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Spatially resolved clonal copy number 
alterations in benign and malignant tissue

Andrew Erickson1,15, Mengxiao He2,15, Emelie Berglund2,15, Maja Marklund2, Reza Mirzazadeh2, 

Niklas Schultz3, Linda Kvastad2, Alma Andersson2, Ludvig Bergenstråhle2, 

Joseph Bergenstråhle2, Ludvig Larsson2, Leire Alonso Galicia2, Alia Shamikh4,5, 

Elisa Basmaci4,5, Teresita Díaz De Ståhl4,5, Timothy Rajakumar1, Dimitrios Doultsinos1, 

Kim Thrane2, Andrew L. Ji6, Paul A. Khavari6, Firaz Tarish3, Anna Tanoglidi7, Jonas Maaskola2, 

Richard Colling1,8, Tuomas Mirtti9,10,11, Freddie C. Hamdy1,12, Dan J. Woodcock1,13, 

Thomas Helleday3,14, Ian G. Mills1, Alastair D. Lamb1,12,16 ✉ & Joakim Lundeberg2,16 ✉

Defining the transition from benign to malignant tissue is fundamental to improving 

early diagnosis of cancer1. Here we use a systematic approach to study spatial genome 

integrity in situ and describe previously unidentified clonal relationships. We used 

spatially resolved transcriptomics2 to infer spatial copy number variations in >120,000 

regions across multiple organs, in benign and malignant tissues. We demonstrate that 

genome-wide copy number variation reveals distinct clonal patterns within tumours 

and in nearby benign tissue using an organ-wide approach focused on the prostate. 

Our results suggest a model for how genomic instability arises in histologically benign 

tissue that may represent early events in cancer evolution. We highlight the power of 

capturing the molecular and spatial continuums in a tissue context and challenge the 

rationale for treatment paradigms, including focal therapy.

Mutations can be either inherited or acquired (somatic). Inherited 

genomic polymorphisms are readily identifiable as these are present 

in all cells, whereas post-developmental somatic mutations are usually 

present in only a small fraction of cells3. To obtain spatial information 

about these rarer non-heritable genetic events, studies have commonly 

used laser-capture microdissection to retrieve histologically defined (or 

biomarker-defined) tissue regions or even single cells1,4,5. These studies 

have an inherent bias as only a limited number of spatial regions or single 

cells per tissue section can be collected and examined. The possibility to 

perform spatial genome analysis without being confined by histological 

boundaries would therefore provide an important contribution to delin-

eating the clonal architecture in tumours and co-existing benign tissue.

Inferred copy number variation predicts clonal 
hierarchies

Spatially resolved transcriptomics has emerged as a tool for genome-wide 

analysis of gene expression to explore tissues in an unsupervised manner6.  

In this study, we infer genome-wide copy number variations (CNVs) 

from spatially resolved mRNA profiles in situ (Fig. 1a). Gene expression 

has previously been used to infer CNVs in single cells, successfully iden-

tifying regions of chromosomal gain and loss7. Here we expand into a 

spatial modality, generating CNV calls in each spatial region represented 

by barcoded spots. First, using unsupervised clustering methods, we 

sought corroboration that inferred CNV data (obtained using inferCNV7) 

could mirror DNA-based phylogenies, constructed using simultane-

ously extracted RNA and DNA from single cells8 (Extended Data Fig. 1a). 

Next, we attempted to recapitulate published DNA-based phylogenies 

in prostate cancer using RNA from the same samples9–11 (Extended Data 

Fig. 1b,c) and identified similarity between automated clone calling and 

published phylogenies. To ensure that inferCNV7 could robustly capture 

sufficient and accurate CNV information for individual spots from a 

multifocal tumour model and enable us to deduce clonal relationships 

between cells, we designed an in silico system to synthesize a tissue con-

taining multiple clones determined by stochastic copy number muta-

tions in a single artificial chromosome. Using a probabilistic method to 

generate gene expression from such mutations, we then interrogated 

the expression data using spatial inferred CNVs (siCNVs), while blind 

to the underlying ‘ground-truth’ copy number status, and successfully 

recapitulated both the copy number status and the clonal groupings 

(Extended Data Fig. 2a–c).

Organ-wide clonal landscape in the prostate

Next, we used a cross-section of an entire prostate organ to explore 

the siCNV landscape of a commonly multifocal malignancy12. The 
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specimen was obtained by open radical prostatectomy from a patient 

with prostate cancer, and an axial section was taken from the mid-gland.  

The axial section was subdivided into cubes (Fig. 1a,b), and corresponding 

tissue sections were histologically graded using the Gleason grading 

system13, identifying extensive intratumoral heterogeneity (ITH) in  

the context of surrounding benign tissue (Fig. 1b,e). We obtained 

organ-wide transcriptional information from 21 cubes (tissue sections)  

and >21,000 barcoded regions (100-µm-diameter spots) with a mean of 

3,500 expressed genes detected per barcoded spot2. We then analysed 

the transcriptional data using factorized negative binomial regres-

sion (Extended Data Fig. 3a). This provided an unsupervised view of 

gene expression factors (GEFs)14 over the cross-section of the prostate 

(Fig. 1c). Twenty-five factors showed overlap between histology and 

GEFs representing tumour, hyperplasia and benign epithelia annotated 

by the factor marker genes, as previously reported14 (Fig. 1f). Next, 

we undertook an siCNV analysis to provide an overall landscape of 
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Fig. 1 | Organ-wide spatial determination of transcript and CNV status.  

a, For organ-wide assessment, axial segments of the prostate were divided into 

5 × 5 mm2 blocks for spatial transcriptomic analysis with spatially barcoded 

probes. The resulting spatial gene expression profile was accompanied by an 

inferred copy number profile supported by spot-by-spot consensus pathology 

calls. Copy number features were used to detect clonal groups and instruct 

phylogenetic tree construction. Tissue-specific analyses of multiple phenotypes 

were performed. b, Histology status for each organ-wide section. Black dashed 

lines represent the area covered by the spatial transcriptomics array surface. 

GG, International Society of Urological Pathology (ISUP) Gleason ‘grade group’; 

PIN, prostatic intra-epithelial neoplasia. c, Spatial distribution of gene expression 

(see f). d, Spatial distribution of summed copy number events (see g).  

e, Representative spot-level consensus pathology for section H2_5. Red circles 

indicate spots with ≥50% cancer cells, white circles indicate spots with ≥50% 

benign epithelium and black circles indicate spots with ≤50% of a single cell 

type. The diameter of the circles represents 55 µm. f, UMAP principal- 

component analysis of GEFs with a representative close-up for section H2_5.  

g, Total copy number events for each section with a representative close-up for 

section H2_5.
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genome integrity (Fig. 1d), identifying certain regions with increased 

CNV activity (V1_1, H2_1, H1_1, H1_5 and H2_5; Fig. 1g) while the majority 

of the tissue area appeared to be copy number neutral. These initial 

results suggested that siCNVs could identify tissue regions, at organ 

scale, with inferred genomic variability, distinct from morphology or 

expression analysis.

To increase the fidelity of our analysis of variable siCNV regions, we 

took advantage of smaller 55-µm-diameter barcoded spots (Visium, 10x 

Genomics), reducing the number of cells to approximately 5–10 per 

spot, to perform a more detailed interrogation of seven key sections 

of siCNV activity. Two pathologists independently annotated each 

spot to provide consensus pathology and histology scoring (Fig. 1e).  

We first validated the increased precision of this higher-resolution 

platform using the synthetic tissue method (Extended Data Fig. 2d,e). 

We next obtained data from approximately 30,000 spots using factor-

ized negative binomial regression, resulting in 24 spatially distinct GEFs 

(Extended Data Fig. 3b). We then examined clonal evolution patterns 

across the investigated tissue using siCNVs. Having established an 

association between GEFs and certain regions of interest (Fig. 1c,f), we 

wanted to determine the degree of clonal copy number heterogeneity 

in these regions. After designating all histologically benign spots as a 

reference set (Extended Data Fig. 3c), it was immediately apparent that, 

while certain GEFs displayed a fairly homogenous inferred genotype 

(for example, GEFs 7, 14 and 22; Extended Data Fig. 3d), others were 

notably heterogeneous (for example, GEF 10; Extended Data Fig. 3e).

