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Abstract

Magnetohydrodynamic waves are ubiquitously detected in the finely structured solar atmosphere. At the same
time, our Sun is a highly dynamic plasma environment, giving rise to flows of various magnitudes, which can lead
to the instability of waveguides. Recent studies have employed the method of introducing waveguide asymmetry to
generalize “classical” symmetric descriptions of the fine structuring within the solar atmosphere, with some of
them introducing steady flows as well. Building on these recent studies, here we investigate the magnetoacoustic
waves guided by a magnetic slab within an asymmetric magnetic environment, in which the slab is under the effect
of a steady flow. We provide an analytical investigation of how the phase speeds of the guided waves are changed,
and where possible, determine the limiting flow speeds required for the onset of the Kelvin–Helmholtz instability.
Furthermore, we complement the study with initial numerical results, which allows us to demonstrate the validity
of our approximations and extend the investigation to a wider parameter regime. This configuration is part of a
series of studies aimed to generalize, step-by-step, well-known symmetric waveguide models and understand the
additional physics stemming from introducing further sources of asymmetry.

Unified Astronomy Thesaurus concepts: Quiet solar corona (1992); Quiet solar chromosphere (1986); Solar
atmosphere (1477); Solar magnetic fields (1503); Solar physics (1476)

1. Introduction

Understanding the behavior of magnetohydrodynamic

(MHD) waves has a long-standing position as an important
field within solar atmospheric research. This is due to the

ubiquitous presence of magnetic fields in the highly dynamic

and structured solar atmosphere, which can then act as a natural
waveguide for propagating MHD waves. The motivation for

studying MHD waves guided by various solar atmospheric

structures is two-fold: they can play a significant role in solar
atmospheric heating, and they may also be used for purposes of

diagnosing the solar plasma. This latter goal is achieved
through the techniques of solar magnetoseismology (SMS),

which combine theoretical results on MHD wave propagation

with observational data, and utilize the calculated and measured
properties of MHD waves (e.g., frequency, amplitude, phase

speed, and group speed) to provide insights into the magnetic
waveguide environment (see the reviews by Nakariakov &

Verwichte 2005; Andries et al. 2009; Ruderman & Erdélyi

2009; Morton et al. 2012). Using SMS methods, the more
elusive parameters of the solar plasma, such as the coronal

magnetic field strength, may be determined indirectly (Nakar-

iakov & Ofman 2001; Erdélyi & Taroyan 2008). By building
simple MHD waveguide models such as magnetic flux tubes or

slabs, these diagnostic studies become possible in a wide range
of solar atmospheric features, ranging from global structures,

including solar plumes (DeForest & Gurman 1998), promi-

nences (Arregui et al. 2012), coronal loops (Banerjee et al.

2007; de Moortel 2009), to mid- or small-scale fine structures,

including the magnetic pores (Keys et al. 2018), spicules

(Zaqarashvili & Erdélyi 2009; Tsiropoula et al. 2012), X-ray

and EUV bright points (Golub et al. 1974).
One of the favored forms of these fundamental models is the

Cartesian geometry, which is used to describe interfaces and

slab-like configurations. In a series of seminal studies Edwin &

Roberts explored and summarized the characteristics of

magnetoacoustic waves guided by these geometries. Roberts

(1981a) studied the propagation of magnetoacoustic surface

waves at a single magnetic interface. Next, two interfaces were

considered, constructing the model of a three-layer symmetric

magnetic slab waveguide system with field-free outer layers

(Roberts 1981b), and then with a magnetic external region

(Edwin & Roberts 1982). Recent advances have focused on the

consequences of incorporating an asymmetric environment into

the slab model. Allcock & Erdélyi (2017, 2018) investigated

the model of an isolated magnetic slab embedded between two

field-free regions of different temperatures. Zsámberger et al.

(2018) and Zsámberger & Erdélyi (2020) then examined the

slab embedded in the asymmetric magnetic environment. A

multilayered asymmetric waveguides system has recently been

studied by Shukhobodskaia & Erdélyi (2018) in the non-

magnetic case and by Allcock et al. (2019) with magnetic fields

reintroduced into the configuration.
Another avenue to improve Cartesian models worth explor-

ing is the inclusion of bulk background plasma motions in the

equilibrium configuration. This addition helps capture another
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essential aspect of the solar atmosphere, namely, the wide-
spread presence of flows. For example, the concentration of the
magnetic flux in the solar chromosphere is able to generate a
multitude of small plasma jets called spicules (Beckers 1972;
de Pontieu et al. 2007). A similar feature, the macrospicules are
long plasma jets that are common in polar coronal holes (Pike
& Mason 1998). Furthermore, X-ray and EUV jets are often
discovered in coronal holes and were observed intensively at
first with the YOHKOH telescope by Shibata et al. (1992). The
presence of different flow profiles affects the wave propagation,
and perturbations may result in various categories of
instabilities. For instance, the Kelvin–Helmholtz instability
(KHI) occurs as a consequence of the mass flows in
prominences (see Berger et al. 2010; Ryutova et al. 2010),
the parabolic flow pattern of coronal mass ejections (CME) in
the solar corona (Foullon et al. 2011, 2013; Ofman &
Thompson 2011), and the twisting–untwisting motion of
magnetic flux tubes in solar surges (Zhelyazkov et al. 2015).
Other types of instabilities include the resonant flow instability
(Tirry et al. 1998; Taroyan & Erdélyi 2002) and shear flow
instabilities (Taroyan & Ruderman 2011). Most recently,
Zaqarashvili et al. (2021) found that the dynamic kink
instability of triangular jets can cause a complete breakdown
of the MHD flows, which could result in the disappearance of
spicules in solar atmosphere.

It is noteworthy that in their study of magnetic Kelvin–
Helmholtz instabilities, Foullon et al. (2011) proposed the
three-layered system configuration consisting of the dense solar
ejecta, the CME sheath, and the low-density corona. Möstl
et al. (2013) interpreted the CME boundary as a magnetic slab
sandwiched between asymmetric magnetic external layers.
Barbulescu & Erdélyi (2018) analyzed the effects of a steady
flow and the propagation of magnetoacoustic waves in a field-
free asymmetric slab with a steady flow in the central region,
and found that the external asymmetry can reduce both the KHI
threshold and the cutoff speed of the waves guided by such a
geometry. They proceeded to apply this model to the CME
flank region and provided and estimate for the density of the
CME ejecta, noting that the incorporation of asymmetric
external fields into the model could further improve the results
and explain the observed absence of the KHI between the CME
core and flank regions.

