2 (mostly larger alkane RO2 and RO2 derived from unsaturated and aro-
matic species)[56].

2. PerCIMS is based on the conversion of RO2 into HO2 and HO2 into OH with
the detection of OH by CIMS [75].

3. An alternative approach has been developed based on amplification/conversion
(PERCA, peroxy radical chemical amplifier). PERCA is based on the conversion
of RO2 into HO2 in the presence of a large concentration of CO and NO. HO2

is then involved in a chain reaction in which HO2 and OH are interconverted
leading to the oxidation of NO to NO2, which is then quantified by LIF [43],
chemiluminescence [76], CRDS [77], or CAPS (cavity attenuated phase shift spec-
troscopy)[78,79]. Some more recent versions of a PERCA use ethane rather than
CO for the chain amplification chemistry[78,80].

Figure 4 summarizes the specifications of these methods.

2.3. Nitrous acid, HONO

Nitrous Acid (HONO) is a respirable pollutant known to convert secondary amines
in vitro to carcinogenic nitrosamines[85,86]. In addition, it can directly initiate DNA
crosslinks and is expected to have mutagenic properties. Indoors, HONO is formed

Figure 4. Techniques currently used to quantify individual or sum of RO2 in reactive systems.
Techniques for CH3O2:

1Laser Flash photolysis coupled with UV-time resolved absorption detection[81]
2Time-resolved continuous-wave Cavity Ringdown Spectroscopy[82] 3Vacuum ultraviolet radiation of
combined with time-resolved mass spectrometry[83] 4Laser-Induced Fluorescence (LIF)[71]. Techniques
for sum of RO2:

5CIMS[84], 6PerCIMS[75], 7LIF[74], 8PERCA[78].
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following combustion, as well as by heterogeneous dark and photochemical reaction of
NO2 and is an important radical source indoors. G�omez Alvarez et al.[2] experimentally
proved for the first time that photolysis of HONO was possible indoors, i.e., that the
range of wavelengths that penetrate through windows could photolyze HONO yielding
concentrations of OH radicals that were comparable to outdoor levels. Uptake of NO2

to indoor surfaces can result in the heterogeneous formation of nitrous acid (HONO)
by various mechanisms [87–90].
HONO mixing ratios of up to 100 ppb have been observed indoors[2,3,91–105]. The high-

est values measured are related to combustion processes. Under conditions where a direct
source of HONO, such as a combustion appliance, is not active, mixing ratios are typically
less than 10 ppb, which is still much higher than in the ambient atmosphere [2,106].
Due to the wide range of reported HONO levels (<1-100 ppb), instruments used for

indoor studies should have a large dynamic range. In addition, since the indoor atmos-
phere can be a very complex reaction mixture including ambient pollutants (NOx, O3,
VOCs), specific indoor pollutants (e.g., cleaning products, air fresheners, cooking emis-
sions) and their degradation products, HONO instruments should be also selective and
almost free of interferences. Furthermore, to study fast variations of indoor HONO lev-
els, such as during cooking events, the instruments should have a time resolution at
least in the low minutes range. Finally, HONO instruments should be compact to min-
imize disruption in indoor spaces.
Early studies using simple carbonate denuders or filter techniques did not fulfill all

these requirements (e.g., [91–95,99,100,102,107]). These approaches have a low time reso-
lution and are affected by interferences like NO2.
Other indoor HONO studies used a modified NOx analyzer to allow simultaneous quantita-

tive measurements of HONO [3,92,96,107]. The HONO inlet of the instrument consists of a gas
denuder (GD) channel and a bypass (BP) channel inserted upstream of the NOx analyzer. The
GD removes gaseous acids, including HONO, using a sodium carbonate coated annular
denuder which does not remove NO and NO2. Air sampled through the BP channel contains
NO2 and HONO; both molecules are converted to NO by the molybdenum catalyst
[3,103,108,109]. A Teflon solenoid three-way valve enabled the sampling of GD (NO and NO2

only) and BP (sum of NO, NO2 and HONO,
P

(NOX þ HONO)) air alternating at 5min
intervals. However, this technique is not very specific since other acidic NOy species (e.g.,
HNO3) besides HONO are also removed by the carbonate denuder.
Ve�ce�ra et al. [101] used a wetted wall effluent diffusion denuder, in which water flows

down on a modified interior wall of a borosilicate glass tube while sample air moves
upward in countercurrent flow. The effluent liquid was debubbled and the anionic con-
stituents were preconcentrated. The separated ions flowed through a cadmium cell to
reduce NO3

– to NO2
–, which was detected by the Griess-Saltzman reaction. Following a

3-minute reaction time, the product dye was detected based on its absorption at
555 nm. For a 50 cm wet effluent diffusion denuder, essentially quantitative collection
efficiency was observed for both HONO and HNO3.
Differential Optical Absorption Spectroscopy (DOAS) was used in the first HONO

indoor studies[98]. DOAS is fast, sensitive and selective, but indoor set-ups are cumber-
some since a long path absorption system (like a White cell) is needed for high sensitiv-
ity. Thus, this technique has not been used in more recent studies.
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High time resolution based on incoherent broadband cavity-enhanced absorption
spectroscopy (IBBCEAS) was used for the simultaneous measurements of HONO and
NO2

[110,111]. Duan et al.[111] found measurement precisions (2r) for HONO and NO2

of about 180 and 340 ppt in 30 s, respectively. A field inter-comparison was carried out
at a rural suburban site in Wangdu, Hebei Province, China. The concentrations of
HONO and NO2 measured by IBBCEAS were compared with a long optical path
absorption photometer (LOPAP) and a NOx analyzer (Thermo Fisher Electron Model
42i), and the results showed very good agreement, and good correlation with slopes of
0.941 ± 00,0069 and 0.964 ± 0,0042 for HONO and NO2 respectively and correlation
coefficients (R2) of HONO and NO2 being �0.89 and �0.95, respectively. In addition,
vehicle deployments were also tested to enable mobile measurements of HONO and
NO2, demonstrating the promising potential of using IBBCEAS for sensitive, accurate
and fast simultaneous measurements of HONO and NO2 in the future.
Laser-photofragmentation laser-induced fluorescence (LP-LIF) has recently been

applied to the indirect measurement of HONO with good sensitivity. The approach
taken is to photolyze HONO and detect its OH photofragments. Bottorff et al.[112] have
used this approach to measure HONO and OH in forests, urban settings, and indoors.
Mass spectroscopic techniques have been used in a few HONO indoor studies. For

example, HONO can be measured with Atmospheric Pressure Interface Chemical
Ionization Mass Spectrometry (API-CIMS) using chloride reagent ion chemistry [103]. In
a study by Collins et al.[97], HONO was detected indoors using a High-Resolution
Time-of-Flight Chemical Ionization Mass Spectrometer (HR-ToF-CIMS) after reaction
with the acetate (CH3COO