Prompted by the realization that certain regions annotated as histo-

logically benign displayed copy number heterogeneity (Fig. 1d)15–18, we 

refined the reference set to spots that were both histologically benign 

(outside the regions of interest) and lacked any siCNV (Extended Data 

Fig. 4). This constituted a ‘pure benign’ reference set for all subsequent 

siCNV analyses, unique to each patient. In cancer-wide inferred gen-

otypes (Fig. 2a–e), there was evidence of clonally distributed copy 

number heterogeneity within areas of spatially homogeneous Gleason 

patterns (Fig. 2a,d,e). We constructed a phylogenetic tree to describe 

sequential clonal events versus independently arising cancer clones 

(Fig. 2b). Two cancer clones (clones A and B) lacked key truncal events, 

including loss of regions on chromosomes 16q and 8p, that were other-

wise ubiquitous across all cancer clones (Fig. 2a,b). These clones were 

spatially restricted to section H1_2 containing a region of low-grade 

Gleason grade group 1 (discussed later). The majority of clonally related 

spots were located around the largest focus of Gleason grade group  

4 disease with a notable pattern of truncal and branching events (clones 

H, I, J and K). We therefore focused on this dominant region of cancer 

(spanning sections H1_4, H1_5 and H2_5), to establish a first view of the 

interplay between spatial architecture and clonal dynamics (remaining 

sections in Extended Data Fig. 5a,b).

To construct clone trees, we assumed that (1) groups of cells con-

taining identical copy number profiles were more likely to be related 

than to have arisen by chance and (2) somatic copy number events 

were acquired sequentially over time (the more numerous the events, 

the more distinct the clone). We cannot conclusively rule out the pos-

sibility that smaller clones may represent clone cell mixtures due to 

the inherent size of the Visium spots. However, using this approach, 

we observed a common ancestral clone (clone H; Fig. 2b) containing 

truncal events including copy number loss on chromosomes 6q and 

16q and copy number gain on chromosomes 12q and 16q. These events 

were clearly located in two tissue regions: an area of Gleason grade 

group 2 on the medial side of the main tumour focus (section H1_4) 

and a region described as ‘transition state’ by consensus pathology at 

the upper mid-edge (section H2_5). These conserved siCNV features 

in distinct spatial locations are noteworthy. A possible explanation is 

that clone H represents a linear sequence of branching morphology in 

the prostatic glandular system1 and that further somatic events took 

place, giving rise to clones I, J and K and forming a high-grade tumour 

focus (Fig. 2b), which pushed apart the branching histology owing to 

an aggressive expansile phenotype. We thus have a spatial imprint of 

these events in prostate tissue. We also propose that some CNVs may be 

of particular pathological significance (Extended Data Fig. 4d) based on 

spatial molecular phylogeny. Our analysis therefore provides insight 

into processes of tumour clonal evolution, identifying discriminating 

events by spot-level CNV calling in a spatial context.

Somatic clones cross histological boundaries

Given this discovery of a discordance between cellular phenotype and 

inferred genotype, we then undertook a detailed interrogation of sec-

tion H2_1 in the left peripheral zone of the prostate (Figs. 1c and 2c) 

containing roughly equal proportions of cancer and benign tissue. 

We profiled the copy number status of every spot in this section and 

ordered these spots by hierarchical clustering into ‘clones’ A to G on 

the basis of defined levels of cluster separation (Fig. 3a,b). Spatially, 

we observed that these data-driven clone clusters were located in 

groups, broadly correlating with histological subtype, but with some 

important distinctions (Fig. 3c,d). We observed that many CNVs had 

already occurred in benign tissue (clone C; Fig. 3a–d), most notably on 

chromosomes 8 and 10, which has been well described in aggressive 

prostate cancer, including the oncogene MYC and tumour-suppressor 

gene PTEN19–21, but also several other copy number gains and losses. 

Spatially, this clone constituted a region of exclusively benign acinar 

cells branching off a duct lined by largely copy number-neutral cells 

in nearby clones A and B (Fig. 3d). The unobserved ancestor to clone  

C gave rise to a further unobserved clone followed by cancer-containing 

clones E, F and G. Whereas clone G was made up exclusively of Gleason 

grade group 2 cancer cells, clones E and F were mixed, with up to 25% 

benign cells (Fig. 3d). The presence of somatic events in histologically 

benign cells highlights that these clone groups traverse histological 

boundaries.

To validate that this inferred copy number status was truly represent-

ative of underlying genotype, we used fluorescence in situ hybridization 

(FISH) probes to target two specific genes of discriminatory interest, 

MYC and PTEN, encompassed in the notable chromosomal changes in 

benign tissue clone C as well as high-grade tumour clones, but absent 

in low-grade disease. This confirmed that, whereas the status of both 

genes was diploid in normal benign tissue (clone A), MYC amplification 

and PTEN loss were evident in altered benign (clone C) as well as tumour 

(clone F) clones (Fig. 3e and Extended Data Fig. 6). Going forward, we 

propose that other homogenous inferCNV calls are accurate, on the 

basis of the evidence provided by these two selected loci. This evidence 

suggests that somatic events, creating a mosaic of branching clones 

during ductal morphogenesis, are present even in histologically benign 

disease. It therefore follows that an understanding of this somatic 

mosaicism could distinguish which regions of benign glandular tissue 

may give rise to lethal cancer and which will not.

We recognize that a limitation of using siCNVs is that this approach 

does not capture mutations such as single-nucleotide variants (SNVs) 

or other copy number-neutral events, which could add value in dis-

criminating clonal groupings. We therefore undertook an analysis of 

transcribed (exonic) single-nucleotide polymorphisms (SNPs) using 

cb_sniffer22. Analyses of the ratios of clonal variant allele fractions 

for both specific events with high-coverage SNPs (exemplified by 

chr8:143580183 and chr8:99892049; Extended Data Fig. 7) supported 

copy number events on the same allele, in line with shared ancestry 

(Fig. 3b).

Having established the clonal subgroups in this heterogeneous 

section of prostate tissue, we used differential expression analysis 

to investigate potential functional alterations unique to these cellu-

lar groups. Focusing on clone C of altered benign cells, we observed 

upregulation of MYC activity (Extended Data Fig. 8c) as well as path-

ways responsible for phenotypic versatility23 (Extended Data Fig. 8b) 

when compared with diploid benign cells (clone A). Furthermore, 
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there was downregulation of conventional androgen receptor (AR) 

target genes (for example, KLK2, KLK3, FKBP5 and NKX3-1), raising the 

hypothesis of a reduced (or altered) dependence on AR regulation 

in these cells24. We also investigated the distinction between clone  

C and clones containing histologically transformed cells (clones E–G). 

We observed reduced MSMB and increased GDF15 expression in both 

groups (Extended Data Fig. 8a,d), which are normally thought to be 

pathognomonic of malignantly transformed cells21,25. When analysing 

differentially expressed genes found in only altered benign cells, we 

observed an enrichment for genes associated with oxidative phos-

phorylation and mitochondrial energy metabolism as well as protein 

stabilization (Supplementary Table 5), in line with cells trying to cope 

with extrinsic and intrinsic stress.

We considered the place of branching morphogenesis in the sequen-

tial acquisition of transformative events in a predominantly benign 

section of the prostate (section H2_1 as well as section H2_2; Extended 

Data Fig. 9). Here we noted that such events seemed to occur during 

the development of prostatic ducts and acinar branches, with changes 

occurring at key branching points, and the altered genotype was passed 

on to daughter cells lining the ducts and glands of associated branches. 

Interestingly, not all cells in such branches displayed the same cellu-

lar structure, raising important questions as to why epithelial glands 
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Fig. 2 | Specific somatic copy number alterations in all cancer organ-wide 

analysis. a, Genome-wide derived analysis (siCNVs) for all Visium spots 
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(with approximately 10–15 cells each) were determined by hierarchical 

clustering. Chr., chromosome. b, Phylogenetic clone tree of the tumour clones 
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changes for each clone are available in Supplementary Table 1. c, Representation 

of all tissue sections from prostate patient 1. Thicker black lines denote original 

boundaries annotated by initial clinical pathology. d, Consensus epithelial 

histological annotations for sections H1_4, H1_5 and H2_5, corresponding to  

the right tumour focus. e, Spatial visualization of tumour clones (from a).  

The dashed lines mark areas where no spatial transcriptomics data were 

obtained owing to these regions being outside of barcoded array surfaces.
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with seemingly identical inferred genotypes might display divergent 

histological phenotypes.