Within this paper, we study the Kelvin–Helmholtz instability
and investigate the behavior of propagating MHD waves in
magnetic slab subject to a steady flow, which is embedded in
an asymmetric magnetic environment. First, we derive a full
dispersion relation for the propagation of waves along the slab
by using the ideal MHD equations. In the next section, we
consider the special case of weak asymmetry, which allows us
to decouple the single dispersion relation into two equations:
the equation containing the tanh term corresponds to the quasi-
sausage mode and the one containing the coth term to the
quasi-kink mode. We then obtain approximate solutions to the
decoupled dispersion relation in the limits of a thin slab and
zero-β plasma. Next, we use these results to determine an
analytical limit for the flow speed at which the KHI first occurs.
Finally, we present numerical results of the full dispersion
relation and further compare them to approximate solutions in
the Appendix.

2. Full Dispersion Relation

Let us consider a model of a three-dimensional asymmetric
magnetic slab waveguide filled with ideal, inviscid plasma and
permeated by an equilibrium magnetic field in the z-direction.
The waveguide is divided into three layers by two plane
interfaces placed at x=± d. The equilibrium pressures, pj,
densities, ρj, temperatures, Tj, and vertical magnetic fields,
Bj= (0, 0, Bj) can be summarized as follows:

p x x T x B x
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where j= 0 denotes quantities inside the slab, while j= 1 and

j= 2 stand for parameters in the left- and right-hand-side

environmental regions, respectively. In addition, the central

region is subject to a steady flow V0= (0, 0, V0). An illustration

of this equilibrium configuration is shown in Figure 1.

2.1. Ideal Magnetohydrodynamic (MHD) Equations

We use the ideal MHD equations to model the behavior of
the plasma and magnetic field interactions in the slab system,
similarly to Zsámberger et al. (2018). These equations can be

Figure 1. Equilibrium configuration for the magnetic slab (|x| � d) embedded in an asymmetric magnetic environment (x < −d and x > d). The blue arrows represent
the magnetic fields in the ẑ-direction. The red arrows illustrate the steady flow zV0 ˆ inside the magnetic slab.
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summarized as follows:
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where μ is the magnetic permeability of free space, and γ is the

ratio of specific heats, which are constant all throughout the

configuration. We require that the condition of total pressure

balance is met by the background parameters:
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We linearize these equations by introducing a small perturba-

tion to the equilibrium quantities such that
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where j= 0, 1, 2, and the variables with primes denote the

perturbations. These perturbations must remain linear, which

we ensure by the condition f f 1¢  , where f denotes an

equilibrium quantity and f ¢ its perturbation. After performing

some algebraic transformations, the system of linearized ideal

MHD equations may be summarized as follows:
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where cj
pj

j

=
g

r
is the sound speed of a given region ( j= 0,

1, 2).

2.2. Plane Wave Solutions

To proceed, we assume that disturbances are independent of
the y-component, v= (vx, 0, vz) and b= (bx, 0, bz) and that the
small perturbations can be written in the form of a Fourier
series, allowing us to look for so-called plane wave solutions,

v b x v bp t p x e, , , , , , , ,i kz t( ) ( ) ( ) ( ) ( )r r¢ ¢ = ¢ ¢ w- 

where the hat notation denotes the x-dependent amplitudes of

the wave solutions for corresponding disturbances, k is the

z-component of the vector wavenumber κ= (kx, ky, k) showing

the propagation of MHD waves along the slab, and ω is the

angular frequency.
After we substitute the plane wave solutions defined above

into the linearized ideal MHD equations, they can be combined
and reduced to a single ordinary differential equation for each

of the three regions in the model:
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=
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is the Alfvén speed of a region, and

cTj
c v

c v

2 j Aj

j Aj

2 2

2 2=
+

is defined as the tube or cusp speed (for j= 0, 1,

2). Further, Ω= ω− kV0 is the Doppler-shifted frequency,

which appears in the equations due to the presence of the

background flow in the central region. Confirming our results

so far, if we reduce the external magnetic fields to zero,

Equation (5) becomes the same as Equation (4) in Barbulescu

& Erdélyi (2018) for a magnetic slab in an asymmetric

nonmagnetic environment.
In order for waves to be trapped by the slab, all perturbations

must vanish at infinity by ensuring v x0 asx   ¥ , hence
the exterior parameters mj

2 are supposed to be positive in
Equation (5). Note that the interior parameter m0

2 may take both
positive or negative values in Equation (5). We then obtain the
general solution of Equation (5) in each region as the following
linear combination of the hyperbolic functions:

v x
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where A, B, C, and D are arbitrary real constants.

2.3. Boundary Conditions

We need to apply two linearized boundary conditions across
the two interfaces at± d. First, the Lagrangian displacement
has to remain continuous at x=± d:
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Further, the continuity of the total (plasma plus magnetic)

pressure perturbation has to be kept across the interfaces:

p x d p x d p x d
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where p p
z b

T

Bj ˆ·= ¢ +
m

(for j= 0, 1, 2).

2.4. Dispersion Relation

The four boundary conditions give us a homogeneous
system of four linear equations with variables A, B, C, and D,
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which we can write more compactly in matrix form as Ax= 0
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The solutions of the coefficient matrix A will be nontrivial, if
the determinant |A|= 0. Therefore,
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In the end, using the original notation explicitly containing the

characteristic speeds, we obtain the full dispersion relation for

MHD waves in a magnetic slab subject to a background flow

and embedded in an asymmetric magnetic environment as:
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where m xtanh0 0 0( )t = .
Note that we could recover the dispersion relation studied by

Zsámberger et al. (2018), Zsámberger & Erdélyi (2020) directly
by removing the steady flow, i.e., V0= 0, hence, reducing Ω to
ω. If instead the magnetic fields outside the slab zB1 ˆ and zB2 ˆ

are removed, it is possible to recover Equation (11) derived by
Barbulescu & Erdélyi (2018). If we remove both the steady
flow and the external magnetic fields, the dispersion relation
(Equation (20)) of Allcock & Erdélyi (2017) could be
recovered, confirming that our results are consistent with
recent asymmetric slab studies. It can be shown that the results
also agree with the study performed by Nakariakov & Roberts
(1995), if the only flow is in the central region of their
symmetric model, and the magnetic and plasma parameters are
made symmetric in ours.

In the following section, we will utilize a few approxima-
tions of the dispersion relation derived here, in order to find
analytical solutions for its limiting cases.

3. Approximations

The full dispersion relation (Equation (11)) is a complicated
transcendental equation so that we cannot determine the
solutions analytically. Therefore, to understand the behavior

of the MHD eigenmodes in this new slab system, in this
section, we derive some analytical approximations of
Equation (11) that are relevant in solar physics, such as the
weak asymmetry, thin-slab, and zero-beta limits.

3.1. Weak Asysmmetry

It is apparent that the dispersion relation (Equation (11)) is a
single equation for all eigenmodes of the slab in an asymmetric
environment. However, dispersion relations governing sym-
metric slab systems are divided into two separate equations for
the two main types of eigenmodes, with the tanh and coth terms
corresponding to the sausage and kink modes (see, e.g., Edwin
& Roberts 1982).
When the asymmetry is weak, the densities, pressures and

magnetic fields on the left side of the slab are the same order as
on the right side, i.e., Λ1≈Λ2, and the dispersion relation
(Equation (11)) can be factorized as

2

2 1
0.