�) reagent ion. MS techniques are fast, sensitive, and can be
selective when well-designed. The humidity dependence of the sensitivity by formation
of water clusters has to be carefully calibrated for the CIMS technique[113]. MS instru-
ments are not compact but still have the potential for standard use in indoor studies.
In more recent indoors studies, the LOPAP (Long-Path Absorption Photometer) has

frequently been used for real time measurements of HONO [114–118]. This instrument
fulfills the criteria mentioned above: a time resolution of a few minutes, high sensitivity
and high dynamic range (from low ppt to ppm level), selective detection and a compact
design. Since the instrument uses liquid reagents, it is not well-suited for very long-time
network measurements. Table 3 summarizes results from some indoor HONO studies
performed in different regions with different techniques and sample integration times
(concentration levels, instrumentation used, type of indoor environment and location)
using either online measurement techniques or offline analysis of collected samples.

2.3.1. HONO intercomparison campaigns
There have been several intercomparison campaigns of HONO measurements and
instrumentation and the main findings are summarized in Table 4. This section is to
provide general performance parameters for the most relevant instrumental techniques
that have been used to quantify HONO concentrations, to aid in the selection of suit-
able techniques for future campaigns. LOPAP is particularly suitable for the determin-
ation of HONO in the indoor environment. It has been subjected to extensive tests
through intercomparison exercises and has been compared to absolute techniques, i.e., spec-
troscopic instrumentation like DOAS, for which deployment in the indoor environment can
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Table 3. Examples of indoor HONO studies.
Location Building Type Avg ± SD [ppb] Range [ppb] Technique Reference

Reactions of NO2

with water vapor
in indoor
environment

Chamber study:
Reactivity and
kinetics study of
NO2 with
water vapor

(0.25 ± 0.04) ppb
HONO min�1 per
ppm NO2 (first
order
rate kinetics)

15 ppb HONO
per ppm NO2

(Steady state)

DOAS [98]

Chicago
and Meriland

Two research houses:
Residential with
unvented gas
space heaters

40 (24 h average) 0-100 Chemiluminescent NOx

monitorþ carbonate
denuder

[3]

Rome, Italy Residential Night: 14.3 9.9-20.8 Chemiluminiscence with
switchable
Na2CO3 scrubber

[107]

Lubbock, TX (USA) University Laboratory N/A 0-3 Wet effluent Diffusion
Denuder (WEDD) with
Low-pressure Ion
Chromatography-
Postcolumn
Reaction Detection

[101]

Alburquerque,
NM (USA)

Residential 4.7 ± 2.3 1.8-8.1 Carbonate
denuderþ filter pack

[102]

Ohio (USA) Residential
(combustion
sources)

N/A 0-18 Atmospheric Pressure
Chemical Ionization
Mass Spectrometry
(APCI MS)

[103]

Lubbock, TX (USA) Residential
(combustion
processes)

N/A 20-90 WEDD [104]

Brazil Commercial 4.3 ± 2.8 1.0-8.8 Carbonate-
impregnated filter

[105]

Eastern USA Residential 4.0 ± 2.8 (summer)
5.45 ± 3.75
(winter)

0-11.3 Carbonate/
glycerol denuder

[92]

Florence (Italy) Galleria degli Uffizi 4.8 2.6-7.3 Carbonate denuder [91]

Chamber
experiment

Investigation on HONO
formation on Teflon,
wallpaper, carpet
(50, 70% RH)

N/A Up to 12 ppb for
140 ppb NO2

(air exchange
rate¼ 0.53 h-1)

Chemiluminescenceþ
carbonate denuder

[119]

California, USA Residential 4.6 0-21 Passive sampler;
carbonate-
impregnated filter

[93]

Cairo, Egypt Residential

Commercial

3.67 (summer)
6.8 (winter)
1.24 (summer)
1.42 (winter)

1.3-7.3
1.6-12.5
0.52-2.13
0.61-2.21

Carbonate denuder [94]

Gwangiu, Korea Residential 1.4 0.3-9 Online liquid trap/
luminol detection

[120]

Gwangiu (Korea) Residential
(occupied
apartment)

2.1 0.2-15.2 Online liquid trap/
luminol detection

[121]

Marseille (France) School 5.6 <12 NITROMAC aqueous
scrubber-HPLC-
UV instrument

[2]

Bern, Geneva
(Switzerland)
Prague, Teplice
(Czech Republic)

Libraries 1.9 Diffusion sampler
filter pack

[95]

Syracuse, NY, USA Residential 4.3 ± 2.2 3-7 Chemiluminiscence with
switchable
Na2CO3 scrubber

[96]

Toronto, ON, Canada Residential 5.3 ± 1.1 3.0-14.2 Online acetate chemical
ionization mass
spectrometry

[97]

East Anglia, UK Residential 3.19 2.05-5.09
0-20.55

Passive sampler [117]
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pose significant hurdles. For higher indoor levels (>several hundred ppts) the IBBCEAS tech-
nique is also a suitable candidate, since these instruments are also compact, fast and selective.