In view of the above findings, we considered that analysis of the 

inferred genotype of low-grade cancer might reveal important differ-

ences from that of high-grade cancer. Section H1_2 contained a region 

of Gleason grade group 1 prostate cancer (Extended Data Fig. 5d).  

As noted previously, there were two clones (Fig. 2a, clones A and B) that 

lacked key changes on both chromosomes 8 and 16, with little in com-

mon with other cancer-bearing clones (Fig. 2c). A spot-wise re-analysis 

of section H1_2 (including benign spots) showed that these two clones, 

now labelled F and G, were spatially grouped as two approximately 

equal halves of this region of Gleason grade group 1 cancer (Extended 

Data Fig. 5c,d). This is evidence that low-grade prostate cancer is indeed 

fundamentally distinct from high-grade disease26 and raises the hypoth-

esis that such cancer cannot become higher grade because it lacks 

essential somatic events.

Clonal heterogeneity in multiple tissues

To corroborate our findings, we first performed validation through an 

additional 37,000 spots from a cross-section of a further prostatectomy 

that confirmed the spatial continuum of benign clones in proximity to 

cancer with shared truncal events. We also confirmed the high degree of 

ITH of siCNV clones within prostate tumour loci (Extended Data Fig. 10) 
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c, Spatial visualization of the histopathological status of each spot. Each spot 

was assessed by two pathologists for consensus annotation, with only spots 

with >50% cellularity included. d, Spatial visualization of the clone status of 

each spot. Clonal groupings cross histological boundaries. The branching 
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events arising in clone C (see also Extended Data Fig. 6). The dashed lines mark 
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MYC, from chromosome 8q, and PTEN, from chromosome 10p (arrowheads  
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White arrows indicate the location of centromere controls.
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and the presence of key somatic events in benign prostate glands.  

We then generalized our findings in multiple organs (Fig. 4 and Extended 

Data Fig. 11). First, we analysed a benign lymph node displaying distinct 

gene expression clusters for different histological entities (such as 

germinal centres), and siCNV analysis provided, as expected, a copy 

number-neutral profile for the entire tissue section (Fig. 4a,b). This 
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Fig. 4 | Somatic copy number alterations in cancer and benign histologies. 

a,b, Benign lymph node with distinct histological features and gene expression 

heterogeneity (b) harbouring no detected copy number alterations (a). Gene 

expression clusters were determined by UMAP analysis in b. c,d, Skin containing 

SCC (clone A, red) as well as benign squamous epithelium (clone C, yellow).  

A subset of somatic events visualized in cancer clone A are also detected in 

adjacent benign epithelial clone C. d, FISH validation of the siCNV encompassing 

EHD2 on chromosome 19q (arrowhead in c). e,f, Monoclonal childhood 

medulloblastoma. siCNVs on chromosomes 3 and 9 (e) were corroborated by 

copy number calls from WGS (f, lower right). g, Clone distribution for each tissue 

type. Circle area corresponds to the number of spots per clone. Results from 

ductal breast cancer and glioblastoma are available in Extended Data Fig. 11.
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provided further validation that siCNV clones are distinct from gene 

expression. We next analysed skin tissue containing both benign 

squamous epithelia and squamous cell carcinoma (SCC). For this, we 

obtained a patient-matched benign reference set of RNA-sequenced 

single skin cells with confirmation from adjacent sections of benign 

histology27. siCNV analysis identified four clones within the tissue, 

one of which corresponded to SCC, containing several copy number 

events. Notably, two key events (partial chromosome 1 and 12 gain) 

were shared with another nearby clone composed entirely of histologi-

cally benign tissue (Fig. 4c,d). Additional validation of siCNV signals 

was obtained by DNA FISH with three probes, for chromosome 1q gain 

(CKS1B), chromosome 8q loss (MYC) and chromosome 19q loss (EHD2), 

of consecutive sections of the SCC sample. We found that siCNV analysis 

correctly predicted CNV status in 91% (n = 11/12) of spatial clonal regions 

(Fig. 4d, Extended Data Fig. 12 and additional data hosted on Mendeley 

(https://doi.org/10.17632/svw96g68dv.1)). This substantiates our find-

ing of siCNV clones traversing histological boundaries for an additional 

tumour type. To contrast these observations, we performed analysis of 

a Sonic hedgehog (SHH)-driven paediatric medulloblastoma (Fig. 4e,f) 

with sex- and age-matched samples. The results showed a uniformly 

homogeneous spatial inferCNV clone type throughout the tumour 

with key expected genetic alterations such as 3q gain (encompassing 

PIK3CA) and a 9q deletion (encompassing PTCH1) as well as a short gain 

on 9p. These homogenous findings were validated by whole-genome 

sequencing (WGS) of the tumour, in which distinct CNV calls were found 

for the three altered chromosomal regions identified by our siCNV 

analysis (Extended Data Fig. 13). We further analysed two additional 

tumour types without reference sets: ductal breast cancer and an adult 

glioblastoma (Extended Data Fig. 11). Here we confirmed a multifaceted 

spatial siCNV tumour landscape with multiple co-existing clone types 

in tumour tissue of histologically similar appearance. For example, 

in ductal breast cancer (Extended Data Fig. 11k,l), we observed two 

distinct clone types (C and F), separated by stroma, with little or no 

CNV overlap. In the glioblastoma tissue, we similarly identified five 

clone types that had sharp spatial demarcations separating the siCNV 

clones, despite being histologically similar (Extended Data Fig. 11m,n). 

Overall, the clonal appearances of ITH were clear as was the overlap 

with tumour morphology.

The tissue clone diversity over the five investigated tissue types 

was notably variable, with genomes ranging from homogenous to 

highly heterogeneous in both tumours and benign tissue (Fig. 4g). We 

therefore believe that combining siCNV information with spatial gene 

expression patterns, which provide some functional understanding, 

and cell type mapping (using single-cell RNA-seq (scRNA-seq)) could 

enable targeted treatment options for individual clones, ‘benign’ or 

tumour, that would not be easily attainable by any other means. Such 

targeted approaches could include a more intelligent rationale for focal 

therapy or, for systemic therapy, could facilitate the identification of 

such clones by ‘liquid biopsy’.

Discussion

We show that spatial transcriptomic data across multiple cancer types 

can robustly be used to infer CNV, as validated by FISH and WGS. Specifi-

cally, we performed an in-depth spatial analysis of the prostate organ 

that generated an unprecedented atlas of up to 50,000 tissue domains 

in a single patient and 120,000 tissue domains across ten patients. For 

these domains, we inferred genome-wide information in each spot, 

which facilitated data-driven clone generation in a tissue-wide fash-

ion at high resolution. Notably, the spatial information allowed us to 

identify small clonal units not evident from morphology, which would 

therefore be overlooked by histologically guided laser microdissection 

or even random sampling of single cells. We go on to show that, in some 

tumour types, particularly in prostate, glioma and breast cancers, CNV 

analysis identifies distinct clonal patterns within tumours, in line with 

a recent spatial genome methodology that has also shown granularity 

in the study of multiclonality of tumours28.

Focusing on prostate cancer, the patterns, as defined by the conser-

vation of CNVs across morphological entities, indicate hitherto unap-

preciated molecular relationships between histologically benign and 

cancerous regions. It is known that CNVs occur early in tumorigenesis21. 

We propose that CNVs can precede tumorigenesis and are a feature 

of glandular morphogenesis, with propagation of particular variants 

traversing disease pathology. It seems that clonal status alone and the 

copy number alterations described here retained in heritable clonal 

lineages at cell division are insufficient to deliver immediate phenotypic 

transformation. We believe that our work generates interesting hypoth-

eses regarding epigenetic determinism29 and the environmental effect 

with, for example, the stromal niche or cross-talk between neighbour-

ing clones. Furthermore, questions remain about the timing of events 

and how long is needed for morphological transformation to occur. 

Expression analysis of altered benign clones identified changes consist-

ent with enhanced phenotypic versatility, suggesting that these cells 

may represent an intermediate state between benign and malignant 

cells—metabolically active as they try to survive the mutational burden 

they have acquired, before phenotypic transformation. In summary, 

this study shows that CNVs in regions of the genome that encode cer-

tain cancer drivers (for example, MYC and PTEN) are truly early events, 

occurring in tissue regions currently unknown to and therefore ignored 

by pathologists (Extended Data Fig. 4d). This is important given that the 

risk stratification delivered by pathologists dictates to a large degree 

treatment decisions and subsequent clinical outcome.