0 1 2 1 2

2 0

0 1 2 1 2

2
0

w
t

w t

L L
W

+
L
W

+
LL
W

´
L L

W
+

L
W

+
LL
W

=

⎡
⎣⎢

⎛
⎝

⎞
⎠

⎤
⎦⎥

⎡
⎣⎢

⎛
⎝

⎞
⎠

⎤
⎦⎥

Using the original notation yields the weakly asymmetric

dispersion relation in the following form:

k v
m

k v

m

k v

m m d2
tanh

coth
0. 12

A

A A

2
0

2 2 0

1

1

2
1

2 2

0

2

2

2
2

2 2

0 0{ }

( )
( ) ( )

( ) ( )

r
r w

r
r w

- W
-

+
-

+ =

⎜ ⎟⎛
⎝

⎞
⎠

Similarly to dispersion relations of symmetric slab configura-

tions, Equation (12) consists of two independent equations,

with one of them describing the so-called quasi-sausage modes

(tanh version), and the other one governing the quasi-kink (coth

version). This is analogous to the dispersion relation (20) in

Zsámberger et al. (2018), where the properties of these mixed

eigenmodes are also described in some further detail.
Moreover, if the environment is made entirely symmetric (so

that p1= p2= pe, ρ1= ρ2= ρe, B1= B2= Be), Equation (12)
reduces to the “classical” dispersion relation for waves
propagating along a magnetic slab embedded in a symmetric
magnetic environment derived by Edwin & Roberts (1982),
which has the following form:

k v

k v
m m m d
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coth
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3.2. Thin-slab Approximation

Supposing the propagation of waves happens in a slender
slab, the wavelength of the waves is much longer than the
width of the slab, i.e., kd= 1. This approximation has
applications to various solar phenomena, such as prominences
(Arregui et al. 2012), magnetic bright points (Liu et al. 2018),
sunspot light bridges (Yuan et al. 2014), and sunspot light walls
(Yang et al. 2016, 2017).

Recall that the interior parameter m0
2 of Equation (5) could

be either positive or negative. Therefore, the quasi-sausage and
quasi-kink eigenmodes can be further grouped by two wave
modes m 00

2 > and m 00
2 < , which we shall call surface and

4

The Astrophysical Journal, 935:41 (13pp), 2022 August 10 Zsámberger et al.



body wave modes, respectively. Surface waves have their
maximum amplitude at the slab boundaries and are evanescent
within the slab, whereas the amplitude of body waves remains
spatially oscillatory in the central slab region as well (see
Roberts 1981a; Allcock & Erdélyi 2018).

In the following subsections, we will study surface and body
mode solutions to the approximate dispersion relation in further
detail.

3.2.1. Surface Waves m 00
2 >

First, let us consider the quasi-sausage surface modes,

substituting m dtanh 0 into Equation (12) for m 00
2 > . In this

limit, m0d= 1; this implies that m d m dtanh 0 0» , and the
dispersion relation (Equation (12)) becomes
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For the slow mode, we obtain the solution with k cT
2 2

0
2W  as

kd→ 0, in which case Equation (13) yields
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2
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( ) ( ( ) ) ( ( ) )
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r

r

=
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+ - + - +

+
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This mode can exist as a stable oscillation when either

cT1> cT0+ V0 and cT2> cT0+ V0, or c1< cT0+ V0< vA1 and

c2< cT0+ V0< vA2, while in other cases, Rv might be negative

or complex, and instabilities might occur. Depending on which

set of conditions is met, the slow quasi-sausage surface mode

approaches k cT
2 2

0
2W = either from above or below as we

consider ever thinner slabs (kd→ 0).
Although Barbulescu & Erdélyi (2018) did not employ the

weak asymmetry approximation in his study of an internal flow
in a slab placed in an asymmetric nonmagnetic environment,
these results are still comparable to his Equation (13). In both
cases, the Doppler-shifted phase speeds of the slow quasi-
sausage surface mode tend to the internal tube speed, and a
further flow-dependence is present in the terms proportional to
the dimensionless slab width. In our case, however, this term
also contains a complex dependence on the external magnetic
fields through the external Alfvén and tube speeds, resulting in
a change in the exact behavior of the phase speeds as kd→ 0.

For the fast mode, the trapped thin-slab solution only exists
when the external sound speeds are the same, i.e., c1≈ c2≈ ce.
In this case, we substitute k ce

2 2 2w » into the dispersion
relation and find the solution as

k c
k d c c c V

v c c c V R
1

4
,

15

e
e e

A T e v

2 2 2
2 2 2

0
2

0
2 2

0
2

0
2

0
2 2

0
2

0
2 2 2

( ( ) )

( ) ( ( ) )

( )

w
r

= +
- -

+ - -
⎡
⎣⎢

⎤
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where

R
v c v c

1 1
,v

A e A e1 1
2 2

2 2
2 21

2
1
2( ) ( )r r

=
-

+
-

for min (vA1, vA2)> ce. This is a solution that approaches the

common external sound speed from above as we consider ever

thinner slabs or longer wavelengths (kd→ 0). If the sound

speeds become weakly asymmetric, the fast quasi-sausage

surface mode solution will have a cutoff at the lower external

sound speed value, beyond which the solution becomes leaky

(which we do not investigate in the current paper). This result is

comparable to Equation (16) of Roberts (1981b), in case the

flow is removed and the environment of the slab is made

symmetric. Unfortunately, a direct comparison to Barbulescu &

Erdélyi (2018) is not possible, as in the lack of external

magnetic fields, their investigation would have simply reduced

to the symmetric case for the fast quasi-sausage modes while

strictly excluding leaky domains.
Next, we consider the quasi-kink surface mode, substituting

m dcoth 0 into Equation (12). In the thin-slab limit,

m d m dcoth 10 0» , and the dispersion relation in

Equation (12) becomes

d k v
m

k v

m

k v

2 0. 16

A

A A

2
0

2 2 0

1

1

2
1

2 2

0

2

2

2
2

2 2
( )

( ) ( )

( )

r
r w

r
r w

- W
-

+
-

+ =

⎜ ⎟⎛
⎝

⎞
⎠

Similarly to the case of the fast quasi-sausage modes, when the

external Alfvén or tube speeds are asymmetric, cutoff

frequencies and the possibility of leaky modes are introduced,

which we do not examine in further detail in this paper. For

some examples of this behavior (see, e.g., Zsámberger et al.