2.4. Reactive chlorine and precursors

The highly reactive Cl atom is a powerful oxidant of both organic and inorganic com-
pounds and can be an important driver of atmospheric chemistry in both indoor and

Table 4. Intercomparison of analytical techniques/instrumentation for the determination of HONO.
Techniques/Instruments
intercompared Summary of results Reference

DOAS/Annular Denuder (AD) Good agreement during night, AD �DOAS
during day

[122]

DOAS/ AD Good agreement and correlation, but ca.
0.7 ppb offset

[123]

DOAS/Chemiluminescence Good agreement [124]

DOAS/Rotated Wet Annular
Denuder (RWAD)

Good agreement during night, AD �DOAS
during day

[125]

LOPAP/DOAS (EUPHORE) Good agreement for complex conditions
(Diesel exhaust/dark)

[126,127]

Parallel Plate Wet Denuder (PPD)
(pH¼ neutral),
(RWAD) (pH ¼9)

Reasonable agreement, often higher HONO for
the RWAD. Higher interferences of the
RWAD at high pH and /or incomplete
sampling of the PPD at lower pH

[128]

Air-dragged Aqua-Membrane-Type
Denuder with Fluorescence
Detection/Dry Denuder/DOAS

Reasonable agreement between the
fluorescence detection and the denuder,
good agreement of fluorescence and DOAS
during night, but higher than DOAS
during day

[129]

DOAS/LOPAP Excellent agreement in a smog chamber under
complex conditions and in a field campaign
(urban background, Milan)

[130]

DOAS/Wet Effluent Diffusion Denuder
(WEDD)( PPD)

Reasonable agreement between both
instrument, higher HONO by the WEDD
during daytime

[131]

DOAS/Mistchamber- Ion
Chromatography (IC)

Good agreement during night, Mistchamber
�DOAS during day

[132]

Stripping coil- (IC)/LOPAP Good agreement [133]

DOAS/Stripping coil-absorption
photometry (SC-AP)/LOPAP/MC-IC/
Quantum Cascade Tunable Diode
Laser (QC-TILDAS)/Ion Drift-
Chemical Ionization Mass
Spectrometry (ID-CIMS)

Reasonable agreement between the
instruments, except for the ID-CIMS which
shows significant higher HONO

[134]

Modified LOPAP (selenoid pumps
instead of peristaltic pump)/
commercial LOPAP,

Modified LOPAP> commercial LOPAP,
potential reason 5m long inlet of the
modified LOPAP

[135]

NitroMAC/LOPAP Excellent agreement in a smog chamber,
NitroMAC> LOPAP in the atmosphere

[136]

Incoherent Broadband Cavity-
Enhanced Absorption
Spectrometer (IBBCEAS)/LOPAP

Excellent agreement [111]

Stripping coil-IC/LOPAP/CEAS Good agreement between all techniques [137]

RWAD (Monitor for Aerosols and
Gases in Ambient Air,
MARGA)/LOPAP

MARGA> LOPAP [138]

Commercial LOPAP/Custom Build
LOPAP/2x IBBCEAS/ToF-CIMS

High correlation but significant differences
between the instruments, reasons were not
clarified, potential spacial variability,
different inlet position

[139]
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outdoor environments. The reactive nature of atomic Cl means that its concentrations
are too low to be directly measured in the lower atmosphere. Measurements of chlor-
ine-containing species, however, can give us significant insight into both the scale of
atomic Cl oxidation and the production of known respiratory irritants (e.g., NCl3).
These chlorinated gas phase compounds can be broadly classified into two groups —

either organic/amine or inorganic compounds. Most chlorinated-organic compounds
are stable with respect to tropospheric degradation processes (e.g., photolysis and OH
reaction), and are either directly emitted or formed as oxidation products of Cl atom
reactions with hydrocarbons. In contrast, inorganic chlorine compounds (e.g., HCl,
HOCl, ClNO2) can release Cl atoms during their tropospheric cycling and can be con-
sidered Cl atom reservoirs. These inorganic compounds are often formed via heteroge-
neous processes, which are thought to be important drivers of indoor chlorine
chemistry [6,8,140].
Observations of chlorinated organic compounds provide useful information as tracers

of Cl atom oxidation of hydrocarbons, and the detection of chloramines is useful both
as an indicator of their production mechanisms and their direct health impacts.
Measurements of inorganic chlorine compounds are key to improving our understand-
ing of the dominant chlorine production and cycling mechanisms. Much of our under-
standing of chlorine chemistry comes from the study of stratospheric ozone chemistry,
but many of the observational techniques used to study the stratosphere (e.g., satellite
differential optical absorption) are not suitable for the indoor environment. However,
recent developments in both mass-spectrometry and optical techniques make possible
the in-situ study of complex chlorine chemical cycles. Table 5 summarizes in-situ obser-
vational techniques that have been, or could be, used for the study of chlorine chemistry
in the indoor environment.

2.5. NO3 and N2O5

NO3 is a major nocturnal oxidant in outdoor air formed through the relatively slow
reaction between NO2 and O3

[149]:

NO2 þO3 ⟶NO3 þO2

Further reaction with NO2 reversibly produces N2O5, which acts as a reservoir for
NO3:

NO2 þNO3 � N2O5

Rapid photolysis by visible radiation (photolysis lifetime of a few seconds in direct
sunlight) suppresses NO3 concentrations under daylight conditions. NO3 reacts rapidly
with unsaturated VOCs and can lead to SOA formation. Heterogeneous hydrolysis of
N2O5 on surfaces of solids or particles is an important loss route for nitrogen oxides,
producing nitric acid. Heterogenous N2O5 reactions with aerosol and surface chloride
produce ClNO2, a photolabile source of Cl and NO2.
Absorption spectroscopy has been the most commonly used approach for detecting

NO3 based on its intense absorption band at 662 nm, allowing sensitive real-time meas-
urements [150]. For in situ measurements, optical cavities are applied using ringdown or
cavity-enhanced absorption spectroscopy. Monochromatic (laser) or broadband light
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Table 5. Techniques and measurement characteristics for chlorine species.