Our study therefore provides an unbiased avenue to interrogate 

genomic integrity, adding to the armamentarium of cancer molecular 

pathology. Our findings provide a basis for improved early detection of 

clinically important cancers, targeted focal and systemic therapy, and 

improved patient outcomes for ubiquitous malignancies such as pros-

tate cancer. Overall, our study raises important biological questions 

about cancer evolution, somatic mosaicism and tissue development.
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Methods

Ethics declaration

The study was performed according to the Declaration of Helsinki, Basel 

Declaration and Good Clinical Practice. The study was approved by the 

Regional Ethical Review Board (REPN) Uppsala, Sweden, before study 

initiation (Dnr 2011/066/2, Landstinget Västmanland, S. Stenius) and 

by the Regional Ethical Review Board (EPN), Stockholm, Sweden (DNR 

2018/3-31, M. Nistér). All patients were provided with full and adequate 

verbal and written information about the study before their participa-

tion. Written informed consent was obtained from all participating 

individuals before enrolment in the study.

Tissue specimens

Whole prostates were obtained by open radical prostatectomy at 

Västerås Hospital. Prostate patient 1 was 82 years old, and prostate 

patient 2 was 63 years old. Both had reported Gleason scores of 4+3 

(ISUP grade group 3) at initial biopsy, and the prostatectomy pathology 

was ISUP grade group 4 for patient 1 and ISUP grade group 3 for patient 2.  

Each prostate was divided into half by a horizontal cut, and the upper 

part (closest to the patient’s head) was used and cut on a stepped 5-mm 

mould to obtain a 5-mm-high cylinder. Next, stripes were cut from 

the cylinder, and each stripe was cut into smaller cubes (total of 21 for 

patient 1 and 28 for patient 2). All tissue cubes were fresh-frozen in liquid 

nitrogen and stored at −80 °C until embedding for cryosectioning.  

The childhood brain tumours were collected and provided by the 

Swedish Childhood Tumour Biobank and stored at −80 °C until embed-

ding for cryosectioning.

Datasets

Human SCC and case-matched dissociated normal skin cells (refer-

ence set) were obtained from a published dataset27. The human lymph 

node, human adult glioblastoma multiforme (tumour grade IV)  

and human breast cancer (ductal carcinoma in situ, lobular carcinoma 

in situ, invasive carcinoma) datasets were provided by 10x Genom-

ics (https://support.10xgenomics.com/spatial-gene-expression/ 

datasets).

Spatial transcriptomics (1k arrays)

For prostate (patient 1), all 21 tissue cubes were cryosectioned into 

10-µm sections from the bottom (two sections per cube) for spatial 

transcriptomics analysis. The sections were mounted onto spatially 

barcoded microarray slides. The protocol described in refs. 2,30 was used 

to prepare all mounted sections with a few modifications. Fixation was 

performed for 10 min at room temperature, and samples were permea-

bilized using exonuclease I buffer for 30 min at 37 °C and 0.1× pepsin 

(pH 1) for 10 min at 37 °C. The material was processed into libraries as 

described in ref. 31 and sequenced on an Illumina NovaSeq instrument 

using paired-end 300-bp reads.

Spatial transcriptomics (10x Genomics Visium)

The Visium Spatial Tissue Optimization Slide & Reagent kit (10x 

Genomics) was used to optimize permeabilization conditions 

for the tissue sections. One 10-µm section from each patient was 

processed according to the manufacturer’s instructions. Spatially 

barcoded cDNA from every tissue section was generated using the 

Visium Spatial Gene Expression Slide & Reagent kit (10x Genomics). 

Tissue sections from prostate patient 1 were fixed according to the 

manufacturer’s instructions, and permeabilization was performed 

for 8 min. Sections from prostate patient 2 were fixed for 10 min using 

acetone at −20 °C and permeabilized for 15 min. Childhood brain 

tumour sections of 12 µm were permeabilized for 30 min. Libraries 

for all tissue sections were generated following the 10x Genomics 

Visium library preparation protocol and sequenced on Illumina 

sequencing instruments.

Spatial transcriptomics data processing

For 1k arrays, FASTQ files were processed using ST Pipeline v.1.5.1 soft-

ware32. Transcripts were mapped with STAR33 to the GRCh38.79 human 

reference genome. Mapped reads were counted using the HTseq count 

tool34. Spatial barcodes were demultiplexed using an implementation 

of TagGD UMI filtering35 carried out to remove duplicated reads. A mean 

of 3,582 unique genes and 10,734 unique transcripts was obtained per 

spot after removing spots with fewer than 100 genes or transcripts.

For 10x Visium arrays, specifics regarding data processing 

before data analysis after demultiplexing of FASTQ files have been 

described elsewhere for the human SCC specimen27 and datasets 

provided by 10x Genomics (https://support.10xgenomics.com/

spatial-gene-expression/datasets). For the childhood brain tumour, 

read 2 was trimmed to remove both the TSO adaptor sequence and 

poly(A) homopolymers using Cutadapt36. Trimmed fastq files were 

then run through Space Ranger (version 1.0.0, 10x Genomics) where 

reads were mapped to the human reference genome (GRCh38, release 

93). The raw sequencing reads for the prostate samples were directly 

processed using Space Ranger (version 1.0.0 for prostate 1 and version 

1.2.1 for prostate 2; 10x Genomics) and mapped using the same human 

reference genome as above. A mean of 2,334 of the 2,104 unique genes 

and 10,221 of the 5,711 unique transcripts was obtained per spot after 

removing spots with fewer than 100 genes or transcripts for patient 

1 or patient 2.

Factorized negative binomial regression of prostate samples

GEF analysis was performed as previously described14. In all analyses, 

we factorized the data into T = 25, 24 and 20 GEFs (1k, Visium patient 

1 and Visium patient 2) and ran the optimization for 5,000 iterations. 

Convergence was assessed by tracking the loss (negative unnormal-

ized log posterior), which had plateaued by 5,000 iterations for all 

analyses. Spots were annotated on the basis of their section to control 

for sample-wise batch effects.

Processing and visualization of non-prostate samples

Data processing and visualization were carried out using the Seurat 

(version 3.2.2)37 and STUtility (version 0.1.0)38 R packages. UMI counts 

were filtered using the InputFromTable function, and genes were 

removed if they were present in fewer than five spots or had a total 

UMI count below 100. All spots containing fewer than 500 UMI counts 

were also removed. Counts were normalized using SCTransform, and 

dimensionality reduction was performed using principal-component 

analysis. The top 20 principal components were used for all samples 

except the childhood brain tumour, where 10 components were 

used. Expression-based clustering was performed by constructing a 

shared nearest neighbour (SNN) graph through FindNeighbors using 

previously established components and clusters identified through 

FindClusters. The resolution parameter was set to 0.8 for all samples 

except the childhood brain tumour, for which 0.2 was used. Finally, a 

two-dimensional UMAP embedding was constructed from the previ-

ously established top principal components for each tissue type. For 

the human lymph node specimen, differentially expressed genes for 

each cluster were determined using the FindAllMarkers function, only 

testing genes detected in at least 25% of the spots in either of the two 

populations, that is, cluster or background.

Paediatric tumour DNA sequencing and data analysis

Libraries for WGS were prepared using Illumina TruSeq PCR-free 

reagents. WGS samples were sequenced using 2 × 150-bp paired-end 

reads, on a HiSeqX v2.5 (patient 1) or NovaSeq 6000 (patients 2 and 3) 

instrument (Illumina). DNA sequence data were processed with Sarek, 

following the GATK best-practice recommendations39, on UPPMAX 

Clusters at Uppsala University (https://www.uppmax.uu.se/resources/

systems/the-bianca-cluster/). In brief, the steps run were quality control 

https://support.10xgenomics.com/spatial-gene-expression/datasets
https://support.10xgenomics.com/spatial-gene-expression/datasets
https://support.10xgenomics.com/spatial-gene-expression/datasets
https://support.10xgenomics.com/spatial-gene-expression/datasets
https://www.uppmax.uu.se/resources/systems/the-bianca-cluster/
https://www.uppmax.uu.se/resources/systems/the-bianca-cluster/


of the FASTQ files using FastQC (https://www.bioinformatics.babra-

ham.ac.uk/projects/fastqc/), alignment of short reads to the human 

reference genome sequence (GRCh38/hg38) using bwa-mem with the 

ALT-aware option turned on40, sorting of reads and marking of PCR 

duplicates with GATK MarkDuplicates and base quality score recali-

bration and joint realignment of reads around indels using GATK tools 

(https://github.com/broadinstitute/gatk). Tumour CNV profiles were 

generated using Control-FREEC41. The matched normal sample was 

used to call somatic CNVs.