2018; Zsámberger & Erdélyi 2020). Avoiding leaky modes, we

can only proceed further with our approximation in the case

when the external Alfvén speeds are the same, i.e.,

vA1≈ vA2≈ vAe. Then, following the derivation shown in

Edwin & Roberts (1982), when vAe/vA0 is not of the order of

kx0, we find the solution by substituting k vAe
2 2 2w » , and it

takes the following form:

k v
k d R v

v

V

v
1

4
1 , 17Ae

v A

Ae Ae

2 2 2
2 2

0
2 2

0
2

2

0
2 2

( )w
r

= - - -⎜ ⎟⎜ ⎟
⎡
⎣
⎢ ⎛

⎝
⎛
⎝

⎞
⎠
⎞
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⎤
⎦
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where

R
c

v

c

v

1
1

1
1 .v

Ae Ae1

1
2

2

1
2

2

2
2

2

1
2

r r
= - + -⎜ ⎟ ⎜ ⎟⎛

⎝
⎞
⎠

⎛
⎝

⎞
⎠

This solution approaches the external Alfvén speed from below

when R 0v
2 > , and therefore max (c1, c2)< vAe, and the

coefficient Rv is a positive real number. In the symmetric and

static case, this mode corresponds to the one described in

Equation (18) of Edwin & Roberts (1982).
A further kink mode solution can be found with symmetric

external tube speeds (cT1= cT2= cTe). The phase speed of this
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solution tends to k cTe
2 2 2w  as kd→ 0:

k c

k d c c v c V

c v

1

4
. 18
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e Te A Te
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´
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If the flow is removed from the system, this solution

corresponds to Equation (18) of Edwin & Roberts (1982).
Alternatively, when vAe= vA0, a different kind of solution

can be obtained in the thin-slab limit. In order to exclude all
leaky domains, we suppose that the external Alfvén speeds are
the same, in which case this solution can be described as

k v
kd v

v

V

v
1

2
1 .
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⎤
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In the fully symmetric case with no background flows present,

this reduces to Equation (19) of Edwin & Roberts (1982),

describing a kink mode that approaches the external Alfvén

speed from above.

3.2.2. Body Waves m 00
2 <

If we take m 00
2 < in the decoupled dispersion relation

(Equation (12)), it can be transformed into an equation that
contains only trigonometric functions rather than hyperbolic
ones. For this case of the body waves, we define
q m 0.
0
2

0
2= - > The dispersion relation (Equation (12)) can

then be rewritten as:

k v
m

k v

m

k v

q q d2
tan
cot

0. 20
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In order to identify all possible body modes, we look for

solutions where the last term of the dispersion relation remains

finite (see, e.g., Roberts 1981b). For slow body modes, we

must have k cT
2 2

0
2W  , and find the solution in the form of

k c kd1T
2 2

0
2 2( ( ) )hW = + for some η> 0 that is to be

determined. In the case of the quasi-sausage mode, for

q q dtan0 0( ) to be bounded, q0d needs to converge to the roots

of q dtan 00( ) = , i.e., q0d= nπ for n Î . Thus,

q d m d
k v k c

c v k c
d

v c c c

c v c
n .

A

A T

A T T

A T

0
2 2

0
2 2

2
0

2 2 2
0
2 2

0
2

0
2 2 2

0
2

2

0
2

0
2

0
2

0
2

0
2

0
2

0
2

2 2

( )( )

( )( )

( )( )

( ) h
p

=- =
- W - W

+ W -

=
- -

+
=

Rearranging this equation yields η= ηn for n= 1, 2, 3L as

v c c c
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Manipulating the dispersion relation in a similar manner for the

quasi-kink mode, we arrive at q d n0
1

2
( )p= - for n Î .

Therefore,

v c c c
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Therefore, the behavior of the Doppler-shifted quasi-sausage

and quasi-kink body modes in a thin slab is given by

k c

v c c c k d
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⎡
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⎤
⎦⎥

⎡

⎣
⎢⎢

⎤

⎦
⎥⎥

3.3. Zero-β Approximation

In the zero-β approximation, the plasma is cold in all three

layers, i.e., 0
B

j

p2 j

j
2b = 

m
, for j= 0, 1, 2. It follows that the

sound speeds are negligible compared to the Alfvén speeds,
i.e., c1/vA1≈ c0/vA0≈ c2/vA2≈ 0. This provides a good
approximation of the solar coronal environment. We now have

m
k v

v
q

k v

v

m
k v

v
q

k v

v

, ,

, ,

A

A

A

A

j
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»
-
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-

for j= 1,2. The slow body waves are no longer present here,

leaving only the fast body waves, which is analogous to the

symmetric case studied by Edwin & Roberts (1982). So

Equation (20) reduces to

v
k v

m

k v

m

k v

k v d

v

2
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Due to the condition of total pressure balance

(p B p B p B2 2 21 1
2

0 0
2

2 2
2m m m+ = + = + ) we could write

the density ratios in terms of the characteristic speeds for any

two regions i= 0, 1, 2 and j= 0, 1, 2 as

c v
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v

v
. 22i
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Substituting Equation (22) into the dispersion relation

(Equation (20)), we obtain

v m k v

v k v
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For simplicity we can express this as

q

m

q

m
q d

1

2

tan
cot

0.0

1

0

2
0{ }( )+ + - =⎜ ⎟⎛

⎝
⎞
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We are only interested in solutions that fall within the

frequency range kv k vA Am0
2 2 2 2w< < and expect to determine

ν in k v 1 ,Am k d

2 2 2 m

0
2 2

W = +r
r

n⎡⎣ ⎤⎦ where v v vmin , .Am A A1 2( )=
Hence the quasi-sausage and quasi-kink modes solutions of the

fast body waves are

k v
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These equations have an explicit dependence on the internal

slab parameters, but they also possess a further implicit

dependence on the external parameters of the slab system

through the pressure balance condition expressed in

Equation (22).

4. Instability

When there is a discontinuity in the velocity at the interface
between two parallel hydrodynamic (magnetic field-free)
layers, the fluids become unstable and generate vortices that
can be modeled as vortex sheets. This instability is called a
Kelvin–Helmholtz instability (KHI), and it occurs frequently in
nature, for example, as the classic wind-over-water instability
(Miles 1957). It also can be observed in solar corona (Foullon
et al. 2011), in the interaction of the solar wind with the Earth’s
magnetosphere (Miura 1984; Hasegawa et al. 2004), and more
recently in some astrophysical plasma jets (Kuridze et al. 2016;
Zhelyazkov et al. 2018). Chandrasekhar (1961) analyzed two
linear KHI cases in MHD, for a magnetic field parallel and
perpendicular to the flow. The presence of a magnetic field
produces a restoring force that can stabilize the KHI in the
parallel case, while in the perpendicular case, there is no
restoring force so the magnetic field has no effect on the flow.