Technique Compound/s

Typical Limit
of Detection

[pptv]

Time
resolution
(indicative) Practical considerations

Example
reference

Gas
chromatography-
mass
spectrometry

Chlorinated organics
(e.g., CFCs,
CHCl3, CCl4)

> 0.5 10 — 30min Majority of studies use sampling
followed by pre-concentration
and off-line analysis, although
on-line detection is possible with
low time resolution (10min
— 1 h)

[140]

Proton-transfer
reaction time-of-
flight mass
spectrometer

Chloramines (e.g.,
NHCl2, NCl3)

1 1 s Highly sensitive, high time
resolution instrument that can
simultaneously measure multiple
compounds. But instrument is
expensive and complicated to
calibrate/operate. Note that
simultaneous measurements of
NHCl2 and NCl3 by I-CIMS and
PTR by Mattila et al.[8] reported
concentration discrepancies of
several orders of magnitude

[8]

Iodide chemical
ionization mass
spectrometry (I-
CIMS) / time-of-
flight CMIS (I-
tof-CIMS)

< 10 1 s Highly sensitive, high time
resolution instrument that can
simultaneously measure multiple
compounds of interest, but
instrument is expensive and
complicated to calibrate/operate.
Also requires radioactive source.
Interferences can be issues,
especially from small molecules,
which can be formed via
fragmentation within the
instrument. This has been
specifically noted for ClO[8].

[6,8]

Chlorinated
oxygenated
organics

1 1 s

HOCl 30 1 s
ClNO2 1 1 s
Cl2 3 1 s
Cl2O 0.2 1 s
ClO 3 1 s

Chemical conversion
resonance
fluorescence

4 16 s Complex custom instrumentation
that is no longer in frequent use.

[141]

Laser Absorption
spectroscopy

HCl 10 1 s Relatively simple methodology and
optical nature makes it selective.
HCl is difficult to sample due to
wall effects. Specifications are for
instrument presented by Halfacre
et al. at EGU 2020. Citation is for
an older instrument with
significant inlet effects.

[142]

Cavity ring-down
spectroscopy

18 30 s Compact instrument. Humidity
dependant response time due to
wall interactions

[143]

Off-axis integrated
cavity output
spectrometer
(OA-ICOS)

78 30 s Compact and lightweight
instrument. Has been deployed
as part of a stratospheric balloon
payload. Has not been
demonstrated for tropospheric
humidities and artifacts

[144]

Denuder or filter
collection

200 30min— 24 h Offline analysis method. Poor time
resolution but relatively simple

[145]

(continued)

596 E. GOMEZ ALVAREZ ET AL.



sources may be used. Laser-based methods require additional measures to account for
absorption by NO2 and O3 and scattering by particles. Inlet filters can be used to
remove particle extinction, but must be changed regularly to avoid variable NO3 losses
with aging [151]. The rapid titration of NO3 with NO:

NO3 þNO ⟶ 2NO2

is often used to establish a baseline extinction.
Broadband methods use spectral analysis over tens of nanometers to retrieve the

absorption and hence concentration of NO3. Interfering absorptions are identified
through spectral fitting; however, water can complicate spectral retrieval because water
absorption lines are too narrow to be resolved by a spectrograph and measured spectra
diverge from the Beer-Lambert law [152]. Calibrating the response of broadband instru-
ments is also more complex than for CRDS systems. Many outdoor (often airborne)
studies now use the optical cavity methodology.
N2O5 is indirectly detected as NO3 via thermal decomposition at elevated tempera-

tures in the sample inlet. A single, extractive instrument with heated and unheated inlet
channels can therefore be used to detect both NO3 and N2O5. Although most optical
cavity instruments draw the air sample through an enclosed optical cavity, broadband
open path systems based on CEAS may have potential for indoor measurements,
although N2O5 quantification is not possible with this configuration [153,154].
Alternative methods include thermal dissociation-chemical ionization mass spectrom-

etry (TD-CIMS) to quantify the sum of NO3 and N2O5 using ionization by the I- ion
[155,156]. Laser-induced fluorescence detection of NO3 has been demonstrated to a 1r
sensitivity of about 4 pptv over a 10min period [157,158]. The LIF is less sensitive than
absorption-based methods and has not been extensively pursued for detecting NO3/
N2O5. A flow tube reactor combined with adsorbent tube sampling and analysis using

Table 5. Continued.

Technique Compound/s

Typical Limit
of Detection

[pptv]

Time
resolution
(indicative) Practical considerations

Example
reference

followed by
offline ion-
chromatography

sampling, without the need for
large complex in-situ
instrumentation

Iodide chemical
ionization mass
spectrometry (I-
CIMS) / time-of-
flight CMIS (I-
tof-CIMS)

30 30 s See above for I— CIMS [146]

Acetate chemical
ionization time-
of-flight mass
spectrometry

2 1min Highly sensitive, high time
resolution instrument, but
expensive and complicated to
calibrate / operate. Acetate ion
inlet chemistry also less widely
used than I-

[147]

SF6
- chemical
ionization mass
spectrometry

2 30 s Highly sensitive, high time
resolution instrument, but
expensive and complicated to
calibrate / operate. SF6

- ion inlet
chemistry also less widely used
than I-

[148]
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thermal desorption-gas chromatography was used for the first experimental measure-
ments of indoor NO3/N2O5 chemistry but the system is complex and time resolution is
poor [159].
Performance characteristics of instruments measuring NO3 and N2O5 are given in

Table 6. Instrument intercomparison studies have shown good agreement between the
different absorption methods [168,169].

2.6. Criegee intermediates

Criegee Intermediates (CIs), also known as zwitterionic intermediates or carbonyl
oxides, have been the center of growing interest over the past decade due to their

Table 6. Measurement type and performance characteristics of instrumentation to measure NO3

and N2O5.