DNA FISH

An optimal cutting temperature (OCT)-embedded block of fresh-frozen 

prostate sample was sectioned at 5-µm thickness, and several consecu-

tive sections were mounted on positively charged microscope slides 

(VWR) and placed at −80 °C until processing. Sections were fixed with 

methanol and acetic acid (3:1 ratio) for 15 min at room temperature, 

washed in 1× PBS and briefly air dried, followed by haematoxylin and 

eosin staining and imaging. DNA FISH probes targeting MYC/8cent (Cyto-

cell, MPD28000), PTEN/10cent (Cytocell, MPD15000), CKS1B/1cent 

(Cytocell, LPH039) or EHD2/19cent (Cytocell, LPS047) were added (10–

15 µl) on top of the tissue sections, and sections were sandwiched with 

18 × 18 coverslips and sealed with rubber glue (BioNordika, PCN009). 

Slides were placed on a hot plate for exactly 6 min at 76 °C to denature 

DNA molecules and immediately placed inside an incubator with 100% 

humidity for overnight incubation at 37 °C. Coverslips were gently 

removed, and slides were washed in a ceramic jar containing prewarmed 

0.4× SSC for 3 min at 72 °C, transferred to 2× SSC with 0.05 Tween-20 

for 2 min at room temperature and then quickly washed in 2× SSC and 

nuclease-free water. To reduce the autofluorescence background, we 

applied quenching probes (Thermo Fisher Scientific, R37630) to the 

top of sections, incubated sections for 5 min at room temperature 

and washed in 1× PBS. Nuclei were then counterstained with DAPI and 

slides were mounted using mounting medium (Thermo Fisher Scien-

tific, S36936). Microscopy images were acquired using a ×100/1.45-NA 

objective mounted on an Eclipse upright microscope system (Nikon) 

controlled by NIS Elements. We collected multiple image stacks per 

sample, each consisting of 30–40 focal planes spaced 0.3 µm apart.

Pathologist workflow: spot-level annotation for prostate 

patient 1

All Visium spots were annotated on a spot-by-spot basis using Loupe 

Browser version 5.0 (10x Genomics) for the Visium sections by two uro-

pathologists (R.C. and T.M.). Using a cell-type specific coverage thresh-

old of >50%, the pathologists annotated spots by histological class or 

as ‘exclude’ (for example, for mixed coverage, when array regions did 

not cover tissue such as lumens or if a scanning/sectioning artefact 

rendered it impossible to determine a histological class). The annota-

tions were cleaned, unified and visualized in Loupe Browser for review. 

Next, a consensus workflow was applied wherein the pathologists were 

asked to determine a final annotation class if there were discrepancies 

between benign or cancerous luminal epithelial cells. If there were 

discrepancies between luminal classes and stroma, A.E. performed a 

review and reclassification, such that if over 50% of cells of one class 

could be identified the spot was marked as the corresponding class. 

If there was uncertainty, the spot was marked as ‘mixed’ and excluded 

from downstream analysis. The final consensus annotation dataset 

consisted of a total n of 23,282 spots. We defined low-grade prostate 

cancers as spots with Gleason grade group 1 and high-grade cancer as 

spots containing Gleason pattern 4. Final confirmation of benign anno-

tations in regions of tissue harbouring inferred CNVs (Fig. 3, clone C)  

was performed by assessing digital images of p63/AMACR staining 

from consecutive tissue sections, with detection of the presence or 

absence of basal cells by p63 positivity (thus indicating whether the 

region of interest was benign or tumour). High-resolution images of 

staining results can be found in the Mendeley repository.

Pathologist workflow: annotation for prostate patient 2

Prostatic luminal epithelial cells were annotated for 15 Visium sec-

tions from prostate 2 for the presence of tumour histology. Luminal 

epithelial spots from benign tissue sections were analysed for selection 

of a benign reference set. Tumour histology was confirmed in sections 

H3_1, H2_1, H2_2 and H3_6 using Loupe Brower.

Data preprocessing for inferring spatial CNVs

To systematically interrogate the data, we developed an R package 

called SpatialInferCNV (https://github.com/aerickso/SpatialInferCNV). 

Additional analyses were performed using a series of R packages 

(tidyverse, Seurat, infercnv and hdf5r) and Python and BASH scripts 

as follows. Histological annotations were imported from the final con-

sensus annotation files for all sections, and barcodes were appended 

with their section identifier. Next, the annotations were filtered for a 

given feature of interest. Files output from the Cell Ranger pipeline 

(filtered_feature_bc_matrix.h5) were imported, and barcodes were 

appended with their corresponding section name. The count files 

were then filtered for only those within the analysis of interest. The 

count files further underwent a quality-control filter8 wherein spots 

containing 500 or fewer counts were removed. The annotations file 

and counts file were joined for each section, and the resulting files 

were then all combined into a final matrix that was output (.tsv file) for 

downstream analysis with inferCNV7. The barcodes for only spots that 

passed the annotation and quality-control filters were merged again 

with the annotations, and these were separately exported (.tsv file) 

for further inferCNV7 analysis. Lastly, a genomic positions file was cre-

ated following the instructions at https://github.com/broadinstitute/

inferCNV/wiki/instructions-create-genome-position-file.

Selection of benign references

Inputs to inferCNV7 can include a reference set of UMI-barcoded 

objects, to improve precise inference of genomic copy number events 

in the observed population. We first performed an unsupervised analy-

sis of only the benign luminal epithelial reference cells (parameter 

for inferCNV object: ref_group_names = NULL; parameters for run: 

cutoff = 0.1, cluster_by_groups = FALSE, denoise = TRUE). Using the 

denoised outputs, we identified by visual inspection a subgroup of 

all benign spots that harboured few to no inferred CNVs (Extended 

Data Fig. 4). The associated dendrogram file (with the cluster struc-

ture and each barcode therein) was then further analysed for node  

selection.

InferCNV parameters

For unsupervised siCNV analysis, we included the following param-

eter for the function CreateInfercnvObject(): chr_exclude = c(“chrM”). 

For the run() function, we used the following parameter values: cut-

off = 0.1, num_threads = 10, cluster_by_groups = FALSE, denoise = TRUE, 

HMM = FALSE. A reference set was used for all analyses, with the excep-

tions of defining the reference set or if a suitable reference set was not 

available (Fig. 4 and Extended Data Fig. 11).

In supervised siCNV analysis (to call inferCNV7 hidden Markov model 

(HMM) functions), inferCNV7 was run as follows. The node identity 

file was used in place of the annotation file. The following inferCNV 

run parameters were used: cutoff = 0.1, num_threads = 10, cluster_by_

groups = TRUE, denoise = TRUE, HMM = TRUE.

For the global visualization of siCNV events in Fig. 1, we analysed 

spatial transcriptomics (1k arrays) data with inferCNV7 for all 21 sections 

in a global analysis without a reference set. We performed the analysis 

such that each individual spatial transcriptomics spot was run with the 

following inferCNV run() parameters: cutoff = 0.1, num_threads = 10, 

cluster_by_groups = FALSE, denoise=TRUE, HMM=TRUE, analysis_

mode=“cells,” HMM_report_by=“cell”. To spatially visualize global siCNV 

profiles across an entire prostate, we then determined the number of 

https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
https://github.com/broadinstitute/gatk
https://github.com/aerickso/SpatialInferCNV
https://github.com/broadinstitute/inferCNV/wiki/instructions-create-genome-position-file
https://github.com/broadinstitute/inferCNV/wiki/instructions-create-genome-position-file
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individual genes detected to harbour an inferred copy number gain 

or loss. To reduce background noise in the visualization, the resultant 

HMM calls were thresholded for the number of gene-level siCNV events 

present in at least 35% of all spots across the entire dataset and in at 

least 45% of the spots of a given section. These thresholds were selected 

after detailed interrogation of thresholds ranging from 10–90% in 5% 

increments with positive-control, neutral and negative-control sections 

for visual consistency.