We have established that the plane wave solutions of small
perturbations are

v b x v bp t p x e, , , , , , , .i kz t( ) ( ) ( ) ( ) ( )r r¢ ¢ ¢ ¢ = ¢ ¢ ¢ ¢ w-  

All of these small perturbations are proportional to e i t =w-

e i t t( ) ( )w w- +Re Im ; therefore, the imaginary part of the angular

frequency, ( )wIm , determines whether the system is stable

or not.

1. If 0( )wIm  , the small perturbations would decay
exponentially (stable modes).

2. If 0( )w >Im , the small perturbations would grow
exponentially (unstable modes).

Hence for the instability, we require 0( )w >Im .

4.1. Quasi-sausage Surface Modes in a Thin Slab

From Equation (14) for the slow quasi-sausage surface mode
in the thin-slab approximation, we can express the angular
frequency of this type of solution and analyze whether it is a

real or a complex frequency in order to study instabilities. The
system is unstable if 0( )w >Im ; therefore we require

kd c c

v c R
1

2
0.T

A v

0
2

0
2

0
2

0
2

( )
+

-
<

As the expression for Rv contains all the external characteristic

speeds, it encompasses several possible combinations of them,

some of which yield a real, positive or negative value for Rv,

while others would make it imaginary. Furthermore, Rv also

contains the flow speed, V0, in several terms. Because of this, in

order to express the critical flow speed beyond which the

Kelvin–Helmholtz instability appears in the system, a cubic

inequality in V0
2 would have to be solved for several different

cases depending on the ordering of characteristic speeds, which

we have opted not to include in this exploratory study of the

asymmetric magnetic slab model under the effect of an internal

background flow.
For the fast quasi-sausage surface mode in the thin-slab

approximation, Equation (15) and the Rv coefficient it contains
can be rearranged to yield

kc
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where c v vmax ,e A A
2

1
2

2
2( )> , ensuring that Rv

2 is positive and Rv

itself is a positive real number. For the instability, we require

0( )w >Im , and therefore

k d c c c V

v c c c V R

4
1.e e

A T e v

2 2 2
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2

0
2 2

0
2

0
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0
2
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( ) ( ( ) )
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>

Next, we study the case when both c c Ve0
2

0
2( )> - and

c c VT e0
2

0
2( )> - are true. Then the inequality can be rear-

ranged to give

Ac c A c V1 , 23T e0
2

0
2

0
2( )( ) ( )- < - -

where

A
c v R

kdc2
.A v

e

0
2

0
2( )

=
+

If we now suppose that A− 1> 0, this provides us with a

condition for the slab widths for which the results can be valid,

namely, kd c v R c2A v e0
2

0
2( ) ( )> + . For the case when ce−

V0< 0, the threshold for the onset of instability can be found as

V c
Ac c

A 1
. 24e

T
0

0
2

0
2 1 2

( )> +
-
-

⎜ ⎟⎛
⎝

⎞
⎠

When the flow speed is lower than this critical value, the

magnetic fields present will be sufficiently strong to suppress

the instability.

4.2. Quasi-kink Surface Mode in a Thin Slab

Next, we inspect the instability threshold for the quasi-kink
surface modes in a thin slab described by Equation (17), when
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vA0= vAe. We require

k d R v
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where v c cmax ,Ae
2

1
2

1
2( )> to ensure that R 0v

2 > . In the case

when v v VA Ae0
2

0
2( )- and vAe> V0, the threshold for

instability becomes

V v
v

v kdR
1

2
. 25Ae

A

A v
0

0
2

2
2

1
2

( )> + +⎜ ⎟
⎛
⎝

⎡
⎣⎢

⎞
⎠
⎤
⎦⎥

For the kink mode that tends to the average external tube speed,

the angular frequency can be expressed from the previous

section as
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For the instability, we require ω2
< 0, and therefore

d k v c V
c c

c v
1 . 27

e

A Te
e Te

Te Ae

0

2

2 2
0

2
0

2 2
2 2

2 4
[ { } ]

[ ]
( )

r
r

< - -
-⎡

⎣⎢
⎤
⎦⎥

When the conditions v c VA Te0
2

0
2( )< - and cTe< V0 are met,

this leads to the following expression for the instability limit:
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On the other hand, when vAe= vA0, the quasi-kink wave
frequency is given as
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which becomes unstable when ω2
< 0; therefore
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In this case, the critical speed for the instability limit can be

found as
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Due to the wide variety of options available for choosing the
characteristic speeds in each region, beyond the ones described
in this section, several other interesting cases can be found
when investigating the speed threshold for the onset of the
Kelvin–Helmholtz instability. Similarly to the case described
by Barbulescu & Erdélyi (2018), within the same asymmetric
slab system, characterized by the same sound and Alfvén
speeds, different modes can become unstable for different
values of the background flow. This also means that the

instability limits of different modes have to be investigated at
the same time when analyzing the stability of a given slab
system. Although in some cases at higher speeds multiple
modes can be unstable at the same background flow speed
value, the lowest KHI threshold speed has to be identified, as
this is the one that marks the boundary between stable and
KHI-unstable slab parameters.
In the following section, we illustrate this phenomenon using

numerical solutions to the full dispersion relation, and we
describe the effects of increased background asymmetry on the
phase speeds and stability of eigenmodes.

5. Numerical Results

In order to complement our analytical findings and explore
solutions within a wider parameter regime than what the
abovementioned analytical restrictions allow for, in this
section, we present numerical solutions to the full dispersion
relation and instability limits determined from these results. In
order to find the complex roots of the dispersion relation, we
developed a module built on the Newton–Rhapson method
utilizing the scipy package available in Python. A grid structure
was set up on the solution space under investigation, and root
finding was performed in every cell to ensure the identification
of every local solution with a 1e−30 allowed error level. The
module used for this work is a further developed version of the
module utilized in our earlier work (Barbulescu & Erdélyi
2018).
In order to obtain our results, we nondimensionalized the

quantities appearing in the dispersion relation with respect to
the Alfvén speed and introduced the Alfvén Mach number,
MA0= V0/vA0, to characterize the relative strength of the flow
present in the central region of the slab. We prepared our
figures with the choice of vA0= 1; therefore in the following
section, we did not specifically include new notation in the
figures to indicate nondimensional speeds (as quantitatively,
they will have the same value as their dimensional forms).
To obtain the solutions presented in this section, we used a

root-finding method to solve the full dispersion relation in
Equation (11). Figure 2 shows how the phase speeds of the
solutions depend on the changing Alfvén Mach number for a
fixed value of the slab width (corresponding to a thin slab,
kd= 0.1). We have also indicated the characteristic speeds in
the external regions and their Doppler-shifted values for the
central slab region. The real part of the phase speeds is plotted
in blue, while the two branches of the imaginary part
(symmetric to the ω/kvA0= 0 line) are shown in red in each
of our figures.
The panels of Figure 2 show that different types of solutions

can exist in this particular slab system. Here, and in the following,
we focus on the trapped solutions, for which both of the
conditions m 01