Technique Compound

Typical Limit of
Detection (2r)

[pptv]
Time resolution

[s] Description Reference

CRDS NO3
[160]

CRDS NO3

N2O5

0.5
0.5

5
5

[161]

CW-CRDS N2O5

NO3

2.4
1.7

24
24

CW-CRDS system with
heated inlet
Estimated for NO3

[162]

BB-CRDS NO3

N2O5

1
1

100
100

[152]

BBCEAS NO3 0.5 10 [163]

IBBCEAS NO3

NO3

2.7
3

60
30

Open path across
chamber, 4m
Open path, 0.84m
cavity length

[153]

IBBCEAS NO3 4 10 Open path across
chamber, 0.82 cm
cavity length

[164]

CRDS NO3

N2O5

4.6
6.2

2.5
2.5

Compact, inexpensive, 2
channels for NO3

& N2O5

[165]

IBBCEAS NO3 3 100 Compact and low-cost
instrument. NO2 & NO3

detection at 625 nm.
LoD is stated as upper
limit, but unclear
whether LoD defined as
1r, 2r, 3r

[166]

BBCEAS NO3

N2O5

1.4 1 For airborne
measurements. Two
channel instrument

[167]

Open path IBBCEAS NO3 3 30 Open path system [154]

TD-CIMS NO3 þ N2O5 8 1 Main focus on
peroxyacyl nitrates

[155]

TD-CIMS NO3 þ N2O5 7 60 Use of I- ionization. Used
in field

[156]

LIF NO3

N2O5

76
76

60
60

[158]

LIF NO3

N2O5

8
12

600
600

[157]
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potential role in the oxidative capacity of the atmosphere and specifically in SO2 oxida-
tion and secondary aerosol formation.
Outdoor concentrations ranging from 104 to 105 molecules cm�3 have been estimated

from modeling studies for the sum of atmospheric Criegees[170]. This range of values is
consistent with indirect observations indicating a mean concentration of approximately
5� 104 molecules cm�3 during the HUMPPA-COPEC 2010 (forested area) and HOPE
2012 (rural area) field campaigns[171]. The pool of atmospheric CIs is complex due to
(i) the multitude of unsaturated VOCs that can react with ozone in the atmosphere and
(ii) the potential formation of syn- and anti-conformers. Both the complexity of the CI
mixture and their presence at low concentrations put stringent demands on analytical
techniques in terms of sensitivity and selectivity.
While no technique is currently available for atmospheric measurements of CI, some

direct and indirect approaches have been developed in the laboratory to characterize the
chemical structure of small CIs (C1-C6) and to study their kinetics. Techniques for dir-
ect detection of specific CIs include photoionization mass spectrometry, spectroscopic
approaches in the ultraviolet, infrared and microwave regions, and chemical ionization
mass spectrometry [172,173]. An indirect technique relying on the stabilization of CIs
using spin trap molecules and their subsequent detection by mass spectrometry was also
proposed[174–176]. In addition to these laboratory techniques, a few instruments designed
for hydroxyl radical measurements in the atmosphere have shown potential to detect
unspeciated CIs[171,177]. First, we briefly describe techniques designed to investigate the
structure and the kinetics of CIs in the laboratory and we then discuss OH field instru-
ments that may be capable of detecting CIs in the atmosphere.

2.6.1. Detection techniques employed in the laboratory for fundamental research
1. Photoionization mass spectrometry (PIMS): Taatjes et al.[178] and Welz et al.[179]

demonstrated that PIMS can be used for detecting individual CIs in simple
chemical mixtures. The authors employed the tunable vacuum UV light from the
ALS synchrotron at Berkeley National Laboratory to perform kinetic experiments
on the simplest CI, formaldehyde oxide (CH2OO). A subsequent study from the
same group highlighted that some selectivity can also be achieved between anti-
and syn-conformers of acetaldehyde-oxide (CH3COO) on the basis of their dif-
ference in ionization energy[180]. This technique was extended to the detection of
acetone-oxide ((CH3)2COO)

[181].
2. UV-Vis absorption spectroscopy: This technique was used by several groups for

the detection of formaldehyde-oxide, acetaldehyde-oxide, methylvinylketone-
oxide, and methacrolein-oxide, taking advantage of their specific absorption fea-
tures[173,182]. Sheps et al.[183] reported that syn- and anti-conformers of acetalde-
hyde-oxide can be distinguished in this range of wavelengths. Instrumentation
used to monitor CIs during laboratory experiments are single pass cell/LED,
multipass cell/Ti:Saphire laser, CEAS, and CRDS [173].

3. IR absorption spectroscopy: Several studies used IR absorption spectroscopy to
detect different conformers of acetaldehyde-oxide, acetone-oxide, methylvinylke-
tone-oxide, and methyl-ethyl Criegee intermediate (MECI)[173,184,185]. A higher
degree of selectivity than in the UV region can be achieved if high-resolution IR
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sources are used. The detection of CIs is performed using broadband FTIR,
high-resolution CW-QCL, and action spectroscopy [173].

4. Microwave spectroscopy: This technique was used under molecular beam condi-
tions to investigate the molecular structure of CIs and their kinetics, including
various isotopologues of formaldehyde oxide, syn- and anti-conformers of acetal-
dehyde-oxide, and acetone-oxide [173].

5. Spin trap/Chemical Ionization Mass Spectrometry: Gioro et al. [174,175] proposed
an online method relying on the stabilization of CIs using a spin trap molecule
(DMPO - 5,5-dimethylpyrroline-N-oxide) and the quantification of the CI-spin
trap adducts by Proton Transfer Reaction-Mass Spectrometry (PTR-MS) using
H3O

þ reagent ions. Combining high resolution mass spectrometry with the
selective nature of the DMPO-CI reaction has the potential to provide the dis-
crimination needed to speciate non-isobaric CIs in complex chemical mixtures.
The authors reported detection of CIs generated from ozonolysis of biogenic and
anthropogenic alkenes with a detection limit of approximately 7� 108 molecules
cm�3 (10 s integration time) for a-pinene-derived CIs. More recently, Zaytsev
et al. [176] also reported the use of DMPO and other spin trap species (HFA:
Hexafluoroacetone, TEMPO: (2,2,6,6-tetramethylpiperidin-1-yl)oxyl) with PTR-
MS using H3O

þ and NH4
þ reagent ions. The authors reported detection limits

for acetone-oxide of 1.4� 107 molecules cm�3 and 3.4� 107 molecules cm�3 at a
time resolution of 30 seconds using HFA/H3O

þ and DMPO/NH4
þ, respectively.