Clone selection

The dendrogram tree with numerical node identities was visualized, 

nodes were extracted and the specific barcodes (Visium spots) were 

digitally selected and assigned a clone identity. All members of a given 

analysis were merged, and a .csv file containing the clone identity and 

barcode was output for each Visium section.

Clone visualization

Loupe Browser version 5.0 (10x Genomics) was used to spatially visual-

ize resultant clones from clone selection. For the manuscript, if a clone 

was present in <10 spatial spots (from 1k arrays or Visium) in a given 

section, it was not visualized.

Manual algorithmic tree building from preprocessed inferCNV 

data

Clone tree consensus siCNV event calling. Both HMM siCNVs (from 

files infercnv.17_HMM_predHMMi6.hmm_mode-samples.png and 17_

HMM_predHMMi6.hmm_mode-samples.pred_cnv_regions.dat) and 

manual interpretation of denoised outputs (from file infercnv.21_de-

noised.png) were used to identify putative subclonal CNVs. These were 

then merged in a final consensus set, in which events were listed for 

each clone for building clone trees (Supplementary Tables 1 and 2).  

In brief, trees were constructed by identifying where CNVs were shared 

across the clusters identified above as, under the assumption that a 

CNV cannot be reversed once it occurs, this indicates that the cells in 

these clusters share a common ancestry. We therefore used this logic 

to identify ancestral relationships among clusters and build the clone 

tree. As our clone trees identify clones as related groups of cells (as 

opposed to clones being simply related mutations, an approach com-

monly taken in bulk-sequenced studies), where clones were present in 

subtrees that were not spatially proximate, we marked this uncertainty 

with dotted lines between common ancestors.

Clone trees: branch lengths. To semiquantitatively depict the ‘evo-

lutionary distance’ between subclones, we determined the branch 

lengths by taking the logarithm (base 2) of the number of additional 

CNVs in the descendant clone and adding an arbitrary value to ensure 

that branches were always visible even with few CNV differences. The 

formula is given as bk = 100log2(|Zdescendent| – |Zparent|) + 300, where bk is 

the length of branch k in pixels.

Clone trees: clone diameters. We scaled the size of each circle denot-

ing a clone by the proportion of spots in the sample that was assigned to 

a clone using the formula dl = 10log2(sl), where dl denotes the circle di-

ameter in pixels and sl is the number of spots that correspond to a clone.

Maximum-parsimony clone trees

To validate our manual clone trees, we additionally computed 

maximum-parsimony clone trees following the instructions provided at 

https://cran.r-project.org/web/packages/phangorn/vignettes/Ances-

tral.html#parsimony-reconstructions (Extended Data Fig. 14). We used 

gene-level HMM copy number inferences (from file 17_HMM_predH-

MMi6.hmm_mode-samples.pred_cnv_genes.dat) as a ‘user-defined 

input’ matrix to the R package phangorn. All genes were included; if a 

clone did not have an inferred CNV event predicted, the matrix infor-

mation for the gene in that clone was set to diploid.

siCNV parameters (Fig. 4)

Patient-matched scRNA-seq data from dissociated normal skin cells 

were analysed for selection (previously described) of a benign refer-

ence set. This reference set was then used as a reference control for 

all spatial transcriptomics spots in section T28. Node selection was 

performed (previously described). One pathologist (R.C.) annotated 

the resultant clones with the percentage of spots for each clone that 

harboured stroma, tumour epithelia or non-invasive epithelia (Sup-

plementary Table 6). For siCNV analysis of the childhood brain tumour, 

patients 2 and 3 were selected as reference samples for patient 1. The 

selected reference samples appeared to have few to no inferred CNV 

gains and losses, as shown in Extended Data Fig. 13.

RNA versus DNA phylogeny analysis of previously published 

single-cell data

DNA and RNA data, co-extracted from single tumour cells, were 

obtained from publicly available data repositories8. Genomic and 

transcriptomic libraries were aligned to GRCh38.79. DNA-based CNV 

profiles were analysed and clustered with GINKGO (https://github.com/

robertaboukhalil/ginkgo)42. RNA profiles were analysed with inferCNV7, 

without a reference set, using default parameters. Tanglegrams of 

hierarchical clustering of both DNA-based copy number profiles and 

RNA-based inferred copy number profiles were then analysed with the 

R package Dendextend43.

RNA versus DNA phylogenies from published prostate data

RNA data were obtained for patient A21 (refs. 9,44), patient 499 (ref. 10) 

and cases 6, 7 and 8 (ref. 11). For patients A21 and 499, only a subset of all 

specimens had transcript data available. For cases 6, 7 and 8, only RNA 

microarray data were available, precluding their analysis by inferCNV7. 

The transcriptomes were aligned to GRCh38.79, and RNA counts were 

obtained. These were then processed into inferCNV7 objects and run 

with standard inferCNV settings, without a reference set. Dendrograms 

from the inferCNV7 outputs were visualized using R.

Synthetic data: generative process

To evaluate our application of the computational method inferCNV7 

to spatial transcriptomics data, we designed a generative process that 

resulted in an in silico spatial transcriptomics experiment of a tissue 

with a known—and spatially structured—clonotype population. In short, 

we constructed a spatial domain (representing a tissue region) in which 

we placed a set of virtual cells with a common genome structure and 

then let these cells populate the tissue region by simulating growth. 

In the process, at every time point cells can move, generate offspring, 

die or stay stagnant. The generative process above is implemented in 

Python code and available as a CLI application that can be accessed 

at GitHub (https://github.com/almaan/growmeatissue). The GitHub 

repository also contains more extensive documentation and exam-

ples of how to use the code; the exact parameters (defined in a TOML 

design file) used to produce the data presented here are included in 

Supplementary Data 1.

Synthetic data: evaluation

The process described above was used to generate a set of synthetic 

data incorporating a single chromosome, from which the obtained 

spatial gene expression data together with associated annotations were 

entered as input to siCNV (these data can be found in the Mendeley 

repository). The synthetic data were analysed according to the same 

procedure as previously outlined for the real data, providing as out-

put information regarding the clonal population as determined from 

the inferred genomic state. To compare the results with the ground 

truth, we focused exclusively on the set of cells not being used as a 

reference (non-benign). InferCNV7 assigns a state (either 3 or 6 depend-

ing on which HMM approach is used) to every gene in each clone; we 

https://cran.r-project.org/web/packages/phangorn/vignettes/Ancestral.html#parsimony-reconstructions
https://cran.r-project.org/web/packages/phangorn/vignettes/Ancestral.html#parsimony-reconstructions
https://github.com/robertaboukhalil/ginkgo
https://github.com/robertaboukhalil/ginkgo
https://github.com/almaan/growmeatissue


converted these states into a categorization that was more suitable 

for comparison according to the following scheme, given as ‘spatial 

inferCNV state’: new category: 1, deletion; 2, deletion; 3, neutral; 4, 

amplification; 5, amplification; 6, amplification. For the ground-truth 

data, we computed the average copy number of all cells assigned to 

each spot and rounded this value to the nearest integer. We considered 

a gene (within a clone) as deleted if the rounded average copy number 

within the given clone was less than 1, amplified if it was higher than 1 

and neutral if it was equal to 1. Having cast the two datasets (real and 

synthetic) into comparable formats, we then computed the accuracy 

(within each clone) as the number of equal gene annotations (deletion, 

neutral, amplification) between the ground truth and the inferred 

results (from siCNV analysis).

SNV analysis of Visium spatial transcriptomics data

To call SNVs from the data, we ran the cb_sniffer pipeline (https://

github.com/sridnona/cb_sniffer) as published in ref. 22. We identified 

all variants from 1000 Genomes45 within any gene with an inferCNV7 

HMM-predicted alteration (5.4 million variants from 3,324 genes) 

in clones from patient 1, section H2_1 (Fig. 3). This output a total of 

13,447,918 reads mapping to SNV loci, which corresponded to 573,781 

unique candidate SNV loci detected in any spot. Of these, 51,945 SNVs 

had at least one read in one clone spot for each clone. We calculated 

clonal variant allele fractions for each variant within each clone by 

assessing the ratio of reference to alternative allele reads detected 

within spots assigned to a specific clone. Spot percentage was deter-

mined by calculating the total number of spots within a given clone 

that had a detected read that covered a candidate SNV locus divided 

by the total number of spots assigned to the given clone.