2 > and m 02
2 > are fulfilled, and we will not

discuss instabilities tied to modes with phase speeds in the leaky
domains (m 01

2 < or m 02
2 < , corresponding to cT1< vph

< vA1, cT2< vph< vA2, c1< vph, and c2< vph, as well as the
similar corresponding regions for negative phase speed values,
indicated by gray hatching in all of our figures). In order to better
highlight the effects of asymmetry, in Figure 2(a), we first present
solutions obtained for a symmetric slab by using the following
values of the characteristic speeds and density ratios: c0= 0.8vA0,
c1= c2= 1.51vA0, vA1= vA2= 0.9vA0, and ρ1/ρ0= ρ2/ρ0= 0.5.
Then, Figure 2(b) shows how these solutions change when we
introduce weak asymmetry by setting the background parameters
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to c0= 0.8vA0, c1= 1.51vA0, c2= 1.33vA0, vA1= 0.9vA0, vA2=
0.9vA0, ρ1/ρ0= 0.5, and ρ2/ρ0= 0.6.

It is easy to see from either panel of Figure 2 that the slow
quasi-kink modes, whose phase speeds tend to the external tube
speeds in the thin-slab limit, will be affected strongly by the
flow. In the region between −cT2 and cT2, up to quite high
values of the Alfvén Mach number, these waves are stable;
however, at around MA0= 2.5, the Kelvin–Helmholtz instabil-
ity sets in for these modes (see the parabola-shaped red curve
on the right). Once the phase speeds of the forward- and
backward-propagating modes meet this way, for this specific
configuration, the system remains unstable for all flow speeds
width values greater than this threshold in both the symmetric
and the weakly asymmetric cases.

In Figure 2(a), another unstable region can be seen as well,
starting at around MA0= 2. This, however, is tied to sausage
modes whose phase speeds are close to the external sound
speed (ce= c1= c2 for the symmetric case). As we only focus
on trapped oscillations in this study, these sausage modes have
a cutoff at the external sound speed shortly after we reach high
enough flow speeds to subject them to the KHI, as we have
removed any solutions falling within the leaky regimes from
the figures. This particular instability is unique to the
symmetric case, because in the asymmetric system, the external
sound speeds differ, lowering the cutoff frequency for the
quasi-sausage modes and pushing the instability into the leaky
domain (solutions not displayed in panel (b) of Figure 2). This
example illustrates one of the several new cutoff frequencies
that can be introduced due to the presence of asymmetry. For
further examples of the new cutoff frequencies of trapped
eigenmodes in a static magnetic slab enclosed in an asymmetric
magnetic environment, see e.g. Zsámberger & Erdélyi (2020).

Using a high-resolution grid to obtain numerical solutions
also reveals a third possible flow speed regime that can result in
the onset of the Kelvin–Helmholtz instability at around
MA=1.5. This unstable regime is present in both the symmetric
and the weakly asymmetric cases, the details of which are
shown in the inlets of the two panels in Figure 2. Although
further examination shows that this instability is tied to a very
small regime of both Alfvén Mach numbers and dimensionless
slab widths, it still represents an important result, as it shows

that in spite of the presence of external magnetic fields, the
instability can still be triggered at much lower flow speeds than
the thresholds marked by the previous two unstable regimes
that we discussed.
Next, in Figure 3, we demonstrate the effect that the increase in

density asymmetry can have on the solutions, even when the
external Alfvén speeds are kept the same. To obtain these
solutions, we used similar parameters to the previous figure for the
sake of easy comparison: c0= 0.8vA0, c1= 2.59vA0, c2= 1.33vA0,
vA1= 0.9vA0, vA2= 0.9vA0, ρ1/ρ0= 0.2, and ρ2/ρ0= 0.6. This
example illustrates the case of strong asymmetry, with the density
on one side of the slab being 3 times as high as on the other side.
This figure also serves as an extension to the analytical parts of
our study, as the approximations obtained for the phase speeds of
each eigenmode were derived for the case of weak asymmetry
only, whereas using the full dispersion relation and finding
numerical solutions to it allows us to explore the case of much
stronger background asymmetry as well. To illustrate the close
correspondence (specifically for the case of weak asymmetry)
between the full solutions and some approximations of the full
dispersion relation, we have included additional figures in the
Appendix. Panel (a) of Figure 3 shows how the phase speeds of
the solutions depend on the changing dimensionless slab width,
kd, for a fixed value of MA0= 2.1, while panel (b) displays the
dependence of the phase speeds on the Alfvén Mach number for a
fixed value of the slab width (corresponding to a thin slab with
kd= 0.1). In both panels, we have indicated the characteristic
speeds in the external regions and their Doppler-shifted values for
the central slab region. As before, the real part of the phase speeds
is plotted in blue, while the imaginary part is shown in red in each
of our figures.
We can observe the same type of instabilities that we

described in Figure 2 in panel (b) of Figure 3 too. Having
located where the new KHI threshold is in this figure, we
prepared a different diagram for Figure 3(a), which allows us to
determine whether the modes will be stable or not for one fixed
flow speed above the KHI threshold for the kd= 0.1 case,
when the slab width is allowed to take different values. It is
easy to see from this figure that the slow quasi-kink modes
causing the instability in question are stable for very thin slabs.
However, at somewhat larger, but still relatively small, values

Figure 2. Solutions of the full dispersion relation (Equation (11)) in (a) a symmetric slab of fixed width (kd = 0.1) and in (b) a weakly asymmetric slab of the same
width. The real (imaginary) parts of the solutions are shown in blue (red). The characteristic speeds and density ratios used to prepare panel (a) were: c0 = 0.8vA0,
c1 = c2 = 1.51vA0, vA1 = vA2 = 0.9vA0, and ρ1/ρ0 = ρ2/ρ0 = 0.5, while we used the weakly asymmetric parameters c0 = 0.8vA0, c1 = 1.51vA0, c2 = 1.33vA0,
vA1 = 0.9vA0, vA2 = 0.9vA0, ρ1/ρ0 = 0.5, and ρ2/ρ0 = 0.6 for panel (b). In both figures, the inlet shows an enlarged view of the region in the black rectangle, where an
additional small unstable region is present.
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of the slab width, the phase speeds of the forward- and
backward-propagating modes meet, and the system becomes
unstable for all slab widths greater than this threshold value of
approximately kd= 0.2. Similarly to the case of weak
asymmetry, two further instability regimes could also be found
in the strongly asymmetric slab system. One of these, the one
attached to the lowest flow speeds, is displayed in the inlet of
Figure 3(b). The other additional unstable region would be
attached to the leaky quasi-sausage modes discussed above and
have been removed from the figure. An additional group of
solutions that appears only for larger slab widths and large
negative to small positive values of the phase speed in
Figure 3(a) is that of the harmonics of body modes, with no
additional instabilities resulting from their presence for the
chosen set of background parameters.