6. Chemical Ionization Mass Spectrometry: Berndt et al. [186] demonstrated that CIs
can also be directly detected by CIMS as adducts using reagent ions such as pro-
tonated ethers (tetrahydrofuran, diethyl ether) for formaldehyde-oxide and pro-
tonated amines (n- and tert-butylamine, diethylamine) for cyclohexene-derived
C6-CIs. The authors stressed that selective detection of CIs from other isomeric
compounds is possible through careful selection of reagent ions. However, select-
ive detection of CIs in the complex mixture of ambient trace gases has yet to be
demonstrated. Detection limits ranging from 104 to 105 molecules cm�3 were
observed during kinetic experiments using a CI-APi-TOF (Chemical Ionization –
Atmospheric Pressure interface – Time Of Flight) instrument at a time reso-
lution of 10min.

2.6.2. Field deployable instruments and atmospheric measurements of CIs
The deployment of instruments capable of measuring the atmospheric hydroxyl radical
(OH) has provided surprising observations over the past decades, indicating that species
other than OH were detected during specific steps of the OH measurement sequence.
Indeed, zeroing approaches implemented by CIMS, [177] and FAGE, [28,171]) instruments
have highlighted the presence of reactive species capable of oxidizing SO2 in CIMS
instruments or capable of producing OH in the low pressure sampling cell of FAGE
instruments. Further investigations indicated that the behavior of these unidentified spe-
cies is consistent with the known CI chemistry, which suggests that a substantial frac-
tion of these unidentified species could be CIs. The extent to which “background”
signals from both CIMS and FAGE instruments are connected to ambient CIs is not
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clear and further investigation is necessary to determine whether these techniques could
be used to provide integrated measurements of the pool of ambient CIs.
While a large number of techniques have been used in the laboratory to characterize

the molecular structure of CIs and their kinetics, it will be challenging to transfer these
techniques for indoor environments due to the sensitivity and selectivity required.
Indeed, these techniques were employed on experimental systems where large concen-
trations of CIs (likely higher by several orders of magnitude than in the atmosphere)
can be generated in simple chemical mixtures, with a lower number of potentially inter-
fering species than in the atmosphere. The most promising approach, which was shown
to reach detection limits that are close to estimated ambient CI concentrations, is CIMS
[186], which has already been used for monitoring other reactive species such as the
hydroperoxyl radical (HO2)

[62] and HOMs [187]. The quantification of atmospheric CIs
will also require the development of calibration apparatus capable of generating known
concentrations of specific CIs [171].

2.7. Glyoxal and methylglyoxal

Photolysis of dicarbonyl compounds, specifically glyoxal (CHOCHO, GLY) and methyl
glyoxal (CH3C(O)CHO, MGLY), is the main initiation route that produces HO2 and
RO2

[188]. This route has been verified several times in the outdoor environment. It also
operates efficiently in the indoor environment and can even be enhanced under certain
circumstances such as cleaning or use of air cleaners [4]. GLY and MGLY are produced
in the atmosphere by several processes, including oxidation of VOCs (particularly bio-
genic species) [189], anthropogenic photo-oxidation of aromatics in the presence or
absence of NOx

[190–195], pyrogenic sources [196–200], and via chemical routes such as
dicarbonyl formation from Criegee biradicals [201].
The main sources of GLY and MGLY in the indoor environment are diverse, and

most of them are also observed outdoors (e.g., oxidation of aromatic species). Other
routes more specific to the indoor environment would be formation via metabolic proc-
esses since they are formed endogenously in numerous enzymatic and nonenzymatic
reactions [202–207]. Particularly important to the indoor environment is their formation
by ozonolysis of terpenes, found in cleaning products and fresheners. The ozonolysis of
squalene is closely related to the presence of occupants because squalene is an important
component of human skin oil. Given the high degree of unsaturation in squalene, ter-
tiary and higher-order reaction products can be generated and sequential ozone attack
generates bifunctional secondary products that contain carbonyl, carboxyl, or a-hydroxy
ketone terminal groups [208]. The major bifunctional products are the four dicarbonyls:
4-oxopentanal (4-OPA), 1,4-butanedial (succinic dialdehyde), 4-methyl-8-oxo-4-nonenal
(4-MON), and 4-methyl- 4-octene-1,8-dial (4-MOD) produced by attack at the bonds.

2.7.1. Measurement of indoor glyoxal and methylglyoxal
GLY and MGLY can be measured by various techniques: infrared (IR) absorption spec-
troscopy [209,210], ultraviolet-visible (UV-Vis) absorption spectroscopy[211–214], chromato-
graphic analysis of derivatization by O-(2,3,4,5,6-pentafluorobenzyl)-hydroxylamine
(PFBHA) or dinitrophenylhidrazyne (DNPH) followed by mass spectrometry or flame
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ionization, and phosphorescence [215,216]. CIMS (using H3O
þ, O2

þ or NOþ reagent
ions) has also been used to detect MGLY [217–220].
Most measurements of GLY and MGLY have used derivatisation techniques and a

variety of sampling methods with off-line GC analysis with different detectors, GC/MS
or HPLC. The most extensively investigated source of GLY and MGLY and other dicar-
bonyls indoors is from ozonolysis of terpenes in cleaning products, air fresheners, and
ventilation systems. Derivatisation techniques have mainly been used for this analysis,
and hundreds of papers can be found in the literature on this topic. Table 7 lists
example studies that applied derivatization with off-line chromatographic analysis to
illustrate the most common sources of GLY, MGLY (and in some studies, several other
dicarbonyls) that have been studied in the indoor environment.
Szulejko and Kim [233] authored a general review of derivatization techniques for