Differential gene expression analysis

To analyse differentially expressed genes, we used the Seurat R package 

(version 4.0.5) and imported Space Ranger output files, after which 

the data were normalized and scaled using the default Seurat Nor-

malizeData() and ScaleData() functions. Differential gene expression 

analyses were performed comparing groups using the FindMarkers() 

function with the following parameter: test.use = wilcox. For gene set 

enrichment analysis (GSEA), the msigdbr R package (version 7.4.1) was 

used to download the hallmark gene set from the Molecular Signa-

tures Database. Genes that remained following filtering according to 

quality-control threshold criteria46 (log2(fold change) ≥ 0.25, group per-

cent threshold ≥ 0.1 and adjusted P value ≤ 0.01) were passed through 

for GSEA. The plotEnrichment() function from the fgsea R package 

(version 1.16.0) was used to create GSEA enrichment plots.

Statistics and reproducibility

All differential expression analysis was performed using gene mark-

ers found by two-sided Wilcoxon rank-sum test used by default in the 

Seurat FindAllMarkers function.

All spatial transcriptomics experiments, including histology, of 

prostate samples were performed in technical replicates of two and 

a biological replicate in the form of an additional whole prostate. All 

samples and analyses confirmed the original findings. In addition, 

technical repeats of data analysis (siCNV) were also re-run to confirm 

analysis results. Single-molecule FISH and spatial transcriptomics 

experiments on other tissues were not repeated.

Reporting summary

Further information on research design is available in the Nature 

Research Reporting Summary linked to this article.

Data availability

Sequence data for the prostate samples have been deposited at the 

European Genome-phenome Archive (EGA; www.ebi.ac.uk/ega/), 

which is hosted by the European Bioinformatics Institute (EBI), under 

accession number EGAS00001006124. The data are available under 

Data Use Conditions (DUO) and are limited to not-for-profit use as 

well as health/medical/biomedical purposes. Access is granted if 

the above criteria are fulfilled and local institutional review board/

ethical review board approvals are provided. Raw FASTQ files for the 

childhood brain tumour samples are available through a materials 

transfer agreement with M. Nistér (monica.nister@ki.se), in line with 

GDPR regulations. Count matrices, high-resolution histological images 

and additional material are available on Mendeley Data (https://doi.

org/10.17632/svw96g68dv.1). Public data used for comparison of 

phylograms were obtained from the European Nucleotide Archive 

(http://www.ebi.ac.uk/ena), under accession numbers ERP022266 

(RNA-seq) and ERP022267 (WGS), as well as from the EGA, under 

accession numbers EGAS00001001659 and EGAS00001000942. 

Public patient-specific benign cutaneous scRNA-seq data were 

obtained from the Gene Expression Omnibus (GSE144236). Pub-

lic spatial transcriptomics data used in the study were all obtained 

from 10x Genomics. Human lymph node (https://www.10xgenomics.

com/resources/datasets/human-lymph-node-1-standard-1-1-0), 

breast cancer (https://www.10xgenomics.com/resources/datasets/

human-breast-cancer-block-a-section-1-1-standard-1-1-0) and glio-

blastoma (https://www.10xgenomics.com/resources/datasets/

human-glioblastoma-whole-transcriptome-analysis-1-standard-1-2-0) 

data are all available as dataset resources.

Code availability

Details of the spatial transcriptomics analysis pipeline can be found 

at https://github.com/jfnavarro/st_pipeline. The factor analysis soft-

ware (STD) is available under GNU General Public License v3 at https://

github.com/SpatialTranscriptomicsResearch/std-nb. The SpatialIn-

ferCNV package along with documentation is available at https://

github.com/aerickso/SpatialInferCNV. An archived permanent reposi-

tory of SpatialInferCNV is available using https://doi.org/10.6084/

m9.figshare.19666317.v1. The code as well as documentation for 

generating synthetic data is available at https://github.com/almaan/

growmeatissue. 
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Extended Data Fig. 1 | Comparison of phylograms created from whole 

genome sequencing CNVs and iCNV’s. a, Comparison of single tumour cells 

with co-isolated DNA and RNA (Han et al., Genome Res 2018). Colours 

correspond to individual cell lines (yellow: SKBR3, green: HCC827, and light 

blue: MCF7). Entanglement of the phylograms was 0.11 (an entanglement value 

of 1 corresponds with full entanglement of two phylograms, whereas an 

entanglement value of 0 corresponds with no entanglement). b Phylogeny 

from patient A21, as published and reproduced from Gundem et al.,  

Nature, 2015. Transcript data were available only for a subset of specimens.  

c, Phylogeny from patient 499, as published and reproduced from Hong et al., 

Nat. Comms, 2015. Transcript data available for a subset of specimens (used to 

reproduce phylogenetic tree by inferCNV).
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Extended Data Fig. 2 | See next page for caption.



Extended Data Fig. 2 | Generating and running inferCNV on synthetic data. 

a, Schematic overview of the generative process used to produce artificial 

spatial data. 1) First a set of seeding cells (red and blue circles) are placed in a 

defined tissue domain (square), every seeding cell hosts one unique copy 

number event. 2) The cells are allowed to “grow” within the tissue domain until 

the number of cells in the domain exceeds a predetermined number. 3) 

Mutations in the genome occur stochastically during growth and as a result, 

subpopulations (indicated by colour) of cells with similar genomic profiles 

arise. 4) Unoccupied space in the tissue domain is filled with benign cells (no 

copy number variations), spatial capture locations are placed in a grid over the 

grown tissue and transcripts are “captured” from the cells overlying each spot. 

5) Synthetic spatial expression data is produced together with associated 

ground truth genomic data (both on spot and cell level). b, Results from 

applying siCNV (bottom) to a set of synthetic data together with ground truth 

information (top), only cells residing at spots being annotated as non-benign 

are shown. Blue indicates a deletion event while red indicates an amplification 

event. The ground truth shows the genomic profiles for all cells contributing to 

the spots assigned to a given clone. Comparing the inferred state with the 

ground truth on a clone 19 level, the average accuracy across genes was 0.90 

(standard deviation 0.10) c, Spatial organization of the synthetic data analysed 

in (b), with thumbnail of the complete cell population in the artificial tissue, 

each pixel corresponding to a cell. The cells’ intensity levels are proportional to 

their total number of associated copy number events. Circles represent the 

spots used to “capture” transcripts. Spots are coloured by their inferred clone 

identity. Note how Clone 2, predicted to have zero copy number events, is 

found along the borders of both foci, where there’s a mixture of benign and 

non-benign cells. d, siCNV outputs from simulated synthetic data of spots 

simulating ST 1k array (low-resolution) with 100 µm spot diameter and centre-

to-centre distance of 200 µm. e, Visium (high-resolution). High resolution 

spots were 0.55x size of low resolution and had 5x more spots per area.  

The synthetic ground truth data were identical for both.
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Extended Data Fig. 3 | GEF directed inferCNV analysis from prostate patient 

1 (high resolution Visium analysis). a, UMAP summary of GEFs from 1k spatial 

transcriptomics experiments of prostate samples from patient 1. b, UMAP 

summary of GEFs from high resolution Visium experiments of prostate samples 

from patient 1. Top marker genes for each GEF are available in Supplementary 

Table 3, 4. c, Benign GEFs from b (high resolution) were used as a reference set 

for analysis of d, Tumour GEFS from b (high resolution). e, Snapshot of 

inferCNV profiles for chr 7 and 8 from GEF10. GEF inferCNV heterogeneity is 

highlighted by 3 subclones: the first harbouring no changes to chr 7 and 8,  

the second having a deletion and amplification in chr 8, and the last having 

alterations in both chr 7 and chr 8. While further subclustering of GEF10 spots 

using gene expression factors improved GEF to clone concordance, GEF to 

clone heterogeneity remained. f, Tumor GEFs distribution by siCNV clones 

(Fig. 2). GEF = Gene Expression Factor, chr = Chromosome, siCNV = spatial 

inferCNV.