In Figure 3(a), other effects of the increased asymmetry can
be observed beyond the somewhat changed phase speeds of the
solutions too. First, due to the larger difference in background
densities compared to Figure 2(b), in Figure 3(b), the sound
speeds of the two environmental regions are more strongly
separated too. This results in a wider range of phase speeds
having to be excluded as leaky modes. Furthermore, the
instability resulting from the shifting of the quasi-kink mode
phase speeds now sets in at lower values of the Alfvén Mach
number than in the weakly asymmetric case. This highlights an
interesting consequence of the magnetic asymmetry implicitly
present in the system (as the different density ratios require
magnetic fields of different strength to be present in the
external regions in order to maintain the shared value of the
external Alfvén speed, vAe= vA1= vA2). Although the KHI
threshold is still relatively high in this slab system due to the
restoring force of the strong external magnetic fields, the
greater the asymmetry between the external regions is, the less
effective this suppression of the instability seems to become.

6. Conclusions

The present study set out to further generalize the model
family of asymmetric magnetic slabs (see, e.g., Allcock & Erdélyi
2018; Barbulescu & Erdélyi 2018; Zsámberger et al. 2018)

with a focus on the concurring effects of destabilizing internal
flows and potentially stabilizing asymmetric external magnetic
fields. Namely, we carried out an analytical and numerical
investigation of the effects of a steady flow on the propagation and
instabilities of MHD waves in a magnetic slab embedded in an
asymmetric magnetic environment.
We first obtained the full dispersion relation, which, unlike in

the case of symmetric slabs, does not decouple into two separate
equations for the general case. Next, we employed the
approximation of weak asymmetry between the external regions
of the model in order to derive an analytically more easily
tractable decoupled dispersion relation, providing a separate
description for the quasi-sausage and quasi-kink modes. In order
to make further analytical progress, we focused on slabs that are
thin compared to the typical wavelength of perturbations and
provided some simple expressions for the angular frequencies of
the surface and body eigenmodes in this system. To conclude the
section, we provided a simplification of this general case
specifically for the zero-β approximation. These equations
defining the angular frequencies of asymmetric eigenmodes in
terms of the characteristic speeds and densities present in the
system were then also utilized to define the flow speed threshold,
beyond which the shearing motions lead to the onset of the
Kelvin–Helmholtz instability. Depending on the choice of
parameters, especially the relative magnitudes of the internal
flow and the magnetic fields in every region, as well as the
degree of asymmetry between these magnetic fields, the
instabilities might be suppressed by the stabilizing force arising
from the inclusion of strong external magnetic fields, but this
will not generally be true in every case. A further, detailed
parametric examination of the model would be necessary to
explore this possible suppression of instabilities.
Instabilities caused by flows play a critical role in the

dynamics of the solar atmosphere and have a consequence in
energy dissipation in the corona to heat the solar plasma. There
are various possibilities to model solar structures affected by
background flows and, for example, the critical flow speed for
the KHI onset. In the future, a further useful tool to examine the
eigenfunctions of such systems and carry out parametric studies

Figure 3. Solutions of the full dispersion relation (Equation (11)) in a strongly asymmetric slab system. Panel (a) shows the dependence of the phase speeds and the
instability limit on the slab width with a fixed value of MA0 = 2.1, while panel (b) illustrates the same for a changing Alfvén Mach number with a fixed slab with of
(kd = 0.1). The real (imaginary) parts of the solutions are shown in blue (red). The characteristic speed and density values used to obtain the solutions in both panels
are: c0 = 0.8vA0, c1 = 2.59vA0, c2 = 1.33vA0, vA1 = 0.9vA0, vA2 = 0.9vA0, ρ1/ρ0 = 0.2, and ρ2/ρ0 = 0.6. The inlet in panel (b) shows a zoomed in view of the area in
the bold black rectangle, where, similarly to the weakly asymmetric case shown in Figure 2, an additional instability region is present in a narrow range of Alfvén
Mach numbers.
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can be the Large Eigensystem Generator for One-dimensional
pLASmas, or LEGOLAS code (Claes et al. 2021). In the
current paper, we are only concerned with magnetoacoustic
waves propagating along the slab, parallel to the background
magnetic fields; therefore we fixed ky= 0 and vy= 0. This
means that the study of y-dependent Alfvén waves and the
coupling between them and magnetoacoustic waves are beyond
the scope of the current investigation. It must be acknowledged
that choosing ky= 0 and a piecewise uniform configuration
precludes us from exploring some further physical effects that
influence the stability of the slab system. For example, Andries
et al. (2000) studied coronal plumes and their environment by
including a nonuniform transitional layer in a slab and a flux
tube model while also allowing for the ky≠ 0 case. They found
that the resonant flow instability can occur at a lower velocity
threshold than the KHI, which is a phenomenon that the current
model cannot reproduce due to the chosen restrictions and
focus. Beyond the resonant flow instability (Tirry et al. 1998),
further mechanisms that could be studied in nonuniform cases
and are very important in the field of solar atmospheric heating
are, for example, resonant absorption (Goossens et al. 2011)
and phase mixing (Ruderman & Erdélyi 2009).

While it is apparent that our study must accept certain
limitations in order to focus on the effects of asymmetry, the
asymmetric magnetic slab system under the effect of a steady
central flow already provides several free parameters and a very
rich problem to study both analytically and numerically.
Furthermore, we can use the equilibrium configuration
described in the current paper to model various asymmetric
solar astrophysical waveguides. For example, it has been
shown before that the asymmetric magnetic slab model
provides a good approximation of CME flank regions and that
the inclusion of external magnetic asymmetry may bring
additional accuracy into their analysis (Foullon et al. 2011;
Barbulescu & Erdélyi 2018). We can find further possible solar
applications in the form of coronal hole boundaries (Banerjee
2012), prominences (Arregui et al. 2012), magnetic bright
points of photosphere (Liu et al. 2018; Zsámberger et al. 2018),
sunspot light bridges (Yuan et al. 2014), and sunspot light walls
(Yang et al. 2016, 2017). Some of these have been modeled as
static asymmetric slabs before (see, e.g., Zsámberger &
Erdélyi 2020), but an extension of these models to incorporate
flows captures more of the essential nature of these solar
features and introduces additional physical phenomena to be
studied.

One of the main motivation behind such a step-by-step
generalization of asymmetric slab models is to provide the
analytical basis and tools to carry out solar magnetoseismologic
investigations and thus diagnose properties of solar plasma that
might not be possible to measure directly. In the coming years,
with the advent of the next generation of observational
instrumentation, such as the Daniel K. Inouye Solar Telescope
(DKIST) and the European Solar Telescope (EST), we will
have an unprecedented temporal and spatial resolution
available to apply these models and contribute to a better
understanding of several magnetized structures within the
Sunʼs atmosphere.