determination of carbonyls in air and provided a list of selected derivatising agents. The
most common are O-(2,3,4,5,6-pentafluorobenzyl)hydroxylamine hydrochloride
(PFBHA) 2,4-dinitrophenylhydrazine (DNPH). Studies by Ham et al. [228] and Jackson
et al. [234] used TBOX, o-tert-butylhydroxylamine hydrochloride as derivatizing agent. A
fluorogenic reagent, dansylhydrazine (DNSH) provide hydrazones that can be analyzed
by fluorescence, which enhances the sensitivity and selectivity of the technique. Zhang
et al. [235] used this method to develop a Personal Aldehydes and Ketones Sampler
(PAKS). Other applications have been detection of GLY (and other toxic carbonyl com-
pounds) in cigarette smoke [236] by derivatizing reactive carbonyl compounds into stable
nitrogen-containing compounds (pyrazoles for b-dicarbonyl and a,b-unsaturated alde-
hyde; and quinoxalines for a-dicarbonyls), followed by quantitative detection using gas
chromatography with a nitrogen phosphorus detector.
Indoor environments have access obstacles and space constraints that do not influ-

ence outdoor measurements. Techniques that have been used for indoor measurements
of GLY and MGLY are mostly easy to deploy techniques that do not require bulky
equipment or that involve only the sampling of gases or particles followed by offline
analysis. There are a few exceptions like the HOMECHEM campaign [237] or the
SURFIN campaign in a school classroom in Marseille [2]. For these reasons, the inter-
comparison exercises carried out in simulation chambers constitute a useful basis to dis-
cuss the different measurement techniques for GLY and MGLY.
Thalman et al. [238] carried out an intercomparison of different techniques for the

measurement of GLY, MGLY and NO2 in the NCAR and EUPHORE chambers (see
Table 8). Excellent linearity was attained by all instruments/techniques under idealized
conditions (pure GLY or MGLY, R2 > 0.96) and in complex gas mixtures characteristic
of dry photochemical smog systems (o-xylene/NOx and isoprene/NOx, R2 > 0:95; R2

�0.65 for offline Solid Phase Micro Extraction, SPME, measurement of MGLY). The
correlations were more variable at higher humidity (RH > 45%) for MGLY (0.58<R2

< 0.68) than for GLY (0.79<R2 < 0.99). Intercepts of correlations were generally below
the instruments’ experimentally determined detection limits and slopes varied by less
than 5% for instruments that could also simultaneously measure NO2. For GLY and
MGLY the slopes varied by less than 12 and 17% (both 3r) between direct absorption
techniques (i.e., calibration from knowledge of the absorption cross section). Larger
variability was found among in situ techniques that employed external calibration
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sources (75–90%, 3r), and/or techniques that used offline analysis. The main conclusion
was that techniques now exist to conduct fast and accurate measurements of GLY at
ambient concentrations, and MGLY under simulated conditions. Measuring ambient
concentrations of MGLY would be desirable but remains a challenge. Recent work by
Michoud et al.[239] have shown that MGLY can be measured using PTR-ToF-MS and
shows reasonable agreement with the DNPH–HPLC–UV method.
In most of the reactions generating GLY and MGLY in the indoor environment other

dicarbonylic products are also expected some unsaturated, highly photo-labile and
short-lived (e.g., butenedial, 4-oxo-2-pentenal), and hence also powerful sources of radi-
cals in several relevant reactions in the indoor environment for which analytical deter-
mination could be even more challenging.

2.8. Photolysis rates (J values)

To accurately determine the role of photolysis processes in indoors atmospheres, it is
necessary to characterize both the natural light transmitted through windows as well as
light from artificial sources, in terms of wavelength and intensity. Indeed, determining
the production rate of radicals or other species by photolysis requires the photolysis
rate J (in s�1) of the species being photolyzed, which is given by:

J ¼
ðkmax

kmin

F kð Þ � r kð Þ � u ðkÞdk

Here F(k) is the actinic flux (photons cm�2nm�1 s�1), r(k) is the cross section of
the molecule (cm2) at the wavelength k (nm) and u(k) is the dimensionless quantum
efficiency, i.e., the probability of photodissociation of the molecule after absorption of a
photon at wavelength k. kmin and kmax represent the range of wavelengths that need to
be considered to cover the absorption spectrum of the molecule. r(k) and u(k) are
spectroscopic parameters, which have been measured in the laboratory for many mole-
cules of atmospheric interest, often as a function of pressure and temperature, and are

Table 8. Instrumentation used in the intercomparison of GLY, MGLY and NO2 measurements carried
out in the atmospheric simulation chambers EUPHORE (Valencia, Spain) and NCAR (Boulder,
Colorado, USA). Based on Thalman et al. [238]

Instrument Participanta Speciesb

NCAR Chamber
Cavity-Enhanced Differential Optical Absorption Spectroscopy (CE-DOAS) CU G,M,N
Fourier Transform Infrared Spectroscopy (FTIR) NCAR G,M,N
Proton transfer reaction mass spectrometry (PTR-ToF-MS) NCAR M
EUPHORE Chamber
CE-DOAS CU G,M,N
Broadband Cavity Enhanced Absorption Spectroscopy (BBCEAS) Leic G,M,N
PTR-ToF-MS Leic M
Laser-induced phosphorescence (LIP) UW G,M
White-cell Differential Optical Absorption Spectroscopy (W-DOAS) CEAM G,M,N
FTIR CEAM G,M
Solid-Phase Micro Extraction-Gas Chromatography (SPME/GC-FID) CEAM G,M
aCU¼University of Colorado, Boulder, USA; NCAR¼National Center for Atmospheric Research, Boulder, USA;
Leic¼University of Leicester, UK; CEAM¼ CEAM, Spain.

bG¼GLY, M¼MGLY, N¼NO2.
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provided by databases such as the MPI Spectral Atlas (http://satellite.mpic.de/spectral_
atlas/index.html). The production rate of the species generated by photolysis can then
be calculated multiplying J with the concentration of the photolyzed species.
Spectroradiometers are able to measure actinic fluxes as a function of wavelength,

which can then be combined with literature data to calculate photolysis frequencies
[240]. For the measurement of photolysis rates specifically of O3 to form O(1D), and
NO2 to form O(3P), fixed bandwidth filter radiometers can be also used [241]. A com-
prehensive account of the different methods is provided by Hofzumahaus [240]. Some of
the different types of spectroradiometers (providing spectrally resolved data) include:

1. LICOR or Ocean optics spectrometer [10,242,243].
Both instruments have a cosine receptor and measure irradiance. From the
irradiance measurement I(k) at the wavelength k (in nm), the actinic flux F(k) is
calculated by dividing I by cosine h, h being the azimuth angle under conditions
of direct sunshine. For conditions of indirect sunlight it is considered that the
light comes from all directions (through the window and by reflection off surfa-
ces) and is isotropic, the actinic flux is obtained by multiplying the irradiance by
a factor of 2.