Extended Data Fig. 4 | Identification of a histologically benign reference 

set from prostate patient 1. a, Visual selection of benign epithelial spots 

harbouring the least amount of inferred copy number variations, as outlined by 

the black box bounding box. Arrows identify dendrogram nodes corresponding 

to barcoded spots within the box. b, InferCNV output of the dendrogram nodes 

with numerical identifiers for selection corresponding to Panel a. c, Finalized 

benign reference set from analysis of epithelial cells in prostate patient 1, 

section H2_1 (Fig. 3). d, Global spatial inferCNV profiles of the selected benign 

reference set from panel a, the remainder of the benign not included in the 

reference set, altered benign (Clone C, Fig. 3), and the other Visium spots with 

luminal epithelial annotations (PIN, GG1, GG2, GG4, GG4 Cribriform).
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Extended Data Fig. 5 | Histology and clones (from Fig. 2a) for prostate 

patient 1. a, Consensus pathology annotations for tumour spots from sections 

H2_1, H2_2, and H1_2. b, Clonal groupings of spots (approx. 10-15 cells each) 

determined by hierarchical clustering. c, Distinct siCNV profile of GG1 tumour 

focus from organscale prostate patient 1. siCNV profiling of epithelial Visium 

spots from section H1_2. d, Spot level histology and siCNV clone calls.  

GG = ISUP Gleason ‘Grade Group’, siCNV = spatial inferCNV.



Extended Data Fig. 6 | DNA FISH targeting MYC and PTEN loci. 

Representative images from fresh frozen prostate tissue sections obtained 

from patient H2.1 labelled with Cytocell MYC/8cent and PTEN/10cen probes. 

Three consecutive sections were used for H&E staining and FISH. Control 

probes labelled chromosome 8 and 10 centromeres in (green & aqua) 

respectively, and MYC and PTEN shown in (red). Nuclei counterstained with 

DAPI (dark blue).
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Extended Data Fig. 7 | Single nucleotide variant analysis of spatial 

transcriptomic data from prostate patient 1, section H2_1. a, Summary 

table of alt and reference read data from clones A-G (Fig. 3) of EEF1D. b, Cartoon 

diagram demonstrates how clone B-G, harbor copy number gain of the same 

allele as evidenced by the decreased variant allele fraction (VAF). c, Summary 

table of alt and reference read data from clones A-G (Fig. 3) of COX6C.  

d, Cartoon diagram demonstrates how clone B-G, harbor copy number gain of 

the same allele as evidenced by the increase VAF.



Extended Data Fig. 8 | Differential gene expression analyses benign, 

altered benign and tumour clones. a, Differentially expressed genes from 

benign clone A and altered clone C. Using a two-sided Wilcoxon Rank-Sum test. 

b, Top 10 pathways identified by geneset enrichment analyses (GSEA) from 

clone A vs clone C. c, Top ranked enrichment pathway from GSEA. d, Differentially 

expressed genes from benign clone A and tumour clones E, F and G. Using a 

two-sided Wilcoxon Rank-Sum test. e, Top 10 pathways identified by GSEA from 

clone A vs clones E, F and G. f, Top ranked enrichment pathway from GSEA.  

g, Venn-Diagram of genes from differential gene expression analyses identified 

only in benign clone A vs altered benign clone C analysis (left), benign clone  

A vs tumour clones E, F and G (right).
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Extended Data Fig. 9 | Branching morphogenesis and somatic mosaicism in 

prostate epithelium. a, Close up histology of Section H2_1 demonstrating 

clear ductal (e.g. arrow heads) and acinar (e.g. stars) branching patterns.  

b, Overlayed spot-level histology. c, Overlayed clone groupings (from Fig. 3). 

d-f, Possible arrangement of clonal expansion during branching morphogenesis 

with key mutational events (marked with X, siCNV events from Fig. 3) passed on 

to downstream branches. Dotted line represents presumed branch/duct not 

visible in two-dimensional plane.



Extended Data Fig. 10 | Organscale prostate patient 2. a, Spatial inferCNV 

(siCNV) profiles of histologically benign prostatic epithelial cells from  

11 sections from prostate patient 2. b, Reference overview of 15 sections 

available for analysis: sections H2_1, H2_2, H3_1, and H3_6 harbour tumour 

(marked with red dotted lines). Black dotted lines represent the area covered by 

spatial transcriptomics array surface. c, Analysis of tumour foci in sections 

H3_1, H2_1 and H2_2. Analysis includes section H3_2, a non-tumour bearing 

section which included spatially co-localized benign spots harbouring inferred 

CNV alterations from panel a. d, Spatial histology and clone distribution in 

section H3_2 (no-tumour). Benign ductal histology (Clone F) harbours distinct 

inferred CNVs (chr5 amplification, chr6 deletion), not harboured in 

neighbouring benign acinar glands (Clone G). e, Section histology (transparent 

red indicates tumour, and transparent yellow denotes benign) and clones from 

tumour-bearing sections H3_1, H2_1, and H2_2. CNV = Copy-Number Variant, 

chr = chromosome.
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Extended Data Fig. 11 | Spatial transcriptomics and siCNV analysis of 

multiple sample types. a, c, e, g, i, Transcript UMAPs of all spots labelled by 

cluster from human lymph node (a), human squamous cell carcinoma  

(c), malignant childhood brain tumour diagnosed as medulloblastoma (e) human 

invasive ductal breast carcinoma (g), malignant childhood brain tumour 

diagnosed as medulloblastoma SHH grade IV (i). b, d, f, h, j, H&E stain and 

unbiased cluster spots visualized spatially on tissue from human lymph node 

(b), human squamous cell carcinoma (d), childhood medulloblastoma  

(f), human invasive ductal breast carcinoma (h), human glioblastoma 

multiforme ( j). k-n, somatic copy number alterations in breast tissue 

containing ductal breast cancer and DCIS (k, l) and brain tissue containing 

glioblastoma (m, n). While some of the samples did not have an annotated 

benign reference set, interestingly, unsupervised siCNV could still segment 

different histological clones. However, the lack of a reference set did reduce the 

ability to identify specific inferred CNVs.



Extended Data Fig. 12 | DNA FISH targeting EHD2 locus. Representative 

images from fresh frozen squamous cell carcinoma tissue sections labelled 

with Cytocell 19q13/19p13probe. Consecutive sections were used for H&E, DAPI 

staining and FISH. Control probe labelled the 19p13.2 region of chromosome  

19 in green, and EHD2 is shown in red. Nuclei counterstained with DAPI  

(dark blue). Yellow dashed rectangles mark the clonal group B position 1 and 2. 

Red dashed rectangles mark the clonal group A positions 1, 2, and 3.  

Blue dashed rectangles mark the clonal group D positions 1, and 2. Green 

rectangle marks the clonal group C position 1. Predicted deletions of EHD2 

gene are shown in clones A, B, C, and D. Note that the clonal groups C, and D 

show deletions of EHD2 gene as well as diploid cells.
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Extended Data Fig. 13 | Whole-genome sequencing-based copy number 

profiles for paediatric brain tumour patients. a, Somatic WGS CNV profile of 

patient 1 diagnosed with medulloblastoma (grade IV, desmoplastic/nodular, 

SHH-activated) with b, match normal blood. c, Somatic WGS CNV profile of  

Chr 2, 3 and 9 of patient 2 diagnosed with medulloblastoma (grade IV, classic 

morphology, SHH-activated) with d, match normal blood. Notably inferCNV 

analysis on Visium data did not show any genomic variability in chr 2 but since 

Visium and WGS data were generated from different locations of each tumour, 

we speculate that the observed WGS CNV patterns in patient 2 could be due to 

the inherent spatial heterogeneity of DNA copy number alterations observed 

by others when sampling multiple sites of medulloblastoma tumours.  

e, Somatic WGS CNV profile of Chr 2, 3 and 9 of patient 3 diagnosed with CNS 

embryonal tumour (grade IV, multi-layered rosettes, NOS) with d, match 

normal blood. No CNV was detected by WGS in the chromosomes not 

displayed. WGS = Whole-genome sequencing. Chr = Chromosome. SHH = Sonic 

hedgehog. CNS = Central nervous system. NOS = Not otherwise specified.



Extended Data Fig. 14 | Maximum parsimony reconstructions of prostate 

cancer clone trees. a, Maximum parsimony tree for clones F-K from spatially 

proximate tumour bearing sections from sections H1_4, H1_5, and H2_5 from 

prostate cancer patient 1 (Fig. 2). b, Maximum parsimony tree for prostate 

cancer and benign epithelial clones A-G from sections H2_1 from prostate 

cancer patient 1 (Fig. 3). Input data to construct both trees were derived from 

gene-level siCNV hidden markov model data.
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