The authors are grateful to the UGRI scheme at The
University of Sheffield for making the initiation of this research
possible. N.Z. is grateful for the support of the University of
Debrecen and the University of Sheffield. R.E. is also grateful

to the Science and Technology Facilities Council (STFC, grant
No. ST/M000826/1) for the support received. The authors
also thank M. Barbulescu for making available the root-finding
algorithm (at https://github.com/BarbulescuMihai/PyTES) that
the code used during the numerical investigation was originally
based on.

Appendix
Comparison of Solutions to the Full and Decoupled

Dispersion Relations

In Sections 2 and 3, we derived the full dispersion relation
for magnetoacoustic waves propagating along a magnetic slab
placed in an asymmetric magnetic environment, where the slab
is also subject to a bulk background flow. Then we proceeded
to analytically describe the quasi-sausage and quasi-kink
eigenmodes of this slab for the weak asymmetry and thin-
slab approximations. In this Appendix, we show a close
correspondence between the exact and approximate solutions
by providing a set of figures containing numerical solutions to
the equations providing the key points of this derivation, as we
gradually employ first the weak asymmetry and then the thin-
slab assumptions.
Equation (11), the full dispersion relation, provides an

accurate description for magnetoacoustic waves propagating
along a magnetic slab place in an asymmetric magnetic
environment and under the effect of a steady background flow
(under the assumptions of ideal MHD and linear perturbations
to the system). It is, however, a transcendental equation that is,
to the best of our knowledge, not possible to solve analytically
for the general case. Therefore, to understand the behavior of
eigenmodes and how they are influenced by the asymmetry and
the flow present in the system, we had to analyze various
limiting cases. In this Appendix, we compare the full solutions
to the ones obtained after employing various approximations,
with the aid of a series of figures depicting the phase speeds of
eigenmodes in similar slab systems.
First of all, Figure 2(b) in Section 5 displays the solutions to

the general dispersion relation (Equation (11)) using a fixed
dimensionless slab width value of kd= 0.1 as well as the
following characteristic speeds and density ratios: c0= 0.8vA0,
c1= 1.51vA0, c2= 1.33vA0, vA1= 0.9vA0, vA2= 0.9vA0, ρ1/ρ0=
0.5, and ρ2/ρ0= 0.6. In Section 5, we discussed the possible
sources of instability in this slab system, one of which would
have belonged to leaky quasi-sausage modes and was excluded
from the current study.
In the panels of our Figure 4 of this Appendix, prepared with

the same characteristic speeds and density ratios as the full
solution in Figure 2(b), we demonstrate that the behavior of the
eigenmodes is qualitatively the same and quantitatively similar
if we use certain approximations to obtain our solutions.
The first major analytical leap we took was introducing the

approximation of weak asymmetry. This led us to the
decoupled dispersion relation (Equation (12)). The first
fundamental comparison to be made is between this and the
full dispersion relation. When the slab system is only weakly
asymmetric (e.g., ρ1/ρ0= 0.5 and ρ2/ρ0= 0.6, used in these
figures), we can obtain a separate dispersion relation for
sausage- and kink-type modes. Panel (a) of Figure 4 displays
only quasi-sausage mode solutions to the decoupled dispersion
relation (the “tanh” line of Equation (12)). The instability
related to quasi-sausage modes discussed in Section 5 would
also appear only in the leaky regime in this approximation.
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These solutions have been removed from our figure, which
displays only trapped quasi-sausage modes; these, in turn,
remain stable for the parameter set used to obtain the figure,
which qualitatively successfully reproduces the behavior of
quasi-sausage modes found by solving the full dispersion
relation (see Figure 2(b)).

Similarly, Panel (b) of Figure 4 shows only quasi-kink mode
solutions to the decoupled dispersion relation (the “coth” line
of Equation (12)). This time, the slow quasi-kink mode
solutions are reproduced, and they become unstable at a
similar Alfvén Mach number as their counterparts obtained
from the full dispersion relation.

Panel (c) of Figure 4 employs the weak asymmetry as well as
the thin-slab approximations, describing quasi-sausage modes
with the first term of the expansion of m dtanh 0 . Similarly to
panel (a), this panel only displays trapped quasi-sausage mode
solutions, which are all shown to be stable. The same small
region of instability tied to leaky quasi-sausage modes
described in panel (a) is also still reproduced even in this
further step. Similarly, in panel (d) of Figure 4, the phase speed
and instability limit of quasi-kink modes shown are obtained
from Equation (16), which incorporates both the weak
asymmetry and thin-slab approximations. Overall, both kinds
of approximations demonstrate the same qualitative behavior as
the solutions of the full dispersion relation. The weak

asymmetry solutions shown in Figures 4(a) and 4(b) show
only a small difference (of the order of 10−2) from the
corresponding quasi-sausage and quasi-kink mode solutions of
the full dispersion relation presented in 2(b). Furthermore,
introducing the thin-slab approximation in addition to the weak
asymmetry replicates the results obtained from only the weak
asymmetry approximation (for arbitrary slab widths) with good
accuracy (yielding differences between solutions displayed in
panels (a) and (c), as well as panels (b) and (d) of the order of
10−4).
The problem of a steady magnetic slab enclosed in an

asymmetric magnetic environment is very rich, considering all
the free parameters (characteristic speeds, densities and flow
speed) it possesses. In this Appendix, we focused on one
specific choice of parameters, namely, one corresponding to the
numerical solutions discussed in the main body of the paper.
We can claim with certainty that, for this specific configuration,
as long as the conditions of their application (see Section 2) are
met, the weak asymmetry and thin-slab approximations are
accurate predictors of the phase speeds of eigenmodes obtained
from the full dispersion relations, as well as the KHI onset
threshold. A full parametric examination is beyond the scope of
the current paper; however, depending on the specific
application of the asymmetric magnetic slab model to the solar
atmosphere, it may very well be worthwhile to examine how

Figure 4. Solutions of the approximations of the dispersion relation. The real (imaginary) parts of the solutions are displayed in blue (red) in every case. Panel (a)
shows quasi-sausage modes described by Equation (12), while panel (b) shows quasi-kink modes obtained from the same equation. Panel (c) displays the quasi-
sausage mode solution obtained from Equation (13), and panel (d) provides quasi-kink mode solutions described by Equation (16). All solutions here were obtained
using the same characteristic speeds and density ratios that we used in Figure 2(a), namely: c0 = 0.8vA0, c1 = 1.51vA0, c2 = 1.33vA0, vA1 = 0.9vA0, vA2 = 0.9vA0, ρ1/
ρ0 = 0.5, and ρ2/ρ0 = 0.6.
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accurately these (and further) approximations reproduce the
exact results obtained from a numerical examination.
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