2. METCON spectroradiometers [9,244] .
3. PAR (photosynthetically active radiation) sensors provide integrated light inten-

sity (400-750 nm). When calibrated by a spectrometer, these sensors can provide
an integrated photon flux (irradiance) over the wavelength range 400-750 nm. As
PAR sensors are compact and cheap, they can be used to map the light distribu-
tion in a room [243].

3. Future indoor measurements of radicals and radical precursors

The techniques described above for quantifying the concentrations of radicals and rad-
ical precursors illustrate the challenge of measuring highly reactive species. Below we
consider the analytical and operational characteristics needed for quantifying indoor
air components.
Occupied indoor spaces pose particular measurement challenges, and it may be neces-

sary to adapt instrumentation developed for outdoor measurements to the indoor envir-
onment. Instruments must operate in relatively confined indoor spaces that might be
occupied by people during the measurements. Instrumentation therefore should be as
unobtrusive as possible; this includes considerations of instrumentation size and mini-
mizing the generation of heat and noise (for example, from instrumentation pumps).
Emissions of instrument chemicals and exhaust gases must also be considered
and minimized.
Indoor concentrations of radicals and their precursors can differ considerably from

outdoors. For example, indoor combustion sources like cooking can produce high local
HONO levels, and cleaning activities can release much higher levels of chlorinated com-
pounds than would occur outdoors. In studies where episodes of high concentration are
the primary focus, this could allow instrumentation sensitivity to be slightly relaxed. In
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other cases, instrumentation may need to have a wider dynamic range to handle both
low and high concentrations.
The temporal resolution of radical measurements must be sufficiently short to capture

changes in the concentrations of reactive species on the timescale of indoor activities
such as cooking or cleaning. Real-time measurements with a measurement interval of a
few minutes are adequate for many purposes. However, some of the techniques dis-
cussed above (such as derivatisation, followed by off-line analysis) have much longer
sample acquisition times. Besides the extra effort and time required for off-line analysis,
such approaches would be too slow to capture fast changes in indoor air composition
and transformation.
The spatial variability of reactive species must also be evaluated. The high reactivity

of some radical species and the location of different sources and sinks can produce sig-
nificant variation in radical concentrations across an indoor space. It would therefore
be advisable to compare fast radical measurements with integrated measurements (using
for example, OH tracers). Comparative measurements in direct sunlight, and in the
shade or dark zones, are needed to characterize and quantify the contribution of react-
ive chemistry in different locations in an indoor space. Such measurements would help
to establish the relative importance of ozonolysis of alkenes versus photolytic sources,
for example. The contribution of direct emissions (such as HONO from candles, gas
fires, and stoves) is also unclear and could be extremely large; measurements around
such sources are needed. This is an important question because the health impacts of
combustion sources in confined indoor environments are of special concern, both from
direct emissions and through their influence on indoor air chemistry.
In addition to chemical measurements, spatial differences in the actinic flux also

influences the spatial variation in the concentrations and chemical processes taking
place indoors. The transmission of light to the indoor environment affects HONO pho-
tolysis, to produce OH radicals, and other processes, such as chlorine chemistry and
photosensitization processes mediated by several household chemicals. The actinic flux
is therefore an important parameter in indoor photochemistry and should be measured
at difference locations in an indoor space, in parallel with chemical observations.
Measurements are also needed in a range of locations and conditions (including types
of windows and building orientation) representative of the indoor environment.
Except for the Criegee intermediates and some chlorine species, techniques are now

available which are sufficiently sensitive for exploring the contribution of radicals and
their precursors to oxidation processes within the indoor environment. Previous studies
of these species have already revealed surprises about their role in the indoor environ-
ment. However, comprehensive measurements of these species will not be routinely pos-
sible because monitoring atmospheric radicals and their precursors requires custom-
built, highly specialized, and specific instrumentation. The most important exceptions in
this regard are CIMS instruments (which can measure several of the above species,
depending on the ionization source) and LOPAP (for HONO measurements). For other
species requiring custom instruments, the instruments either have to be developed in-
house — a formidable challenge — or measured in collaboration with research groups
that possess the necessary instrumentation. In this case, the technique and instrument
used will be dictated by instrument (and collaborator) availability. Nevertheless,
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understanding indoor air chemistry is an important scientific objective, and some
indoor air measurement campaigns will need to combine the instrumentation and col-
laborations needed to explore atmospheric chemistry in different indoor environments.
Continued improvement of existing techniques for outdoor measurements, and their

adaptation for use in occupied indoor spaces, would also be beneficial. Sensitive and
accurate measurements remain vital, as does extending measurements to other species
of potential interest, like dicarbonylic products besides GLY and MGLY. Large radical
campaigns including NOy/VOC/radical/chlorine compound concentrations, actinic flux
and the air exchange rate are also recommended.
To date, standardized measurement methods for the assessment of indoor air quality

have been mainly based on discontinuous measurements of long-lived trace substances.
The presence of short-lived indoor oxidants and their effect on the abundance of oxida-
tion products that building occupants inhale, ingest or dermally absorb is not tackled
by the internationally standardized assessment of indoor air quality. Future research
efforts and corresponding standardization activities should focus on expanding our cur-
rent understanding of the conditions and underlying chemistry that produce high con-
centrations of pollutants indoors.
Finally, complementary measurements of OH reactivity during standardized material

emission tests can help to investigate potential uncertainties in material emissions with
special regard to standardized test protocols and material labels. Such measurements
will help derive estimates for the formation rate of secondary indoor pollutants resulting
from OH-initiated oxidation processes.
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